
NON-JUMPS IN HYPERGRAPHS

VAUGHN KOMORECH

Abstract. We say that a density α ∈ [0, 1) is a jump for r if there is some

c > 0 such that there does not exist a family of r-uniform hypergraphs F with
Turán density π(F) in (α, α+ c). Erdös conjectured [3] that all α ∈ [0, 1) are

jumps for any r. This was disproven by Frankl and Rodl when they provided

examples of non-jumps [4]. In this paper, we will provide a method for finding
non-jumps for r = 3 using patterns. As a direct consequence, we find a few

more examples of non-jumps for r = 3.
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1. Introduction

An r-uniform hypergraph is a pair (V,E) where V is a set of vertices and E is
a set of r-tuples of vertices called edges. So, a 2-uniform hypergraph is a graph
in the usual sense, where every edge is a pair of vertices. We will use r-graph in
place of r-uniform hypergraph in this paper. For an r-graph G, let V (G) and E(G)
denote the set of vertices and edges of G, respectively, and let v(G) = |V (G)| and
e(G) = |E(G)|. We define the density of an r-graph as follows.

Definition 1.1. The density of an r-graph G is

d(G) =
e(G)(

n
r

) .

For some r-graph G and some size n, the extremal number ex(n,G) denotes the
maximimum number of edges in an r-graph on n vertices that does not contain G
as an induced subgraph. The extremal number for a family of r-graphs is defined
the same, except we forbid induced subgraphs isomorphic to any member of the
family. We use the Turán density to describe the limiting behavior of the extremal
number for a family of r-graphs.
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Definition 1.2. The Turán density of a family of r-graphs F is defined as

π(F) = lim
n→∞

ex(n,F)(
n
r

) .

We know that such a limit exists by an averaging argument described later. With
this, we can define a jump.

Definition 1.3. We say that α ∈ [0, 1) is a jump for r if there exists some c > 0,
depending on α and r, such that there does not exist any family of r-graphs F with
π(F) ∈ (α, α+ c).

Estimating Turán densities of hypergraphs is often difficult. Although jump
densities alone cannot give us the Turán density of a particular hypergraph family,
they allow us to describe intervals in which Turán densities may lie. By defnition,
if α is not a jump, then there must exist a decreasing sequence of Turán densities
approaching α. In this paper, we will provide a way to find non-jumps using
patterns, introduced later. This comes from Shaw’s work [9] about Frankl and
Rödl’s method of finding nonjumps. As a corollary, we find a few examples of
non-jumps. Specifically, we will show the following.

Theorem 1.4. The density 64/81 is not a jump for r = 3.

Theorem 1.5. Let n ∈ Z+ and let k =
√
3n− 2. Then, 1 − 3n2−2n+k3

(n+k)3 is not a

jump for r = 3.

Before that, we highlight some of the most important results about Turán densi-
ties and hypergraph jumps. For this, we will need the following averaging argument.
Consider a graph G with n vertices, and fix some integer m with r ≤ m ≤ n. We
will use G[S] to denote the subgraph of G induced by the vertex set S. Suppose

d(G[S]) < d(G) for S ⊂ V (G) of size m. For any edge in G there are
(
v(G)−r
m−r

)
sets

S of size m such that G[S] contains that edge. So,

d(G) =
e(G)(

n
r

)
=

1(
v(G)−r
m−r

)(
n
r

) ∑
S⊂E(G)
|S|=m

e(G[S])

=
1(

v(G)
m

) ∑
S⊂E(G)
|S|=m

e(G[S])(
m
r

)
<

1(
v(G)
m

) ∑
S⊂E(G)
|S|=m

d(G)

= d(G).

This is a contradiction. So, there must exist some subgraph of G on m vertices
with density at least d(G). We refer to this averaging argument in the next proof.

