CONSTRUCTION OF IRREDUCIBLE REPRESENTATIONS OF
THE SYMMETRIC GROUP

ANTON GAEK

ABSTRACT. In this paper we develop some basic results in representation the-
ory of the symmetric group Sy. In particular, we describe the construction
of Specht modules using polytabloids, and prove their irreducibility. We also
prove the standard basis theorem for Specht modules by introducing Garnir
elements and relations.

CONTENTS
1. Representation theory preliminaries 1
1.1. Basic definitions and theorems 1
1.2.  Restriction, induction, and permutation modules 3
2. Partitions and Young Subgroups 3
2.1. Young diagrams 7
3. Specht Modules 9
3.1. Irreducibility of S* 10
4. Standard basis 11
4.1. Garnir relations 12
4.2. Standard tableaux and basis 13
5. Transpose and sign twist 15
Acknowledgments 16
6. Bibliography 16
References 16

1. REPRESENTATION THEORY PRELIMINARIES

The main focus of this paper, the representation theory of S, requires sev-
eral fundamental definitions and theorems. They are given below for the sake of
completeness, but without proofs (which could be found, for example, in [1] or [3]).

1.1. Basic definitions and theorems.

Definition 1.1 (Representation). Let G be a finite group and let V' be a finite-
dimensional complex vector space. A (complex) representation of G on V is a group
homomorphism

p:G— GL(V).
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Equivalently, it is a map G x V — V, (g,v) — ¢ - v, such that e-v = v, (gh) -v =
g-(h-v),and g- (av+ pw) = a(g-v)+ B(g-w). We write (V, p) or simply V when
p is clear.

Definition 1.2 (Subrepresentation). If (V] p) is a representation of G, a subspace
W CV is a subrepresentation if g- W C W for all g € G.

Definition 1.3 (Intertwiner; isomorphism). Given representations (V,py) and
(W, pw) of G, a linear map f : V — W is a G-homomorphism (or intertwiner)
if

flpv(g)v) = pw(g)f(v) forall g€ G, veV.
If f is also bijective, then f is an isomorphism of representations.

Definition 1.4 (Irreducible representation). A nonzero representation V of G is
irreducible if its only subrepresentations are 0 and V.

Lemma 1.5. The number of conjugacy classes of a finite group is equal to the
number of its irreducible complex representations (up to isomorphism).

Definition 1.6 (Group algebra). The group algebra C[G] is the complex vector
space with basis {g | g € G} and multiplication extended linearly from the rule
g-h =gh. We identify g € G with its basis element g € C[G] and write

(C[G]:{ Zagg : agG(C}.

geqG

Proposition 1.7 (Group algebra viewpoint). A representation of G on 'V is equiv-
alent to a (left) C[G]-module structure on V. Moreover, under this correspondence,

Homg (V, W) = Homg g (V, W).
Proof. (=) Let p : G — GL(V) be a representation. Define, for x = > agg €
Clal,
x-v o= Zagp(g)v (veV).
g

Then (zy)-v= 3"} agbn p(gh)v =3_, ; agbn p(g) (p(h)v) =z (y-v) and 1-v = v,
so V is a left C[G]-module.

(<) Conversely, let V be a left C[G]-module. For each g € G define p(g) : V — V
by p(g)v :=g-v. Then

p(gh)v = (gh)-v =g (h-v) =p(g)p(h)v,  p(e) =idy,
so p: G — GL(V) is a representation.
For morphisms, if f: V' — W is G-equivariant then, for z =}~ aqg € C[G],

fa-0) = (Y agg-v) = agg- f(v) = f(v),

so f is C[G]-linear. Conversely, if f is C[G]-linear, then in particular f(g-v) = g-f(v)
for all g € G, so f is G-equivariant. O

Theorem 1.8 (Maschke). Let G be a finite group and V a finite-dimensional com-
plex G-representation. Then every G-stable subspace W C V' admits a G-stable
complement: there exists a G-subrepresentation U C'V with V. =W & U. Equiva-
lently, every complex representation of G is completely reducible.



CONSTRUCTION OF IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP 3

Lemma 1.9 (Schur’s Lemma). Let V,W be finite-dimensional complex irreducible
G-representations.
(1) If V.2 W, then Homg(V, W) = 0.
(2) If V=W, then Homg(V, W) is one-dimensional; in particular Endg (V') =
C.

1.2. Restriction, induction, and permutation modules.

Definition 1.10 (Restriction). If H < G and V is a G-representation, the restric-
tion of V to H, denoted Resg V, is V regarded as an H-representation via the
inclusion H — G.

