
CONSTRUCTION OF IRREDUCIBLE REPRESENTATIONS OF

THE SYMMETRIC GROUP

ANTON GAEK

Abstract. In this paper we develop some basic results in representation the-

ory of the symmetric group Sn. In particular, we describe the construction
of Specht modules using polytabloids, and prove their irreducibility. We also

prove the standard basis theorem for Specht modules by introducing Garnir

elements and relations.
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1. Representation theory preliminaries

The main focus of this paper, the representation theory of Sn, requires sev-
eral fundamental definitions and theorems. They are given below for the sake of
completeness, but without proofs (which could be found, for example, in [1] or [3]).

1.1. Basic definitions and theorems.

Definition 1.1 (Representation). Let G be a finite group and let V be a finite-
dimensional complex vector space. A (complex) representation of G on V is a group
homomorphism

ρ : G −→ GL(V ).
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Equivalently, it is a map G× V → V , (g, v) 7→ g · v, such that e · v = v, (gh) · v =
g · (h · v), and g · (αv+ βw) = α(g · v) + β(g ·w). We write (V, ρ) or simply V when
ρ is clear.

Definition 1.2 (Subrepresentation). If (V, ρ) is a representation of G, a subspace
W ⊆ V is a subrepresentation if g ·W ⊆ W for all g ∈ G.

Definition 1.3 (Intertwiner; isomorphism). Given representations (V, ρV ) and
(W,ρW ) of G, a linear map f : V → W is a G-homomorphism (or intertwiner)
if

f(ρV (g)v) = ρW (g)f(v) for all g ∈ G, v ∈ V.

If f is also bijective, then f is an isomorphism of representations.

Definition 1.4 (Irreducible representation). A nonzero representation V of G is
irreducible if its only subrepresentations are 0 and V .

Lemma 1.5. The number of conjugacy classes of a finite group is equal to the
number of its irreducible complex representations (up to isomorphism).

Definition 1.6 (Group algebra). The group algebra C[G] is the complex vector
space with basis {g | g ∈ G } and multiplication extended linearly from the rule
g · h = gh. We identify g ∈ G with its basis element g ∈ C[G] and write

C[G] =
{ ∑

g∈G

ag g : ag ∈ C
}
.

Proposition 1.7 (Group algebra viewpoint). A representation of G on V is equiv-
alent to a (left) C[G]-module structure on V . Moreover, under this correspondence,

HomG(V,W ) = HomC[G](V,W ).

Proof. (⇒) Let ρ : G → GL(V ) be a representation. Define, for x =
∑

g agg ∈
C[G],

x · v :=
∑
g

ag ρ(g)v (v ∈ V ).

Then (xy) ·v =
∑

g,h agbh ρ(gh)v =
∑

g,h agbh ρ(g)
(
ρ(h)v

)
= x · (y ·v) and 1 ·v = v,

so V is a left C[G]-module.
(⇐) Conversely, let V be a left C[G]-module. For each g ∈ G define ρ(g) : V → V

by ρ(g)v := g · v. Then
ρ(gh)v = (gh) · v = g · (h · v) = ρ(g)ρ(h)v, ρ(e) = idV ,

so ρ : G → GL(V ) is a representation.
For morphisms, if f : V → W is G-equivariant then, for x =

∑
g agg ∈ C[G],

f(x · v) = f
(∑

g

ag g · v
)
=

∑
g

ag g · f(v) = x · f(v),

so f is C[G]-linear. Conversely, if f is C[G]-linear, then in particular f(g·v) = g·f(v)
for all g ∈ G, so f is G-equivariant. □

Theorem 1.8 (Maschke). Let G be a finite group and V a finite-dimensional com-
plex G-representation. Then every G-stable subspace W ⊆ V admits a G-stable
complement: there exists a G-subrepresentation U ⊆ V with V = W ⊕ U . Equiva-
lently, every complex representation of G is completely reducible.
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Lemma 1.9 (Schur’s Lemma). Let V,W be finite-dimensional complex irreducible
G-representations.

(1) If V ̸∼= W , then HomG(V,W ) = 0.
(2) If V ∼= W , then HomG(V,W ) is one-dimensional; in particular EndG(V ) ∼=

C.

1.2. Restriction, induction, and permutation modules.

Definition 1.10 (Restriction). If H ≤ G and V is a G-representation, the restric-

tion of V to H, denoted ResGH V , is V regarded as an H-representation via the
inclusion H ↪→ G.

