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Abstract. Self-similar fractals are of particular interest to geometric measure

theorists because their properties (such as Hausdorff dimension) are easy to an-

alyze, due to Hutchinson’s [1] classical construction. This paper explores how
stochasticity and randomness may be introduced into the fractal generating

process, and investigates ways to extend and simplify previous constructions

by Graf [2] and Maudlin-Williams [3] to determine the Hausdorff dimension of
random fractals generated by a stochastic process. Our primary result high-

lights an elegant parallel between the deterministic and random cases.
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1. Introduction

The study of fractals often begins with the most rudimentary class of fractals:
self-similar ones. Roughly speaking, a fractal is self-similar if it is the union of
scaled down copies of itself. The self-similarity of a set makes it easier for us to
calculate its dimension and measure; however, it is unfortunately the case that self-
similarity is an incredibly strong condition to impose on a fractal, and most sets
with complex, irregular fractal structures are not self-similar.

One way to extend the tools we have to understand self-similar sets is by in-
troducing stochasticity into the fractal generating process. Section 2 of this paper
formalizes self-similarity and stochastic self-similarity through the theory of func-
tion systems, while Section 3 introduces Hausdorff dimension and introduces tools
to analyze the dimension of self-similar fractals. Sections 4 and 5 extend these
tools to the random/stochastic case to determine the dimension of random fractals,
using several proofs and techniques introduced by Graf [2] and Maudlin-Williams
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[3]. Section 4 contains Theorem 4.3, the paper’s primary result (a variant of which
was originally shown by Maudlin-Williams [3]): that the Hausdorff dimension of a
typical random fractal is the unique value that solves a simple expectation equation.

2. (Stochastic) Self-Similarity

In this section we define self-similarity and explain how, using contraction maps,
we may generate fractals that are self-similar and ‘stochastically’ self-similar.

2.1. Contractions, GFSs, and the Hausdorff Metric. Roughly speaking, a
self-similar set is a set that is comprised of smaller copies of itself, and therefore
has complex yet well-behaved structures at arbitrarily small scales. We introduce
fractals through a theory of generalized function systems. Throughout this section,
(X, d) is a compact metric space, unless otherwise specified.

Definition 2.1. For a function f : X → X, the Lipschitz constant of f is defined
as

Lip(f) = sup
x,y∈X

d(f(x), f(y))

d(x, y)
.

If Lip(f) < ∞, f is called Lipschitz continuous. If Lip(f) < 1, f is called a
contraction. If there exists r ≥ 0 such that for all x, y ∈ X, d(f(x), f(y)) = rd(x, y),
f is called a similitude. If 0 ≤ r < 1, f is called a contractive similitude.

We now build up the theory of function systems. Until Section 4, note that N is
some fixed natural number. Section 5 deals with some possible realizations of N .

Definition 2.2. For N ∈ N, let [N ] = {1, 2, . . . , N}. Let [N ]∗ denote the set of all
non-empty finite sequences, and [N ]N be the set of all infinite sequences, in [N ].

• For α = (n1, . . . , nk) ∈ [N ]∗, |α| = k is the length of σ.
• For σ ∈ [N ]∗ ∪ [N ]N, define σ | j = (n1, . . . , nj) to be the j-th curtailment

of σ.
• For σ1 = (n1, . . . , nk) ∈ [N ]∗ and σ2 = (m1, . . . ,ml) ∈ [N ]∗, we define the

concatenation of σ1 and σ2 to be σ1 • σ2 = (n1, . . . , nk,m1, . . . ,ml).

It is helpful to visualize the above as a countable branching tree wherein each
node has N offsprings. The next step is to assign to each node a contraction.

Definition 2.3. Let S (X) denote the set of all contractive similitudes on X.
Then, a generalized function system (GFS) is a map F : [N ]∗ → S (X). We will
denote the contraction F (σ) by Fσ for convenience, and shorten F(n) to Fn, where
(n) is the sequence of length 1.

Definition 2.4. The GFS attractor of a GFS F is the set

KF =
⋂
q∈N

⋃
|σ|=q

Fσ|1 ◦ · · · ◦ Fσ|q(X).

Proposition 2.5. If F is a GFS, its GFS attractor KF is compact. Furthermore,
if, for all q ≥ 1, there exists σ such that |σ| = q and Lip(Fσ|1 ◦ · · · ◦Fσ|q) > 0, then
KF is non-empty.

Proof. For q ≥ 1 let Kq =
⋃

|σ|=q Fσ|1 ◦ · · · ◦ Fσ|q(X). For each σ and each i ≥ q,

Fσ|i is a similitude, so their composition is a similitude, implying that the set
Fσ|1 ◦ · · · ◦ Fσ|q(X) is similar to X, and therefore also compact. There are at most
Nq distinct sequences σ with length q, so Kq is a finite union of compact sets.
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Now, for any σ with |σ| = q + 1,

Fσ|1 ◦ · · · ◦ Fσ|(q+1)(X) = Fσ|1 ◦ · · · ◦ Fσ|q(Fσ|(q+1)(X)) ⊂ Fσ|1 ◦ · · · ◦ Fσ|q(K),

since Fσ|(q+1)(X) ⊂ X. This implies that Fσ|1 ◦ · · · ◦ Fσ|(q+1)(X) ⊂ Kq, and
therefore, Kq+1 ⊂ Kq. KF =

⋂
qKq is therefore a countable intersection of nested

compact sets, which must be compact. The additional assumption that there is at
least one non-negative Lipschitz constant at each q ≥ 1 implies that Kq is non-
empty for each q; thus, their intersection must be non-empty. □

When dealing with deterministic self-similarity, we are almost always interested
in a particular case of GFS, known as an ‘iterated function system’.

Definition 2.6. An iterated function system (IFS) is a GFS where, for all n ≤ N
and σ ∈ [N ]∗, Fn = Fσ•n. The GFS attractor of an IFS is called its IFS attractor.
A set is called self-similar if it is the IFS attractor of some IFS.

The following equivalence is immediate from the definition of an IFS.

Proposition 2.7. Let F be an IFS. Then KF is its IFS attractor iff KF is compact
and

KF = F1(KF ) ∪ · · · ∪ FN (KF ).

Example 2.8. Say N = 2, X = [0, 1], F1(x) =
1
3 (x), and F2(x) =

1
3 (x) +

2
3 . The

IFS attractor KF of this IFS is none other than the middle-thirds Cantor set, and
the sequence {Kq} from Proposition 2.5 is merely the decreasing sequence of sets
used in the classical construction of the Cantor set by ‘removing’ the middle thirds.

Proposition 2.9. Let F be an IFS with attractor KF . For σ = (n1, . . . , nq) ∈ [N ]q,
denote Kσ

F = Fσ|1 ◦ · · · ◦ Fσ|q(KF ) = Fn1
◦ · · · ◦ Fnq

(KF ). Then, if the Lipschitz

constants Lip(F1), . . . ,Lip(FN ) are strictly positive, for every τ ∈ [N ]N the set
∞⋂
q=1

K
τ |q
F

is a singleton.

Proof. The set in question is a countable intersection of nested compact sets; fur-

thermore, diam(K
τ |q
F ) ≤ max1≤i≤N Lq

i · diam(KF ) → 0 as q → ∞; so the intersec-
tion is a point. We will denote this point xτ for convenience. □

The next natural question is: does the set KF from Proposition 2.7 always exist?
The answer is positive, as shown in Theorem 2.12.

Definition 2.10. Let K (X) denote the set of non-empty compact subsets of X
and, for x ∈ X and K ⊂ X, let dist(x,K) = infy∈K d(x, y).

The map ρ : K (X)× K (X) → [0,∞), where

ρ(K1,K2) = max{ sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)},

is called the Hausdorff metric on K (X).

ρ truly is a metric on K (X) - this is easy to check. What is harder to check,
but is a crucial fact, is the following statement, proved in [1]. In fact, it holds more
generally whenever X is complete:

Lemma 2.11. (K (X), ρ) is a complete metric space.
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We come to the most important theorem thus far, that provides an alternative
characterization of the IFS attractor of an IFS F .

Theorem 2.12. Let F be an IFS and define the map GF : K (X) → K (X) by

GF (K) = F1(K) ∪ · · · ∪ FN (K).

Then, if K ⊂ X is compact, Gq
F (K) → KF in the Hausdorff metric, where KF is

the IFS attractor of F .