Proposition 1.6. The following are equivalent:

(1) α is a jump for r
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(2) there exists some d > 0, depending on α and r, such that given any ϵ > 0
and any integer m ≥ r there is some integer N > 0, depending on α, r,
m, and ϵ, such that any r-graph on n ≥ N vertices with at least (α+ ϵ)

(
n
r

)
edges contains some subgraph on m vertices with at least (α+ d)

(
m
r

)
edges

Proof. We start with (1) =⇒ (2). Fix d > 0. Then, let ϵ < d and m ≥ r. Assume
for contradiction that for all N > 0, there exists some r-graph on n ≥ N vertices
with at least (α+ ϵ)

(
n
r

)
edges that does not contain a member of F , defined as the

set of all graphs on m vertices with at least (α+ d)
(
m
r

)
edges. Then by definition,

π(F) ≥ α + ϵ. Furthermore, by an averaging argument, π(F) < α + d. Since we
are free to choose any d, this contradicts the assumption that α is a jump for r.

To prove the converse, assume for contradiction that for all c > 0 there exists
a family of r-graphs Fc with π(Fc) ∈ (α, α + c). Fix d > c. Then, there exists
some m such that any graph on m vertices with at least (α+ d)

(
m
r

)
edges contains

a member of Fc. If we choose some positive ϵ < π(Fc) − α, then (2) implies that
any graph on n ≥ N vertices with at least (α + ϵ)

(
n
r

)
edges contains a member of

Fc. But this implies π(Fc) ≤ α+ ϵ < π(Fc), a contradiction. □

Often, the second definition is used in place of the first. To characterize jumps
for r = 2, we recall the Erdös-Stone Theorem.

Theorem 1.7 (Erdös-Stone). Let G be a graph with chromatic number χ > 2.
Then,

π(G) = 1− 1

χ− 1
.

From this, we can show π(F) = infF∈F π(F) for any family of graphs F . Let
F ∈ F be a graph with minimal chromatic number χ. Then, the Turán graph on
n vertices with χ − 1 parts, denoted T (n, χ − 1), does not contain any member
of F . Furthermore, limn→∞ d(T (n, χ − 1)) = 1 − 1

χ−1 . So, π(F) ≥ 1 − 1
χ−1 . By

Erdös-Stone, π(F ) = 1 − 1
χ−1 . Therefore, π(F) = 1 − 1

χ−1 . We need one more

result from Erdös [2] to characterize jumps for r = 2.

Theorem 1.8 (Erdös). Let K(r)(ℓ, . . . , ℓ) denote an r-partite r-graph with ℓ vertices
in each part. Then, for any r ≥ 2 and ℓ ≥ 1,

π(K(r)(ℓ, . . . , ℓ)) = 0.

In particular, since limℓ→∞ d(K(r)(ℓ, . . . , ℓ)) = r!
rr , this proves that all α ∈[

0, r!
rr

)
are jumps for r. Furthermore, this shows that π(Km,n) = 0 for all bi-

partite graphs Km,n. Combining this with Erdös-Stone, we see that π(G) ∈
{1 − 1

k | k ∈ Z+} for all graphs G. Since π(F) = infF∈F π(F), this means

π(F) ∈ {1− 1
k | k ∈ Z+} for any family of graphs F . So by definition, all α ∈ [0, 1)

are jumps for r = 2. In the general case of r-graphs, few densities are known to be
jumps or non-jumps. We often use a strategy involving blowups of r-graphs to find
jumps. This is introduced in the next section.

2. Blowups and Lagrangians

We will refer to the notation used in Keevash’s survey on the topic [6]. First, we
define a blowup.
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Definition 2.1. Let G be an r-graph on n vertices v1, . . . , vn and t = (t1, . . . , tn).
A t-blowup of G is an r-graph G(t) such that each vertex vi of G is replaced by ti
copies and an r-tuple of vertices in G(t) is an edge if and only if the corresponding
r-tuple of vertices in G is an edge.

We will use the notation (v, i) for the ith copy of vertex v in G(t). So, each
vertex v of G corresponds to an independent set of ti vertices (v, 1), . . . , (v, ti) in
G(t), and each edge of G corresponds to an r-partite r-graph in G(t). For example,
a (2, 2)-blowup of a single edge on two vertices v and w is a square with vertices
(v, 1), (v, 2), (w, 1), (w, 2).