Definition 1.11 (Induction). Let H ≤ G and let W be an H-representation. The
induced G-representation is

IndGH W := C[G]⊗C[H] W,

with G acting on the left factor by left multiplication. Equivalently, IndGH W is the
space of functions f : G → W satisfying f(gh) = h−1f(g) for all g ∈ G, h ∈ H,
with (g0 · f)(g) = f(g−1

0 g).

Definition 1.12 (Permutation modules). If G acts on a finite set X, the permuta-
tion representation C[X] is the C-vector space with basis {x : x ∈ X } and G-action
g · x = (g · x).

Proposition 1.13 (Cosets as an induced trivial module). Let H ≤ G. For the left
G-set X = G/H, there is a natural G-isomorphism

C[G/H] ∼= IndGH ξ,

where ξ is the trivial H-representation (see definition just below).

Proof. Define Φ : C[G] ⊗C[H] ξ → C[G/H] by Φ(g ⊗ 1) = (gH). If h ∈ H, then
gh ⊗ 1 = g ⊗ (h · 1) = g ⊗ 1, so Φ is well-defined. It is G-equivariant since
g0 · (g ⊗ 1) = (g0g) ⊗ 1 maps to (g0gH) = g0 · (gH). Surjectivity and dimension
count give bijectivity. □

2. Partitions and Young Subgroups

We can begin by considering some examples of basic complex representations of
Sn:

• Trivial representation. The one-dimensional module on which Sn acts triv-
ially. We denote it ξ.

• Sign representation. The homomorphism sgn : Sn → {±1} ⊂ C× gives a
one-dimensional representation which we denote η.

• Permutation representation on Cn. Let {e1, . . . , en} be the standard basis
of Cn. Define

σ · ei = eσ(i) (σ ∈ Sn).

Let ε : Cn → C be the augmentation ε(ei) = 1 (with the trivial Sn-action).
Then ε is Sn-equivariant, so ker(ε) is an Sn-subrepresentation and

Cn = ker(ε) ⊕ C ·
( n∑

i=1

ei

)
,

exhibiting Cn ≃ ker(ε)⊕ ξ.
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Proposition 2.1. If n > 1, then ker(ε) is irreducible.

Proof. Let 0 ̸= W ⊆ ker(ε) be an Sn-subrepresentation. Take v =
∑r

i=1 aiei ∈ W
with r minimal among nonzero vectors in W , whilst permuting basis vectors such
that ai ̸= 0 for 1 ≤ i ≤ r and ai = 0 for i > r. Since v ∈ ker(ε), we have∑r

i=1 ai = 0.
If r = 1, then a1 = 0, a contradiction. If r = 2, then a1 + a2 = 0, so v is a scalar

multiple of e1 − e2. Acting by transpositions shows ei − ej ∈ W for all i, j, hence
W = ker(ε).

Suppose r ≥ 3. Then some pair ar−1 ̸= ar. Consider

w = ar−1 v − ar (r r − 1) · v ∈ W.

A direct computation yields

w = (ar−1 − ar)

r−2∑
i=1

ai ei + (a2r−1 − a2r) er−1,

so w ̸= 0 and has support contained in {1, . . . , r− 1}, contradicting the minimality
of r. Hence no such r ≥ 3 exists, and the only nonzero subrepresentation is ker(ε)
itself. □

Definition 2.2. The representation ker(ε) is called the standard representation of
Sn and is denoted ω.

We can manually check that, for example, S3 only has the ξ, η and ω irreducible
representations. To find more irreducibles, we can further examine permutation
representations. Notice that if we have a subgroup H ⊆ Sn, we can look at the
permutation representation associated to the action of Sn on the cosets Sn/H,
which is why we need a good way to construct subgroups of Sn. This brings along
the following two definitions, fundamental to the topic.

Definition 2.3. A partition of a natural number n is a non-increasing sequence of
positive integers

λ = (λ1, λ2, . . . , λr), λ1 ≥ λ2 ≥ · · · ≥ λr > 0,

such that λ1 + λ2 + · · ·+ λr = n. We write λ ⊢ n to indicate that λ is a partition
of n. We also write λm

i for m equal parts, e.g. λ = (1n) to indicate splitting
n = 1 + 1 + · · ·+ 1.

To motivate this definition, we recall that every element σ ∈ Sn can be expressed
uniquely as a product of disjoint cycles. The cycle decomposition of σ has a well-
defined cycle type, the list of lengths of its disjoint cycles. Since the order of cycles
is irrelevant, the cycle type of σ is essentially a partition of n. For instance, the
permutation (1 2 3)(4 5) ∈ S5 has cycle type (3, 2).

