HAUSDORFF DIMENSION OF RANDOM FRACTALS

SHRAVAN HARIBALARAMAN

ABSTRACT. Self-similar fractals are of particular interest to geometric measure
theorists because their properties (such as Hausdorff dimension) are easy to an-
alyze, due to Hutchinson’s [1] classical construction. This paper explores how
stochasticity and randomness may be introduced into the fractal generating
process, and investigates ways to extend and simplify previous constructions
by Graf [2] and Maudlin-Williams [3] to determine the Hausdorff dimension of
random fractals generated by a stochastic process. Our primary result high-
lights an elegant parallel between the deterministic and random cases.
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1. INTRODUCTION

The study of fractals often begins with the most rudimentary class of fractals:
self-similar ones. Roughly speaking, a fractal is self-similar if it is the union of
scaled down copies of itself. The self-similarity of a set makes it easier for us to
calculate its dimension and measure; however, it is unfortunately the case that self-
similarity is an incredibly strong condition to impose on a fractal, and most sets
with complex, irregular fractal structures are not self-similar.

One way to extend the tools we have to understand self-similar sets is by in-
troducing stochasticity into the fractal generating process. Section 2 of this paper
formalizes self-similarity and stochastic self-similarity through the theory of func-
tion systems, while Section 3 introduces Hausdorff dimension and introduces tools
to analyze the dimension of self-similar fractals. Sections 4 and 5 extend these
tools to the random/stochastic case to determine the dimension of random fractals,
using several proofs and techniques introduced by Graf [2] and Maudlin-Williams
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[3]. Section 4 contains Theorem 4.3, the paper’s primary result (a variant of which
was originally shown by Maudlin-Williams [3]): that the Hausdorff dimension of a
typical random fractal is the unique value that solves a simple expectation equation.

2. (STOCHASTIC) SELF-SIMILARITY

In this section we define self-similarity and explain how, using contraction maps,
we may generate fractals that are self-similar and ‘stochastically’ self-similar.

2.1. Contractions, GFSs, and the Hausdorff Metric. Roughly speaking, a
self-similar set is a set that is comprised of smaller copies of itself, and therefore
has complex yet well-behaved structures at arbitrarily small scales. We introduce
fractals through a theory of generalized function systems. Throughout this section,
(X, d) is a compact metric space, unless otherwise specified.

Definition 2.1. For a function f : X — X, the Lipschitz constant of f is defined

as
. d(f(z), f(y))
Lip(f) S Ty
If Lip(f) < oo, f is called Lipschitz continuous. If Lip(f) < 1, f is called a
contraction. If there exists r > 0 such that for all z,y € X, d(f(z), f(y)) = rd(z,y),
f is called a similitude. If 0 < r < 1, f is called a contractive similitude.

We now build up the theory of function systems. Until Section 4, note that N is
some fixed natural number. Section 5 deals with some possible realizations of V.

Definition 2.2. For N € N, let [N] = {1,2,...,N}. Let [N]* denote the set of all
non-empty finite sequences, and [N]Y be the set of all infinite sequences, in [N].

e For o = (ny,...,ng) € [N]*, |a| = k is the length of o.

e For o € [N]* U[N]Y, define o | j = (n1,...,n;) to be the j-th curtailment

of o.
e For 01 = (n1,...,n) € [N]* and o3 = (mq,...,my) € [N]|*, we define the
concatenation of o1 and oy to be o1 @ 03 = (n1,...,nK, M1, ..., MY).

It is helpful to visualize the above as a countable branching tree wherein each
node has N offsprings. The next step is to assign to each node a contraction.

Definition 2.3. Let ./(X) denote the set of all contractive similitudes on X.
Then, a generalized function system (GFS) is a map F : [N]* — #(X). We will
denote the contraction F'(o) by F, for convenience, and shorten Fi, to F,, where
(n) is the sequence of length 1.

Definition 2.4. The GFS attractor of a GFS F is the set
KF = m U Fo’|1 O---0 J‘q(X).
q€N |o|=¢q

Proposition 2.5. If F' is a GFS, its GFS attractor Kg is compact. Furthermore,
if, for all ¢ > 1, there exists o such that |o| = q and Lip(Fyy 0---0 Fyq) > 0, then
Kr is non-empty.

Proof. For ¢ > 11let K; = U‘U‘:q Fyp0---0F,4(X). For each o and each i > g,
F,|; is a similitude, so their composition is a similitude, implying that the set
Fypp0---0F,4(X) is similar to X, and therefore also compact. There are at most
N1 distinct sequences o with length ¢, so K, is a finite union of compact sets.
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Now, for any o with |o] = ¢+ 1,

Fojro---0 Fojqrn)(X) = Fop o+ 0 Folg(Foy(q41) (X)) C Fopp o+ -+ 0 Foy(K),
since Fyj(g4+1)(X) C X. This implies that F,j3 o - o Fyjq41)(X) C Ky, and
therefore, K;11 C K. Kp =) q K, is therefore a countable intersection of nested
compact sets, which must be compact. The additional assumption that there is at

least one non-negative Lipschitz constant at each ¢ > 1 implies that K, is non-
empty for each ¢; thus, their intersection must be non-empty. (Il

When dealing with deterministic self-similarity, we are almost always interested
in a particular case of GFS, known as an ‘iterated function system’.

Definition 2.6. An iterated function system (IFS) is a GFS where, for all n < N
and o € [N]*, F,, = Fye,. The GFS attractor of an IFS is called its IFS attractor.
A set is called self-similar if it is the IFS attractor of some IFS.

The following equivalence is immediate from the definition of an IFS.

Proposition 2.7. Let F be an IFS. Then K is its IFS attractor iff Kp is compact
and

Kp :Fl(KF)U”'UFN(KF).

Example 2.8. Say N =2, X = [0,1], Fi(z) = §(2), and Fp(x) = 5(z) + 2. The

IFS attractor K of this IFS is none other than the middle-thirds Cantor set, and
the sequence {K,} from Proposition 2.5 is merely the decreasing sequence of sets
used in the classical construction of the Cantor set by ‘removing’ the middle thirds.

Proposition 2.9. Let F be an IFS with attractor Kp. Foro = (nq,...,n,) € [N]4,
denote K§ = Fyjp0---0 Fyg(Kp) = Fy, 0---0 F, (Kp). Then, if the Lipschitz
constants Lip(Fy), ..., Lip(Fy) are strictly positive, for every T € [N]N the set

oo
Tlq
Kk
q=1

is a singleton.

Proof. The set in question is a countable intersection of nested compact sets; fur-
thermore, diam(K;‘q) < maxj<;<n L - diam(Kr) — 0 as ¢ — 00; so the intersec-
tion is a point. We will denote this point z, for convenience. ([l

The next natural question is: does the set Kz from Proposition 2.7 always exist?
The answer is positive, as shown in Theorem 2.12.

