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Abstract
This paper presents a combinatorial proof of Brouwer’s Fixed Point Theorem using Sperner’s Lemma.

We begin by establishing the necessary geometric foundations involving simplices and simplicial com-
plexes, then prove Sperner’s Lemma using a parity argument based on counting labeled faces. Finally, we
demonstrate how this combinatorial result leads directly to a constructive proof of Brouwer’s theorem.
This approach provides an elegant alternative to traditional topological proofs and offers computational
insights into the existence of fixed points.

1 Introduction

Brouwer’s Fixed Point Theorem stands as one of the most celebrated results in topology, asserting that
any continuous map from a convex compact set in Rn to itself must have at least one fixed point. This
paper demonstrates how a purely combinatorial approach via Sperner’s Lemma can yield the proof of this
theorem. The connection between these seemingly disparate areas—combinatorial geometry and fixed point
theory—illustrates the deep unity underlying mathematics. Our proof not only establishes the existence of
fixed points but also provides a constructive method that can be implemented algorithmically to approximate
such points.

2 Preliminaries: The Geometry of Simplices

2.1 Simplices and Simplicial Complexes

Definition 2.1 (Simplex). Let {u0, u1, . . . , uk} be a set of k + 1 affinely independent points in Rd. The
k-simplex σ is the convex hull of vertices given by:

σ = conv{u0, . . . , uk} =

{
k∑

i=0

λiui |
k∑

i=0

λi = 1 and λi ≥ 0 for all i

}
The points ui are the vertices of the simplex. We refer to a 0-simplex as a vertex, a 1-simplex as an edge,
and a 2-simplex as a triangle.

0-simplex(vertex) 1-simplex (edge) 2-simplex (triangle) 3-simplex (tetrahedron)

Figure 1: Examples of simplices in different dimensions. The shaded regions show the interior of each
simplex.
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Definition 2.2 (Face). A face of a simplex σ = conv{u0, . . . , uk} is the convex hull of any non-empty subset
of its vertices. A face is proper if it is not σ itself. The boundary of σ, denoted ∂σ, is the union of all its
proper faces.

u0 u1

u2

1-face: edge {u0, u1}

1-face: edge {u1, u2}1-face: edge {u0, u2}

0-face: {u0} 0-face: {u1}

0-face: {u2}

2-face: entire triangle {u0, u1, u2}

Figure 2: A 2-simplex (triangle) showing all its faces. The 0-faces are vertices (red), 1-faces are edges (teal),
and the 2-face is the entire triangle (blue shaded region).

Definition 2.3 (Simplicial Complex). A simplicial complex K is a finite collection of simplices in Rd

such that:

1. If a simplex σ is in K, then all of its faces are also in K.

2. The intersection of any two simplices σ1, σ2 ∈ K is either empty or a face of both σ1 and σ2.

A triangulation of a topological space X is a simplicial complex whose underlying space, |K| =
⋃

σ∈K σ,
is homeomorphic to X.

Valid Simplicial Complex

Faces intersect properly

NOT a Simplicial Complex

Triangles intersect improperly

Figure 3: Left: A valid simplicial complex where triangles share common edges or vertices. Right: An invalid
configuration where triangles intersect in their interiors.
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2.2 Subdivision and Refinement

Definition 2.4 (Subdivision). A simplicial complex L is a subdivision of a simplicial complexK if |L| = |K|
and every simplex of L is contained in some simplex of K.

Original Complex K Subdivision L

Figure 4: A subdivision where the original triangle is divided into smaller triangles. Every small triangle (in
red) lies within the original triangle.

Definition 2.5 (Barycentric Subdivision). The barycenter of a simplex σ = conv{u0, . . . , uk} is the point

σ̂ = 1
k+1

∑k
i=0 ui. The barycentric subdivision of a simplicial complex K, denoted Sd(K), has vertices

at the barycenters of all simplices in K. A collection of vertices {σ̂0, . . . , σ̂j} forms a simplex in Sd(K) if
and only if the corresponding simplices form a chain σ0 ⊂ σ1 ⊂ · · · ⊂ σj .

ê1

ê2ê3

σ̂

Original + Barycenters

v0 v1

v2

Barycentric Subdivision

Figure 5: Barycentric subdivision of a triangle. Left: Original triangle with barycenters marked. Right: The
resulting subdivision where each new simplex corresponds to a chain of faces from the original complex.

Lemma 2.6 (Mesh Lemma). For a d-dimensional simplicial complex K, the mesh of its barycentric subdi-
vision, Sd(K), satisfies:

mesh(Sd(K)) ≤ d

d+ 1
mesh(K)

where the mesh is the diameter of the largest simplex, equivalent to the length of the longest edge.

