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ABSTRACT. This paper develops the mathematical foundations of Markov chains
and applies them to the study of Markov Chain Monte Carlo (MCMC) meth-
ods, with a focus on the Metropolis—Hastings algorithm. Beginning with the
definition of discrete-time Markov chains, we establish core properties includ-
ing irreducibility, aperiodicity, recurrence, and the existence of stationary dis-
tributions. These results culminate in a proof of the ergodic theorem via a
coupling argument, demonstrating the convergence of long-run empirical av-
erages to expectations under the invariant distribution. Building upon these
principles, we introduce and derive the Metropolis—Hastings algorithm as a
canonical example of MCMC, highlighting its role in constructing reversible
chains with prescribed stationary distributions.
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1. INTRODUCTION

Markov chains form one of the most central objects in probability theory, cap-
turing the behavior of systems that evolve stochastically in time with memory
limited to their present state. Their elegant structure allows for deep theoretical
analysis, while their ubiquity makes them indispensable tools across mathematics,
statistics, and physics. One particularly important application is the simulation
of complex distributions via Markov Chain Monte Carlo (MCMC), a family of al-
gorithms that leverages the long-run behavior of chains to approximate otherwise
intractable quantities.

Among MCMC methods, the Metropolis—-Hastings algorithm stands as both
foundational and versatile. By carefully designing transition rules that satisfy de-
tailed balance with respect to a target distribution, the algorithm ensures reversibil-
ity and invariance, guaranteeing convergence under broad conditions. In practice,
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this provides a systematic way to sample from complicated probability measures,
enabling applications ranging from Bayesian statistics to statistical physics.

The aim of this paper is twofold. First, we provide a rigorous introduction to the
theory of discrete-time Markov chains, including definitions, key properties, and
convergence results. In particular, we establish the ergodic theorem for Markov
chains via coupling, a constructive method that illuminates both the dynamics
of convergence and the probabilistic structure underlying ergodicity. Second, we
apply these principles to the Metropolis—Hastings algorithm, showing how its design
reflects and exploits the fundamental properties of Markov chains. By bridging
theoretical results with algorithmic construction, we hope to clarify both why the
algorithm works and how it connects to broader themes in stochastic processes and
probability theory.

2. DISCRETE-TIME MARKOV CHAINS

Definition 2.1 (Stochastic Process). A stochastic process is a collection of
random variables X; taking values in a state space S and indexed by time. Within
the context of this paper, time remains constrained to a subset N C {0,1,2,...} =
Npy. Hence, every stochastic process considered is a discrete-time process.

Definition 2.2 (Markov Property). A stochastic process X; with values in S sat-
isfies the Markov property if for all n > 1 and all states ig,...,i, € S,

P{X, =in| Xn-1=t%n-1,.-,Xo=t0} = P{X,, =in | Xpn_1 =in_1}.
In other words, the future is independent of the past given the present.

Definition 2.3 (Markov Chain). A (discrete-time) Markov chain on a state space
S is a discrete-time stochastic process obeying the Markov property.

A Markov chain is considered discrete if S is finite or countably infinite. In this
paper, one may assume all Markov chains discussed are discrete.

Definition 2.4 (Transition Probabilities and Transition Matrix). The transition
probabilities of a Markov chain are

pe(i, J) = P{ X1 = j | X¢ =i}

In the finite case, the associated transition matrix (or stochastic matrix) is the
matrix P = [p(4, j)]; jes with nonnegative entries and where each row sums to 1.

Definition 2.5 (Time-Homogeneity). A Markov chain is time-homogeneous if
for all t and 7,5 € S,

pe(i,7) =P{Xip1=j | Xe =i} =P{X; = | Xim1 =i}

We observe that p:(4,j) depends only on the states ¢,j and not on ¢. Thus, for
a time-homogeneous Markov chain, we may drop the subscript and simply write
p(i,7) for the transition probabilities.

For the remainder of the paper, unless stated otherwise, Markov chains can be
assumed to be time-homogeneous.