Definition 2.10. Let J#(X) denote the set of non-empty compact subsets of X
and, for z € X and K C X, let dist(z, K) = infycx d(z,y).
The map p: 2 (X) x #(X) — [0,00), where

p(K1, K3) = max{ sup dist(z, K3), sup dist(y, K1)},
x€EK, yeKo

is called the Hausdorff metric on . (X).

p truly is a metric on ¢ (X) - this is easy to check. What is harder to check,
but is a crucial fact, is the following statement, proved in [1]. In fact, it holds more
generally whenever X is complete:

Lemma 2.11. (#(X), p) is a complete metric space.



4 SHRAVAN HARIBALARAMAN

We come to the most important theorem thus far, that provides an alternative
characterization of the IF'S attractor of an IFS F.

Theorem 2.12. Let F be an IFS and define the map G : #(X) — J# (X) by
Grp(K)=F(K)U---UFN(K).

Then, if K C X is compact, G.(K) — Kp in the Hausdorff metric, where Kp is
the IFS attractor of F.

Proof. Define the constant L = max; Lip(F;), and consider two arbitrary sets
K, Ky € X (X).
Fixing « € K;, we see that for all 1 <i < N,

dlSt(FZ(I), GF(KQ)) S dlSt(FZ(l‘), FZ(KQ)) S Lz . diSt(I,KQ) S L. diSt(I,KQ),

and thus,
sup dist(y, Gp(K2)) < L- sup dist(z, K3).
yeGF (K1) z€K,
Clearly the same holds when K7 and Ky are swapped; and so,

p(Gr(K1),Gr(K2)) < L-p(Ki,K>) = Lip(Gr) < L <1

Therefore, G is a contraction on J#(X), a complete metric space. Per Banach’s
contraction mapping theorem, it has a unique fixed point Kr € #(X). Further-
more, for any compact K C X, G%.(K) — Kp as ¢ — oo, concluding the proof. O

Remark 2.13. Note that this proof did not use the fact that Fi,..., Fy were
similitudes. The same result actually holds true if they are just general contraction
mappings.

An IFS F is completely characterized by the N-tuple (F1y,..., Fy) € Z(X)VN.
So, Theorem 2.12 provides, in some sense, a map between N-tuples of contractive
similitudes and the self-similar compact sets they generate.

2.2. Generating Random Fractals. So far stochasticity hasn’t come into the
picture; but the general idea for generating random fractals is related, with the
natural inclusion of some measure theory.

This process can be laid out in three steps, beginning with a probability measure
on N-tuples of contractions and then ending with a probability measure on the set
of GFS attractors.

2.2.1. Step 1: A Probability On j(X)N, Begin with an arbitrary probability mea-
sure p on the set . (X)N < .Z(X)N of N-tuples of contractive similitudes that
follow a crucial ‘disjointness’ property: for (Fy,..., Fy) € #(X)V, whenever i # j
we have int(F;(X)) Nint(F;(X)) = 0. The following is immediate:

Proposition 2.14. 2‘97(X)N, the power set of f(X)N, is a o-algebra, so p is
well-defined.

Note that because u is a probability, we can take arbitrary products of u with
itself. Consider (.(X)N)IN" the set of all maps from [N]* to .(X)N. In Step
2, we will interpret an element of this set as a ‘pulled-back GFS’, wherein each
o € [N]* is mapped to the N-tuple (Fye1,- .., Fyen). This set is endowed with the
product measure N1
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2.2.2. Step 2: A Probability On A(X). We use u to develop a probability measure
on a well-chosen set of GFSs.

Definition 2.15. Let I'(X) be the set of all GFSs on X, and A(X) C I'(X) be
the set of all GFSs on X satisfying the following condition:
For all o € [N]* and n1,ng € [N] where ny # na,

int(F,j; 0+ 0 Fy 0 Frap, (X)) Nint(Ey1 0+ 0 Fy 0 Fren, (X)) = 0.
A(X) is referred to as the set of disjoint GFSs on X.

We suppress the argument and just use I' and A from here onward. The following
is, again, immediate:

Proposition 2.16. ¥ = 22, the power set of A, is a o-algebra.

Here, we run into no problems with non-measurability because X is simply the
product of the o-algebras 2 (X " previously defined; so every disjoint GFS is mea-
surable. So, what we now do is identify each disjoint GFS with an N-tuple of

contractions and an element of (.%(X)N)M" in a natural way.

Definition 2.17. The pushforward map ¢ : j(~X)N X (LX) 5 Ais the
map that sends ((g1,...,9n5), f) € L(X)N x (L (X)V)IN" to the GFS F, where
Fn)y = gn and for all o € [N]*, f(0) = (Fye1,-- -\ Fren)-

Proposition 2.18. ¢ is measurable and bijective.

The above is easily checked. Now, the domain of ¢ is endowed with the measure
px N5 thus, we may define a measure v on A as the pushforward measure of
px pN under the map . That is, for A € A, v(A) = (u x pNT") (=1 (A)). This
is denoted by v = Doty x N1 -

Note that since ¢ is bijective, we may take the dual approach and equivalently
define v by the fact that (ux ™" )(B) = v(p(B)) for B € L (X)N x (L (X)N)INT",
2.2.3. Step 3: A Probability On £ (X). Now, we can use the probability v on A
to define a final measure on the set of attractors of disjoint GFSs. This is, again,
done in the natural way. Define the map v : A — #(X) by u(F) = Kp, where Kp
is the attractor of F'. Then, we can define P = uy, as the pushforward measure of
v under the map u.!

That is, for A € #(X), P(A) = v(u~1(A)). There are no guarantees that u is
bijective, but what is true is that if j(X) is endowed with the topology of pointwise
convergence, u is continuous and therefore measurable, so P is well-defined. Clearly,
the set of all disjoint GFS attractors has full P-measure.

Definition 2.19. A stochastic IFS is a double (F,u), where p is a probability
on (X)N and F is a random map from [N]* to .#(X), with the probability
distribution governed by the measure v = ¢,y iv+. A set K € J#(X) is called
w-self-similar if it lies in the support of the measure P constructed in Step 3 above;
K refers to the random set with probability distribution P.

Remark 2.20. This procedure tells us how we can generate well-behaved stochas-
tically self-similar sets. Given a probability distribution p on .#(X)Y, choose one
N-tuple and then [N]* N-tuples of contractive similitudes. This is identified with
a unique GFS and thus its attractor.

1P should be distinguished from P, which will be used more generally to represent the proba-
bility of any arbitrary event.
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3. HAUSDORFF MEASURE AND DIMENSION

In this section we introduce the properties of interest in this paper: Hausdorff
measure and dimension, and we show how they can be calculated for self-similar
sets in R

3.1. Constructing Hausdorff Measure and Dimension. There are many equiv-
alent definitions and constructions of the Hausdorff measure; we provide one adapted
from Matilla [4].