Now we can use partitions to produce subgroups of Sn.

Definition 2.4 (Young subgroup). Let λ = (λ1, . . . , λr) ⊢ n. Choose an ordered
set-partition

Pλ = (I1, . . . , Ir) of {1, . . . , n} with |Ii| = λi.

For a subset J ⊂ {1, . . . , n}, let SJ ≤ Sn be the subgroup of permutations that
fix {1, . . . , n} \ J pointwise and permute the elements of J . The Young subgroup
associated to λ (relative to Pλ) is

Sλ = SI1 × · · · × SIr ↪→ Sn,
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embedded blockwise so that SIi acts on Ii and trivially on Ij for j ̸= i.

If Pλ and P ′
λ are two choices of ordered set-partitions of type λ, then the cor-

responding Young subgroups are conjugate in Sn. Thus Sλ is well-defined up to
conjugacy.

Before investigating Young subgroups as a source of representations, it will be
nice to know the number of irreducible representations.

Lemma 2.5. Conjugacy classes in Sn are in bijection with partitions of n. More-
over, two permutations are conjugate in Sn if and only if they have the same cycle
type.

Proof. Suppose σ, τ ∈ Sn. If they are conjugate, then τ = gσg−1 for some g ∈ Sn,
so the cycle structure of τ is obtained from that of σ by relabeling the underlying
set {1, 2, . . . , n}. Hence σ and τ have the same cycle type. Conversely, if σ and τ
have the same cycle type, then one can construct an element g ∈ Sn which maps
each cycle of σ to the corresponding cycle of τ by relabeling entries. Thus σ and τ
are conjugate. □

Corollary 2.6. The number of irreducible representations of Sn over C is equal to
the number of partitions of n.

Proof. This immediately follows from Theorem 2.5 and Lemma 1.5 □

We have now seen that partitions count irreducible representations of Sn, so
there is hope in moving forward with Young subgroups.

Definition 2.7. A λ-partition of {1, . . . , n} is an ordered r-tuple

(A1, . . . , Ar) with {1, . . . , n} = A1 ⊔ · · · ⊔Ar and |Ai| = λi for all i.

Denote by Xλ the set of all λ-partitions. The group Sn acts on Xλ by

g · (A1, . . . , Ar) = (gA1, . . . , gAr).

Theorem 2.8. Fix Pλ = (I1, . . . , Ir) as in Definition 2.4. Then:

(1) The Sn-action on Xλ is transitive.
(2) The stabilizer of Pλ is Sλ.
(3) The map

θ : Sn/Sλ −→ Xλ, θ(gSλ) = (gI1, . . . , gIr),

is a well-defined Sn-equivariant bijection. In particular, Xλ ≃ Sn/Sλ as
Sn-sets.

(4) The associated permutation module satisfies

C[Xλ] ≃ C[Sn/Sλ] ≃ IndSn

Sλ
ξ,

Proof. (1) Let (A1, . . . , Ar) ∈ Xλ. For each i, take a bijection ϕi : Ii → Ai and
define g ∈ Sn by g|Ii = ϕi. Notice that these agree on disjoint blocks and cover
{1, . . . , n}. Then g · Pλ = (A1, . . . , Ar), so the action is transitive.

(2) If g ∈ Sλ, then by definition gIi = Ii for all i, which means that g fixes Pλ.
On the other hand, if g ·Pλ = Pλ, then gIi = Ii for all i, so g ∈ SI1 ×· · ·×SIr = Sλ.

(3) Well-definedness: if gSλ = g′Sλ then g−1g′ ∈ Sλ, hence (g−1g′)Ii = Ii
for all i, so gIi = g′Ii, i.e. θ(gSλ) = θ(g′Sλ). Sn-equivariance is immediate from
the definitions. Surjectivity follows from (1): given (A1, . . . , Ar), pick g as there;
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then θ(gSλ) = (A1, . . . , Ar). For injectivity, notice that if θ(gSλ) = θ(g′Sλ), then
gIi = g′Ii for all i, so h := (g′)−1g fixes each Ii, hence h ∈ Sλ and gSλ = g′Sλ.