Definition 1.11 (Induction). Let H < G and let W be an H-representation. The
induced G-representation is

Indg W = C[G] ®cim W,
with G acting on the left factor by left multiplication. Equivalently, Indfl W is the
space of functions f : G — W satisfying f(gh) = h=1f(g) for all ¢ € G, h € H,
with (g0 - £)(9) = f(95 '9)-

Definition 1.12 (Permutation modules). If G acts on a finite set X, the permuta-
tion representation C[X] is the C-vector space with basis { x : € X } and G-action
9-x=(g-%)

Proposition 1.13 (Cosets as an induced trivial module). Let H < G. For the left
G-set X = G/H, there is a natural G-isomorphism

C[G/H] = Ind$ ¢,
where £ is the trivial H-representation (see definition just below).

Proof. Define ® : C[G] ®¢ig) § — C[G/H] by ®(g® 1) = (gH). If h € H, then
gh®l =g ((h-1) = g®1, so® is well-defined. It is G-equivariant since
go- (g ®1) = (gog) ® 1 maps to (gogH) = go - (gH). Surjectivity and dimension
count give bijectivity. O

2. PARTITIONS AND YOUNG SUBGROUPS

We can begin by considering some examples of basic complex representations of
Sh:
o Trivial representation. The one-dimensional module on which S,, acts triv-
ially. We denote it £.
e Sign representation. The homomorphism sgn : S, — {+1} C C* gives a
one-dimensional representation which we denote 7.
e Permutation representation on C". Let {ej,...,e,} be the standard basis
of C™. Define
T = €n(s) (o € Sp).
Let € : C" — C be the augmentation (e;) = 1 (with the trivial S,-action).
Then € is Sp,-equivariant, so ker(g) is an S,-subrepresentation and
n
C" = ker(e) ® C- (Zei),
i=1

exhibiting C™ ~ ker(e) ® &.
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Proposition 2.1. Ifn > 1, then ker(e) is irreducible.

Proof. Let 0 # W C ker(g) be an S,-subrepresentation. Take v =Y ._ ae; € W
with » minimal among nonzero vectors in W, whilst permuting basis vectors such
that a; # 0 for 1 < 4 < r and a; = 0 for ¢ > r. Since v € ker(e), we have

Y1 =0.

If » =1, then a1 = 0, a contradiction. If » = 2, then aq + a2 = 0, so v is a scalar
multiple of e; — es. Acting by transpositions shows e; —e; € W for all ¢, j, hence
W = ker(e).

Suppose r > 3. Then some pair a,_; # a,. Consider

W= a_1v — a.(rr—1)-v € W.

A direct computation yields

r—2
w = (ar—1 —a) Zai e; + (af_l - a?)er,l,
=1

so w # 0 and has support contained in {1,...,r — 1}, contradicting the minimality
of r. Hence no such r > 3 exists, and the only nonzero subrepresentation is ker(e)
itself. ([

Definition 2.2. The representation ker(e) is called the standard representation of
S,, and is denoted w.

We can manually check that, for example, S3 only has the &, n and w irreducible
representations. To find more irreducibles, we can further examine permutation
representations. Notice that if we have a subgroup H C S,,, we can look at the
permutation representation associated to the action of S, on the cosets S, /H,
which is why we need a good way to construct subgroups of S,,. This brings along
the following two definitions, fundamental to the topic.

Definition 2.3. A partition of a natural number n is a non-increasing sequence of
positive integers

)‘:()‘17>\27"'7>\T)7 )\12)\222)\7">0;

such that A\ + Ao + -+ + A\, = n. We write A - n to indicate that A is a partition
of n. We also write A" for m equal parts, e.g. A = (1") to indicate splitting
n=14+1+---+1.

To motivate this definition, we recall that every element o € S;, can be expressed
uniquely as a product of disjoint cycles. The cycle decomposition of ¢ has a well-
defined cycle type, the list of lengths of its disjoint cycles. Since the order of cycles
is irrelevant, the cycle type of ¢ is essentially a partition of n. For instance, the
permutation (123)(45) € S5 has cycle type (3,2).

Now we can use partitions to produce subgroups of S,.

Definition 2.4 (Young subgroup). Let A = (A1,...,\.) F n. Choose an ordered
set-partition

Py=(I,...,I;) of{1,...,n} with |I;] = \;.
For a subset J C {1,...,n}, let S; < S, be the subgroup of permutations that
fix {1,...,n}\ J pointwise and permute the elements of J. The Young subgroup
associated to A (relative to Py) is

Sy = 8, x---x 8 = Sy,

T
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embedded blockwise so that Sy, acts on I; and trivially on I; for j # 1.