Now, let pG(t) denote the number of edges in G(t). Then, we have pG(t) =∑
e∈E(G)

∏
i∈e ti. Suppose we want to find the largest possible density for G(t) as

|t| → ∞, where |t| =
∑

i∈n ti. For any t, we have

lim
m→∞

d(G(mt)) = lim
m→∞

1(
m|t|
r

)pG(mt) = r!pG(t1/|t|, . . . , tn/|t|).

So, it suffices to maximize r!pG(x) over all x in the standard simplex S = {x |
x1 + · · · + xn = 1, xi ≥ 0 ∀i ∈ [n]}. Since we perform this sort of optimization
frequently, we give a name to the essential component to be maximized.

Definition 2.2. The Lagrangian of an r-graph G is defined as

λ(G) = max
x∈S

pG(x).

We also give a name to the maximum density.

Definition 2.3. The blowup density of an r-graph G is defined as

b(G) = r!λ(G).

We can think of the xis of x as optimal weights in [0, 1] that give the whole graph
G a weight w(G) = λ(G).

3. Patterns

To guide our search for non-jumps, we will need patterns as defined by Hou, Li,
Yang, and Zhang in [5]. A pattern follows all of the same rules as a hypergraph
except edges are multisets of vertices, where a multiset is defined as a set with
repetitions allowed.

Definition 3.1. An r-pattern P is a pair (n, E), where n ≥ r is an integer rep-
resenting the number of vertices of P and E is a collection of r-multisets on [n]
representing the edges of P .

For example, a 3-pattern on 3 vertices may have the edge set E = {112, 123, 223}.
We define a blowup of a pattern in the same way we defined it for hypergraphs.
Let P be an r-pattern. If t = (t1, . . . , tn), then P (t) is an r-pattern where each
vertex i is replaced by ti copies and an r-multiset in P (t) is an edge if and only if
the corresponding r-multiset in P is an edge. We define a simple blowup P [t] of
P to be the blowup P (t) with all edges containing repeat vertices removed. For
example, if P = (3, E) and t = (2, 2, 1) then P [t] has edge set

E ′ = {(1, 1)(2, 1)3, (1, 2)(2, 1)3, (1, 1)(2, 2)3, (1, 2)(2, 2)3, (1, 1)(1, 2)3, (2, 1)(2, 2)3}.
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We can define the Lagrangian for an r-pattern in a similar way to how we defined
it for hypergraphs. Let me(i) denote the multiplicity of i in an edge e. Then for
any pattern P and n-tuple t, we have

|E(P [t])| =
∑

e∈E(P )

∏
i∈e

(
ti

me(i)

)
.

As ti → ∞ for all i ∈ [n], we get∑
e∈E(P )

∏
i∈e

(
ti

me(i)

)
→

∑
e∈E(P )

∏
i∈e

t
me(i)
i

me(i)!
.

Let pP (t) denote the expression on the right. Then, for any t we have

lim
m→∞

d(P [mt]) = lim
m→∞

1(
m|t|
r

)pP (mt) = r!pP (t1/|t|, . . . , tn/|t|).

Just as before, if we wish to maximize the asymptotic density of P [t], then it suffices
to maximize r!pP (x) over the standard simplex S. So, we define the Lagrangian of
P as λ(P ) = maxx∈S pP (x) and the blowup density as b(P ) = r!λ(P ).

4. Jumps

To find jumps and non-jumps for r ≥ 3, we use the following result proved by
Frankl and Rödl. We provide a statement here, but omit the proof which can be
found in [4].

Theorem 4.1. The following are equivalent:

(1) α is a jump for r
(2) there exists a finite family of r-graphs F such that π(F) ≤ α and b(F ) > α

for all F ∈ F

In particular, we get Erdös’ result [2] that all α ∈
[
0, r!

rr

)
are jumps for r by

considering a graph with a single edge. A natural question to ask is whether r!
rr

is a jump for r. Erdös conjectured that it is [3]. This problem remains open, but
there has been some progress in its direction. For r = 3, we want to know whether
2/9 is a jump. Erdös took a step in this direction by constructing a finite family of
3-graphs all with blowup density greater than 2/9. Let