(4) The first isomorphism is the canonical identification of the permutation mod-
ule of an Sn-set with the permutation module of its isomorphic coset space. The sec-
ond is the standard identification C[Sn/Sλ] ≃ IndSn

Sλ
ξ (as in Proposition 1.13). □

We can now use this result to consider some simple Young subgroups. Let
λ = (λ1, . . . , λr) ⊢ n and let Sλ ≤ Sn be the Young subgroup. The Sn-set of cosets
Sn/Sλ yields the permutation module

C[Sn/Sλ] ≃ IndSn

Sλ
ξ.

In particular:

• For λ = (n), one has Sλ = Sn, so C[Sn/Sλ] ≃ ξ.
• For λ = (1n), one has Sλ = {1}, so C[Sn/Sλ] ≃ C[Sn] (the regular repre-
sentation).

• For λ = (n − 1, 1), one has Sλ ≃ Sn−1. Identifying Sn/Sλ with {1, . . . , n}
via gSλ 7→ g(n), the permutation module C[Sn/Sλ] identifies with the
permutation representation on Cn. Hence

IndSn

Sn−1
ξ ≃ Cn ≃ ξ ⊕ ω.

To consider C[Sn/Sλ] more generally for any λ, it turns out that the following
definition is useful:

Definition 2.9 (Dominance order). Let λ = (λ1, λ2, . . .) and µ = (µ1, µ2, . . .) be
partitions of n (extend by zeros as needed). We say that λ dominates µ, and write
λ⊵ µ, if

k∑
i=1

λi ≥
k∑

i=1

µi for all k ≥ 1.

If λ ⊵ µ and λ ̸= µ, we write λ ▷ µ. This defines a partial order on the set of
partitions of n.

To understand why we define ordering on partitions in such a way it is useful to
consider the following example. The partitions of n = 4 are

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

The dominance order ⊵ on which is

(4) ⊵ (3, 1) ⊵ (2, 2) ⊵ (2, 1, 1) ⊵ (1, 1, 1, 1)

For each partition λ ⊢ 4, let Mλ = C[S4/Sλ] be the corresponding Young per-
mutation module. It turns out that the irreducible representations of S4 (over C)
are

ξ, η, ω, ω ⊗ η, V,
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with dimensions 1, 1, 3, 3, 2, respectively (we can manually verify the first 4, and
know that there exists some fifth V by 2.6)1. One has the following decompositions:

M(4)
∼= ξ,

M(3,1)
∼= ξ ⊕ ω,

M(2,2)
∼= ξ ⊕ ω ⊕ V,

M(2,1,1)
∼= ξ ⊕ 2 · ω ⊕ V ⊕ (ω ⊗ η),

M(1,1,1,1)
∼= C[S4] (the regular representation).

In particular, proceeding down the dominance order:

• (4) contributes the new irreducible ξ.
• (3, 1) contributes the new irreducible ω; ξ already appeared above.
• (2, 2) contributes the new irreducible V ; ξ and ω already appeared above.
• (2, 1, 1) contributes the new irreducible ω ⊗ η; the other summands have
appeared above.

• (1, 1, 1, 1) yields the regular representation, in which every irreducible ap-
pears with multiplicity equal to its dimension; in particular η appears here
for the first time.

Such pattern is not a coincidence, as it turns out that in general for each λ, all
composition factors of Mλ are indexed by partitions µ with µ⊵ λ, and exactly one
new irreducible Lλ (corresponding to λ, e.g. L(3,1) = ω) occurs for the first time in
Mλ

We now give an alternative way to look at partitions, which will turn out to be
very useful when exploring Mλ.

2.1. Young diagrams.

Definition 2.10 (Young diagram). For a partition λ = (λ1, . . . , λr) ⊢ n, the Young
diagram of λ is the left-centered array of boxes with λi boxes in row i

Definition 2.11 (Transpose (conjugate) partition). Given λ = (λ1, . . . , λr) ⊢ n,
its transpose (also called the conjugate partition) λ† is defined by

(λ†)i = #{ j | λj ≥ i } (i ≥ 1).

Equivalently, the Young diagram of λ† is obtained from that of λ by interchanging
rows and columns. One has (λ†)† = λ.

λ = (3, 3) λ† = (2, 2, 2)

1We do not explain what V is, for the sake of cohesion in this argument. Although it turns
out V is an interesting object related to graph matching, more detail could be found in [2].
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λ = (4, 2, 1) λ† = (3, 2, 1, 1)

Definition 2.12 (Tableau and tabloid). Fix a partition λ ⊢ n and its Young
diagram with rows indexed from top.

• A λ-tableau is a filling of the boxes of the diagram with the numbers 1, . . . , n,
each used exactly once. We usually write t for such a tableau.