Definition 3.1. For ¢ > 0 and s € [0, 00), the s-dimensional Hausdorff e-measure
of a set A C R? is given by

= inf {Zdlam A C U U;, diam(U;) < E} )

i=1

where diam(U) = sup{||x — y|| : z,y € U} is the diameter of U.
While 5#° is monotonic and .522°()) = 0, it is not countably additive... yet.

Definition 3.2. The s-dimensional Hausdorff measure of a set A C R? is defined
by
H°(A) = lim H°(A).
e—0t
This limit always exists since .#2° (A) is easily seen to be a non-increasing function
of . From this definition, the following facts are easily checked; proofs are provided
by Matilla [4].

Proposition 3.3. 7% is a well-defined measure. Additionally,

(1) All Borel sets are 7°-measurable.

(2) A% is Borel regular. That is, for all X C RY, there exists a B D A such
that B is Borel and 7#°(B) = 7°(A).

(3) H° is translation invariant.

(4) #°(kA) = k3#°(A), where kX ={k-x:2 € X}.

Given A C R? the following theorem tells us that for all small enough s,
H%(A) = oo and for all large enough #%(A) = 0.

Theorem 3.4. Let A CR? and s,t € [0,00) so that s < t. Then,
HHA) >0 = H*(A) = oo

Proof. For fixed € > 0, consider any countable open cover {U;} of A such that
diam(U;) < €; consequently, diam(U;)*~* > e5~*. Then,

Z diam (U, Z diam(U;)" - diam(U;)57" > 57t - Z diam(U;)" > 57t (A).

Thus, J25(A) > as_tjffcf(A). Letting € — 0T, we obtain the desired result. O

This result, along with its contrapositive, implies that for each set X there is one
‘interesting’ value of s for which the s-dimensional Hausdorff measure of X does
not collapse or blow up.? This yields the following definition:

20f course, for this value of s, the measure might still be zero or infinite.
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Definition 3.5. The Hausdorff dimension of a set A C R? is defined as
dim g (A) = sup{s : #°(A) = co}.
Remark 3.6. We could alternatively define the Hausdorff dimension as
dim (A) = inf{s : J7°(A) = 0}.
Clearly these definitions are equivalent.
Often when dealing with fractals we care about their Hausdorff dimension rather

than their Hausdorff measure because the measure can be renormalized easily once
the dimension is known.

3.2. The Hausdorff Dimension of Self-Similar Sets. Finding the Hausdorff
dimension of a compact self-similar set in R? is (relatively) easy, especially since
we have built up all the machinery to do so in Section 2. We need just one more
definition:

Definition 3.7. An IFS F on a compact set K C R? is said to satisfy the open set
condition (OSC) if there exists a nonempty bounded open set U C R? such that
U C Gp(U) (where GF is the function defined in Theorem 2.12) and the sets F;(U)
are all disjoint.

Example 3.8. The IFS that defines the Cantor set satisfies the open set condition;
letting U = (0,1) makes this clear.

Theorem 3.9. Let Kg be the IFS attractor of F', where F' satisfies the OSC; and
denote L; = Lip(F;) for i =1,...,N. Then, the Hausdorff dimension of Kp is s,
where s is the unique real number such that

N
dL=1
=1

Proof. We break the proof into two parts.
Part 1. Suppose Zi\;l L} =1 and fix k € N. Note that

N N N
Kp=|JF(&p) =] FioE(Kp),
i=1 i=1j=1
and as we iterate this, we obtain
Krp= ] K7
lol=q
for any given ¢ € N. In particular, Kp C U\a\:k K¢. (K% was introduced in
Proposition 2.9).
Now, fix € > 0. Letting L = max; L;, we choose ¢y so large that L% <

Then, for o € [N]%,

€
diam(Kp) "

q0
diam(K%) = diam(Kp) - [ [ Li < L% - diam(Kp) < e.
=1
Thus,
d
AP (Kp) < Y diam(K7)* =Y Y L -diam(K7)* = > diam(K7),

lol=a0 i=1 |o|=go—1 lol=go—1
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since Zf\il L{ = 1. Tterating this down to |o| = 1, we simply get

N
H(Kp) < Z L - diam(Kp)® = diam(Kr)°.
i=1
Since € was chosen arbitrarily, the same holds in the limit, and thus we obtain
%S(KF) < diam(Kp)S < 0.

Part II. For o € [N]4,7 € [N]V, we will say o precedes 7 (denoted o < 7) if
7| q= 0. For o € [N]*, denote [N], = {r € [N]N: 0 < 7}.

We introduce a measure A on [N]Y as follows: for o = (n1,...,n,), we will define
M[Nls) = (Lny Ly ... Ly,)*. 1t is easy to see that A([N]Y¥) = 1. Furthermore,
{[N]o}oen- is a collection of open sets that generates the Borel o-algebra on [N]Y
(under the product of discrete topologies), and so by Carathéodory’s Extension
Theorem, A can be extended to a probability on all of [N]N.

We use A to generate a measure \* on subsets of R%: for A C R%, define

MA) = \{r e [NN: 2, € ANKR)),
where z, is defined in Proposition 2.9. This implies that \*(Kr) = 1, and for any
o € [N]4,
MK = {r € [NV : 2, € K¢}) = A({[N]o}) = (L, L, - o Lny)t

Let U be a non-empty bounded open set such that Gp(U) C U and the sets
F;(U) are disjoint. By the OSC, U exists; furthermore, G%L(U) — Kr as ¢ — oc.

Now choose r € (0,1) and define the following subset w, C [N]*: for each
7= {ng}32, € [NV, curtail 7 at ng, where ¢ is the first index for which

min L;-r < (Ly, ... Ly,) <,

1<i<N
and add 7 | ¢ to w,. Similarly to Proposition 2.9, for ¢ = (ni,...,n,) define
Ug = Fp, 0---0F, (U). Since Uf,.. ., U} are disjoint and nested within U, it
holds that U}T‘q)ﬂ, e U;,TM)'N are disjoint and nested within U; from this it is

observed that {U% : o € w,.} is a disjoint collection of subsets of U. Since, for each
TE [N]N7 there exists o € w, such that o < 7, . € K%, and so

Kp= |J 2. c |J Kz c | U7

TE[NN TEWr oTEW,

(The last inclusion is a consequence of the fact that GL(U) — Kp.)

Since U is open it contains a ball of small radius a; and since it’s bounded it
is contained within a ball of larger radius b. Then, for o = (n1,...,n4) € wy, it
follows that UZ is contains a ball of radius ((mini<j<y L;)-a-7r) < (a- Ly, ... Ly,),
and it’s contained in a ball of radius (b-7) > (b Ly, ... Ly,).