Definition 2.6 (n-step Transition Probabilities). For n > 1 and i,j € S, define
P (i, 5) = P{Xn =j | Xo =i}
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Given the relevant Markov chain is time homogeneous, we observe by Definition
2.4,

P{Xnix =J | Xp =i} = p™(i,7) for all k > 0.
Proposition 2.7 (Chapman—Kolmogorov Equations). For all m,n € N and i,j €
S,
PG G) = P k) p (K, ).
keS
Equivalently, P™t" = P™P",

Proof. Suppose i,j € S. Let m,n € N. By Definition 2.6,
P (i) = P{Xn = j | Xo = i}

=Y P{Xpin =j, Xn = k| Xo =i} (law of total probability)
keS
=Y P{Xpin =5 | Xn =k, Xo = i}P{X, = k| Xo =i}
kesS
> P{Xpin =j | Xn = k}P{X,, = k| Xo =i} (Markov property)
kesS
> P{X,n =j| Xo = k}P{X,, = k| Xo = i} (Definition 2.4)
kesS
= p"™(k,j)p™ (i, k) (Definition 2.6).
kesS

Thus, we conclude
P () =Y p™ (k, 5) p™ (i, K),
kesS
as desired. O

Remark 2.8. As an immediate consequence of Proposition 2.7, for any i, j, k € S
and m,n > 0,

PG ) = p™ R p M (K ) = p (i k) p ™ (k, 5),
k'eS
since each term in the sum is nonnegative. In particular, if p(") (i,k) > 0 and
p™ (k, ) > 0, then pm™*m (i, 5) > 0.

Definition 2.9 (Stationary Distribution). Let X; be a Markov chain with transi-
tion kernel P on a state space S. A probability vector 7 on S is called a stationary
distribution if
Tm=aP,
or equivalently
m(j) =Y _w(i)P(i,j) foralljeSs.
ics

Note, in the finite case, 7 is a left eigenvector with eigenvalue 1.

Stationary distributions are also commonly known as invariant, equilibrium, or
steady-state distributions.
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Definition 2.10 (Communication). A state j is accessible from i if there exists
n > 0 with p(™(i,5) > 0. We denote j being accesible from i as i — j. States i
and j communicate (denoted i < j) if each is accessible from the other, i.e. there
exist m,n such that p(™ (i, j) > 0 and p(™ (j,4) > 0.

Proposition 2.11. The communication relation <> on the state space S is an
equivalence relation.

Proof. Let X,, be a Markov chain on a state space S. Consider states ¢,5 € S.

We observe if a Markov chain is in state i then in 0 steps, the Markov chain
must certainly remain in state 4, and so po(4,4) = 1. Since po(i,7) =1 >0, i <> 1.
Thus, < is clearly reflexive.

Next, if ¢ communicates with j, then immediate from Definition 2.10, j must
communicate with ¢, and so <> is symmetric.

Lastly, consider states i,j,k € S, where i <+ j and j <> k. By Definition 2.9,
there exist m,n > 0 such that p(™ (i, j) > 0 and p™(j, k) > 0. Thus, we can then
demonstrate

p(m+n) (i, k) = P{Xppin | Xo =i}
> P{Xeranm =J | Xo = Z}
=p"™ (i, /)p™ (4, k)
> 0.
By similar process, we can show that given there exist m’,n’ > 0 such that

p™) (i) > 0 and p™)(k,5) > 0, p™' ") (ki) > 0. By Definition 2.9, i < k,
and therefore < is transitive. O

From the equivalence relation <, the state space S is uniquely partitioned into
disjoint equivalence classes. The equivalence classes of the relation «++ are referred
to as communication classes.

Definition 2.12 (Irreducibility). A Markov chain (or transition matrix P) is known
as irreducible if the state space S is a single communication class.
In other words, a Markov chain is irreducible if i« — j for every i,j € S.

Definition 2.13 (Period). For a state ¢, define the period of i, d = d(i), to be
the greatest common divisor of the set

Ji={n>0|p"™(@,i) > 0}.