• λ-tableaux are row-equivalent if one can be obtained from the other by
permuting entries within each row independently. A λ-tabloid is a row-
equivalence class of λ-tableaux; the tabloid of a tableau t is denoted {t}.

Definition 2.13 (Actions and permutation modules). The group Sn acts on λ-
tableaux by left relabeling:

(g · t) is the tableau obtained from t by replacing each entry i by g(i).

Thus for λ-tabloids:

g · {t} = {g · t}.

Remark 2.14 (Standard identifications). There are n! λ-tableaux, so C[λ-tableaux]
is the regular representation of Sn. The Sn-set of λ-tabloids is naturally identified
with the coset space Sn/Sλ, and hence

Mλ := C[λ-tabloids] ∼= C[Sn/Sλ] ∼= IndSn

Sλ
ξ.

The modules Mλ = IndSn

Sλ
ξ provide a systematic source of Sn-representations

enumerated by partitions. Empirically we find that the composition factors of
Mλ are precisely those Lµ with µ ⊵ λ in dominance order, and Lλ occurs with
multiplicity one; the other factors Lµ with µ ▷ λ have appeared already in Mµ for
more dominant µ.

We also introduce the ”opposite” permutation module

Nλ := IndSn

S
λ†

η ∼= Mλ† ⊗ η,

We can think of Nλ as tableux of shape λ which switches sign based upon per-
mutation of elements in a column, by the sign of such permutation. It turns out
that, for example for n = 4, N(1,1,1,1) = η = L(1,1,1,1) and N(2,1,1) = 2 · η ⊕ ω =
L(1,1,1,1) ⊕L(2,1,1). Heuristically, the composition factors of Nλ are Lµ with µ⊴ λ,
while the opposite holds for Mλ, i.e. Mλ = Lλ ⊕ (

⊕
Lµ) for λ ⊴ µ. This sug-

gests that Mλ and Nλ share exactly one ”new” common irreducible, the Lλ, and
motivates seeking a canonical Sn-map

Φλ : Nλ −→ Mλ

where the image would isolate the Lλ.
We now explicitly construct such a map, using an averaging procedure over

columns.
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3. Specht Modules

Definition 3.1 (Row and column groups). For a λ-tableau t, let

Rt = {permutations that permute entries only within each row of t} ≤ Sn

also called a row stabilizer, and

Ct = {permutations that permute entries only within each column of t} ≤ Sn.

which is also called a column stabilizer.

Definition 3.2 (Polytabloid). For a λ-tableau t, define the

κt =
∑
c∈Ct

sgn(c), c ∈ C[Sn].

The polytabloid attached to t is the vector

et := κt · {t} ∈ Mλ.

Lemma 3.3. For r ∈ Rt and c ∈ Ct it holds that

r · et = et, c · et = sgn(c)et.

Consequently, the span of {et | t a λ-tableau} is an Sn-submodule of Mλ.

Proof. If r ∈ Rt, then r{t} = {t} and rCtr
−1 = Ct, so rκt = κtr and r · et =

κt(r · {t}) = κt{t} = et. If c ∈ Ct, then cκt = sgn(c)κt by multiplicativity of the
sign on the subgroup Ct, hence c · et = sgn(c)et. Finally, we get Sn-stability from
g · et = eg·t. □

Definition 3.4. Define the Specht module of shape λ as

Sλ := spanC{et | t a λ-tableau} ⊆ Mλ.

Proposition 3.5 (Averaging map). There is an Sn-equivariant surjection

αλ : Nλ →→ Sλ ⊆ Mλ

given on tableaux by t 7→ et (viewing a tableau both as a basis vector of Nλ and, via
its tabloid, of Mλ). In particular, Sλ is a quotient of Nλ and a submodule of Mλ.

Proof. As a vector space, Nλ
∼= C[λ-tableaux] with the Ct-action twisted by sgn

(coming from induction from Sλ† with sign). Lemma 3.3 shows that the assignment
t 7→ et respects the Ct-sign and is invariant under Rt. Thus t 7→ et is a universal
map removing the row-symmetry and imposing column-antisymmetry, hence it is
Sn-equivariant and factors through Nλ with image Sλ. □

Now we aim to show that Sλ is irreducible, Sλ ∼= Lλ, and {Sλ}λ⊢n exhaust all
irreducible Sn modules up to isomorphism.