G1 = {123, 124, 134}, G2 = {123, 124, 125, 345}, G3 = {123, 124, 235, 145, 345}.
Let F = {G1, G2, G3}. Erdös suggested that π(F) ≤ 2/9. As Baber and Talbot
showed [1], we can construct an F-free 3-graph on 7 vertices with blowup density
greater than 0.2319 (G4 defined below is one such 3-graph). This shows π(F) >
0.2319. By adding more 3-graphs with blowup density greater than 2/9 to the
family, it is possible to decrease its Turán density. Let

G4 = {123, 135, 145, 245, 126, 246, 346, 356, 237, 147, 347, 257, 167}
G5 = {123, 124, 135, 145, 236, 346, 256, 456, 247, 347, 257, 357, 157}.

Let F ′ = F ∪ {G4, G5}. Baber and Talbot showed that all of the 3-graphs in F ′

have blowup density greater than 0.2316 [1]. Using Razborov’s flag algebra method,
they showed π(F ′) ≤ 0.2299. Therefore, by Theorem 4.1, all α ∈ [0.2299, 0.2316)
are jumps for r = 3. Baber and Talbot also showed that all α ∈ [0.2871, 8/27) are
jumps for r = 3. Besides α ∈

[
0, r!

rr

)
for r, these are the only known jumps.



6 VAUGHN KOMORECH

5. Non-jumps

Frankl and Rödl were the first to find examples of non-jumps [4]. They showed
that for r ≥ 3 and ℓ > 2r the density 1 − 1

ℓr−1 is not a jump for r. Since then, a
number of non-jumps and sequences of non-jumps have been found [8] [9] [10] [7].

Peng showed that if α r!
rr is a non-jump for r ≥ 3, then α p!

pp is a non-jump for any

p ≥ r [8]. Recently, Shaw showed that the smallest non-jumps we can find using

the Frankl-Rödl method are 6
121

(
5
√
5− 2

)
for r = 3 and 2 · r!

rr for r ≥ 4 [9]. We will
describe one way to find non-jumps using this method, and provide a few examples
of the non-jumps we can find. First, we introduce the Frank-Rödl construction
FRv(P ) from a pattern P , as defined by Shaw.

Definition 5.1. Suppose we are given an r-pattern P = (n, E) and v ∈ [n]. Let t
be defined such that tv = r and ti = 1 for all other vertices i ∈ [n]. Let P ′ be an
r-pattern on the vertices of P (t) with

E(P ′) = {e ∈ E(P (t)) | me((v, i)) ≤ 1 ∀i ∈ {2, . . . , r}},
Then, FRv(P ) is defined as

FRv(P ) = P ′ ∪ {(v, 1) · · · (v, n)}.
Now, we can describe a sufficient condition for α to be a non-jump for r. This

comes from Shaw’s work in [9].

Theorem 5.2. Let P be an r-pattern, and v be a vertex of P such that a maximal
weighting of P assigns v positive weight. Suppose

λ(FRv(P )) = λ(P ) < 1.

Then, r!λ(P ) is not a jump for r-graphs.

As the name suggests, this method was first used by Frankl and Rodl to show
the existence of non-jumps. Using this technique, we will prove the densities given
in Theorem 1.4 and Theorem 1.5 are non-jumps. First, we need a lemma. We say
that two vertices in a pattern are equivalent if their labelings can be swapped to
produce a pattern isomorphic to the original.

Lemma 5.3. Let P = (n, E) be a 3-pattern, and let i and j be vertices in P . If i
and j are equivalent, then either wi = wj or one of wi and wj is 0 for an optimal
weighting of P , where wv represents the weighting of vertex v.

Proof. Suppose we know the optimal weights of all of the vertices in [n] \ {i, j}.
Then, let w(P ) be the optimal weight of P and C1, C2, C3 be values depending only
on the weights of vertices in [n] \ {i, j} such that

w(P ) = (wi + wj)C1 + (w2
i + w2

j )C2 + (wiwj)C3.

By the Lagrange multiplier method, either at least one of wi, wj is 0 or ∂
∂wi

w(P ) =
∂

∂wj
w(P ). In the second case,

2wiC2 + wjC3 = 2wjC2 + wiC3

(2C2 − C3)(wi − wj) = 0.