For a ball B with radius r, let w, g = {0 € w, : U2NB # 0}. A simple geometric
argument shows that w,. p is finite: since {Uf},cw, is a collection of disjoint sets
with diameter at least ((mini<,<ny L;) - a - 1), only finitely many of them can fit
inside the ball centered at the center B, with radius r + 2br (call it (1 + 2b)B).
But if Uil‘? N B # (), any two points in UZ are at most 2br away and there is one
point that is no more than r away from the center of B; so Ug C (1 + 2b)B. Let

k= #(wT’B).
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We see that
MN(B)=A{r €[N :2, € KrnB}) <AX{[N]y:0 € w5}

because if x, € Kr N B, then there exists o < 7 such that z, € Uilii; we can further
specify that o € w, p. This means

MB)< Y AN = Y Ly Lo < Y =kt
oEWr, B OEWr, B TEWr, B
Since r and B were chosen arbitrarily it holds for any set V' with diam (V) < 1 that
A (V) < k- diam(V)".
Now consider any countable cover {X;};cn of Kr with non-empty sets of diam-
eter less than € = 1. It holds that

1=M(Kp) <> N(X;) < k- Y diam(X;)*.
i=1 i=1

Taking the infimum over all such covers gives J#°(Kp) > +. As e — 07, we get
H°(Kp) >+ >0.
Combining Parts I and II we obtain 0 < #°(Kp) < 00, so dim(Kp) =s. O

4. MEASURING RANDOM FRACTALS: THE GENERAL CASE

This section contains the primary result of this paper: Theorem 4.3. Note that
throughout this section, we use the convention that 0° = 0.

Definition 4.1. Let (F,u) be a stochastic IFS on K C R? Then, define the
random variables R, = Lip(F,) to be the r-Lipschitz constants of (F, ).

(Here, ‘v’ is simply short for ‘random’.)
The distribution of R, is induced by p in the natural way. The following facts
are immediately checked from the definition:

Proposition 4.2. E[R,] < oo (that is, R, is integrable). Additionally,
(1) R, is L'-bounded for allt > 0 (that is, E[R!] < oo for allt >0).
(2) {Rse1,---, Roen}ocin]+ is a collection of independent and identically dis-

tributed N -tuples of Lipschitz factors with the same distribution as the ran-
dom N-tuple {Rq,...,Rn}.

This second part of this proposition implies that the random variables { Ry, ..., Ry}
effectively characterize a stochastic IF'S.

Theorem 4.3. Let (F, ) be a stochastic IFS on K C R? with r-Lipschitz constants
{R}N., such that E[R) + --- + R}] > 1. Then P({KF : dimy(Kr) = s}) = 1,
where s be the unique real number satisfying

E[R] + -+ Ry] =1

Remark 4.4. This is an elegant and surprising parallel between self-similarity and
stochastic self-similarity: despite randomness being introduced at each stage of the
fractal construction, the Hausdorff dimension of the resultant set is the same almost
surely (with probability 1), and can often be evaluated explicitly.

We break Theorem 4.3 into several smaller theorems and work our way towards
the main result. Unless mentioned otherwise, all the following results only hold
under the same assumptions as Theorem 4.3.



10 SHRAVAN HARIBALARAMAN

Proposition 4.5. There exists a unique s € [0,d] such that
E[R; + -+ Ry] = 1.
Proof. Consider the continuous function
o(t) = E[R} + - + Ry].

By assumption, ¢(0) > 1; and ¢(d) < 1 because the random sets F (K), ..., Fn(K)
are disjoint, with diameters R{ - diam(K), ..., R% - diam(K), and the sum of these
diameters can be no larger than diam(K). The conclusion follows from the in-
termediate value theorem. Uniqueness is clear from the fact that ¢ is strictly
decreasing. O

Theorem 4.6. Kp is almost surely a set with Hausdorff dimension less than or
equal to s. That is,

P({Kp : dimye(Kp) < s}) = 1.

Proof. For all and o € [N]*, define D, = diam(K ), where K¢ is the random set
Fyjp 00 Fy o)) (K). Clearly,

o]

Dy = diam(K) - [ [ Rops-
=1

For allm > 1, t > 0, define

My, = > Di.

lo|=n
We claim that the sequence {M; ,,}22, is a martingale with respect to the filtration
Fn =A{F, : o] <n}. Indeed,

EMni1 | Zo] =E| > Di|Zn
_\a\:nJrl

=E | Djy+-+Diuy|Fn

Llol=n

[ N
=E|Y Dj- (ZR;) | Fn

_\U\:n i=1

= > Di-E[R} +-+ Ry]
|lo|=n

=M, -E[R] + -+ Ry = M .

By the Martingale Convergence Theorem, M, = lim,,_, o Mj ,, exists and is bounded

for v-a.e. GFS (and thus, P-a.e. GFS attractor Kr). For all n, { K%} 5=y is a cover
of K, so by the definition of Hausdorff dimension,

s < 1 : o\s _ 1 _
H°(Kp) < nl;rr;o Z diam(K%) HILH;O M, =M; < oo
o|=n

for P-a.e. random set K. So, the Hausdorff dimension is almost surely no greater
than s. ]



HAUSDORFF DIMENSION OF RANDOM FRACTALS 11

We now construct the proof that the Hausdorff dimension is at least s. The
following lemma regarding My comes in handy:

Lemma 4.7. Mg is an LP-bounded random wvariable for all p > 0. That is, all
moments of My are finite.

Proof. 1t suffices to show by Fatou’s Lemma that for all p > 1, the sequence
{M?,,}52; is uniformly bounded in expectation. Of course, by monotonicity of
LP norms, it suffices to show this for all integers p > 2.

Begin with the p = 2 case. For i = 1,..., N, define Mg(ZT)L to be an iid copy of
M; 5. Then, by shifting our entire construction down one step, we have M, 1 =

Zfil R} 3(17)1 Clearly Mj ; has finite moments of all integer orders:

N
E[M,,] =E [Z Dfi)] = diam(K) - E[R; + --- + Ry] = diam(K).
=1

N p N p
E[MP,]=E KZ Rf-diam(K)) ] = diam(K)? - E (Z Rf)

< diam(K)? - N*P.

Now, for n > 1 we observe that

N 2
E[Ms?,n+1] =E <Z Rst(l7)«L>
i=1

+E | D RIRMEME) |

i#£j
which we obtain by splitting the sum into the diagonal and non-diagonal terms.
Here, MS(’% is independent of R; for all 7, j; and so,

[ N
=E | R¥MZ,
Li=1

N
E[MZ2, ] =E > R¥|E[M?,] +diam(K)*-E | > R/R;
Li=1 i#j
The diagonal term at the end can be split up as
i N 2 N
E|Y RiR}| =E (ZR;) ~E|) R¥| =0 -c.
i#j i=1 i=1

Then, letting a, = E[MZ,] we may note that
Uny1 = Coay, + diam(K)?(Cy — ca).
This is a fairly simple linear recurrence relation, and solving down to n = 1, we get
an = CoQp_1 + diam(K)2(02 —c2)
= 3ap_o + co(diam(K)?(Cy — ¢2)) + diam(K)*(Cy — ¢3)
= cyan_3 + diam(K)*(Cy — co)(ch +ca+1) = ...

n—2
= ¢ ay + diam(K)*(Cy — ¢2) > ).
j=0
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As shown above, a; = E[MZ,] < diam(K)? - N**. Furthermore, ¢; < 1 because the
function ¢(¢) mentioned in Proposition 4.5 is strictly decreasing and s < 2s. Thus,
for all n,

1
1—02

]E[an] = a, < tdiam(K)? - N?* 4 diam(K)?*(Cy — ¢2) -

< diam(K)? - N?* + diam(K)?(Cy — c3) - < 00,

1-— C2
so {Mj,,} is an L*-bounded sequence.