Lemma 3.6. Let λ, µ ⊢ n, t a λ-tableau and t′ a µ-tableau. Suppose that for every
pair a, b lying in the same row of t′, the entries a and b lie in different columns of
t. Then λ⊵ µ.

Proof. Let the first row of t′ contain µ1 entries. By hypothesis, they lie in µ1

distinct columns of t. Applying Ct we can independently within each column move
each of these entries into the top box of its column. Hence the first row of t has
space for all µ1 entries, so λ1 ≥ µ1.
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Now, consider the first two rows of t′, which have µ1 +µ2 entries. Again, within
each column of t we can accommodate at most two chosen entries into the first
two rows (at most one in each of the first two positions). Since entries from a
fixed row of t′ occupy distinct columns of t, we can perform these placements
simultaneously, meaning λ1 + λ2 ≥ µ1 + µ2. We can continue analogously to get

that
∑k

i=1 λi ≥
∑k

i=1 µi for all k. Which by definition is equivalent to λ⊵ µ. □

Lemma 3.7. Let λ, µ ⊢ n, t a λ-tableau and t′ a µ-tableau. If κt{t′} ̸= 0, then
λ⊵ µ. Furthermore, if λ = µ, then κt{t′} = ±et.

Proof. If a, b lie in the same row of t′, then (ab){t′} = {t′}. If a, b also lie in the
same column of t, then (ab) ∈ Ct, which means that

κt{t′} = (ab)κt{t′} = sgn(ab)κt{t′} = −κt{t′},
which would imply κt{t′} = 0, contradiction. As such, any two entries in a row of
t′ must be in distinct columns of t, and by Lemma 3.6 it follows that λ⊵ µ.

If λ = µ, the same argument shows t′ ∈ Ct · t; so t′ = ct with c ∈ Ct. Then
κt{t′} = κtc{t} = sgn(c)κt{t} = ±et. □

Corollary 3.8. For any m ∈ Mλ and λ-tableau t, it holds that κtm ∈ Cet.

Proof. Considerm =
∑

t′ at′{t′} as a linear combination of λ-tabloids. By Lemma 3.7,
each term is such that κt{t′} ∈ {0,±et}, meaning that κtm is in fact a scalar mul-
tiple of et. □

3.1. Irreducibility of Sλ.

Definition 3.9. For λ ⊢ n, define a symmetric bilinear form ⟨−,−⟩ on Mλ by

⟨{t}, {t′}⟩ = δ{t},{t′},

extended bilinearly. This form is Sn-invariant.

Lemma 3.10. If V ⊆ Mλ is an Sn-subrepresentation, then either V ⊇ Sλ or
V ⊆ (Sλ)⊥

Proof. Let v ∈ V and let t be any λ-tableau. If κtv ̸= 0, then by Corollary 3.8 we
have κtv ∈ C et, meaning that et ∈ V . Since the Sn-orbit of et spans Sλ, we get
Sλ ⊆ V . Otherwise κtv = 0 for all t. Then for every t we have

0 = ⟨κtv, {t}⟩ = ⟨v, κt{t}⟩ = ⟨v, et⟩,
meaning that v is orthogonal to et for all t, i.e. v ∈ (Sλ)⊥, so V ⊆ (Sλ)⊥. □

Proposition 3.11. The Specht module Sλ is irreducible.

Proof. LetW ⊊ Sλ be a nonzero Sn-subrepresentation (insideMλ). By Lemma 3.10,
W ⊆ (Sλ)⊥. Then

W ⊆ Sλ ∩ (Sλ)⊥ = 0,

since the form from Definition 3.9 can be taken positive definite (e.g. as a Hermitian
inner product) and thus has trivial radical on Sλ. ThereforeW = 0, a contradiction.
Hence Sλ has no nontrivial subrepresentations, i.e. is irreducible. □

We have now proved that the Specht modules Sλ are irreducible, but their con-
struction is not perfect, as they are defined as a span of linearly dependent tableux.
It would be useful to find a basis for each Specht module to better understand their
structure (which could then be used, for example, to analyze characters)
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4. Standard basis

Lemma 4.1. Let λ, µ ⊢ n and let f : Mλ → Mµ be an Sn-equivariant linear map.
Assume that Sλ ̸⊆ ker f . Then it holds that λ ⊵ µ. Moreover, if λ = µ, then f |Sλ

is a scalar multiple of the identity.