If Py and P; are two choices of ordered set-partitions of type A, then the cor-
responding Young subgroups are conjugate in S,. Thus S is well-defined up to
conjugacy.

Before investigating Young subgroups as a source of representations, it will be
nice to know the number of irreducible representations.

Lemma 2.5. Conjugacy classes in S, are in bijection with partitions of n. More-
over, two permutations are conjugate in Sy if and only if they have the same cycle

type.

Proof. Suppose 0,7 € S,,. If they are conjugate, then 7 = gog~! for some g € S,,,
so the cycle structure of 7 is obtained from that of ¢ by relabeling the underlying
set {1,2,...,n}. Hence o and 7 have the same cycle type. Conversely, if o and 7
have the same cycle type, then one can construct an element g € S, which maps
each cycle of ¢ to the corresponding cycle of 7 by relabeling entries. Thus o and 7
are conjugate. (I

Corollary 2.6. The number of irreducible representations of S, over C is equal to
the number of partitions of n.

Proof. This immediately follows from Theorem 2.5 and Lemma 1.5 (]

We have now seen that partitions count irreducible representations of S, so
there is hope in moving forward with Young subgroups.

Definition 2.7. A A-partition of {1,...,n} is an ordered r-tuple
(Ay,...,A,) with {1,...,n} =AU ---UA, and [A;] =)\ for alli.
Denote by X, the set of all A-partitions. The group S,, acts on X, by
g-(A1,...,A) = (gA1,...,gA,).
Theorem 2.8. Fiz Py = (Iy,...,I,.) as in Definition 2.4. Then:

(1) The Sy,-action on Xy is transitive.
(2) The stabilizer of Py is S.
(8) The map

0: Sn/S)\—)X)\, G(gS,\):(gIh...,gIT),

is a well-defined Sy-equivariant bijection. In particular, Xy ~ S,/Sx as
Sy -sets.
(4) The associated permutation module satisfies

C[X)] ~ C[S./S)] ~ IndJ" &,

Proof. (1) Let (Ay,...,A,) € X,). For each i, take a bijection ¢; : I; — A; and
define g € S, by g|r, = ¢i- Notice that these agree on disjoint blocks and cover
{1,...,n}. Then g- Py = (44,...,4,), so the action is transitive.

(2) If g € Sy, then by definition gI; = I; for all 4, which means that g fixes Pj.
On the other hand, if g- Py = Py, then gI; = I, for all ¢, so g € S;, x---x Sr,. = Sx.

(3) Well-definedness: if ¢Sy = ¢'Sy then g~'¢g’ € S\, hence (g t¢")I; = I;
for all i, so gI; = ¢'I;, i.e. 8(gS\) = 6(g'S\). Sp-equivariance is immediate from
the definitions. Surjectivity follows from (1): given (Ay,...,A,), pick g as there;
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then 6(gSy) = (A1,...,A,). For injectivity, notice that if 6(gSy) = 6(¢'S)), then
gl; = ¢'I; for all i, so h := (g') g fixes each I;, hence h € Sy and ¢Sy = ¢'S\.

(4) The first isomorphism is the canonical identification of the permutation mod-
ule of an S,-set with the permutation module of its isomorphic coset space. The sec-
ond is the standard identification C[S,,/Sy] ~ Ind*;’; ¢ (as in Proposition 1.13). O

We can now use this result to consider some simple Young subgroups. Let
A= (A1,...,A+) Fnand let Sy < S, be the Young subgroup. The S,,-set of cosets
Sn/Sx yields the permutation module

C[Sn/S\] ~ Indgr €.

In particular:
e For A = (n), one has S = S, so C[S,,/S»] = &.
e For A = (1), one has S\ = {1}, so C[S,,/S\] = C[S,] (the regular repre-
sentation).
e For A = (n—1,1), one has Sy ~ S,,_1. Identifying S, /S, with {1,...,n}
via gSy — g(n), the permutation module C[S,,/S,] identifies with the
permutation representation on C™. Hence

Indgztﬂg ~ C" ~ { B w.

To consider C[S,,/S)\] more generally for any A, it turns out that the following
definition is useful:

Definition 2.9 (Dominance order). Let A = (A1, Ag,...) and pu = (p1, pa,...) be
partitions of n (extend by zeros as needed). We say that A dominates i, and write
A p, if

k k
Z)\i > Z“i for all £ > 1.
i=1 i=1

If A p and A # p, we write A > pu. This defines a partial order on the set of
partitions of n.