Proposition 2.14 (Period is a Class Property). If i and j communicate, then
d(i) = d(j). Consequently, in an irreducible chain, all states have the same period;
therefore, we can say the chain (or P) has a period d.

Proof. Fix i,j € S such that ¢ and j communicate. By Definition 2.10, there exist
m,n > 0 such that

p"™(i,5) >0 and p™(j,i) > 0.
Let r € J;. By Definition 2.13, p")(4,7) > 0. Then, by the Chapman-Kolmogorov
equations (Proposition 2.7),

P () > pt™ (4, 5)p™ (5, 7)™ (i, §) > 0.
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Thus, for all r € J;, m 4+ r +n € J;. Therefore, d(i) must divide m + r + n, so
k1d(i) = m + r + n for some integer k;. Now, we observe since p(™)(i,5) > 0 and
p™(4,4) > 0, from Remark 2.8, we can see that p("™+™)(i,4) > 0 and p"+™)(j, j) >
0, and therefore m+n € J; and m+n € J;. Critically, this means for some integer
k2, k2d(i) = m + n. We can easily show

r=m+r+n)—(m+n)=kd@)— kad(i) = (k1 — k2)d(3).

Since k1 — ko is an integer, r is divisible by d(¢). Thus, for all r € J;, d(¢) divides
r, and so d(¢) divides d(j). By symmetry, d(j) divides d(i), and so d(i) = d(j). O

Definition 2.15 (Aperiodicity). We refer to an irreducible chain as aperiodic if
d=1.

Definition 2.16 (Recurrence and Transience). If a Markov chain is irreducible
and finite, the chain is recurrent.

Now, consider the irreducible and countably infinite case. Let T; = inf{n >
1| X,, =i} represent the the first return time to the state i. An irreducible and
countably infinite chain is recurrent if for every state i € S,

P{T; < oo | Xo =i} =1.
Simply put, a recurrent Markov chain returns infinitely often to each state.
If
P{Ti<OO|X0:i}<1,

i.e. the chain is not recurrent, then the chain is transient. If the chain is transient,
then each state almost surely receives only a finite amount of visits.

Definition 2.17 (Positive and Null Recurrence). A recurrent chain is null recur-
rent if

lim p™(z,y) = 0.

n—oo
A recurrent chain that is not null recurrent is called positive recurrent. Note,
every finite irreducible Markov chain is positive recurrent.

Theorem 2.18. Let P be irreducible. The following are equivalent:

(i) every state is positive recurrent,
(i) some state i is positive recurrent,
(iii) P has an invariant distribution 7.

Proof. We do not include a proof of this result here, as the proof of the result would
take us too far afield. For the interested reader, a complete proof can be found in
Markov chain notes offered by Cambridge University [6]. O

Definition 2.19 (Ergodicity). A Markov chain with countable .S that is irreducible,
aperiodic, and positive recurrent is called ergodic.

As a consequence of Definition 2.17, a finite Markov chain is ergodic if the chain
is irreducible and aperiodic.

Lemma 2.20. Suppose P is the transition matrix of an irreducible, aperiodic
Markov chain. Then for any i,j € S, there exists N(i,7) > 0 such that

p™(i,j) >0 for alln > N(i,j).
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Proof. Suppose P is irreducible and aperiodic. Fix ¢, € S. Since P is irreducible,
by Definition 2.12, there exists some m(i,7) > 0 such that p("™(#)) (3, j) > 0. Also,
since P is aperiodic, for each state j there exists an infinite set of return times
Jj = {n > 1| p"(j,7) > 0} with d(j) = 1. This implies that there exists
M () > 0 such that for all n > M(j), n € J; and therefore p(™ (4, j) > 0.

Now, for any n > M (j) we can write

PG (i, ) = e (i) p (G, 4) > 0,

by Remark 2.8.
Therefore, if we define N(i,j) = M(j) + m(i,5), then p(™(i,5) > 0 for all
n > N(i,7). O

Theorem 2.21 (Ergodic Theorem for Markov Chains). If X,, is a finite ergodic
Markov chain with transition matriz P, then there exists a unique stationary dis-
tribution w such that

lim P" = 1,
n—oo

for any initial distribution.