Proof. Define the constant L = maxi Lip(Fi), and consider two arbitrary sets
K1,K2 ∈ K (X).

Fixing x ∈ K1, we see that for all 1 ≤ i ≤ N ,

dist(Fi(x), GF (K2)) ≤ dist(Fi(x), Fi(K2)) ≤ Li · dist(x,K2) ≤ L · dist(x,K2),

and thus,

sup
y∈GF (K1)

dist(y,GF (K2)) ≤ L · sup
x∈K1

dist(x,K2).

Clearly the same holds when K1 and K2 are swapped; and so,

ρ(GF (K1), GF (K2)) ≤ L · ρ(K1,K2) =⇒ Lip(GF ) ≤ L < 1.

Therefore, GF is a contraction on K (X), a complete metric space. Per Banach’s
contraction mapping theorem, it has a unique fixed point KF ∈ K (X). Further-
more, for any compact K ⊂ X, Gq

F (K) → KF as q → ∞, concluding the proof. □

Remark 2.13. Note that this proof did not use the fact that F1, . . . , FN were
similitudes. The same result actually holds true if they are just general contraction
mappings.

An IFS F is completely characterized by the N -tuple (F1, . . . , FN ) ∈ S (X)N .
So, Theorem 2.12 provides, in some sense, a map between N -tuples of contractive
similitudes and the self-similar compact sets they generate.

2.2. Generating Random Fractals. So far stochasticity hasn’t come into the
picture; but the general idea for generating random fractals is related, with the
natural inclusion of some measure theory.

This process can be laid out in three steps, beginning with a probability measure
on N -tuples of contractions and then ending with a probability measure on the set
of GFS attractors.

2.2.1. Step 1: A Probability On S̃ (X)N . Begin with an arbitrary probability mea-

sure µ on the set S̃ (X)N ⊂ S (X)N of N -tuples of contractive similitudes that
follow a crucial ‘disjointness’ property: for (F1, . . . , FN ) ∈ S (X)N , whenever i ̸= j
we have int(Fi(X)) ∩ int(Fj(X)) = ∅. The following is immediate:

Proposition 2.14. 2S̃ (X)N , the power set of S̃ (X)N , is a σ-algebra, so µ is
well-defined.

Note that because µ is a probability, we can take arbitrary products of µ with
itself. Consider (S̃ (X)N )[N ]∗ , the set of all maps from [N ]∗ to S̃ (X)N . In Step
2, we will interpret an element of this set as a ‘pulled-back GFS’, wherein each
σ ∈ [N ]∗ is mapped to the N -tuple (Fσ•1, . . . , Fσ•N ). This set is endowed with the
product measure µ[N ]∗ .
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2.2.2. Step 2: A Probability On ∆(X). We use µ to develop a probability measure
on a well-chosen set of GFSs.

Definition 2.15. Let Γ(X) be the set of all GFSs on X, and ∆(X) ⊂ Γ(X) be
the set of all GFSs on X satisfying the following condition:

For all σ ∈ [N ]∗ and n1, n2 ∈ [N ] where n1 ̸= n2,

int(Fσ|1 ◦ · · · ◦ Fσ ◦ Fσ•n1
(X)) ∩ int(Fσ|1 ◦ · · · ◦ Fσ ◦ Fσ•n2

(X)) = ∅.
∆(X) is referred to as the set of disjoint GFSs on X.

We suppress the argument and just use Γ and ∆ from here onward. The following
is, again, immediate:

Proposition 2.16. Σ = 2∆, the power set of ∆, is a σ-algebra.

Here, we run into no problems with non-measurability because Σ is simply the

product of the σ-algebras 2S̃ (X)N previously defined; so every disjoint GFS is mea-
surable. So, what we now do is identify each disjoint GFS with an N -tuple of
contractions and an element of (S̃ (X)N )[N ]∗ in a natural way.

Definition 2.17. The pushforward map φ : S̃ (X)N × (S̃ (X)N )[N ]∗ → ∆ is the

map that sends ((g1, . . . , gN ), f) ∈ S̃ (X)N × (S̃ (X)N )[N ]∗ to the GFS F , where
F(n) = gn and for all σ ∈ [N ]∗, f(σ) = (Fσ•1, . . . , Fσ•N ).

Proposition 2.18. φ is measurable and bijective.

The above is easily checked. Now, the domain of φ is endowed with the measure
µ × µ[N ]∗ ; thus, we may define a measure ν on ∆ as the pushforward measure of
µ×µ[N ]∗ under the map φ. That is, for A ⊂ ∆, ν(A) = (µ×µ[N ]∗)(φ−1(A)). This
is denoted by ν = φ#µ×µ[N]∗ .

Note that since φ is bijective, we may take the dual approach and equivalently
define ν by the fact that (µ×µ[N ]∗)(B) = ν(φ(B)) for B ⊂ S̃ (X)N×(S̃ (X)N )[N ]∗ .

2.2.3. Step 3: A Probability On K (X). Now, we can use the probability ν on ∆
to define a final measure on the set of attractors of disjoint GFSs. This is, again,
done in the natural way. Define the map u : ∆ → K (X) by u(F ) = KF , where KF

is the attractor of F . Then, we can define P = u#ν as the pushforward measure of
ν under the map u.1

That is, for A ⊂ K (X), P(A) = ν(u−1(A)). There are no guarantees that u is

bijective, but what is true is that if S̃ (X) is endowed with the topology of pointwise
convergence, u is continuous and therefore measurable, so P is well-defined. Clearly,
the set of all disjoint GFS attractors has full P-measure.

Definition 2.19. A stochastic IFS is a double (F, µ), where µ is a probability

on S̃ (X)N and F is a random map from [N ]∗ to S̃ (X), with the probability
distribution governed by the measure ν = φ#µ×µ[N]∗ . A set K ∈ K (X) is called
µ-self-similar if it lies in the support of the measure P constructed in Step 3 above;
KF refers to the random set with probability distribution P.
Remark 2.20. This procedure tells us how we can generate well-behaved stochas-
tically self-similar sets. Given a probability distribution µ on S̃ (X)N , choose one
N -tuple and then [N ]∗ N -tuples of contractive similitudes. This is identified with
a unique GFS and thus its attractor.

1P should be distinguished from P , which will be used more generally to represent the proba-
bility of any arbitrary event.
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3. Hausdorff Measure and Dimension

In this section we introduce the properties of interest in this paper: Hausdorff
measure and dimension, and we show how they can be calculated for self-similar
sets in Rd.

3.1. Constructing Hausdorff Measure and Dimension. There are many equiv-
alent definitions and constructions of the Hausdorff measure; we provide one adapted
from Matilla [4].

Definition 3.1. For ε > 0 and s ∈ [0,∞), the s-dimensional Hausdorff ε-measure
of a set A ⊂ Rd is given by

H s
ε (A) = inf

{ ∞∑
i=1

diam(Ui)
s : A ⊂

∞⋃
i=1

Ui, diam(Ui) < ε

}
,

where diam(U) = sup{∥x− y∥ : x, y ∈ U} is the diameter of U .

While H s
ε is monotonic and H s

ε (∅) = 0, it is not countably additive... yet.

Definition 3.2. The s-dimensional Hausdorff measure of a set A ⊂ Rd is defined
by

H s(A) = lim
ε→0+

H s
ε (A).

This limit always exists since H s
ε (A) is easily seen to be a non-increasing function

of ε. From this definition, the following facts are easily checked; proofs are provided
by Matilla [4].

Proposition 3.3. H s is a well-defined measure. Additionally,

(1) All Borel sets are H s-measurable.
(2) H s is Borel regular. That is, for all X ⊂ Rd, there exists a B ⊇ A such

that B is Borel and H s(B) = H s(A).
(3) H s is translation invariant.
(4) H s(kA) = ksH s(A), where kX = {k · x : x ∈ X}.

Given A ⊂ Rd, the following theorem tells us that for all small enough s,
H s(A) = ∞ and for all large enough H s(A) = 0.

Theorem 3.4. Let A ⊂ Rd and s, t ∈ [0,∞) so that s < t. Then,

H t(A) > 0 =⇒ H s(A) = ∞.