To understand why we define ordering on partitions in such a way it is useful to
consider the following example. The partitions of n = 4 are

4), (3,1), (2,2), (2,1,1), (1,1,1,1).
The dominance order > on which is

(4) > (3,1) > (2,2) > (2,1,1) > (1,1,1,1)

For each partition A F 4, let M), = C[S4/S)] be the corresponding Young per-
mutation module. It turns out that the irreducible representations of Sy (over C)
are

En w, wen, V,
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with dimensions 1, 1,3, 3,2, respectively (we can manually verify the first 4, and
know that there exists some fifth V by 2.6)'. One has the following decompositions:

My =6,
Mz =& @ w,
Mpaay =8 @& w 'V,
Moiny=E® 2wV & (wan),
M1,,1) = C[Sy]  (the regular representation).

In particular, proceeding down the dominance order:

(4) contributes the new irreducible &.

(3,1) contributes the new irreducible w; ¢ already appeared above.

(2,2) contributes the new irreducible V; ¢ and w already appeared above.
(2,1,1) contributes the new irreducible w ® n; the other summands have
appeared above.

(1,1,1,1) yields the regular representation, in which every irreducible ap-
pears with multiplicity equal to its dimension; in particular n appears here
for the first time.

Such pattern is not a coincidence, as it turns out that in general for each A, all
composition factors of M) are indexed by partitions p with u > A, and exactly one
new irreducible Ly (corresponding to A, e.g. L3 1) = w) occurs for the first time in
M,

We now give an alternative way to look at partitions, which will turn out to be
very useful when exploring M.

2.1. Young diagrams.

Definition 2.10 (Young diagram). For a partition A = (A1,...,\.) F n, the Young
diagram of X\ is the left-centered array of boxes with A\; boxes in row i

Definition 2.11 (Transpose (conjugate) partition). Given A = (Ar,...,A\q) F n,
its transpose (also called the conjugate partition) A is defined by

WD = #{i 1N =i} @21,
Equivalently, the Young diagram of At is obtained from that of A by interchanging

rows and columns. One has (AT)T = A.

A=(3,3)  A=(2,22)

1We do not explain what V is, for the sake of cohesion in this argument. Although it turns
out V is an interesting object related to graph matching, more detail could be found in [2].
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A= (4,2,1) A =(3,2,1,1)

[ ] |

Definition 2.12 (Tableau and tabloid). Fix a partition A - n and its Young
diagram with rows indexed from top.

o A \-tableau is a filling of the boxes of the diagram with the numbers 1, ... n,
each used exactly once. We usually write ¢ for such a tableau.

e \-tableaux are row-equivalent if one can be obtained from the other by
permuting entries within each row independently. A A-tabloid is a row-
equivalence class of A-tableaux; the tabloid of a tableau ¢ is denoted {t}.

Definition 2.13 (Actions and permutation modules). The group S, acts on A-
tableaux by left relabeling:

(g - t) is the tableau obtained from ¢ by replacing each entry i by g(i).

Thus for A-tabloids:
g-{t} = {g-t}.

Remark 2.14 (Standard identifications). There are n! A-tableaux, so C[A-tableaux]
is the regular representation of S,,. The S,,-set of A-tabloids is naturally identified
with the coset space S, /Sy, and hence

M, := C[\tabloids] = C[S,/S)] = Ind$ .

The modules M) = Indgz ¢ provide a systematic source of S,-representations
enumerated by partitions. Empirically we find that the composition factors of
M)y are precisely those L, with p > A in dominance order, and Ly occurs with
multiplicity one; the other factors L, with u> A have appeared already in M, for
more dominant .

We also introduce the ”opposite” permutation module
- Sn ~
Ny = IndSAT n = My ®n,

We can think of N, as tableux of shape A which switches sign based upon per-
mutation of elements in a column, by the sign of such permutation. It turns out
that, for example for n =4, N1 111y =n = L) and N1y =2 -nGw =
L1,1,1,1) ® L2,1,1). Heuristically, the composition factors of Ny are L, with u <A,
while the opposite holds for My, i.e. My = Ly & (P L,) for A 9 p. This sug-
gests that M) and N share exactly one "new” common irreducible, the Ly, and
motivates seeking a canonical S,-map

P, : Ny — My

where the image would isolate the Lj.
We now explicitly construct such a map, using an averaging procedure over
columns.
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3. SPECHT MODULES
Definition 3.1 (Row and column groups). For a A-tableau ¢, let
R; = {permutations that permute entries only within each row of t} < S,
also called a row stabilizer, and
C; = {permutations that permute entries only within each column of t} < .S,.

which is also called a column stabilizer.

Definition 3.2 (Polytabloid). For a A-tableau t, define the
Kt = Z sgn(c), c € C[Sy].
ceCy
The polytabloid attached to t is the vector

et = k¢ - {t} € M.
Lemma 3.3. Forr € R; and ¢ € Cy it holds that
reoep=e, e =sgn(cle.
Consequently, the span of {e; | t a A-tableau} is an S, -submodule of M.