Proof. Immediately, by Definition 2.17 and Definition 2.19, we know an ergodic
finite chain must be positive recurrent. Thus, by Theorem 2.18, there then exists
an invariant distribution 7 for P.

Now, we want to show that P™ converges to 7 regardless of initial distribution.

Let X, and Y,, be independent Markov chains with initial distributions A and 7
and a shared transition kernel P. Fix a reference state b and let 7' = inf{n > 1 |
X, =Y, =0}

First, we want to show P{T < co} = 1, i.e. the return time is finite. We begin
by observing that W,, = {X,,,Y,} is a Markov chain on the state space S x S with
transition probabilities

P k)(4,1) = p(i, §)p(k, 1)
and initial distribution
i, k) = A(i) ().
Given P is aperiodic and irreducible, by Lemma 2.20,

P (k) (5,1) = p™ (i, 5)p™ (k1) > 0

for a sufficiently large n = max{N (i, ), N(k,1)}. Thus, P, the transition matrix
for Wy, is irreducible by Definition 2.12.
We observe P also has stationary distribution

(i, k) = w(i)m (k).
Thus P is positive recurrent by Theorem 2.18. Since P is irreducible and positive
recurrent, it follows by Definition 2.16, P{T < oo} = 1.
Now, we want to show P{X,, =i} converges to 7 (i) as n approaches co.
First, we begin by demonstrating
P{X, =i} =P{X,,=i,n>T}+P{X,, =i,n < T}
=P{Y,=i,n>T}+P{X,=i,n<T}
since X7 = Y7 by construction and given both transition kernels for X,, and Y,
are the same.
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Then, P{X,, =i}
=P{YV,=i|n>T}+P{X,=i|n<T}
=P{Y,=i|n>T}+P{Y,=i|n>T}-P{Y,=i|n>T}+P{X,=i|n<T}
=P{V,=i}-P{Y,=i|n>T}+P{X,=i|n<T}
=7(i) —P{Y,=i,n>T}+P{X, =i|n<T},
given the intial distribution Y{ is the invariant distribution 7.

Now, P{Y,, = i} > P{Y, = i | n < T}. Furthermore, as n approaches oo,
P{n < T} converges to P{T = oo} = 0 since P{T" < oo} = 1. Since

0>P{Y,=i} >P{Y,=i|n<T}=0,

we can conclude P{Y,, = i} converges to 0 as n approaches co. Similarly, P{X,, = i}
must converge to 0, and so it becomes evident that as n approaches oo,

P{X, =i} =m(i) —P{Y,=i|n>T}+P{X, =i|n<T}=mn(3)
from our earlier equation. O

Remark 2.22. The argument above establishes convergence via a coupling ar-
gument from Vincent Doblin (1937). In the special case of finite state spaces, an
alternative proof uses the Perron—-Frobenius Theorem from linear algebra, providing
another route to show that P™ converges entry-wise to 7.

3. TIME REVERSAL, DETAILED BALANCE, AND REVERSIBILITY

We now develop the notion of reversibility, a property that will underlie the
construction of Markov Chain Monte Carlo algorithms.

Definition 3.1 (Detailed Balance). A distribution 7 on states and transition kernel
P satisfy detailed balance if

m(i) p(i, ) = =(5)p(j; 1),
for all 4,5 € S.

Definition 3.2 (Reversibility). A Markov chain with transition kernel P and sta-
tionary distribution 7 is said to be reversible with respect to 7 if

w(1) p(i,j) = 7(§)p(j,i) foralli,jeS.
That is, the chain and 7 satisfy the detailed balance condition.

To offer some intuition, for a reversible chain, if you start from its stationary
state (the stable long-term distribution), watching a recording of the chain’s move-
ments would look equally plausible forwards and backwards. In other words, the
chain’s dynamics are indistinguishable under time reversal, and hence the chain is
“reversible”.