Proof. For fixed ε > 0, consider any countable open cover {Ui} of A such that
diam(Ui) < ε; consequently, diam(Ui)

s−t > εs−t. Then,

∞∑
i=1

diam(Ui)
s =

∞∑
i=1

diam(Ui)
t · diam(Ui)

s−t > εs−t ·
∞∑
i=1

diam(Ui)
t ≥ εs−tH t

ε (A).

Thus, H s
ε (A) > εs−tH t

ε (A). Letting ε→ 0+, we obtain the desired result. □

This result, along with its contrapositive, implies that for each set X there is one
‘interesting’ value of s for which the s-dimensional Hausdorff measure of X does
not collapse or blow up.2 This yields the following definition:

2Of course, for this value of s, the measure might still be zero or infinite.



HAUSDORFF DIMENSION OF RANDOM FRACTALS 7

Definition 3.5. The Hausdorff dimension of a set A ⊂ Rd is defined as

dimH (A) = sup{s : H s(A) = ∞}.

Remark 3.6. We could alternatively define the Hausdorff dimension as

dimH (A) = inf{s : H s(A) = 0}.
Clearly these definitions are equivalent.

Often when dealing with fractals we care about their Hausdorff dimension rather
than their Hausdorff measure because the measure can be renormalized easily once
the dimension is known.

3.2. The Hausdorff Dimension of Self-Similar Sets. Finding the Hausdorff
dimension of a compact self-similar set in Rd is (relatively) easy, especially since
we have built up all the machinery to do so in Section 2. We need just one more
definition:

Definition 3.7. An IFS F on a compact set K ⊂ Rd is said to satisfy the open set
condition (OSC) if there exists a nonempty bounded open set U ⊂ Rd such that
U ⊂ GF (U) (where GF is the function defined in Theorem 2.12) and the sets Fi(U)
are all disjoint.

Example 3.8. The IFS that defines the Cantor set satisfies the open set condition;
letting U = (0, 1) makes this clear.

Theorem 3.9. Let KF be the IFS attractor of F , where F satisfies the OSC; and
denote Li = Lip(Fi) for i = 1, . . . , N . Then, the Hausdorff dimension of KF is s,
where s is the unique real number such that

N∑
i=1

Ls
i = 1.

Proof. We break the proof into two parts.

Part I. Suppose
∑N

i=1 L
s
i = 1 and fix k ∈ N. Note that

KF =

N⋃
i=1

Fi(KF ) =

N⋃
i=1

N⋃
j=1

Fi ◦ Fj(KF ),

and as we iterate this, we obtain

KF =
⋃

|σ|=q

Kσ
F

for any given q ∈ N. In particular, KF ⊂
⋃

|σ|=kK
σ
F . (Kσ

F was introduced in

Proposition 2.9).
Now, fix ε > 0. Letting L = maxi Li, we choose q0 so large that Lq0 < ε

diam(KF ) .

Then, for σ ∈ [N ]q0 ,

diam(Kσ
F ) = diam(KF ) ·

q0∏
i=1

Li ≤ Lq0 · diam(KF ) < ε.

Thus,

H s
ε (KF ) ≤

∑
|σ|=q0

diam(Kσ
F )

s =

d∑
i=1

∑
|σ|=q0−1

Ls
i · diam(Kσ

F )
s =

∑
|σ|=q0−1

diam(Kσ
F )

s,
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since
∑N

i=1 L
s
i = 1. Iterating this down to |σ| = 1, we simply get

H s
ε (KF ) ≤

N∑
i=1

Ls
i · diam(KF )

s = diam(KF )
s.

Since ε was chosen arbitrarily, the same holds in the limit, and thus we obtain
H s(KF ) ≤ diam(KF )

s <∞.

Part II. For σ ∈ [N ]q, τ ∈ [N ]N, we will say σ precedes τ (denoted σ ≺ τ) if
τ | q = σ. For σ ∈ [N ]∗, denote [N ]σ = {τ ∈ [N ]N : σ ≺ τ}.

We introduce a measure λ on [N ]N as follows: for σ = (n1, . . . , nq), we will define
λ([N ]σ) = (Ln1

Ln2
. . . Lnq

)s. It is easy to see that λ([N ]N) = 1. Furthermore,

{[N ]σ}σ∈[N ]∗ is a collection of open sets that generates the Borel σ-algebra on [N ]N

(under the product of discrete topologies), and so by Carathéodory’s Extension
Theorem, λ can be extended to a probability on all of [N ]N.

We use λ to generate a measure λ∗ on subsets of Rd: for A ⊂ Rd, define

λ∗(A) = λ({τ ∈ [N ]N : xτ ∈ A ∩KF }),

where xτ is defined in Proposition 2.9. This implies that λ∗(KF ) = 1, and for any
σ ∈ [N ]q,

λ∗(Kσ
F ) = λ({τ ∈ [N ]N : xτ ∈ Kσ

F }) = λ({[N ]σ}) = (Ln1Ln2 . . . Lnq )
s.

Let U be a non-empty bounded open set such that GF (U) ⊂ U and the sets
Fi(U) are disjoint. By the OSC, U exists; furthermore, Gq

F (U) → KF as q → ∞.
Now choose r ∈ (0, 1) and define the following subset ωr ⊂ [N ]∗: for each

τ = {nq}∞q=1 ∈ [N ]N, curtail τ at nq, where q is the first index for which

min
1≤i≤N

Li · r ≤ (Ln1 . . . Lnq ) ≤ r,

and add τ | q to ωr. Similarly to Proposition 2.9, for σ = (n1, . . . , nq) define
Uσ
F = Fn1

◦ · · · ◦ Fnq
(U). Since U1

F , . . . , U
N
F are disjoint and nested within U , it

holds that U
(τ |q)•1
F , . . . , U

(τ |q)•N
F are disjoint and nested within U ; from this it is

observed that {Uσ
F : σ ∈ ωr} is a disjoint collection of subsets of U . Since, for each

τ ∈ [N ]N, there exists σ ∈ ωr such that σ ≺ τ , xτ ∈ Kσ
F , and so

KF =
⋃

τ∈[N ]N

xτ ⊂
⋃

σ∈ωr

Kσ
F ⊂

⋃
σ∈ωr

Uσ
F .

(The last inclusion is a consequence of the fact that Gq
F (U) → KF .)

Since U is open it contains a ball of small radius a; and since it’s bounded it
is contained within a ball of larger radius b. Then, for σ = (n1, . . . , nq) ∈ ωr, it
follows that Uσ

F is contains a ball of radius ((min1≤i≤N Li) ·a · r) ≤ (a ·Ln1
. . . Lnq

),
and it’s contained in a ball of radius (b · r) ≥ (b · Ln1

. . . Lnq
).

For a ball B with radius r, let ωr,B = {σ ∈ ωr : Uσ
F ∩B ̸= ∅}. A simple geometric

argument shows that ωr,B is finite: since {Uσ
F }σ∈ωr

is a collection of disjoint sets
with diameter at least ((min1≤i≤N Li) · a · r), only finitely many of them can fit
inside the ball centered at the center B, with radius r + 2br (call it (1 + 2b)B).
But if Uσ

F ∩ B ̸= ∅, any two points in Uσ
F are at most 2br away and there is one

point that is no more than r away from the center of B; so Uσ
F ⊂ (1 + 2b)B. Let

k = #(ωr,B).
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We see that

λ∗(B) = λ({τ ∈ [N ]N : xτ ∈ KF ∩B}) ≤ λ({[N ]σ : σ ∈ ωr,B})
because if xτ ∈ KF ∩B, then there exists σ ≺ τ such that xτ ∈ Uσ

F ; we can further
specify that σ ∈ ωr,B . This means

λ∗(B) ≤
∑

σ∈ωr,B

λ([N ]σ) =
∑

σ∈ωr,B

(Ln1
. . . Lnq

)s ≤
∑

σ∈ωr,B

rs = krs.

Since r and B were chosen arbitrarily it holds for any set V with diam(V ) ≤ 1 that
λ∗(V ) ≤ k · diam(V )s.

Now consider any countable cover {Xi}i∈N of KF with non-empty sets of diam-
eter less than ε = 1. It holds that

1 = λ∗(KF ) ≤
∞∑
i=1

λ∗(Xi) ≤ k ·
∞∑
i=1

diam(Xi)
s.

Taking the infimum over all such covers gives H s
ε (KF ) ≥ 1

k . As ε → 0+, we get

H s(KF ) ≥ 1
k > 0.