Proof. If r € Ry, then r{t} = {t} and rCyr=! = C}, so rky = kyr and 7 - ¢; =
ke(r - {t}) = ke{t} = er. If ¢ € Cy, then ck, = sgn(c)ky by multiplicativity of the
sign on the subgroup Ct, hence ¢ - e; = sgn(c)e;. Finally, we get S,-stability from
g-er =egyq. O

Definition 3.4. Define the Specht module of shape X\ as
S* :=spang{e; | t a Md-tableau} C M,.
Proposition 3.5 (Averaging map). There is an Sy, -equivariant surjection
ax: Ny — S C M,

given on tableaux by t — e; (viewing a tableau both as a basis vector of Ny and, via
its tabloid, of My ). In particular, S* is a quotient of Ny and a submodule of M.

~

Proof. As a vector space, N, = C[\-tableaux] with the Cj-action twisted by sgn
(coming from induction from S+ with sign). Lemma 3.3 shows that the assignment
t — e; respects the Ci-sign and is invariant under R;. Thus t — e; is a universal
map removing the row-symmetry and imposing column-antisymmetry, hence it is
Sp-equivariant and factors through Ny with image S*. (]

Now we aim to show that S* is irreducible, S* = Ly, and {S*},r, exhaust all
irreducible S,, modules up to isomorphism.

Lemma 3.6. Let A\, utn, t a A-tableau and t' a u-tableau. Suppose that for every
pair a,b lying in the same row of t', the entries a and b lie in different columns of
t. Then AD> pu.

Proof. Let the first row of ¢’ contain p; entries. By hypothesis, they lie in
distinct columns of t. Applying C; we can independently within each column move
each of these entries into the top box of its column. Hence the first row of ¢ has
space for all p1 entries, so Ay > .
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Now, consider the first two rows of ¢', which have u; + uo entries. Again, within
each column of ¢ we can accommodate at most two chosen entries into the first
two rows (at most one in each of the first two positions). Since entries from a
fixed row of ' occupy distinct columns of ¢, we can perform these placements
simultaneously, meaning A1 + Ao > u1 + p2. We can continue analogously to get
that Zf:l A > Zf:l w; for all k. Which by definition is equivalent to A>pu. O

Lemma 3.7. Let \,u b n, t a A-tableau and t' a p-tableau. If ki{t'} # 0, then
A D> p. Furthermore, if A = p, then ke {t'} = *e;.

Proof. If a,b lie in the same row of ¢/, then (ab){t'} = {¢'}. If a,b also lie in the
same column of ¢, then (ab) € C;, which means that

ke{t'} = (ab) ke {t'} = sgn(ab) ki {t'} = — ke {t'},
which would imply x¢{t'} = 0, contradiction. As such, any two entries in a row of
t’ must be in distinct columns of ¢, and by Lemma 3.6 it follows that A > pu.
If A\ = p, the same argument shows ' € C; - t; so t' = ¢t with ¢ € C;. Then
ke{t'} = ree{t} = sgn(c) ke {t} = *es. O

Corollary 3.8. For any m € My and A-tableau t, it holds that kym € Cey.

Proof. Consider m = )", ay{t'} as a linear combination of A-tabloids. By Lemma 3.7,
each term is such that x:{t'} € {0, £e;}, meaning that x;m is in fact a scalar mul-
tiple of e;. O

3.1. Irreducibility of S*.
Definition 3.9. For A F n, define a symmetric bilinear form (—, —) on M) by

{34 = oy

extended bilinearly. This form is .S,-invariant.

Lemma 3.10. If V C M, is an Sp-subrepresentation, then either V 2O S or
Vv C (SX)L

Proof. Let v € V and let t be any A-tableau. If k;v # 0, then by Corollary 3.8 we
have kv € Ce;, meaning that e, € V. Since the S,-orbit of e, spans S*, we get
S* C V. Otherwise kv = 0 for all . Then for every t we have

0= (rev, {t}) = (v,re{t}) = (v,eq),

meaning that v is orthogonal to e; for all ¢, i.e. v € (S*)*, so V C (S*)+. O
Proposition 3.11. The Specht module S* is irreducible.