Equivalently, another way to view this is as the flow of probability between any
two states is perfectly balanced: in the long run, the expected traffic from 7 to j
matches exactly the traffic from j back to i. This perfect balance across every pair
of states is what makes the forward and backward pictures of the chain look similar.

Proposition 3.3. If m satisfies detailed balance with respect to P, then 7 is a
stationary distribution for P.
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Proof. Suppose 7 satisfies detailed balance. Fix ¢ € S. For any j € S,

> w@ipli,g) = Y w(@)pii) = 7(G) D> p(,i).

i€s ies ies
Since P is a transition kernel, ), ¢ 7(i)p(i,j) = 7(j). Thus, 7 = 7P, and so 7 is
stationary by Definition 2.9. |

In practice, reversibility is usually verified by checking the detailed balance con-
dition. This amounts to confirming that the probability flow between each pair of
states is perfectly balanced. For MCMC, reversibility is fundamental: if we can
show that the target distribution 7 satisfies detailed balance with respect to the
transition kernel we have constructed, then 7 is automatically stationary. In other
words, detailed balance provides a direct way to guarantee that the Markov chain
we build has the desired sampling distribution as its long-run equilibrium.

Remark 3.4. Not every Markov chain is reversible, but reversibility is often im-
posed in the design of MCMC algorithms since the detailed balance condition pro-
vides a tractable way to verify stationarity.

To build some intuition, let’s consider two examples. First, a simple random walk
on an undirected graph is reversible (see Example 5, Chapter 1 of [4]): if you start
in equilibrium, watching the walk backward in time looks the same as watching it
forward, since steps along edges have the same chance in either direction.

In contrast, imagine a chain that moves deterministically around a three—state
cyclel - 2 — 3 — 1 — ---. This chain is not reversible: if you filmed it and
played the video backward, the motion would clearly look different, always moving
in the opposite direction around the cycle.

These two cases highlight the meaning of reversibility: in a reversible chain,
forward and backward dynamics are indistinguishable when viewed in equilibrium.

4. MCMC: THE METROPOLIS-HASTINGS ALGORITHM

We now turn to Markov Chain Monte Carlo (MCMC), a powerful application of
Markov chain theory.

To gain some fundamental insight into the use of Markov Chain Monte Carlo,
we will first begin by considering a hypothetical problem.

Example 4.1 (Island Problem). Suppose you want to understand how a population
is spread across a group of islands. Each island represents a possible state of the
system, and the “true” long-term distribution of people across the islands is what
you want to know—that is your target distribution w. The difficulty is that you
cannot directly measure how many people live on each island. Instead, the only
option is to design rules for how individuals move between islands.

One approach to determining the population distribution is to invent a Markov
chain: rules that specify how a person moves from one island to another. For
example, a traveler might propose to go to a random neighboring island. Sometimes
the move is accepted, other times the traveler stays put, depending on how populous
the new island is. By carefully crafting these acceptance rules, you can make sure
that, in the long run, the flow of people from one island A to another island B is
exactly balanced by the flow from B back to A. This condition, detailed balance,
ensures that the overall pattern of movement settles into the correct equilibrium.
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Once the rules are in place, you let the traveler wander. At first, the traveler’s
steps still reflect where they began rather than the true balance of people across
the islands, so this initial stretch of the journey is treated as the burn-in period
and the observations are discarded. After enough time, the traveler’s location at
a random step is approximately distributed according to w. However, if you check
their location at every single step, the samples are highly correlated/dependent —
watching where they are now tells you a lot about where they will be next. To get
samples that behave more like independent snapshots, you either restart the journey
with a short burn-in before each recorded observation, or more commonly, you let
the traveler keep walking but only record their location every so often. In this
way, each saved stop along the journey gives you an (approximately) independent
glimpse into the true population distribution.

In this way, Markov Chain Monte Carlo can be understood as simulating the
journey of a wandering traveler. Rather than jumping directly to the answer, you
design fair movement rules so that the traveler naturally spends time in each state
in the right proportions. Over time, the path they trace out reveals the distribution
you were trying to uncover.