For the p > 2 case, we outline the strong induction method that proves finiteness
of moments. Suppose p is an integer such that {M; ,,} is L*-bounded for all integers

k=p—1,p—2,...,1. Then,
N p
(o) |
i=1

as before. We again split into all the diagonal and non-diagonal terms. There
are exactly NP — N non-diagonal terms, and each one is a product of lower-order
moments of M, ,, which by the induction hypothesis are all finite; so the product
itself, by Holder’s inequality, is finite. Thus the non-diagonal term is some finite
constant B,. The diagonal terms sum to

N N

SP AP sp
E R;"M E R,
i=1 i=1

by independence. The expected sum of all R;” is less than 1 since the function
¢ from Proposition 4.5 is strictly decreasing; so we again have a linear recurrence
relation

EM!, 1] =E

E =E -E[ME,] = aE[M?E,]

Since B, is finite, ¢, < 1, and E[M? ] < oo, we again calculate a uniform bound

on {M?,,} as with the p = 2 case. Thus, {M; ,} is an LP-bounded sequence for all
p > 0, and so M, has finite moments of all orders. O

Now we introduce a random variable taking values in C,(R%)*, the dual of the
space of continuous functions on R? with compact support. For f € C.(R?), define

G(f) = lim > f(z5)D;,
lo|=n

where x, is some point in K%. G(f) is well-defined, because any infinite nested
sequence of sets (K7)$2; can be associated with the sequence 7 € [N]Y such that
7 =();[N]s,. Consequently, z,, = z, and so f(z,,) = f(z-).

Theorem 4.8. For v-a.e. GFS F and all f € C.(K), G(f) € C.(K)* and the
norm of F' is given by |G| = M;.

Proof. For each o € [N]*, define intermediary random variables

Mam = Z H Rio[w|q] and Mo- = nh—>120 Mo’,n~

jwl=n 4=1

My, can be thought of as the analog of M, ,, if we perform the fractal generating
process, starting at node o and normalizing the diameter of the initial set to 1.
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s,m . Mg .
diam(K)*’ 50 ®

by the continuous mapping theorem on random

This makes it easy to see that M, , is equal in distribution to

M
equal in distribution to m
variables. This also means {M,},c[n]- is a mutually independent family, itself
independent of .%,,. Finally, for every fixed n and ¢,

5n+q Z DS quHOOM - Z DS'MJ~
N]®

Now say f € C.(K), and for p,r € N, define

61077“_2.]0560 foa

lo|=p lo|=r

Suppose p,r > k for some k£ € N; then,

p—k
DD X0 f@ow) [T Foswra = 32 Flwow) Hmem
q=1

lo|=k |w|=p—Fk |w|=r—k
S Z Dg <| ‘Sup A |f(xdow) - f(l'a')|Ma,p—k + | |Sup X |f(xa'ow) - f(xcr)|Ma',r—k~
lo|=F w|=p— w|=r—

F@a)] - | Mo pei — Mmk|)

< 3" D - (diam(f(K§) (Mo + Mo i) + £+ | Mo pt — My ).
lo|=k
As k,p,r — o0, diam(K§) — 0 for v-a.e. GFS (since one of the Lipschitz factors
is almost surely less than 1) and My p—k, My - — M,. Thus, €,, — 0 almost
surely.
It is immediate that G is linear; and whenever K C f~1({1}),

G(f) = nhHH;O Z flzs)Dy = HILH;O Z D} = nl;rr;oM s = M.
|o|=n |lol=n

Whenever ||f|| < 1, |G(f)]] £ Ms; and as shown, the value Mj is in fact attained,
so ||G|| = M. O

By the Riesz-Markov theorem, we may associate G with a (random) measure
on R? that satisfies G(f) = [ f dvy for all f. ~ can intuitively be understood as a
stochastic counterpart to the s-dimensional Hausdorff measure. We will carefully
study the properties of v for the next few theorems.

Theorem 4.9. If A € 2 (RY), then

Z DM, | v(A) asn— oo
|o|=n,KZ%NA#D
for v-a.e. GFS F.

Proof. Say k € N and € > 0. Almost surely Z‘ =k D3 M, is finite, so there exists
a set © C [N]¥ such that Y. nje DoMy < €. By Urysohn’s Lemma we can
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find f € C.(R?) such that f~1({1}) = A and K& C f~1({0}) whenever o € © and
K%NA={(. Then,

WA < [ £ =60 = lim 3 Fan)Ds

lo|=n

= nll}rr;o Z Z f(xU.w)Dgow

|o|=k |w|=n—k

SEURRD DHEED SRR D SN DS
|o|=k, KZNAZD |w|=n—Fk o€[N]F\O,KENA=0 |w|=n—k

= lim Z D3 Mg i+ lim Z D3 Mg .
lo|=k, KGNAZD o€[N]F\©,K2NA=0

The second term is at most ¢; and the first term, asn — oo, is Z\a|=k K2nA#D D> M,.
Thus,

vA< > DiM,.
o=k, KZNAZD

Now, note that
> DiM, < > DiM,,
lo|=k+1,K&NA#D lo|=k,KZNAF#D

since K¢* C K¢ for all 4; thus, the sequence in the theorem is decreasing and
bounded below uniformly by «v(A), and its limit exists. Define the measure ¥(A) as
this limit. Now say B € # (R%) and AN B = (); then, for large enough k, |o| = k
implies that K¢ cannot intersect both A and Bj; so 4(A4) +7(B) < M.

Now, take an increasing sequence of compact sets {B,}52; such that v(B,) —
v(R4\ A). For each n, we have

V(A) +7(Bn) <F(A) +7(Bn) < M.
As n — oo, the left-hand side of this equation becomes v(A) + (R4 \ A) = M,
since v(R?) = M,. So we in fact have
My <5(A) + R\ 4) < M.