Combining Parts I and II we obtain 0 < H s(KF ) <∞, so dimH (KF ) = s. □

4. Measuring Random Fractals: The General Case

This section contains the primary result of this paper: Theorem 4.3. Note that
throughout this section, we use the convention that 00 = 0.

Definition 4.1. Let (F, µ) be a stochastic IFS on K ⊂ Rd. Then, define the
random variables Rσ = Lip(Fσ) to be the r-Lipschitz constants of (F, µ).

(Here, ‘r’ is simply short for ‘random’.)
The distribution of Rσ is induced by µ in the natural way. The following facts

are immediately checked from the definition:

Proposition 4.2. E[Rσ] <∞ (that is, Rσ is integrable). Additionally,

(1) Rσ is Lt-bounded for all t ≥ 0 (that is, E[Rt
σ] <∞ for all t ≥ 0).

(2) {Rσ•1, . . . , Rσ•N}σ∈[N ]∗ is a collection of independent and identically dis-
tributed N -tuples of Lipschitz factors with the same distribution as the ran-
dom N -tuple {R1, . . . , RN}.

This second part of this proposition implies that the random variables {R1, . . . , RN}
effectively characterize a stochastic IFS.

Theorem 4.3. Let (F, µ) be a stochastic IFS on K ⊂ Rd with r-Lipschitz constants
{Ri}Ni=1 such that E[R0

1 + · · · + R0
N ] > 1. Then P({KF : dimH (KF ) = s}) = 1,

where s be the unique real number satisfying

E[Rs
1 + · · ·+Rs

N ] = 1.

Remark 4.4. This is an elegant and surprising parallel between self-similarity and
stochastic self-similarity: despite randomness being introduced at each stage of the
fractal construction, the Hausdorff dimension of the resultant set is the same almost
surely (with probability 1), and can often be evaluated explicitly.

We break Theorem 4.3 into several smaller theorems and work our way towards
the main result. Unless mentioned otherwise, all the following results only hold
under the same assumptions as Theorem 4.3.
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Proposition 4.5. There exists a unique s ∈ [0, d] such that

E[Rs
1 + · · ·+Rs

N ] = 1.

Proof. Consider the continuous function

ϕ(t) = E[Rt
1 + · · ·+Rt

N ].

By assumption, ϕ(0) > 1; and ϕ(d) ≤ 1 because the random sets F1(K), . . . , FN (K)
are disjoint, with diameters Rd

1 · diam(K), . . . , Rd
N · diam(K), and the sum of these

diameters can be no larger than diam(K). The conclusion follows from the in-
termediate value theorem. Uniqueness is clear from the fact that ϕ is strictly
decreasing. □

Theorem 4.6. KF is almost surely a set with Hausdorff dimension less than or
equal to s. That is,

P({KF : dimH (KF ) ≤ s}) = 1.

Proof. For all and σ ∈ [N ]∗, define Dσ = diam(Kσ
F ), where K

σ
F is the random set

Fσ|1 ◦ · · · ◦ Fσ|(|σ|)(K). Clearly,

Dσ = diam(K) ·
|σ|∏
i=1

Rσ|i.

For all n ≥ 1, t ≥ 0, define

Mt,n =
∑
|σ|=n

Dt
σ.

We claim that the sequence {Ms,n}∞n=1 is a martingale with respect to the filtration
Fn = {Fσ : |σ| ≤ n}. Indeed,

E[Ms,n+1 | Fn] = E

 ∑
|σ|=n+1

Ds
σ | Fn


= E

∑
|σ|=n

Ds
σ•1 + · · ·+Ds

σ•N | Fn


= E

∑
|σ|=n

Ds
σ ·

(
N∑
i=1

Rs
i

)
| Fn


=
∑
|σ|=n

Ds
σ · E[Rs

1 + · · ·+Rs
N ]

=Ms,n · E[Rs
1 + · · ·+Rs

N ] =Ms,n.

By the Martingale Convergence Theorem,Ms ≡ limn→∞Ms,n exists and is bounded
for ν-a.e. GFS (and thus, P-a.e. GFS attractor KF ). For all n, {Kσ

F }|σ|=n is a cover
of KF , so by the definition of Hausdorff dimension,

H s(KF ) ≤ lim
n→∞

∑
|σ|=n

diam(Kσ
F )

s = lim
n→∞

Ms,n =Ms <∞

for P-a.e. random set KF . So, the Hausdorff dimension is almost surely no greater
than s. □
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We now construct the proof that the Hausdorff dimension is at least s. The
following lemma regarding Ms comes in handy:

Lemma 4.7. Ms is an Lp-bounded random variable for all p > 0. That is, all
moments of Ms are finite.

Proof. It suffices to show by Fatou’s Lemma that for all p ≥ 1, the sequence
{Mp

s,n}∞n=1 is uniformly bounded in expectation. Of course, by monotonicity of
Lp norms, it suffices to show this for all integers p ≥ 2.

Begin with the p = 2 case. For i = 1, . . . , N , define M
(i)
s,n to be an iid copy of

Ms,n. Then, by shifting our entire construction down one step, we have Ms,n+1 =∑N
i=1R

s
iM

(i)
s,n. Clearly Ms,1 has finite moments of all integer orders:

E[Ms,1] = E

[
N∑
i=1

Ds
(i)

]
= diam(K) · E [Rs

1 + · · ·+Rs
N ] = diam(K).

E[Mp
s,1] = E

[(
N∑
i=1

Rs
i · diam(K)

)p]
= diam(K)p · E

[(
N∑
i=1

Rs
i

)p]
≤ diam(K)p ·Nsp.

Now, for n ≥ 1 we observe that

E[M2
s,n+1] = E

( N∑
i=1

Rs
iM

(i)
s,n

)2


= E

[
N∑
i=1

R2s
i M

2
s,n

]
+ E

∑
i ̸=j

Rs
iR

s
jM

(i)
s,nM

(j)
s,n

 ,
which we obtain by splitting the sum into the diagonal and non-diagonal terms.

Here, M
(i)
s,n is independent of Rj for all i, j; and so,

E[M2
s,n+1] = E

[
N∑
i=1

R2s
i

]
E
[
M2

s,n

]
+ diam(K)2 · E

∑
i̸=j

Rs
iR

s
j

 .
The diagonal term at the end can be split up as

E

∑
i ̸=j

Rs
iR

s
j

 = E

( N∑
i=1

Rs
i

)2
− E

[
N∑
i=1

R2s
i

]
≡ C2 − c2.

Then, letting an = E[M2
s,n] we may note that

an+1 = c2an + diam(K)2(C2 − c2).

This is a fairly simple linear recurrence relation, and solving down to n = 1, we get

an = c2an−1 + diam(K)2(C2 − c2)

= c22an−2 + c2(diam(K)2(C2 − c2)) + diam(K)2(C2 − c2)

= c32an−3 + diam(K)2(C2 − c2)(c
2
2 + c2 + 1) = . . .

= cn−1
2 a1 + diam(K)2(C2 − c2)

n−2∑
j=0

cj2.
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As shown above, a1 = E[M2
s,1] ≤ diam(K)2 ·N2s. Furthermore, c2 < 1 because the

function ϕ(t) mentioned in Proposition 4.5 is strictly decreasing and s < 2s. Thus,
for all n,

E[M2
s,n] = an ≤ cn−1

2 diam(K)2 ·N2s + diam(K)2(C2 − c2) ·
1

1− c2

≤ diam(K)2 ·N2s + diam(K)2(C2 − c2) ·
1

1− c2
<∞,

so {Ms,n} is an L2-bounded sequence.
For the p ≥ 2 case, we outline the strong induction method that proves finiteness

of moments. Suppose p is an integer such that {Ms,n} is Lk-bounded for all integers
k = p− 1, p− 2, . . . , 1. Then,

E[Mp
s,n+1] = E

[(
N∑
i=1

Rs
i ·M (i)

s,n

)p]
as before. We again split into all the diagonal and non-diagonal terms. There
are exactly Np −N non-diagonal terms, and each one is a product of lower-order
moments of Ms,n, which by the induction hypothesis are all finite; so the product
itself, by Hölder’s inequality, is finite. Thus the non-diagonal term is some finite
constant Bp. The diagonal terms sum to

E

[
N∑
i=1

Rsp
i M

p
s,n

]
= E

[
N∑
i=1

Rsp
i

]
· E[Mp

s,n] ≡ ckE[Mp
s,n]

by independence. The expected sum of all Rsp
i is less than 1 since the function

ϕ from Proposition 4.5 is strictly decreasing; so we again have a linear recurrence
relation

E[Mp
s,n+1] = cpE[Mp

s,n] +Bp.