Proof. Consider any λ-tableau t. Since Sλ ̸⊆ ker f , there exists some (hence every)
nonzero v ∈ Sλ with f(v) ̸= 0. In particular, we can take v = et = κt{t}, so

0 ̸= f(et) = f(κt{t}) = κtf({t}),

where we used Sn-equivariance to commute κt out of f . Write f({t}) =
∑

t′ at′{t′}
as a linear combination of µ-tabloids. Then

0 ̸= κtf({t}) =
∑
t′

at′ κt{t′}.

By Lemma 3.7, each term satisfies κt{t′} ∈ {0,±et}. Furthermore, the sum is not
zero, meaning some term is nonzero, hence λ⊵ µ.

Now consider the case of µ = λ. Since Sλ is irreducible by Proposition 3.11,
Shur’s Lemma 1.9 gives EndSn

(Sλ) ∼= C. Thus any nonzero map Sλ → Sλ (for
instance, the one obtained by composing the inclusion Sλ ↪→ Mλ with the projection
Mλ ↠ Sλ) must be a scalar multiple of the identity.

□

Corollary 4.2. We have an orthogonal direct sum decomposition

Mλ = Sλ ⊕ (Sλ)⊥,

and (Sλ)⊥ is a (finite) direct sum of Specht modules Sµ with µ ⊵ λ and µ ̸= λ.
Furthermore, every irreducible Sn-representation is isomorphic to some Sλ.

Proof. The bilinear form ⟨−,−⟩ on Mλ from Definition 3.9 is Sn-invariant and pos-
itive definite (over R, or take the Hermitian version), so (Sλ)⊥ is an Sn-submodule
and Mλ = Sλ ⊕ (Sλ)⊥. By complete reducibility (Maschke’s Theorem 1.8), (Sλ)⊥

is a direct sum of irreducibles. Since each Sλ, by Proposition 3.11, is irreducible,
it follows that

(Sλ)⊥ ∼=
⊕
µ ̸=λ

mλµ S
µ.

Now, remember that µ ⊵ λ holds for any term, which is compatible with the col-
umn–dominance mechanism of Lemmas 3.6 and 3.7 (see also Corollary 3.8), which
forces nonzero intertwiners out of Sλ only into shapes µ dominating λ.

It remains to show that distinct Specht modules are pairwise non-isomorphic,
and that every irreducible is a Specht. Suppose Sλ ≃ Sµ. Over characteristic
0, there must exist an Sn-equivariant projection and inclusion maps making this
isomorphism a term inside Mλ and Mµ. In other words, we can extend the iso-

morphism to an Sn-map f : Mλ → Mµ with f |Sλ : Sλ ∼−−→ Sµ. By Lemma 4.1,
λ ⊵ µ, and applying the same argument to the inverse isomorphism extended to
Mµ → Mλ gives µ ⊵ λ, hence λ = µ. Therefore the family {Sλ}λ⊢n consists of
pairwise non-isomorphic irreducibles.

Finally, by 2.6 the number of partitions of n equals the number of conjugacy
classes of Sn, so the number of irreducibles (over C). Since there are that many
pairwise non-isomorphic irreducibles Sλ, they exhaust all irreducibles of Sn. □
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4.1. Garnir relations. Let us now consider some simple generic examples of
Specht modules. For λ = (n) it holds that Sλ = ξ, while for λ = (1n) the col-
umn group is all of Sn, so et is the projection of {t} to the sign isotypic piece and
Sλ = η. For λ = (n − 1, 1), identifying Mλ ≃ Cn, the polytabloids et correspond
to vectors of the form vj − vi ∈ ker(ε), so Sλ = ω. Already here we see a linear
relation

(vk − vj) + (vj − vi) = (vk − vi),

which translate into more complicated linear relations between the corresponding
polytabloids. Notice that these relations come from mixing entries across adja-
cent columns. To capture this uniformly for arbitrary shapes we introduce Garnir
elements.

Definition 4.3 (Garnir element). Let t be a λ-tableau and fix an index i ≥ 1.
Choose subsets

X ⊆ {entries in the ith column of t}, Y ⊆ {entries in the (i+ 1)st column of t}.
Let SX∪Y ≤ Sn be the subgroup permuting the labels in X ∪ Y and fixing the
others. The Garnir element attached to (X,Y ) is

GX,Y =
∑

σ∈SX∪Y

sgn(σ)σ ∈ C[Sn].

Proposition 4.4 (Garnir relation). Let λ† be the conjugate partition, so λ†
i is the

height of the ith column. If |X ∪ Y | > λ†
i , then for every λ-tableau t it holds that

GX,Y · et = 0.