In general, the idea of Monte Carlo methods is to use random sampling to ap-
proximate complicated quantities: for example, producing samples from a distribu-
tion in order to estimate its mean or variance. Classical Monte Carlo assumes we
can generate independent samples directly. In many important problems, however,
the target distribution is too complex or high-dimensional to permit such direct
sampling. MCMC extends the Monte Carlo philosophy by instead constructing a
Markov chain whose long-run equilibrium distribution is exactly the distribution
we wish to sample from. Running the chain then yields approximate samples from
the target law.

A classical motivating example comes from statistical physics and is known as
the Ising model. This is a simplified model of ferromagnetism: certain metals can be
modeled as lattices of atoms, each bearing a “spin” that may point up or down. Dif-
ferent spin configurations correspond to different total energies of the system, deter-
mined by whether neighboring spins align or oppose each other. Physical principles,
formalized by the Boltzmann distribution, dictate that low-energy configurations
are more likely to occur, while high-energy ones are suppressed. Mathematically,
the probability of a configuration x is proportional to exp(—H (z)), where H(x) is
the Hamiltonian (energy) of x. The difficulty is that the number of possible spin
configurations increases exponentially with the size of the lattice. Even though the
probability of a single configuration can be computed from the Hamiltonian, the
full probability distribution over all 2112tticel pogsibilities is intractable to describe
or sample from directly, hence why we turn to MCMC methods. Namely, the Me-
tropolis algorithm (Metropolis et al., 1953) was introduced precisely to address this
issue: it constructs a Markov chain whose long-run behavior reflects the probability
distribution, so that representative configurations can be generated by simulating
the chain. Hastings (1970) later generalized the method to allow for more flexible
proposal mechanisms, leading to the modern Metropolis—Hastings algorithm.

The idea behind this algorithm is simple: we cannot sample directly from the
complicated distribution m, but we can design local moves that explore its state
space correctly in the long run.



10 ELIOT HUANG

Definition 4.2 (Metropolis—Hastings Algorithm). Let 7 be a target distribution on
a finite state space S. Suppose the states are the vertices of a connected, undirected
graph G with maximum degree r. For each pair of nodes i, € S, let g(i,j) denote
the probability of proposing a move from i to j. A common default choice is:

if 4 and j are adjacent,

9(i,7) =10, if i and j are not adjacent and i # j,

1 980 yf =,
This ensures that the total outgoing probability from each node sums to one. (Other
choices of ¢(i,j) are possible; this specification simply provides one convenient
example.)

The Metropolis—Hastings algorithm defines a Markov chain X, as follows:

(1) Initialization. Pick an initial state Xy € S and set ¢ = 0.

(2) Iteration. Given the current state X; = i:
(a) Proposal. Generate a candidate state j according to ¢(i,j).
(b) Acceptance. Compute

A(i,j) = min<1, ) | 9(7’1_)> :
(i) (i, ])
Generate a random number u from [0, 1], chosen uniformly.
o If u < A(i,7), accept the proposal and set X;11 = j.
o If u > A(i,7), reject the proposal and set X;11 = i.
(3) Increment. Increase t to ¢t + 1 and repeat.

Now, we observe the transition probabilities of the chain are

p(i,§) = g(i,§) AGi, ), §#4,  p(i,i)=1=_pli,j).
J#i

Thus, we can verify the Metropolis—Hastings algorithm indeed defines a Markov
chain, since the distribution of the next state depends only on the current state and
not on the past history. At each step, a candidate state j is proposed according to
g(%,7), which depends only on the present state 4, and is then accepted or rejected
using a rule based solely on ¢ and j. The algorithm yields well-defined transition
probabilities from 4 to any j, so the process satisfies the Markov property.

We now prove that the Metropolis—Hastings algorithm indeed produces a chain
with stationary distribution 7. The essential idea is that the acceptance probability
is chosen precisely so that detailed balance holds.

Proposition 4.3 (Detailed Balance for Metropolis—Hastings). The distribution m
satisfies detailed balance with respect to the Metropolis—Hastings kernel P.