Since Bp is finite, cp < 1, and E[Mp
s,1] < ∞, we again calculate a uniform bound

on {Mp
s,n} as with the p = 2 case. Thus, {Ms,n} is an Lp-bounded sequence for all

p > 0, and so Ms has finite moments of all orders. □

Now we introduce a random variable taking values in Cc(Rd)∗, the dual of the
space of continuous functions on Rd with compact support. For f ∈ Cc(Rd), define

G(f) = lim
n→∞

∑
|σ|=n

f(xσ)D
s
σ,

where xσ is some point in Kσ
F . G(f) is well-defined, because any infinite nested

sequence of sets (Kσi

F )∞i=1 can be associated with the sequence τ ∈ [N ]N such that
τ =

⋂
i[N ]σi

. Consequently, xσi
→ xτ and so f(xσi

) → f(xτ ).

Theorem 4.8. For ν-a.e. GFS F and all f ∈ Cc(K), G(f) ∈ Cc(K)∗ and the
norm of F is given by ∥G∥ =Ms.

Proof. For each σ ∈ [N ]∗, define intermediary random variables

Mσ,n =
∑
|ω|=n

n∏
q=1

Rs
σ•[ω|q] and Mσ = lim

n→∞
Mσ,n.

Mσ,n can be thought of as the analog of Ms,n if we perform the fractal generating
process, starting at node σ and normalizing the diameter of the initial set to 1.
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This makes it easy to see that Mσ,n is equal in distribution to
Ms,n

diam(K)s
; so Mσ is

equal in distribution to
Ms

diam(K)s
by the continuous mapping theorem on random

variables. This also means {Mσ}σ∈[N ]∗ is a mutually independent family, itself
independent of Fn. Finally, for every fixed n and q,

Ms,n+q =
∑

σ∈[N ]n

Ds
σMσ,q

q→∞
=⇒ Ms =

∑
σ∈[N ]n

Ds
σ ·Mσ.

Now say f ∈ Cc(K), and for p, r ∈ N, define

εp,r =

∣∣∣∣∣∣
∑
|σ|=p

f(xσ)D
s
σ −

∑
|σ|=r

f(xσ)D
s
σ

∣∣∣∣∣∣ .
Suppose p, r > k for some k ∈ N; then,

εp,r =

∣∣∣∣∣∣
∑
|σ|=k

Ds
σ

 ∑
|ω|=p−k

f(xσ•ω)

p−k∏
q=1

Rσ•[ω|q] −
∑

|ω|=r−k

f(xσ•ω)

r−k∏
q=1

Rσ•[ω|q]

∣∣∣∣∣∣
≤
∑
|σ|=k

Ds
σ

(
sup

|ω|=p−k

|f(xσ•ω)− f(xσ)|Mσ,p−k + sup
|ω|=r−k

|f(xσ•ω)− f(xσ)|Mσ,r−k.

|f(xσ)| · |Mσ,p−k −Mσ,r−k|
)

≤
∑
|σ|=k

Ds
σ · (diam(f(Kσ

F ))(Mσ,p−k +Mσ,r−k)) + ∥f∥ · |Mσ,p−k −Mσ,r−k|).

As k, p, r → ∞, diam(Kσ
F ) → 0 for ν-a.e. GFS (since one of the Lipschitz factors

is almost surely less than 1) and Mσ,p−k,Mσ,r−k → Mσ. Thus, εp,r → 0 almost
surely.

It is immediate that G is linear; and whenever K ⊂ f−1({1}),

G(f) = lim
n→∞

∑
|σ|=n

f(xσ)D
s
σ = lim

n→∞

∑
|σ|=n

Ds
σ = lim

n→∞
Mn,s =Ms.

Whenever ∥f∥ ≤ 1, ∥G(f)∥ ≤ Ms; and as shown, the value Ms is in fact attained,
so ∥G∥ =Ms. □

By the Riesz-Markov theorem, we may associate G with a (random) measure γ
on Rd that satisfies G(f) =

∫
f dγ for all f . γ can intuitively be understood as a

stochastic counterpart to the s-dimensional Hausdorff measure. We will carefully
study the properties of γ for the next few theorems.

Theorem 4.9. If A ∈ K (Rd), then∑
|σ|=n,Kσ

F∩A̸=∅

Ds
σMσ ↓ γ(A) as n→ ∞

for ν-a.e. GFS F .

Proof. Say k ∈ N and ε > 0. Almost surely
∑

|σ|=kD
s
σMσ is finite, so there exists

a set Θ ⊊ [N ]k such that
∑

σ∈[N ]k\ΘD
s
σMσ < ε. By Urysohn’s Lemma we can
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find f ∈ Cc(Rd) such that f−1({1}) = A and Kσ
F ⊂ f−1({0}) whenever σ ∈ Θ and

Kσ
F ∩A = ∅. Then,

γ(A) ≤
∫
f dγ = G(f) = lim

n→∞

∑
|σ|=n

f(xσ)D
s
σ

= lim
n→∞

∑
|σ|=k

∑
|ω|=n−k

f(xσ•ω)D
s
σ•ω

≤ lim
n→∞

∑
|σ|=k,Kσ

F∩A̸=∅

∑
|ω|=n−k

1 ·Ds
σ•ω + lim

n→∞

∑
σ∈[N ]k\Θ,Kσ

F∩A=∅

∑
|ω|=n−k

1 ·Ds
σ•ω

= lim
n→∞

∑
|σ|=k,Kσ

F∩A̸=∅

Ds
σMσ,n−k + lim

n→∞

∑
σ∈[N ]k\Θ,Kσ

F∩A=∅

Ds
σMσ,n−k.

The second term is at most ε; and the first term, as n→ ∞, is
∑

|σ|=k,Kσ
F∩A̸=∅D

s
σMσ.

Thus,

γ(A) ≤
∑

|σ|=k,Kσ
F∩A ̸=∅

Ds
σMσ.

Now, note that ∑
|σ|=k+1,Kσ

F∩A ̸=∅

Ds
σMσ ≤

∑
|σ|=k,Kσ

F∩A ̸=∅

Ds
σMσ,

since Kσ•i
F ⊂ Kσ

F for all i; thus, the sequence in the theorem is decreasing and
bounded below uniformly by γ(A), and its limit exists. Define the measure γ̃(A) as
this limit. Now say B ∈ K (Rd) and A ∩ B = ∅; then, for large enough k, |σ| = k
implies that Kσ

F cannot intersect both A and B; so γ̃(A) + γ̃(B) ≤Ms.
Now, take an increasing sequence of compact sets {Bn}∞n=1 such that γ(Bn) →

γ(Rd \A). For each n, we have

γ(A) + γ(Bn) ≤ γ̃(A) + γ(Bn) ≤Ms.

As n → ∞, the left-hand side of this equation becomes γ(A) + γ(Rd \ A) = Ms,
since γ(Rd) =Ms. So we in fact have

Ms ≤ γ̃(A) + γ(Rd \A) ≤Ms.

This implies that for all compact sets A,

γ(A) = γ̃(A) = lim
n→∞

∑
|σ|=n,Kσ

F∩A̸=∅

Ds
σMσ,

so we’re done. □

Theorem 4.10. For P-a.e. random set KF ,

γ(KF ) = γ(Rd) =Ms.

Proof. Clearly,

γ(Rd) =

∫
Rd

1 dγ = G(1) = lim
n→∞

∑
|σ|=n

Ds
σ = lim

n→∞
Ms,n =Ms.

Now, to find the measure of KF , we may apply the standard result about measures
of decreasing sequences of sets on finite measure spaces (since Ms is almost surely
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finite):

γ(KF ) = lim
q→∞

γ

 ⋃
|σ|=q

Kσ
F

 .

Fixing q, the random set Kq =
⋃

|σ|=qK
σ
F is compact, so by Theorem 4.9,

γ(Kq) = lim
n→∞

∑
|σ|=n,Kq∩Kσ

F ̸=∅

Ds
σMσ.