If C3 = 2C2, then
w(P ) = (wi + wj)C1 + (wi + wj)

2C2.

So, the relative weights of wi and wj does not affect the weight of the pattern.
Therefore, wi = wj gives us an optimal weighting. □
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We also need to know the blowup density of a specific small 3-pattern.

Lemma 5.4. Let P = {112, 122}. Then,

λ(FR1(P )) = λ(P ) =
1

8
.

Proof. Let w be an optimal weighting of P and w1 and w2 be the weights of the
vertices. Since both 1 and 2 are equivalent, by Lemma 5.3 either w1 = w2 or one
of w1 or w2 is 0. Since we cannot have the second case, w1 = w2 = 1

2 . So,

λ(P ) =
w2

1w2

2
+

w1w
2
2

2
=

1

8
.

Now, let w′ be an optimal weighting of FR1(P ) and w(1,1), w(1,2), w(1,3), and w2

be the weights of the vertices. By Lemma 5.3, either w(1,2) = w(1,3) or one of w(1,2)

or w(1,3) is 0. The second case does not give us an optimal weighting, so we only
consider the first. Let a = w(1,1), b = 2w(1,2) = w(1,2) + w(1,3), and c = w2. Then,

w′(FR1(P )) =
ab2

4
+

a2c

2
+

b2c

4
+ abc+

(a+ b)c2

2
.

We are subject to the constraint a+ b+ c = 1. Assume a, b, and c are all positive.
Then, by the Lagrange multiplier method we have

∂

∂a
w′(FR1(P )) =

∂

∂b
w′(FR1(P )) =

∂

∂c
w′(FR1(P )).

We have

∂

∂a
w′(FR1(P )) =

b2

4
+ ac+ bc+

c2

2
∂

∂b
w′(FR1(P )) =

ab

2
+

bc

2
+ ac+

c2

2
∂

∂c
w′(FR1(P )) =

a2

2
+

b2

4
+ ab+ (a+ b)c.

The first and last equations give us

a2

2
− c2

2
+ ab = 0

b =
c2 − a2

2a
.

The first two equations give us

ab

2
− bc

2
− b2

4
= 0

b = 2(a− c).

If c < a, we get b < 0 from the first and last equations, and if c > a we get b < 0
from the first set of equations. So, we must have a = c. However, this implies that
b = 0, a contradiction. So, one of a, b, or c must be 0. We cannot have a = 0 for

an optimal weighting. If c = 0, then the optimal weight is a2b
4 ≤ 1

27 . If b = 0, then

we are left with the expression for w(P ). So, λ(FR1(P )) = λ(P ) = 1
8 . This implies

that 3
4 is a non-jump for r = 3. □

Now, we can prove what we want.
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Theorem 5.5. Let P = (n, E) be a 3-pattern such that a maximal weighting of P
assigns vertex 1 positive weight. Suppose {122} ∪ {11i | i ∈ [n] \ {1}} is a subset
of E. Then, P is a 3-pattern satisfying the conditions of Theorem 5.2, assuming
λ(P ) < 1.

Proof. Consider FR1(P ). Suppose w is an optimal weighting of FR1(P ) and wv

is the weight of vertex v. Let a = w(1,1), b = w(1,2) + w(1,3) = 2w(1,2), and

k =
∑n

i=2 wi. Then, we have

w(FR1(P )) =
ab2

4
+

a2k

2
+

b2k

4
+ abk +

1

2
(a+ b)

 ∑
(1,i,i)∈E

w2
i

+

(a+ b)

 ∑
(1,i,j)∈E

i ̸=j

wiwj

+
∑

(i,j,k)∈E
i ̸=j,j ̸=k,i ̸=k

wiwjwk +
∑

(i,i,j)∈E

w2
iwj

2
.

Fix w2, . . . , wn to be any value. If a ̸= 0 and b ̸= 0, then by the Lagrange multiplier
method

∂

∂a
w(FR1(P )) =

∂

∂b
w(FR1(P )).