Proof. Fix i,j € S with i # j. By definition of P,

P(i,j) = g(i,j) min(l, 7;((‘1)) : zgi;;)

Hence

m(i)P(i, j) = w(i)g(i, ) min (1, m(
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If w(5)g(j,i) < m(i)g(i, ), then the minimum equals the ratio, so
m(5)9(J, %)
m(i)g(i, )
If instead 7 (j)g(j, %) > 7(i)g(4, j), then the minimum is 1, so
AP 7Y = (Dl 1) = (i ‘iﬂ(i)g(i’j):w‘ .
m()P (i, ) = m(i)g(i,j) = =(5)9(4; )7“].)9(].7 B ()P, 0)-

In either case 7 (i) P(4,5) = w(j)P(j,1), so detailed balance holds. O

7T<Z)P(Z7J) = W(l)g(l,]) = W(])g(]ﬂ/) = W(]>P(]> Z)

Corollary 4.4. The distribution 7 is stationary for the Metropolis—Hastings chain.

Proof. The claim follows immediately from detailed balance (Proposition 4.3) and
the fact that any reversible distribution is stationary (Proposition 3.3). O

Proposition 4.5. The stationary distribution 7 for the Metropolis-Hastings chain
1S unique.

Proof. We note that the Metropolis—Hastings chain is irreducible under the stand-
ing assumption that the proposal kernel is chosen so that every state is accessible
from every other, i.e. the underlying proposal graph is connected.

Moreover, by Definition 2.15, the chain is aperiodic since events such as {X; 1 =
Xt} occur with positive probability due to the construction of the acceptance-
rejection step. In other words, for some state i, p(i,i) > 0, which implies the
period of i is d(i) = 1 by Definition 2.13. By Proposition 2.14 this suffices to
conclude that the period of the chain is one, and therefore the Metropolis-Hastings
chain is aperiodic.

Thus, the Metropolis-Hastings chain is both irreducible and aperiodic, and there-
fore ergodic by Definition 2.19, given the Metropolis-Hastings chain is finite. By
Theorem 2.21 it follows that the stationary distribution 7 is unique, and moreover
the probability distribution of X,, converges to m as n approaches oo, regardless of
the starting state. (I

This argument illustrates the essential mechanism behind the Metropolis—Hastings
algorithm. The acceptance rule enforces reversibility with respect to 7, so that de-
tailed balance holds and 7 is stationary. Combined with the fact that the chain is
ergodic, Theorem 2.21 ensures that the distribution of the chain converges uniquely
to 7 regardless of the starting state. Thus, by running the chain we obtain samples
that asymptotically follow the desired distribution. This captures the central idea
of MCMC: by imposing simple local balance conditions, one can design Markov
chains whose long-run behavior faithfully reproduces complex global distributions
that would be otherwise intractable to sample from directly.

5. CONCLUSION

In this paper, we developed the theory of discrete-time Markov chains and ap-
plied it to the construction of Markov Chain Monte Carlo methods, with emphasis
on the Metropolis—Hastings algorithm. Beginning with definitions and core proper-
ties such as irreducibility, recurrence, and the existence of stationary distributions,
we established the ergodic theorem for Markov chains as a foundation for under-
standing convergence. Building on these principles, we showed how the acceptance-
rejection step of Metropolis—Hastings enforces detailed balance, guaranteeing that
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the target distribution is stationary for the chain. This demonstrates the central
idea of MCMC: by enforcing local balance conditions, we can generate global sam-
ples from distributions that are otherwise intractable to simulate directly.

Looking forward, a natural next step is to study the efficiency of MCMC meth-
ods. Although we have established convergence in principle, in practice one must
ask how long it takes for the chain to become well-approximated by its stationary
distribution. This “mixing time” depends intricately on the structure of the chain
and can often be analyzed through spectral properties of the transition matrix.
Understanding and bounding mixing times remains a central challenge in both the
theory and application of MCMC, with implications for statistical physics, Bayesian
inference, and randomized algorithms more broadly.
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