But for large enough n, Kq ⊃ Kn ⊃ Kσ
F for all σ with |σ| = n; so the limit on the

right-hand side is simply limn→∞
∑

|σ|=nD
s
σMσ =Ms. So, γ(Kq) =Ms. □

Note that because of how we defined a contraction, we run into the issue that Fσ

may be a constant map with Rσ = 0. To address this case we introduce a variable
M0 = limn→∞M0,n = limn→∞

∑
|σ|=nD

0
σ. The following theorem provides a useful

characterization of when the resultant set KF is empty.
M0,n counts the number of non-empty sets at the n-th stage of the random fractal

generation; and what this theorem says is that M0,n must grow without bound for
the resultant set to be non-empty.

Theorem 4.11. For ν-a.e. GFS, KF ̸= ∅ if and only if M0 = ∞.

Proof. We first show that M0 = 0 or M0 = ∞ almost surely. This follows from the
fact that {M0,n} is a Galton-Watson branching process, wherein each node has at
most N children. From µ, we can obtain a probability vector (pσ0 , . . . , p

σ
N ), where

pσi represents the probability Lip(Fσ•j) > 0 for exactly i indices. Of course, by our
construction, the collection {pσ0 , . . . , pσN}σ∈[N ]∗ is iid.

Define f(x) =
∑N

k=0 p
σ
kx

k. Then, f ′(1) =
∑N

k=0 kp
σ
k = E[# of surviving nodes].

But this is exactly E[R0
1 + · · · + R0

N ], which is greater than 1 by hypothesis.
Thus, {M0,n} is supercritical; by a standard result to do with branching processes,
limn→∞M0,n ∈ {0,∞} almost surely.

But now the theorem is fairly obvious. If M0 = ∞, it is clear that KF ̸= ∅. If
M0 <∞, M0 = 0 =⇒ KF = ∅. Thus we are done. □

Note that this theorem also explains why E[R0
1+ · · ·+R0

N ] > 1 in our hypothesis.
If this quantity was less than 1, the Galton-Watson process would reach extinction
almost surely; the same would happen if E[R0

1 + · · ·+R0
N ] = 1 and pσ0 ̸= 0.

Theorem 4.12. If E[Ms] > 0, then

P({KF : γ(KF ) > 0 and KF ̸= ∅}) = P({KF : KF ̸= ∅}).
In other words, if KF is non-empty, its γ-measure is strictly positive almost surely.

Proof. Of course, if E[Ms] > 0, Ms is strictly positive with probability δ > 0.

Additionally,
∑N

i=1R
0
i ≤ N , so the set Xn = {|σ| = n : Dσ > 0} is finite.

Suppose F is some arbitrarily subset of [N ]n. Then,

P (Ms = 0 and F = Xn) = P (Mσ = 0 for σ ∈ F and F = Xn).

This holds because if Dσ and Mσ are both strictly positive, Ms > 0. By inde-
pendence of the family {Mσ}σ∈[N∗], the above probability works out to be equal
to

P (Mσ = 0)#F · P (F = Xn) = (1− δ)#FP (F = Xn),
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since Mσ has the same distribution as Ms/diam(K)s. Now, for fixed q, we obtain

P (Ms = 0 and #Xn ≥ q) =
∑

#F≥q

P (Ms = 0 and F = Xn)

=
∑

#F≥q

(1− δ)#FP (F = Xn)

≤ (1− δ)q · P (#Xn ≥ q)

=⇒ P (Ms > 0 and #Xn ≥ q) ≥ [1− (1− δ)q] · P (#Xn ≥ q).

But note that #Xn =M0,n as introduced in 4.6, so we really have the inequality

P (Ms > 0) ≥ P (Ms > 0 and M0,n ≥ q) ≥ [1− (1− δ)q] · P (M0,n ≥ q).

Taking n→ ∞ we get

P (Ms > 0) ≥ [1− (1− δ)q]P (M0 ≥ q).

Then, taking q → ∞ (which we can now do since q ≤ Nn; N is fixed but n→ ∞),
we get

P (Ms > 0) ≥ P (M0 = ∞).

Now suppose M0 = 0. Since M0,n can only take on integer values, it must hold
that for large enough n, M0,n = 0. But then Dσ = 0 for all |σ| = n, and soMs = 0;
so Ms > 0 =⇒ M0 > 0 =⇒ M0 = ∞ by Theorem 4.11.

So, P (Ms > 0) ≥ P (M0 = ∞), but Ms > 0 only if M0 = ∞; this implies that
Ms > 0 iff M0 = ∞. But M0 = ∞ iff KF ̸= ∅, and Ms > 0 iff γ(KF ) > 0; so we
have KF ̸= ∅ ⇐⇒ γ(KF ) > 0, meaning we’re done. □

Theorem 4.13. In addition to the assumptions of Theorem 4.3, assume there exists
C > 0 such that P (Rσ > C | Rσ > 0) = 1. Then, if t < s and E ⊂ Rd is compact,
H t(E) <∞ =⇒ γ(E) = 0.

Proof. By Lemma 4.7, Ms is Lp-bounded for all p; since Mσ has the same distribu-
tion as Ms/diam(K)s, the same holds for Mσ. Now, fixing some k > 0 and t < s,
Chebyshev’s inequality with any r > 0 gives

P (Ds
σMσ > kDt

σ) = P (Ds−t
σ Mσ > k) ≤ E[(Ds−t

σ Mσ)
r]

kr
=

E[Dr(s−t)
σ ]E[Mr

σ ]

kr
,

the last equality holding since Dσ and Mσ are independent. This means∑
|σ|=n

P (Ds
σMs > kDt

σ) ≤
∑
|σ|=n

E[Dr(s−t)
σ ]E[Mr

σ ]

kr

=
∑
|σ|=n

E[Dr(s−t)
σ ]E[Mr

s ]

diam(K)srkr

=
E[
∑

|σ|=nD
r(s−t)
σ ]E[Mr

s ]

diam(K)srkr

=
E[Mr(s−t),n]E[Mr

s ]

diam(K)srkr

=⇒ P (∃σ s.t. |σ| = n,Ds
σMs > kDt

σ) ≤
E[Mr(s−t),n]E[Mr

s ]

diam(K)srkr
.
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The argument from Theorem 4.6 shows that

E[Mr(s−t),n] = E[Mr(s−t),n−1] · E[R
r(s−t)
1 + · · ·+R

r(s−t)
N ].

Iterating downwards,

E[Mr(s−t),n] = E[Mr(s−t),1] · E

[
N∑
i=1

R
r(s−t)
i

]n−1

= E

[
N∑
i=1

R
r(s−t)
i

]n
.

Choose r large enough that E[
∑

i≤N R
r(s−t)
i ] < 1 (here it suffices that r(s− t) > s);

then,

∞∑
n=1

P (∃σ s.t. |σ| = n,Ds
σMs > kDt

σ) ≤
∞∑

n=1

E[Mr(s−t),n]E[Mr
s ]

diam(K)srkr

=

∞∑
n=1

E[
∑

i≤N R
r(s−t)
i ]nE[Mr

s ]

diam(K)srkr

=
E[Mr

s ]

diam(K)srkr

∞∑
i=1

E

[
N∑
i=1

R
r(s−t)
i

]n
<∞.

By the Borel-Cantelli lemma,

P (∃infinitely many n s.t. for some |σ| = n,Ds
σMσ > kDt

σ) = 0.

This implies that almost surely, there are only finitely many such n; and thus a
maximum such n. So, there exists Q such that |σ| ≥ Q =⇒ Ds

σMσ ≤ kDt
σ. Define

ε = min{1,min{Dσ > 0 : σ ∈ [N ]Q}}.
Let KF be a particular realization of the random set generated by this fractal

generating process. For all τ ∈ [N ]N and p ∈ N, define

Θτ,p = {σ ∈ [N∗] : σ ≺ τ,Dσ < 2−p ≤ Dσ|(|σ|−1)}.

Let E ⊂ Rd be compact so that H t(E) < ∞. Choose a sequence {Sn} of d-
dimensional spheres such that E ⊂

⋃
n Sn and diam(Sn) <

ε
2 for all n. For every

n, there exists pn ∈ N such that 2−1−pn ≤ diam(Sn) < 2−pn ; so define, for every n,
the set

An =
⋃

{Θτ,pn : xτ ∈ Sn ∩ E}.