We have

∂

∂a
w(FR1(P )) =

b2

4
+ ak + bk +

1

2

∑
(1,i,i)∈E

w2
i +

∑
(1,i,j)∈E

i ̸=j

wiwj

∂

∂b
w(FR1(P )) =

ab

2
+

bk

2
+ ak +

1

2

∑
(1,i,i)∈E

w2
i +

∑
(1,i,j)∈E

i ̸=j

wiwj .

So,

∂

∂a
w(FR1(P ))− ∂

∂b
w(FR1(P )) = 0

b2

4
+

bk

2
− ab

2
= 0

b+ 2(k − a) = 0.

This can only be true if a > k. Now, we assume this is the case and show b = 0.
Let w′ be an optimal weighting for FR1(P ) with this assumption and w′

v be
the weight of vertex v. Also, let a′ = w′

(1,1), b
′ = w′

(1,2) + w′
(1,3) = 2w′

(1,2), and

k′ =
∑n

i=2 w
′
i. Fix some distribution of the weights w′

2, . . . , w
′
n so that w′

i = c′ik
′

for constants c′2, . . . , c
′
n in [0, 1]. Then, when expressing w′(FR1(P )) we can collect

all of the constants c′2, . . . , c
′
n into two constants c1 and c2 to get

w′(FR1(P )) =
a′b′2

4
+

a′2k′

2
+

b′2k′

4
+ a′b′k′ + c1(a

′ + b′)k′2 + c2k
′3.

By Lemma 5.3, we know that w′(FR1(P )) ≥ 1
8 . Therefore, in an optimal weighting

for FR1(P ) we have

c2 ≥ 1

k′3

(
1

8
− a′b′2

4
− a′2k′

2
− b′2k′

4
− a′b′k′ − c1(a

′ + b′)k′2
)
.
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Assume a′, b′, and k′ are nonzero. Then, the Lagrange multiplier method gives us

∂

∂k′
w′(FR1(P ))− ∂

∂a′
w′(FR1(P )) = 0.

We want to show k′ > 1
2 in this equation, since this contradicts the assumption

a′ > k′. If c1 or c2 increases, then the k′ that maximizes w′(FR1(P )) must not
decrease. So it suffices to show k′ > 1

2 for the minimum possible c2. If we plug this
value for c2 into the equation, we get

a′2

2
+ a′b′ + (2c1 − 1)(a′ + b′)k′+

3

k′

(
1

8
− a′b′2

4
− a′2k′

2
− b′2k′

4
− a′b′k′ − c1(a

′ + b′)k′2
)
− c1k

′2 = 0.

Now, if we implicitly differentiate with respect to c1 holding a′ and b′ constant we
get

2(a′ + b′)k′ + (2c1 − 1)(a′ + b′)
dk′

dc1
− 3

k′

(
a′2

2
+

b′2

4
+ a′b′ + 2c1(a

′ + b′)k′
)

dk′

dc1
−

3(a′ + b′)k′ +
3

k′2

(
a′b′2

4
− 1

8
+

a′2k′

2
+

b′2k′

4
+ a′b′k′ + c1(a

′ + b′)k′2
)

dk′

dc1
−

k′2 − 2c1k
′ dk

′

dc1
= 0.

Let

g(a′, b′, k′, c1) = (2c1 − 1)(a′ + b′)− 2c1k
′ +

3

k′2

(
a′b′2

4
− 1

8

)
− 3c1(a

′ + b′).

Then,
dk′

dc1
=

(a′ + b′)k′ + k′2

g(a′, b′, k′, c1)
.

We have g(a′, b′, k′, c1) < 0. Therefore, given that c2 is a function of c1 and a′ and
b′ are constant, the k′ that maximizes w′(FR1(P )) increases as c1 decreases. If we
chose any c2 other than the minimum, then k′ would only increase more. However,
this implies k′ > 1

2 for c1 < 1
2 , since k = 1

2 maximizes w′(FR1(P )) for c1 = 1
2 and

c2 = 0 by Lemma 5.4. If c1 > 1
2 , then we also get k′ > 1

2 , since k increases when c1
increases and c2 is non-decreasing. This contradicts the assumption that a′ > k′.

Since a ≤ k′, one of a′, b′, k′ must be zero for an optimal weighting of FR1(P ).