Proof. To establish the bound, we need to find the maximum possible length of an edge in the barycentric
subdivision Sd(K).

Step 1: Characterize an edge in Sd(K). An edge in Sd(K) connects the barycenters of two faces of
an original simplex in K, where one face is a proper face of the other. Let σ be a simplex in K, and let τ1
and τ2 be two faces of σ such that τ1 is a proper face of τ2. The new edge, e, connects their barycenters,
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b(τ1) and b(τ2). The length of any edge in Sd(K) can be expressed as ∥b(τ2)− b(τ1)∥. The longest possible
edge will connect the barycenter of a k-dimensional simplex to the barycenter of one of its m-dimensional
faces, where m < k.

Step 2: Express the edge vector algebraically. Let τ2 be a k-simplex with vertices {v0, v1, . . . , vk}.
Without loss of generality, let τ1 be an m-face of τ2 with vertices {v0, v1, . . . , vm}, where m < k.

The barycenter of a simplex is the average of its vertices. So, we have:

b(τ2) =
1

k + 1

k∑
i=0

vi

b(τ1) =
1

m+ 1

m∑
i=0

vi

The vector for the edge e is e = b(τ2)− b(τ1).
Step 3: Decompose the vector to find its length. This is the crucial step where the ratio emerges.

We can rewrite b(τ2) in terms of b(τ1):

e =

(
1

k + 1

k∑
i=0

vi

)
− b(τ1)

=
1

k + 1

(
m∑
i=0

vi +

k∑
i=m+1

vi

)
− b(τ1)

=
1

k + 1

(
(m+ 1)b(τ1) +

k∑
i=m+1

vi

)
− b(τ1)

=
m+ 1

k + 1
b(τ1) +

1

k + 1

k∑
i=m+1

vi −
k + 1

k + 1
b(τ1)

=
1

k + 1

k∑
i=m+1

vi −
k −m

k + 1
b(τ1)

=
1

k + 1

(
k∑

i=m+1

vi − (k −m)b(τ1)

)

Since
∑k

i=m+1 1 = k −m, we can rewrite this as:

e =
1

k + 1

k∑
i=m+1

(vi − b(τ1))

Step 4: Bound the length of the vector. Now we take the norm and apply the triangle inequality:

∥e∥ =

∥∥∥∥∥ 1

k + 1

k∑
i=m+1

(vi − b(τ1))

∥∥∥∥∥ ≤ 1

k + 1

k∑
i=m+1

∥vi − b(τ1)∥

Every vertex vi is a point in τ2, and the barycenter b(τ1) is also a point in τ2 (since τ1 is a face of τ2). The
distance between any two points in a simplex cannot exceed the diameter of that simplex, diam(τ2). The
diameter of τ2 is, by definition, less than or equal to the mesh of the entire complex K.

∥vi − b(τ1)∥ ≤ diam(τ2) ≤ mesh(K)

Substituting this into our inequality:

∥e∥ ≤ 1

k + 1

k∑
i=m+1

mesh(K)
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The sum has k −m identical terms.

∥e∥ ≤ k −m

k + 1
mesh(K)

Step 5: Maximize the bound. The length of any edge in Sd(K) is bounded by the expression above.
To find the mesh of Sd(K), we must find the maximum possible value of this bound over all possible choices
of k and m. The dimensions satisfy 0 ≤ m < k ≤ d. To maximize the fraction k−m

k+1 :

1. We must choose the smallest possible value for m. The minimum dimension of a face is m = 0 (a
vertex).

2. We must choose the largest possible value for k. The maximum dimension of a simplex in K is d.

The function f(k) = k
k+1 is an increasing function of k. Therefore, the fraction is maximized when k is

maximized. Substituting m = 0 and the maximal value k = d:

∥e∥ ≤ k − 0

k + 1
mesh(K) =

k

k + 1
mesh(K) ≤ d

d+ 1
mesh(K)

Since this holds for any arbitrary edge e in Sd(K), it must also hold for the longest edge. Therefore, the
mesh of the barycentric subdivision is bounded by this value.

mesh(Sd(K)) ≤ d

d+ 1
mesh(K)

3 Sperner’s Lemma

Definition 3.1 (Sperner Labeling). Let ∆n = conv{v1, . . . , vn+1} be an n-simplex with a triangulation T .
Similarly, let V (T ) be the set of vertices of the simplex. Then, Sperner labeling is a function L : V (T ) →
{1, 2, . . . , n+ 1} satisfying:

1. L(vi) = i for i = 1, . . . , n+ 1 (vertices labeled distinctly)

2. If vertex x ∈ V (T ) lies on a face spanned by {vi1 , . . . , vik}, then L(x) ∈ {i1, . . . , ik}

1 2

3

1 2

1

3 3

edge: labels {1, 2}

Fully labeled {1, 2, 3}

Sperner Rules:

• Corner vertices: fixed labels
• Edge vertices: labels from endpoints
• Interior vertices: any label

Figure 6: A Sperner labeling of a triangulated 2-simplex. The purple dotted triangle is fully labeled with all
three colors {1, 2, 3}.
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Theorem 3.2 (Sperner’s Lemma). Every Sperner-labeled triangulation of an n-simplex contains an odd
number of fully labeled simplices (simplices whose vertices receive all n+ 1 distinct labels). In particular, at
least one such simplex exists.

Proof. We use a parity argument by counting certain faces of the simplices in two different ways. The
argument proceeds by induction on the dimension n.

Case n = 1

First, let us consider the 1-dimensional case. Here, our simplex is a line segment, let’s say with vertices a
and b. The segment is subdivided into smaller segments. The vertices of this subdivision are colored with
2 colors (say, 1 and 2). The condition for a Sperner labeling is that the endpoints a and b receive different
colors.

Let’s say a is colored 1 and b is colored 2. As we traverse the segment from a to b, the color of the vertices
must switch at some point. To end up with color 2 at vertex b, the color must switch an odd number of
times. Each time the color switches between adjacent vertices, we create a small segment whose endpoints
have both colors, 1, 2. Therefore, there must be an odd number of small segments that are fully colored
with 1, 2.

Case n = 2

We have a Sperner-labeled simplicial subdivision of a triangle T . Let the vertices of T be colored 1, 2, and
3. We are interested in the number of small triangles that have all three colors, 1, 2, 3. Let’s call these
“rainbow” cells.

Let’s define a “door” as an edge in the subdivision whose endpoints are colored with 1, 2. We will count
these doors in two ways.

Let R be the number of rainbow cells (colored 1, 2, 3). Let Q be the number of cells colored 1, 1, 2 or 1,
2, 2. Let X be the number of doors on the boundary of the large triangle T . Let Y be the number of doors
in the interior of T .

Count 1: Over cells of the subdivision. An interior door (type Y) is an edge for two small triangles.
A boundary door (type X) is an edge for only one. We sum the number of doors contributed by each small
triangle.

• A cell of type R ({1,2,3}) has exactly one door.

• A cell of type Q ({1,1,2} or {1,2,2}) has exactly two doors.

• A cell with colors {1,1,3}, {2,2,3}, {3,3,1}, etc., has zero doors.

Summing the doors over all cells gives the total number of doors, counting interior doors twice and boundary
doors once. This gives the equation:

R+ 2Q = X + 2Y

Count 2: Over the boundary of T. Doors on the boundary of T (type X) can only lie on the edge
whose vertices are colored 1 and 2. This edge is a 1-dimensional simplex. From our argument for the case
n = 1, we know that the number of segments colored 1,2 on this boundary edge must be odd. Thus, X is
an odd number.

From the equation R+ 2Q = X + 2Y , we can rearrange to R = X + 2Y − 2Q = X + 2(Y −Q). Since X
is odd and 2(Y −Q) is even, R must be odd.

General case

In the general n-dimensional case, we proceed by induction on n. We have a Sperner-labeled subdivision of
an n-simplex S using n+ 1 colors.

Let R be the number of rainbow cells (using all n + 1 colors). Let Q be the number of cells that use
colors {1, 2, . . . , n} such that exactly one of these colors is used twice and the other n − 1 colors are used
once. (These are the cells that are ”almost” rainbow faces of dimension n− 1).
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We consider (n− 1)-dimensional faces that are colored with the set {1, 2, . . . , n}. Let’s call these ”special
faces”. Let X be the number of special faces on the boundary of S. Let Y be the number of special faces in
the interior of S.

Again, we count the special faces in two ways.
Count 1: Over cells of the subdivision.

• Each cell of type R (a rainbow cell) contributes exactly one special face (the face opposite the vertex
colored n+ 1).

• Each cell of type Q contributes exactly two special faces.

An interior special face is shared by two cells, while a boundary special face belongs to one. This gives the
equation:

R+ 2Q = X + 2Y

Count 2: On the boundary of S. The boundary of the n-simplex S consists of n + 1 faces, each of
which is an (n− 1)-simplex. A special face (colored {1, 2, . . . , n}) can only exist on the boundary face of S
whose vertices are also colored {1, 2, . . . , n}. Let’s call this boundary face F .