Now suppose σ1 are σ2 two distinct elements of An, and say there exists η such
that σ1 • η = σ2. Then, there exists τ ∈ [N ]N such that σ2 ≺ τ , meaning σ1 ≺ τ ;
so, σ1, σ2 ∈ Θτ,pn

for some τ . But this would imply

Dσ2 = Dσ1•η < 2−pn ≤ Dσ1•[η|(|η|−1)] < · · · < Dσ1 < 2−pn ,

an absurdity. Thus there are no two such elements in An. What this implies is
that if σ1, σ2 ∈ An and σ1 ̸= σ2, int(K

σ1

F ) and int(Kσ2

F ) are disjoint. For any given
x ∈ Sn and y ∈ Kσ

F where σ ∈ An, we have σ ∈ Θτ,pn for some τ such that xτ ∈ Sn.
xτ and x are at most diam(Sn) < 2−pn away; and since xτ ∈ Kσ

F , xτ and y are no
more than diam(Kσ

F ) < 2−pn away. Thus, d(x, y) < 21−pn . This implies that for
any x ∈ Sn, ⋃

σ∈An

Kσ
F ⊂ B(x, 21−pn).
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Note, however, that if σ ∈ Θτ,pn
, then diam(Kσ

F ) ≥ C ·diam(K
σ|(|σ|−1)
F ) ≥ C ·2−pn ,

since Rσ > C almost surely whenever Rσ > 0. Letting L d denote the d-dimensional
Lebesgue measure, we therefore obtain

L d(int(Kσ
F )) ≥ L d(int(K)) ·

(
diam(Kσ

F )

diam(K)

)d

≥ L d(int(K)) ·
(
C · 2−pn

diam(K)

)d

.

However, since the sets {Kσ
F }σ∈An

have disjoint interiors and all fit inside the ball
B(x, 21−pn), we have

#An · L d(int(K)) ·
(
C · 2−pn

diam(K)

)d

≤ L d(B(x, 21−pn)) = 2−pndL d(B(0, 2)).

This implies that

#An ≤ L d(B(0, 2))

L d(int(K))
·
(
diam(K)

C

)d

≡ J.

For all σ ∈ An, though,

Ds
σMσ ≤ kDt

σ < k(2−pn)t ≤ 2tdiam(Sn)
tk.

For each n, let q(n) = max{|σ| : σ ∈ An} (which exists because An is finite). Then,

γ(E ∩ Sn) ≤
∑

|σ|=q(n),E∩Sn∩Kσ
F ̸=∅

Ds
σMσ

by Theorem 4.9. For each term in this sum, take the corresponding σ; there exists
a σ∗ ∈ An such that σ | (|σ∗|) = σ∗, and therefore, Kσ

F ⊂ Kσ∗
F . Furthermore,

Ds
σ∗
Mσ∗ ≥ Ds

σMσ; so, we in fact have

γ(E ∩ Sn) ≤
∑
σ∈An

Ds
σMσ ≤ #An · k · 2tdiam(Sn)

t

≤ kJ2tdiam(Sn)
t

=⇒ γ(E) ≤
∞∑

n=1

kJ2tdiam(Sn)
t ≤ kJ2tH t(E).

Since, at the beginning of the proof, we fixed k > 0 arbitrarily, we take k → 0 to
get γ(E) = 0 whenever H t(E) <∞. □

We now come to the final theorem that, combined with Theorem 4.6, proves
Theorem 4.3.

Theorem 4.14. Suppose KF is non-empty. Then, KF is almost surely a set with
Hausdorff dimension greater than or equal to s. That is,

P(KF : KF ̸= ∅ and dimH (KF ) ≥ s) = P(KF : dimH (KF ) ̸= ∅).
In other words,

P (dimH (KF ) ≥ s | KF ̸= ∅) = 1.

Proof. For each n ∈ N, we define an auxiliary stochastic IFS (Fn, µn) meeting the

conditions of Theorem 4.13. Consider the map ψn : S̃ (Rd)N → S̃ (Rd)N defined

as follows: ψn(g1, . . . , gN ) = (g
(n)
1 , . . . , g

(n)
N ), where

g
(n)
i (x) =

{
gi(x) if Lip(gi) ≥ 1

n ,

y if Lip(gi) <
1
n ,
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where y is a randomly chosen element not in K. (Here, we should really be dealing
with similitudes on the compact set K, not Rd; but any similitude on K can be
extended to one on Rd, so this suffices.)

Then let µn = ψn#µ, the pushforward measure of µ under the map ψn. Refer

to the resultant measure on K (Rd) as Pn. For all i ≤ N , the induced r-Lipschitz

constants are R
(n)
i = Ri · 1{Ri≥1/n}, where 1A represents the indicator random

variable for an event A.
Now note that ψn(g1, . . . , gN ) → g1, . . . , gN as n → ∞ for all N -tuples of con-

tractions; therefore, the measures µn converge weakly to µ. To see why, we observe
that for any bounded continuous ξ on S̃ (Rd)N ,∫

ξ dµn =

∫
ξ ◦ ψn dµ→

∫
ξ ◦ id dµ =

∫
ξ dµ.

The convergence is a consequence of the dominated convergence theorem, because
|ξ◦ψn| ≤ |ξ| ≤ ∥ξ∥. By the same reasoning, {Pn} converges weakly to P . Lastly, as

n→ ∞, R
(n)
i = Ri ·1{Ri≥1/n} ↑ Ri ·1{Ri>0} = Ri; so, by the monotone convergence

theorem, for all t > 0,

E
[
R

(n)
1

t
+ · · ·+R

(n)
N

t]
↑ E[Rt

1 + · · ·+Rt
N ].

This means there exists some n0 so large that for all n ≥ n0,

E
[
R

(n)
1

t
+ · · ·+R

(n)
N

t]
> 1.

For each n, let Fn,σ equal Fn(σ) be the contraction map at node σ for the nth
auxiliary IFS; and let

Kσ
F,n = Fn,(σ|1) ◦ · · · ◦ Fn,σ(K).

Define Dn,σ = diam(Kσ
F,n). It follows that

Kσ
F,n =

{
Kσ

F if R
(n)
σ|1, . . . , R

(n)
σ ≥ 1/n,

{y} else,

and consequently,

Dn,σ =

{
Dσ if R

(n)
σ|1, . . . , R

(n)
σ ≥ 1/n,

0 else.

The resultant compact set will be denoted KF,n =
⋂∞

q=1

⋃
|σ|=qK

σ
F,n∩K (by inter-

secting with K we no longer have to worry about the singleton {y}). For all n ∈ N
and σ ∈ [N ]∗, Kσ

F,n ⊂ Kσ
F,n+1 ⊂ Kσ

F for ν-a.e. GFS F ; therefore, for all n ∈ N,
KF,n ⊂ KF,n+1 ⊂ KF .

For all n ∈ N and p ≤ N , let qn = P (KF,n = ∅), Cn,p = P (
∑

i≤N R
(n)
i

0
= p).

Correspondingly, let q0 = P (KF = ∅) and C0,p = P (
∑

i≤N R0
i = p). Fixing n, we

get

qn = P (KF,n = ∅) =
N∑

p=0

P

KF,n = ∅ and
∑
i≤N

R
(n)
i

0
= p

 .

For each p ≤ N (including 0), if
∑

i≤N R
(n)
i

0
= p, there are p non-empty, non-

singleton sets after the first N -tuple of contractions is applied. If KF,n = ∅, each
of these p sets must be contracted into an empty set. But since the contraction
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factors are iid at each stage of the fractal generating process, the probability that
any one of these p sets turns out to be empty is equal to the probability that the
original set KF,n is empty, and these probabilities are mutually independent. So,
we may simplify:

qn =

N∑
p=0

P (KF,n = ∅)p · P

∑
i≤N

R
(n)
i

0
= p

 =

N∑
p=0

Cn,p · qpn.

This also holds when n = 0.
For each n, define the function ζn(x) =

∑
p≤N Cn,p ·xp−x. For all n ≥ n0, Cn,p

is strictly positive so ζn has a root qn in [0, 1). The same holds for n = 0. Since
KF,n ⊂ KF,n+1 ⊂ KF , we have qn ≥ qn+1 ≥ q0, so q∞ ≡ limn→∞ qn ≥ q0.