This implies that for all compact sets A,
YA =4(A) = lim Y DM,

n— 00
lo|=n,KZNAH#D

so we're done. 0
Theorem 4.10. For P-a.e. random set Kr,

V(Kr) =7(R?) = M.
Proof. Clearly,

dy __ _ I s _ 13 —
~v(R )/Rdld’yG(l)nhﬁn;O%: DainhanoloMs’"iMs'

Now, to find the measure of K, we may apply the standard result about measures
of decreasing sequences of sets on finite measure spaces (since M is almost surely
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finite):

WKp) = lim v | | K7

q—>oo
lo|=¢

Fixing ¢, the random set K, = UlrfI:q K¢ is compact, so by Theorem 4.9,

K= Jm Y i,
|o|=n, KqNK %70
But for large enough n, K, O K, O K¢ for all o with |o| = n; so the limit on the

right-hand side is simply lim,, oo Zlalzn DM, = M. So, v(K,) = M,. ]

Note that because of how we defined a contraction, we run into the issue that F,
may be a constant map with R, = 0. To address this case we introduce a variable
Moy = 1limy, 00 Mo, = limy, 500 Elalzn DY. The following theorem provides a useful
characterization of when the resultant set K is empty.

My, counts the number of non-empty sets at the n-th stage of the random fractal
generation; and what this theorem says is that My, must grow without bound for
the resultant set to be non-empty.

Theorem 4.11. For v-a.e. GFS, Kr # () if and only if My = oco.

Proof. We first show that My = 0 or My = oo almost surely. This follows from the
fact that {Mp } is a Galton-Watson branching process, wherein each node has at

most N children. From p, we can obtain a probability vector (pg,...,p% ), where
pY represents the probability Lip(F,.;) > 0 for exactly ¢ indices. Of course, by our
construction, the collection {pg,...,p% toeiny- is iid.

Define f(z) = Z;ICV:O pgak. Then, f'(1) = fo:o kp? = E[# of surviving nodes].
But this is exactly E[R? + --- + RQ/], which is greater than 1 by hypothesis.
Thus, { My, } is supercritical; by a standard result to do with branching processes,
lim,,_, oo My, € {0,000} almost surely.

But now the theorem is fairly obvious. If My = oo, it is clear that Kr # (). If
My < oo, My =0 = Kp = (. Thus we are done. ]

Note that this theorem also explains why E[R)+-- -+ RY;] > 1 in our hypothesis.
If this quantity was less than 1, the Galton-Watson process would reach extinction
almost surely; the same would happen if E[R) + -+ + R%] =1 and p§ # 0.

Theorem 4.12. IfE[M;] > 0, then

P{Kp :v(Kr) >0 and Kp # 0}) = P{Kp : Kr # 0}).
In other words, if Kr is non-empty, its y-measure is strictly positive almost surely.
Proof. Of course, if E[M,] > 0, M, is strictly positive with probability 6 > 0.

Additionally, Zf\; RY < N, so the set X,, = {|o| =n: D, > 0} is finite.
Suppose F' is some arbitrarily subset of [INV]™. Then,

PMg=0and F=X,)=P(M,=0foro € Fand F =X,).

This holds because if D, and M, are both strictly positive, My > 0. By inde-
pendence of the family {M,},cn+], the above probability works out to be equal
to

P(M, =0)*F . P(F=X,)=(1-0)#*'P(F = X,),
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since M, has the same distribution as M /diam(K)*. Now, for fixed ¢, we obtain

P(M, =0 and #X, > q) = Z P(My;=0and F = X,,)
#F2>q
= 3 (1-9)*FP(F = X,)
#F>q
<(1-0)" P(#Xn > q)
= P(My>0and #X, >q) > [1—(1-0) - P(#X, > q).
But note that #X,, = My, as introduced in 4.6, so we really have the inequality
P(Ms;>0)>P(Ms;>0and My, >q) >[1—(1—-10)-P(Mon > q).
Taking n — oo we get
P(Ms;>0)>[1—-(1-98)P(My > q).
Then, taking ¢ — oo (which we can now do since ¢ < N”; N is fixed but n — o),
we get
P(M; > 0) > P(My = 00).
Now suppose My = 0. Since Mg, can only take on integer values, it must hold
that for large enough n, My, = 0. But then D, = 0 for all |o| = n, and so M = 0;
so Mg >0 = My >0 = My = oo by Theorem 4.11.
So, P(Ms > 0) > P(My = o), but M, > 0 only if My = oo; this implies that
M, > 0iff My = co. But My = oo iff Kp # 0, and M, > 0 iff v(KFr) > 0; so we
have Kp # ) <= ~(Kp) > 0, meaning we’re done. O

Theorem 4.13. In addition to the assumptions of Theorem 4.3, assume there exists
C > 0 such that P(Ry > C | R, > 0) = 1. Then, ift < s and E C R is compact,
HYE) < oo = v(E)=0.

Proof. By Lemma 4.7, M, is LP-bounded for all p; since M, has the same distribu-
tion as My /diam(K)*, the same holds for M,. Now, fixing some k > 0 and ¢ < s,
Chebyshev’s inequality with any r > 0 gives

E[(Ds~tM,)"]  E[D;* VE[M!
P(D:M, > kD%) = P(DS'M, > k) < I ‘Tkr o)'] = [ kT] [ ‘7]’
the last equality holding since D, and M, are independent. This means
E[D;“ VIE[M]]
s t o g
E P(D: M, > kD,) < E o

|o|=n |o|=n
E[D;* VIE[M]]
diam(K)sTk"

lo|=n
E[Y,-, DT IEMY)
- diam(K)sTk"
_ E[Mr(sft),n}E[Msr}
diam(K)sT k"
E[Mr(s—t),n}E[Mﬁ

diam(K)smk"

= P(Jo s.t. |o| =n,DiM, > kD) <
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The argument from Theorem 4.6 shows that
E[M,(s—ty.n] = E[My sy 1] - BB 4+ + R

Iterating downwards,

E[Mr(s—t),n] = E[Mr(s—t),l] K

a ( t)n
RI™™
> w)

Choose 7 large enough that E[> ", 5 Rf(s_t)] < 1 (here it suffices that r(s—t) > s);
then, N

N n—1
> RZ(H)] —E

i=1

r(sft),n]E[M.:]
diam(K)sk"

ZPEIUst lo| =n, DEM, > kD!) <Z

n=1

Sien RICTVIMEIMI)

72 diam(K)srk"
ELM] ZE SR tr<oo.

dlam(K )STkT
=1 i=1

By the Borel-Cantelli lemma,
P(3infinitely many n s.t. for some |o| = n, DSM, > kD) = 0.

This implies that almost surely, there are only finitely many such n; and thus a
maximum such n. So, there exists Q such that |o| > Q = D:M, < kD! . Define
e = min{l,min{D, > 0:0 € [N]9}}.

Let Kr be a particular realization of the random set generated by this fractal
generating process. For all 7 € [N]N and p € N, define

@T,p = {O’ € [N*] o <T1,D, < 2P < D‘7|(‘<7|_1)}'

Let E C R? be compact so that /#*(E) < co. Choose a sequence {S,} of d-
dimensional spheres such that £ C J,, S, and diam(S,) < § for all n. For every
n, there exists p,, € N such that 2717P» < diam(S,,) < 27P~; so define, for every n,
the set

A = J{Orp, 12, € SuNE}.