By the definition of a Sperner labeling, F itself is a properly colored (n − 1)-dimensional subdivision.
We can now apply the inductive hypothesis to F . The hypothesis states that F contains an odd number of
rainbow (n − 1)-simplices. These are precisely our special faces. Therefore, the number of special faces on
the boundary, X, must be odd.

From the equation R = X +2Y − 2Q = X +2(Y −Q), since X is odd, we conclude that R must be odd.
This completes the induction.

4 Proof of Brouwer’s Fixed Point Theorem

Theorem 4.1 (Brouwer Fixed Point Theorem). Let ∆n be an n-simplex and f : ∆n → ∆n be continuous.
Then f has a fixed point, i.e. there exists p ∈ ∆n such that f(p) = p.

Proof. Assume for contradiction that f has no fixed point. Write points x ∈ ∆n in barycentric coordinates
x = (x1, . . . , xn+1), with f(x) = (f1(x), . . . , fn+1(x)). Define

gi(x) := xi − fi(x) (i = 1, . . . , n+ 1),

so
∑n+1

i=1 gi(x) =
∑

i xi −
∑

i fi(x) = 0 for all x ∈ ∆n.
Labeling rule. For each x ∈ ∆n set

L(x) := min
{
i : gi(x) = max

1≤j≤n+1
gj(x)

}
,

i.e. pick an index attaining the maximum of the gj(x) and break ties by choosing the smallest index. This
is well-defined because f(x) ̸= x for every x, so the vector g(x) is never the zero vector.

Verification of Sperner conditions.

• (Corner vertices) Let vk be the k-th vertex of the standard simplex, so (vk)k = 1 and (vk)j = 0 for
j ̸= k. Then for j ̸= k we have gj(vk) = −fj(vk) ≤ 0, while gk(vk) = 1− fk(vk) ≥ 0. Since f(vk) ̸= vk
we actually have gk(vk) > 0, so the maximum of the gj(vk) occurs at index k. Thus L(vk) = k.

• (Face condition) Let F be a face spanned by indices I ⊂ {1, . . . , n + 1}. If x ∈ F then xj = 0 for all
j /∈ I, hence gj(x) = −fj(x) ≤ 0 for j /∈ I. Because g is not identically zero we must have some i ∈ I
with gi(x) > 0, and therefore the global maximum of the gj(x) is achieved at some index in I. Hence
L(x) ∈ I.

Therefore L is a Sperner labeling on any triangulation of ∆n.
Existence of fully labeled simplices and limit argument. For each ε > 0 choose a triangulation Tε

of ∆n with mesh < ε. By Sperner’s Lemma each triangulation contains at least one fully labeled n-simplex;
denote such a simplex by σε and let its vertices be

w
(ε)
1 , w

(ε)
2 , . . . , w

(ε)
n+1,
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with L(w
(ε)
i ) = i. By definition we have

gi
(
w

(ε)
i

)
= max

j
gj
(
w

(ε)
i

)
≥ 0 (i = 1, . . . , n+ 1).

Take a sequence εk ↓ 0. From compactness of ∆n and a diagonal/subsequence selection argument we may

extract a subsequence (still denoted εk) such that, for each fixed i, the sequence w
(εk)
i converges. Since the

diameters of σεk tend to zero, all these limits coincide; denote the common limit by x∗ ∈ ∆n.
By continuity of the gi we have gi(x

∗) ≥ 0 for every i. Summing gives 0 =
∑

i gi(x
∗) ≥ 0, so each

gi(x
∗) = 0. Hence fi(x

∗) = x∗
i for all i, i.e. f(x∗) = x∗, contradicting the assumption that f has no fixed

point.
Therefore f must have a fixed point in ∆n.

Corollary 4.2. Every continuous map g : Bn → Bn of the closed unit ball to itself has a fixed point.

Proof. Let h : Bn → ∆n be a homeomorphism. For a continuous g : Bn → Bn define f = h ◦ g ◦h−1 : ∆n →
∆n. By the theorem f has a fixed point p, and then x = h−1(p) satisfies g(x) = x.

5 Conclusion

We have demonstrated how Sperner’s combinatorial lemma provides an elegant and constructive approach
to proving Brouwer’s Fixed Point Theorem.

This approach illustrates the power of discrete methods in continuous mathematics and demonstrates how
combinatorial tools can resolve fundamental questions in analysis and topology. The extensive use of visual
aids throughout this exposition shows how geometric intuition can guide rigorous mathematical reasoning.

Future research directions include extending these methods to more general topological spaces and devel-
oping efficient algorithms for computing approximate fixed points in high-dimensional settings, as explored
in recent computational topology literature [2].
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