Additionally, for all p, Cn,p → C0,p as n → ∞ since R
(n)
i → Ri. This implies

that ζn → ζ0 uniformly on [0, qn0 ]. Since ζn → ζ0 and qn → q∞, ζn(qn) → ζ0(q∞).
But ζn(qn) = 0, so ζ0(q∞) = 0.

We observe that since C0,p > 0 at least for p = 1, it holds that ζ0 is either a
strictly convex function or it is linear with a negative slope; in either case, it has a
unique root in [0, 1). This means q∞ = q0, so in fact qn → q0. This implies that
almost surely, KF ̸= ∅ iff, for some n ≥ n0, KF,n ̸= ∅.

Now, for each n ∈ N, let

ϕn(t) = E
[
R

(n)
1

t
+ · · ·+R

(n)
N

t]
,

and for all n ≥ n0, let sn be the unique solution to ϕn(t) = 1, which exists by
Theorem 4.5; this theorem also guarantees that ϕn is strictly decreasing. Since

R
(n)
i ↑ Ri, we also have ϕn ≤ ϕn+1 ≤ ϕ. Thus, if ϕn(sn) = ϕn+1(sn+1) = ϕ(s), it is

clear that sn ≤ sn+1 ≤ s. This means s∞ ≡ limn→∞ sn ≤ s. Conversely,

ϕn(sn) ≥ ϕn(s∞) = E

∑
i≤N

R
(n)
i

s∞

 = E

∑
i≤N

Rs∞
i 1{Ri≥1/n}

 ↑ E

∑
i≤N

Rs∞
i


by monotone convergence. The first term, ϕn(sn), equals 1; and the final term
equals ϕ(s∞). This implies that ϕ(s) = 1 ≥ ϕ(s∞), and so s∞ ≥ s since ϕ is
decreasing. Therefore, sn → s.

By Theorem 4.7, the quantity

M (n)
sn ≡ lim

n→∞

∑
|σ|=n

Dsn
n,σ

has finite moments of all orders. Additionally, since the sequence {
∑

|σ|=nD
sn
n,σ}∞n=1

is a martingale (by Theorem 4.6), E[M (n)
sn ] = E[Dsn

n,1 + · · · +Dsn
n,N ] = diam(K)sn ,

which is strictly positive.
For every n ≥ n0, the stochastic IFS (Fn, µn) satisfies all the conditions of

Theorem 4.3 and the additional conditions of Theorem 4.13. So, suppose t < s and
KF ̸= ∅. There must exist some n ≥ n0 such that t < sn and KF,n ̸= ∅. Let γn
be the random measure for the stochastic IFS (Fn, µn), as constructed in Theorem
4.8.

Since E[Mn
sn ] > 0, Theorem 4.12 implies that γn(KF,n) > 0. But KF ⊃ KF,n,

and thus γn(KF ) > 0. So, by Theorem 4.13, H t(KF ) = ∞ for all t < s; this
implies that dimH (KF ) ≥ s almost surely whenever KF ̸= ∅, so we are done. □
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5. Measuring Random Fractals: Special Cases

The general result of Theorem 4.3 has some nice special cases that we round out
this paper by highlighting.

Example 5.1. The most instructive example of a random fractal is the random
equivalent of a Cantor set. We show that almost surely a random Cantor set has
Hausdorff dimension (

√
17− 3)/2.

The way to generate a random Cantor set would be to, at each step, split every
interval into two sub-intervals, choosing the contraction factors uniformly, without
overlap. The first few stages of this process are pictured below:

Figure 1: First five stages in the construction of a random Cantor set

To determine the dimension of the resultant Cantor set, we first construct a
corresponding stochastic IFS. Let u be the unique uniformly distributed probability
measure on the set S = {(a, b) : 0 < a ≤ b < 1}. Now, define the continuous map

g : S → S̃ (R)2 by

g : k 7→ (F1(x) = ax, F2(x) = bx+ 1− b).

Then, µ is the pushforward measure of u under the map g. This gives us the
stochastic IFS needed to generate a random Cantor set. (It can be checked that
there are no concerns with overlapping.)

The Hausdorff dimension of this random set is determined by the solution to the
equation E[Rs

1 +Rs
2] = 1. We go through the calculations:

1 = E[Rs
1 +Rs

2] =

∫
as + bs du(a, b)

= 2 ·
∫ 1

0

∫ 1−a

0

as + bs db da

= 2 ·
∫ 1

0

[
as · b+ bs+1

s+ 1

]1−a

0

da

= 2 ·
∫ 1

0

as − as+1 +
1

s+ 1
(1− a)s+1 da.
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Using a u-substitution, we obtain

= 2 ·
∫ 1

0

as − as+1 da+
2

s+ 1

∫ 1

0

cs+1 dc

= 2 ·
(

1

s+ 1
− 1

s+ 2

)
+

2

s+ 1
· 1

s+ 2

=
4

(s+ 1)(s+ 2)

=⇒ (s+ 1)(s+ 2) = s2 + 3s+ 2 = 4 =⇒ s =

√
17− 3

2
.

Therefore, the Hausdorff dimension of a random Cantor set is (
√
17 − 3)/2 with

probability 1, so long as the above construction is followed.
The exact same method can be used to randomize the generation of a large class

of common fractals, such as the four-corner Cantor set, Sierpinski gasket, von Koch
snowflake, etc. As long as the distribution of the contraction factors is known and
iid, their Hausdorff dimensions can be determined almost surely.

Example 5.2. Another interesting application of the above results is Mandelbrot
percolation. The setup of the model is as follows.

Fix a number k ≥ 2 and p ∈ (0, 1). Color the unit square blue and divide it into
k2 squares of side length 1/k in the obvious way. For each of the k2 squares, leave
it blue with probability p and color it white with probability 1− p, independently
of all other squares. Repeat the above operation on each blue square: divide it
into k2 squares, and leave each of the smaller squares blue with probability p and
color it white with probability 1− p, independently of all the other squares. If we
recursively implement the same process, we obtain a random blue set in the limit;
we are interested in the dimension of this blue set.

The first six stages in this construction are pictured below, in the k = 2 case:

Figure 2: First six stages in the Mandelbrot percolation process
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Here we let K = [0, 1]2, and define k2 individual measures µ1, . . . , µk2 on S̃ (R2),
one for each square sub-division. Since each square is either colored blue or colored
white, each function can only take on two possible realizations, both with equal
measure; so the measure has two atoms that, together, make up a full measure set.
For example, µ1 corresponds to the first square, so

µ1(F (x, y) = ( 1kx,
1
ky)) = p, µ1(F (x, y) = (4, 4)) = 1− p.

(Here, (4, 4) was chosen as an arbitrary point not in K.) All k2 measures are

defined similarly; and the measure on S̃ (R2)N = S̃ (R2)k
2

is defined as the product
measure of µ1, . . . , µk2 . Now, every r-Lipschitz factor R1, . . . , Rk2 has an identical
distribution, independently of all others:

Ri =

{
1
k with probability p,

0 with probability 1− p.

So, the dimension of the resultant blue set is given by the solution to the equation
E[Rs

1 + · · ·+Rs
k2 ] = 1. We solve it out:

1 = E[Rs
1 + · · ·+Rs

k2 ]

= k2 · E[Rs
1] = k2 ·

(
p · 1

ks
+ (1− p) · 0

)
= p · k2−s

=⇒ 0 = ln p+ (2− s) ln k

=⇒ s = 2 +
ln p

ln k
.

It is clear that if we were to generalize this Rd for d ≥ 2, the dimension would be
s = d+ ln p/ ln k.

Example 5.3. The framework from Section 4 can also be used to study non-
random fractals, simply by turning the measure µ into a δ-measure. Then, the
resultant measure P is itself a δ-measure, meaning there is one ‘stochastically’
µ-self-similar set in its support.

For example, if K = [0, 1], N = 2, and µ is a point mass such that the double
(F1(x) = 1

3x, F2(x) = 1
3x + 2

3 ) has full measure, the resultant ‘random set’ is
guaranteed to be the middle-thirds Cantor set; and its Hausdorff dimension can be
calculated to be ln 2/ ln 3.

Clearly, the study of stochastic self-similarity has a large variety of applications
and enables the study of a much wider class of fractals than the study of regular
self-similarity.
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