We cannot have a′ = 0. If k′ = 0, then w′(FR1(P )) = a′b′2

4 ≤ 1
27 . Therefore, b

′ = 0
for an optimal weighting. □

Now, we prove Theorem 1.4.

Proof of Theorem 1.4. Let P = {123, 122, 112, 113, 223}. By Theorem 5.2 and The-
orem 5.5, it suffices to show that vertex 1 receives a positive weight in an optimal
weighting for P and

λ(P ) =
32

243
.

This will show us that 3! · 32
243 = 64

81 is not a jump for r = 3. Suppose w is a maximal
weighting for P and w1, w2, w3 are the weights of the vertices. Then,

w(P ) = w1w2w3 +
w1w

2
2

2
+

w2
1w2

2
+

w2
1w3

2
+

w2
2w3

2
.
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Suppose w1, w2, and w3 are positive. Then, by Lemma 5.3 we have w1 = w2.
Therefore,

w(P ) = 2w2
1w3 + w3

1.

We are subject to the constraint

2w1 + w3 = 1.

So, using the method of Lagrange multipliers, we must have

∂

∂w1
w(P ) = 2

∂

∂w3
w(P )

4w1w3 + 3w2
1 = 4w2

1

w1 − 4w3 = 0.

Then, using the constraint, we get w1 = w2 = 4/9 and w3 = 1/9, which leaves us
w(P ) = 32/243. If w1 = 0, then w2 = 2

3 and w3 = 1
3 maximizes w(P ). This leaves

w(P ) = 1/27 < 32/243. We get the same result when w2 = 0. If w3 = 0, then by
Lemma 5.4 we have w(P ) ≤ 1/8 < 32/243. So, λ(P ) = 32/243. □

We also prove Theorem 1.5.

Proof of Theorem 1.5. Let n be fixed. Then, let P be the pattern on n+1 vertices
with edges [n+ 1](3) ∪ {1, 2, 2} ∪ {1, 3, 3} ∪ · · · ∪ {1, n+ 1, n+ 1}. By Theorem 5.2
and Theorem 5.5, it suffices to show that vertex 1 receives a positive weight in an
optimal weighting for P and

λ(P ) =
1

6
− 3n2 − 2n+ k3

6(n+ k)3
.

Let w1 be the weight of the first vertex. By Lemma 5.3, either all of the weights of
the other vertices are equal, or some of them are 0 and the rest are equal. Let m
be the number of these vertices that are assigned positive weight and w2 equal m
times the weight of one of these vertices. Then,

w(P ) =

(
m

2

)
w1w

2
2

m2
+

(
m

3

)
w3

2

m3
+

w2
1w2

2
+

w1w
2
2

2m

=
w1w

2
2

2
+

(
m

3

)
w3

2

m3
+

w2
1w2

2
.

This is increasing in m, so we must have m = n. We are subject to the constraint

w1 + w2 = 1.

First, suppose both w1 and w2 are positive. Then, by the Lagrange multipliers
method we have

∂

∂w1
w(P ) =

∂

∂w2
w(P )

w2
2

2
+ w1w2 = w1w2 +

(
n

3

)
3w2

2

n3
+

w2
1

2(
1− (n− 1)(n− 2)

n2

)
w2

2 = w2
1

w1 =
k

n
w2.
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We use the constraint equation to get

w2 =
1

1 + k
n

=
n

n+ k

w1 =
k

n
w2 =

k

n+ k
.

Finally, plugging these values for w1 and w2 into the expression for w(P ) we get

w(P ) =
1

6
− 3n2 − 2n+ k3

6(n+ k)3
.

Now, suppose w1 = 0, w2 = 1. Then,

w(P ) =

(
n

3

)
1

n3
=

(n− 1)(n− 2)

6n2
=

1

6
− 3n− 2

6n2
.

However,
1

6
− 3n− 2

6n2
<

1

6
− 3(n+ k)− 2

6(n+ k)2
<

1

6
− 3n2 − 2n+ k3

6(n+ k)3
.

Clearly, w2 = 0 does not maximize w(P ). Therefore, λ(P ) = 1
6 − 3n2−2n+k3

6(n+k)3 . □
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