Proof. Let W C S* be a nonzero S,,-subrepresentation (inside M) ). By Lemma 3.10,
W C (SM)*. Then

W C S*n(sH)t = o,
since the form from Definition 3.9 can be taken positive definite (e.g. as a Hermitian
inner product) and thus has trivial radical on S*. Therefore W = 0, a contradiction.
Hence S* has no nontrivial subrepresentations, i.e. is irreducible. O

We have now proved that the Specht modules S* are irreducible, but their con-
struction is not perfect, as they are defined as a span of linearly dependent tableux.
It would be useful to find a basis for each Specht module to better understand their
structure (which could then be used, for example, to analyze characters)
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4. STANDARD BASIS

Lemma 4.1. Let \,p = n and let f: My — M, be an S,-equivariant linear map.
Assume that S* € ker f. Then it holds that X > u. Moreover, if X = p, then f|gx
is a scalar multiple of the identity.

Proof. Consider any A-tableau t. Since S* ¢ ker f, there exists some (hence every)
nonzero v € S* with f(v) # 0. In particular, we can take v = e¢; = k;{t}, so

0# f(et) = f(’ft{t}) = /‘itf({t})7

where we used S,-equivariance to commute x; out of f. Write f({t}) = >, av{t'}
as a linear combination of p-tabloids. Then

0# ref({t}) = aw ri{t'}.

By Lemma 3.7, each term satisfies k:{t'} € {0, +e;}. Furthermore, the sum is not
zero, meaning some term is nonzero, hence A > p.

Now consider the case of p = A. Since S is irreducible by Proposition 3.11,
Shur’s Lemma 1.9 gives Endg, (Sy) = C. Thus any nonzero map Sy — Sy (for
instance, the one obtained by composing the inclusion Sy < M) with the projection
My — S)) must be a scalar multiple of the identity.

O

Corollary 4.2. We have an orthogonal direct sum decomposition
My = S* @ (SM*,

and (SNt is a (finite) direct sum of Specht modules S* with p™> X and u # \.
Furthermore, every irreducible S, -representation is isomorphic to some S™.

Proof. The bilinear form (—, —) on M) from Definition 3.9 is S,-invariant and pos-
itive definite (over R, or take the Hermitian version), so (S*)* is an S,,-submodule
and My = S* @ (S*)*. By complete reducibility (Maschke’s Theorem 1.8), (S*)+
is a direct sum of irreducibles. Since each S*, by Proposition 3.11, is irreducible,

it follows that
(S)\)J‘ = @m)\ﬂ SH.
JTEN
Now, remember that p > A holds for any term, which is compatible with the col-
umn-dominance mechanism of Lemmas 3.6 and 3.7 (see also Corollary 3.8), which
forces nonzero intertwiners out of S* only into shapes j dominating .

It remains to show that distinct Specht modules are pairwise non-isomorphic,
and that every irreducible is a Specht. Suppose S* ~ S¥. Over characteristic
0, there must exist an S,-equivariant projection and inclusion maps making this
isomorphism a term inside My and M,. In other words, we can extend the iso-
morphism to an S,-map f : My — M, with f|sx : SN =5 S, By Lemma 4.1,
A D> pu, and applying the same argument to the inverse isomorphism extended to
M, — M) gives ;1> X, hence A = pu. Therefore the family {S*} A consists of
pairwise non-isomorphic irreducibles.

Finally, by 2.6 the number of partitions of n equals the number of conjugacy
classes of S, so the number of irreducibles (over C). Since there are that many
pairwise non-isomorphic irreducibles S*, they exhaust all irreducibles of S,,. (]
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4.1. Garnir relations. Let us now consider some simple generic examples of
Specht modules. For A = (n) it holds that S* = ¢, while for A = (1") the col-
umn group is all of S,,, so e; is the projection of {t} to the sign isotypic piece and
S* = n. For A = (n — 1,1), identifying My ~ C", the polytabloids e; correspond
to vectors of the form v; — v; € ker(e), so S* = w. Already here we see a linear
relation
(vk = v5) + (v —vi) = (vx — v3),

which translate into more complicated linear relations between the corresponding
polytabloids. Notice that these relations come from mixing entries across adja-
cent columns. To capture this uniformly for arbitrary shapes we introduce Garnir
elements.

Definition 4.3 (Garnir element). Let ¢ be a A-tableau and fix an index ¢ > 1.
Choose subsets

X C {entries in the ith column of ¢}, Y C {entries in the (i + 1)st column of ¢}.

Let Sxuy < S, be the subgroup permuting the labels in X UY and fixing the
others. The Garnir element attached to (X,Y) is

Gxy = Z sgn(o)o € C[S,].

oceESxuUY

Proposition 4.4 (Garnir relation). Let A be the conjugate partition, so )\j is the
height of the ith column. If | X UY| > )\;r, then for every A-tableau t it holds that
GX,Y c€p = 0.