Now suppose o7 are oy two distinct elements of A,,, and say there exists 1 such
that oy @1 = o3. Then, there exists 7 € [N]N such that o, < 7, meaning oy < 7;
50, 01,02 € O, for some 7. But this would imply

Dy, = Dgey < 27 < Dgl.[nmm,l)] <o < Dy <27P

an absurdity. Thus there are no two such elements in A,. What this implies is
that if 01,09 € A, and 01 # 02, int(K7') and int(K7?) are disjoint. For any given
x € Sy and y € K% where 0 € A, we have 0 € ©,,, for some 7 such that z, € S,,.
x, and x are at most diam(S,) < 27P» away; and since z, € K%, z, and y are no
more than diam(K%) < 27P» away. Thus, d(z,y) < 2'7P». This implies that for
any x € Sy,
U K% c B(z,2'7).
oEA,
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Note, however, that if o € O, , then diam(K%) > C-diam(K 171"y > ¢.2-7n
since R, > C almost surely whenever R, > 0. Letting .#¢ denote the d-dimensional
Lebesgue measure, we therefore obtain

. NN .9—pn \ @
2 = 2 (R ) = 2o ()

However, since the sets {K%},ca, have disjoint interiors and all fit inside the ball
B(x,2'7Pn), we have
C .9 Pn

d
diam(K)) < ZY(B(x,2'7)) = 27 2(B(0,2)).

#A, - L (int(K)) - (
This implies that

J.

44, < Zd(B(O,Q)) (diam(K)\“
Z(int(K)) C
For all o € A,,, though,
DiM, < kD! < k(27P)" < 2'diam(S,,) k.
For each n, let ¢(n) = max{|o| : 0 € A, } (which exists because A,, is finite). Then,
YENS,) < > DM,
lo|=q(n),ENS,NKZ#D
by Theorem 4.9. For each term in this sum, take the corresponding o; there exists

a 0, € A, such that o | (Jox|) = o4, and therefore, K7 C K7*. Furthermore,
D; M, > D;M,; so, we in fact have

YENS,) < Y DiM, < #A, - k-2'diam(S,)"
o€EA,
< kJ2'diam(S,)"

oo
= (E) <> kJ2'diam(S,)" < kJ2' A (E).
n=1
Since, at the beginning of the proof, we fixed k£ > 0 arbitrarily, we take kK — 0 to
get v(E) = 0 whenever s (E) < co. O

We now come to the final theorem that, combined with Theorem 4.6, proves
Theorem 4.3.

Theorem 4.14. Suppose Kr is non-empty. Then, Kp is almost surely a set with
Hausdorff dimension greater than or equal to s. That is,

P(Kp: Kr # 0 and dimy(Kr) > s) = P(Kr : dimy (Kg) #0).

In other words,

Proof. For each n € N, we define an auxiliary stochastic IFS (F,, i, ) meeting the

conditions of Theorem 4.13. Consider the map v, : . (RN — .Z(RH)N defined

as follows: ¥, (g1,...,9n8) = (ggn), . ,g%)), where

() (py — J9i(x) i Lip(gi) =
o {y if Lip(g,) <

1
n’
1
n’
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where y is a randomly chosen element not in K. (Here, we should really be dealing
with similitudes on the compact set K, not R%; but any similitude on K can be
extended to one on R?, so this suffices.)

Then let pn = vy, the pushforward measure of p under the map .. Refer
to the resultant measure on ¢ (R9) as P,. For all i < N, the induced r-Lipschitz

constants are Rgn) = R; - 1{R,>1/n}, Where 14 represents the indicator random
variable for an event A.

Now note that ¥, (g1,.-.,9n8) — g1,---,9n as n — oo for all N-tuples of con-
tractions; therefore, the measures y,, converge weakly to p. To see why, we observe
that for any bounded continuous ¢ on .7 (R%)N

/gdun/gowndpﬁ/f’oidd,u/fdu.

The convergence is a consequence of the dominated convergence theorem, because
|€othn| < |€] < J|€||. By the same reasoning, {P,,} converges weakly to P. Lastly, as

n — 090, RE") = R;-1{r,>1/n} T Ri-1{Rr,>01 = Ri; so, by the monotone convergence
theorem, for all ¢t > 0,

B[R+ o+ RY| T ERS + -+ Ry

1 N 1 Nl
This means there exists some ng so large that for all n > ny,
t t
B[R 4+ + R > 1.
For each n, let F), , equal F,,(c) be the contraction map at node o for the nth
auxiliary IFS; and let
Kg‘,n = Fn,(a\l) ©---0 Fn,a(K)-

Define D,, , = diam(K§,,). It follows that

K% = K9, 1ng’|Ll7...,R§”>21/n,
{y} else,

and consequently,

(n)
D, . — D, 1fRU|1,...,Rg >1/n,
0 else.

The resultant compact set will be denoted Kr,, = ﬂgozl Uloj=q Kfn VK (by inter-
secting with K we no longer have to worry about the singleton {y}). For alln € N
and o € [N]*, K%, C K%,y C K% for v-a.e. GFS F; therefore, for all n € N,
KF,n C KF’n+1 C Kp.

For all n € N and p < N, let gp = P(Kpn = 0), Cop = P(X,ox B’ = ).
Correspondingly, let gg = P(Kr = 0) and Cpp, = P(>", .y R) = p). Fixing n, we
get

Gn = P(Kpy =0) = ZP Kpp=0and S R™ =
i<N

For each p < N (including 0), if Y.y Rl(”) = p, there are p non-empty, non-
singleton sets after the first N-tuple of contractions is applied. If Kp, = 0, each
of these p sets must be contracted into an empty set. But since the contraction
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factors are iid at each stage of the fractal generating process, the probability that
any one of these p sets turns out to be empty is equal to the probability that the
original set K, is empty, and these probabilities are mutually independent. So,
we may simplify:

N

N
4= PUpa =07 PSR =p) =3 Cop i
p=0

p=0 i<N

This also holds when n = 0.

For each n, define the function (, () = ZPSN Chp-aP? —z. Forall n > ng, Cy
is strictly positive so (, has a root ¢, in [0,1). The same holds for n = 0. Since
Krn C Kppny1 C Kp, we have gn 2 @ni1 2 qo, 80 oo = liMy—00 gn = qo-

Additionally, for all p, Cy,, — Cop as n — oo since Rgn) — R;. This implies
that Cn - CO uniformly on [07 Qno]' Since Cn - CO and An — Qoo Cn (Qn) - CO (QOO)
But Cn(Qn) =0, so0 CO(QOO) = 0.

We observe that since Cyp, > 0 at least for p = 1, it holds that (y is either a
strictly convex function or it is linear with a negative slope; in either case, it has a
unique root in [0,1). This means ¢, = qo, so in fact ¢, — go. This implies that
almost surely, Kr # 0 iff, for some n > ng, Kp,, # 0.