Proof. First, we have that e; = r¢{t} with k; = > ¢, sgn(c)e. Fix o € G, and
consider the tabloid {ot}. Since [ X UY| > /\I but the first ¢ columns of ¢ have only
)\j rows in column ¢, by the pigeonhole principle it follows that there exist some
distinct a,b € X UY that are in the same row of ot. Furthermore, for the transpose
7 = (ab) € Sxyuy we have that 7 - {0t} = {ot}, as the same row means it is the

same tabloid. Furthermore, sgn(7) = —1. Therefore the contribution of {ot} to
Gxy - {ot} cancels and we are left with

Gy otk = S sgn(p)p-{oth =+ {ot} — {ot} + - =0,
pPESxuUY
Since e; is a signed sum of such {ot} with o € Cy, it follows that Gxy - e, = 0 as
desired. O

Remark 4.5 (Coset form of the relation). The direct product Sx x Sy is contained
in Cy. Therefore it acts on e; by sign. It follows that Gx y acts on e; as

‘SX X Sy| . Z sgn(p) p,

pESxuyY /(Sx XSy)
a finite signed sum over coset representatives. As such, Proposition 4.4 gives a
linear relation of polytabloids that exchanges entries between the ith and (i +
1)st columns. These Garnir relations are the additional relations beyond row-
symmetry and column-antisymmetry, which we need to reduce arbitrary e; to a
linear combination of standard polytabloids. Essentially, Garnir relations allow to
exchange entries between adjacent columns, which in turn allows us to standardize
the tabloids.



CONSTRUCTION OF IRREDUCIBLE REPRESENTATIONS OF THE SYMMETRIC GROUP13

We now consider an example of a Garnir relation, and see how Garnir elements
produce linear relations between polytabloids, which in turn allow us to exchange
entries between adjacent columns to rewrite e; in terms of other polytabloids.

Consider the following tableau for n = 5:

po1]2]3]

415

and choose a vertical Garnir belt formed from adjacent columns 1 and 2 with
X ={4} and Y = {2,5}. Then for the coset form of the Garnir relation we get

Sxuy/(Sx x Sy) = {id, (4 5), (245)}.
which applying e yields
123 \ 123 \ 143 \

+
415 514 512

=0

As such, we can eliminate any configuration where the "belt” contains too many
symbols for the left column height, rewriting e; as a linear combination of poly-
tabloids in which entries are shifted to the right column. Iterating such relations
(together with row-symmetry and column-antisymmetry) reduces arbitrary poly-
tabloids to combinations of polytabloids associated to standard tableaux (which we
can now explicitly define).

4.2. Standard tableaux and basis.

Definition 4.6. A A-tableau t is standard if its entries strictly increase from left
to right in each row and strictly increase from top to bottom in each column.

We can now formulate and prove the standard basis theorem, the main result
we have been working towards.

Theorem 4.7. For a fized partition A = n, the set {e; | t a standard \-tableau} is
a C-basis of S*.

Proof. For atabloid {t} and any 1 < i < n, let r;({¢t}) be the row index of the entry 4
in (any representative of) {t}. Define a total order < on A-tabloids lexicographically,
that is {¢t} < {t'} if and only if

(ra({t}), ra-1({t}), ) <tex (ra({t'}), rna({E'}), --)

In other words, {t} < {t'} if and only if
r({t}) <ra({t'}), or

ra({t}) = ra({t'}) and ro1 ({t}) <raa({t'}), or
ra({t}) = ra({t'}) and ro1 ({t}) = ra1({t'}) and rao({t}) <ra_({t'}), or

Now we will show that the leading tabloid for standard ¢ is maximal. Fix a
standard tableau ¢ and consider C}, the subgroup permuting entries within each
column of t. We claim that among the tabloids appearing in C¢{t}, the unique
maximal one is {t} itself. Write e, = ri{t} = > ., sen(c) c{t}. In a standard
tableau, each column is strictly increasing, meaning that the row of n in ¢ is the
lowest possible within its column. Then, any ¢ € C; can only move n up in that
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column, so r,(c{t}) < r,({t}). Note that equality is achieved if and only if ¢ fixes
the position of n. Then for r,,, the same argument applies to n — 1, then n — 2, and
so on. As such, for every ¢ € C}, it holds that c{¢t} < {¢t}, with equality only when
¢ acts trivially on all columns, i.e. only only if ¢ = 1. As such,

er ={t} + Z ay, {u} (o, € C),
{u}<{t}

so {t} is the (unique) leading term of e; with coefficient 1. (No other ¢ € Cy yields
the same tabloid, since Cy N Ry = {1} for a rectangular grid with distinct labels.)