Now, for each n € N, let

t t
$n(t) =E [R{ 4+ + R,

and for all n > ng, let s, be the unique solution to ¢,(¢) = 1, which exists by
Theorem 4.5; this theorem also guarantees that ¢, is strictly decreasing. Since
Rgn) T R;, we also have ¢, < ¢p11 < ¢. Thus, if ¢ (8r) = dnt1(Snt1) = @(s), it is
clear that s, < sp,41 < 5. This means s = lim;, 00 s, < 5. Conversely,

Sn(50) = dnls0) =E | SR =B | 3. R=1(psuymy | TE| Y RS

i<N i<N i<N

by monotone convergence. The first term, ¢,(s,), equals 1; and the final term
equals ¢(so). This implies that ¢(s) = 1 > ¢(sx), and S0 Soo > s since ¢ is
decreasing. Therefore, s, — s.
By Theorem 4.7, the quantity
MS(:L) = nh_{r;o Z Dy,
lo|=n

has finite moments of all orders. Additionally, since the sequence {3°, _,, Dy; oy

is a martingale (by Theorem 4.6), IE[MS(")] = E[D;"y + -+ D)ry] = diam(K)*,
which is strictly positive.

For every n > nyg, the stochastic IFS (F,, u,) satisfies all the conditions of
Theorem 4.3 and the additional conditions of Theorem 4.13. So, suppose t < s and
Kp # ). There must exist some n > ng such that ¢ < s, and Kg,, # (. Let v,
be the random measure for the stochastic IFS (F,,, i), as constructed in Theorem
4.8.

Since E[M{' ] > 0, Theorem 4.12 implies that v, (Kp,) > 0. But Kr D Kgj,
and thus v,(Kr) > 0. So, by Theorem 4.13, #'(Kr) = oo for all ¢ < s; this
implies that dimz(Kp) > s almost surely whenever Kr # (), so we are done. [
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5. MEASURING RANDOM FRACTALS: SPECIAL CASES

The general result of Theorem 4.3 has some nice special cases that we round out
this paper by highlighting.

Example 5.1. The most instructive example of a random fractal is the random
equivalent of a Cantor set. We show that almost surely a random Cantor set has
Hausdorff dimension (v/17 — 3)/2.

The way to generate a random Cantor set would be to, at each step, split every
interval into two sub-intervals, choosing the contraction factors uniformly, without
overlap. The first few stages of this process are pictured below:

Figure 1: First five stages in the construction of a random Cantor set

To determine the dimension of the resultant Cantor set, we first construct a
corresponding stochastic IFS. Let u be the unique uniformly distributed probability
measure on the set S = {(a,b) : 0 < a < b < 1}. Now, define the continuous map
g:8 = .Z(R)? by

g:k— (Fi(z) =az, Fo(x) =br +1-0).

Then, p is the pushforward measure of u under the map g. This gives us the
stochastic IFS needed to generate a random Cantor set. (It can be checked that
there are no concerns with overlapping.)

The Hausdorff dimension of this random set is determined by the solution to the
equation E[R§ + R3] = 1. We go through the calculations:

1=E[R] + R3] = /as + b° du(a,b)

1 1—a
:2~// a® +b° db da
o Jo
1

pst+1 1-a
:2'/ {as~b+ } da
0 S+1 0

1
1
2. s _ . s+1 1— s+1d'
/Oa a +8+1( a) a
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Using a u-substitution, we obtain

1 9 1
=2~/ a® —a*t da + / AT de
0 s+1 )/,

1 1 2 1
=2. — + .
s+1 s4+2 s+1 s4+2
4

(s+1)(s+2)
_V17-3

= (s+1)(s+2)=5>+3s+2=4 = 5= 5

Therefore, the Hausdorff dimension of a random Cantor set is (v/17 — 3)/2 with
probability 1, so long as the above construction is followed.

The exact same method can be used to randomize the generation of a large class
of common fractals, such as the four-corner Cantor set, Sierpinski gasket, von Koch
snowflake, etc. As long as the distribution of the contraction factors is known and
iid, their Hausdorff dimensions can be determined almost surely.

Example 5.2. Another interesting application of the above results is Mandelbrot
percolation. The setup of the model is as follows.

Fix a number k£ > 2 and p € (0,1). Color the unit square blue and divide it into
k? squares of side length 1/k in the obvious way. For each of the k? squares, leave
it blue with probability p and color it white with probability 1 — p, independently
of all other squares. Repeat the above operation on each blue square: divide it
into k2 squares, and leave each of the smaller squares blue with probability p and
color it white with probability 1 — p, independently of all the other squares. If we
recursively implement the same process, we obtain a random blue set in the limit;
we are interested in the dimension of this blue set.

The first six stages in this construction are pictured below, in the k = 2 case:

Figure 2: First six stages in the Mandelbrot percolation process



HAUSDORFF DIMENSION OF RANDOM FRACTALS 23

Here we let K = [0,1]2, and define k2 individual measures i1, . . . , g2 on .7 (R?),
one for each square sub-division. Since each square is either colored blue or colored
white, each function can only take on two possible realizations, both with equal
measure; so the measure has two atoms that, together, make up a full measure set.
For example, p1 corresponds to the first square, so

i (F(zy) = (o, ) =p. m(F(z,y) = (4,4)) =1 -p.
(Here, (4,4) was chosen as an arbitrary point not in K.) All k? measures are

defined similarly; and the measure on .%(R?)N = .7 (Rz)k2 is defined as the product
measure of pq,...,ug2. Now, every r-Lipschitz factor Ry, ..., Rg2 has an identical
distribution, independently of all others:

R - % with probability p,
10 with probability 1 — p.

So, the dimension of the resultant blue set is given by the solution to the equation
E[R; +---+ R;.] = 1. We solve it out:

1=E[R; + -+ R}:]

— 1 BRI =42 (- 5+ (1-9)0)

k-s
:p.kzis
= 0=Inp+(2—s)lnk
Inp
=24 —.
= s +lnkz

It is clear that if we were to generalize this R? for d > 2, the dimension would be
s=d+Inp/Ink.

Example 5.3. The framework from Section 4 can also be used to study non-
random fractals, simply by turning the measure p into a J-measure. Then, the
resultant measure P is itself a J-measure, meaning there is one ‘stochastically’
p-self-similar set in its support.

For example, if K = [0,1], N = 2, and pu is a point mass such that the double
(Fi(z) = 3z, Fy(z) = 2 + 2) has full measure, the resultant ‘random set’ is
guaranteed to be the middle-thirds Cantor set; and its Hausdorff dimension can be
calculated to be In2/1In 3.

Clearly, the study of stochastic self-similarity has a large variety of applications
and enables the study of a much wider class of fractals than the study of regular
self-similarity.
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