Now, we aim to show linear independence of standard e;. Suppose >, . qarq @€t =
0. Pick t¢ standard such that {to} is the biggest among {{t} | a; # 0}. Per above,
{to} appears in e;, with coefficient 1, while in each e; with ¢ # ¢ all tabloids are less
than {to}. But now if we compare coefficients of {to} we would get a;, = 0, which
is a contradiction. Therefore all the e; with ¢ standard are linearly independent.

We can now show that every e; is a Z-linear combination of e, with ¢’ standard,
by induction. Assume ¢ is not standard. By column-antisymmetrizing within each
column (if needed), we can ensure columns of ¢ are strictly increasing. Then there
exist adjacent columns where a row decreases (with ay > by):

al b1

az | by

ay | by

Ay

We can now form the Garnir belt by taking X = {ag,...,a,} from the left column
and Y = {by,..., b} from the right column. The Garnir relation (Proposition 4.4)
gives us that the signed sum over shuffles of X UY that respect internal orders of
X and Y turns e; to zero:

Z sgn(p) ey = 0.

pESxuY /(Sx XSy)

In each nontrivial term p-t moves some a; into a b-slot, strictly increasing the tuple
(PnsTn-1,-..). Then {p-t} is strictly larger than {¢} in the lexicographical order.

Therefore,
€t = Z/Bp €p-ts
p#1

with all {p -t} > {t}. By induction on the well-founded order, each e,.; is a Z-
linear combination of e; with ¢’ standard. Thus e; lies in the span of the standard
polytabloids.

Combining the above shows the standard polytabloids form a basis of S*, as
desired. (]
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Corollary 4.8. dimc S* = #{standard \-tableauz}, and every e; is a Z-linear
combination of ey with t' standard (hence the matrices of S, in this basis have
integer entries)

5. TRANSPOSE AND SIGN TWIST

We began the construction of Specht modules by considering permutation mod-
ules for transposed tableau (the M) and Ny). The following result adds to the
intuition about the connection of transposition and sgn.

First, we remind a standard result from representation theory:

Theorem 5.1 (Frobenius reciprocity: left and right adjoints). Let H < G be finite
groups and work over C.

(Left adjoint) For any H-representation W and G-representation V' there is a nat-
ural isomorphism

Homg(Ind§; W, V) = Homp(W, Resf V).
(Right adjoint) Let the coinduced representation be
CoIndeW = Homcpq(CIG], W),
with G acting by ((g- F)(x) = F(g~'x)) for F € Colnd% W and = € C[G]. Then
for any G-representation V' there is a natural isomorphism
Homg(V, Colnd§; W) = Hompy(Resf V, W).
In particular, for finite groups over C one has a natural G-isomorphism Indf[%
CoInd$;, so both adjunctions may be stated with Ind$,.

Proposition 5.2. For any partition A F n, there is a canonical S,,-isomorphism
Sren = SN

Proof. Fix a A-tableau t and let ¢! be its transpose (a Af-tableau). As previously,
let R; and C; be the row and column stabilizers of ¢, and let

pt = Z r € C[S,], Kt = Z sgn(c)

reR; CGCtT
Recall S* is spanned by polytabloids e; = r.{t} inside M), and M, = C[S,,/S,]
for any p. Then by Frobenius reciprocity 5.1,
Homg, (MAT, S)\®7]) = (S)\(g)n)SHa

with the isomorphism sending f to f({t'}) (here Syt = R;t). Since R;+ = C;, and
c-e; = sgn(c) e; for ¢ € C; while n adds another factor sgn(c) in S* ® 7, so e; ® 1
is fixed by R;t+. Thus there is a unique S,-equivariant map
f: My — S*@n
with
FE) = e,

2There exists an explicit expression for the number of standard tableaux, known as the hook
length formula. See more in [2].
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Now, compute

flew) = (e = (e 1) = (3 snr) - (ee 1) =

reR:
= Z sgn(r) (req) @ sgn(r) = ( Z r)et ®l=pe;®1,
rER, reER,

using Ryt = CY, the invariance re; = e; for r € Ry, and that sgn(r)? = 1. We want
to show that pse; # 0. Since we have an Sy-invariant inner product on M) for
which ({u}, {v}) = dfu}, {0}, it must then hold that

(peee, {t}) = (er, pef{t}) = [Re| - (er, {t}) = [Re| # 0,
since the coefficient of {t} in e; = k¢ {t} is 1. As such, f(e;r) # 0, as desired.

Finally, for the image we notice that the restriction f|g+ : SN 5 A episa
nonzero S,-map between irreducible representations, and therefore an isomorphism
by Schur’s lemma. This proves S* ® 1 =2 S O
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