Proof. First, we have that et = κt{t} with κt =
∑

c∈Ct
sgn(c) c. Fix σ ∈ Ct, and

consider the tabloid {σt}. Since |X ∪Y | > λ†
i but the first i columns of t have only

λ†
i rows in column i, by the pigeonhole principle it follows that there exist some

distinct a, b ∈ X∪Y that are in the same row of σt. Furthermore, for the transpose
τ = (ab) ∈ SX∪Y we have that τ · {σt} = {σt}, as the same row means it is the
same tabloid. Furthermore, sgn(τ) = −1. Therefore the contribution of {σt} to
GX,Y · {σt} cancels and we are left with

GX,Y · {σt} =
∑

ρ∈SX∪Y

sgn(ρ) ρ · {σt} = · · ·+ {σt} − {σt}+ · · · = 0.

Since et is a signed sum of such {σt} with σ ∈ Ct, it follows that GX,Y · et = 0 as
desired. □

Remark 4.5 (Coset form of the relation). The direct product SX×SY is contained
in Ct. Therefore it acts on et by sign. It follows that GX,Y acts on et as∣∣SX × SY

∣∣ · ∑
ρ∈SX∪Y /(SX×SY )

sgn(ρ) ρ,

a finite signed sum over coset representatives. As such, Proposition 4.4 gives a
linear relation of polytabloids that exchanges entries between the ith and (i +
1)st columns. These Garnir relations are the additional relations beyond row-
symmetry and column-antisymmetry, which we need to reduce arbitrary et to a
linear combination of standard polytabloids. Essentially, Garnir relations allow to
exchange entries between adjacent columns, which in turn allows us to standardize
the tabloids.
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We now consider an example of a Garnir relation, and see how Garnir elements
produce linear relations between polytabloids, which in turn allow us to exchange
entries between adjacent columns to rewrite et in terms of other polytabloids.

Consider the following tableau for n = 5:

t = 1 2 3

4 5
,

and choose a vertical Garnir belt formed from adjacent columns 1 and 2 with
X = {4} and Y = {2, 5}. Then for the coset form of the Garnir relation we get

SX∪Y

/(
SX × SY

)
= {id, (4 5), (2 4 5)}.

which applying e yields

1 2 3

4 5
− 1 2 3

5 4
+ 1 4 3

5 2
= 0

As such, we can eliminate any configuration where the ”belt” contains too many
symbols for the left column height, rewriting et as a linear combination of poly-
tabloids in which entries are shifted to the right column. Iterating such relations
(together with row-symmetry and column-antisymmetry) reduces arbitrary poly-
tabloids to combinations of polytabloids associated to standard tableaux (which we
can now explicitly define).

4.2. Standard tableaux and basis.

Definition 4.6. A λ-tableau t is standard if its entries strictly increase from left
to right in each row and strictly increase from top to bottom in each column.

We can now formulate and prove the standard basis theorem, the main result
we have been working towards.

Theorem 4.7. For a fixed partition λ ⊢ n, the set {et | t a standard λ-tableau} is
a C-basis of Sλ.

Proof. For a tabloid {t} and any 1 ≤ i ≤ n, let ri({t}) be the row index of the entry i
in (any representative of) {t}. Define a total order< on λ-tabloids lexicographically,
that is {t} < {t′} if and only if(

rn({t}), rn−1({t}), . . .
)
<lex

(
rn({t′}), rn−1({t′}), . . .

)
In other words, {t} < {t′} if and only if

rn({t}) < rn({t′}), or

rn({t}) = rn({t′}) and rn−1({t}) < rn−1({t′}), or

rn({t}) = rn({t′}) and rn−1({t}) = rn−1({t′}) and rn−2({t}) < rn−2({t′}), or

· · ·
Now we will show that the leading tabloid for standard t is maximal. Fix a

standard tableau t and consider Ct, the subgroup permuting entries within each
column of t. We claim that among the tabloids appearing in Ct{t}, the unique
maximal one is {t} itself. Write et = κt{t} =

∑
c∈Ct

sgn(c) c{t}. In a standard
tableau, each column is strictly increasing, meaning that the row of n in t is the
lowest possible within its column. Then, any c ∈ Ct can only move n up in that
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column, so rn(c{t}) ≤ rn({t}). Note that equality is achieved if and only if c fixes
the position of n. Then for rn, the same argument applies to n− 1, then n− 2, and
so on. As such, for every c ∈ Ct, it holds that c{t} ≤ {t}, with equality only when
c acts trivially on all columns, i.e. only only if c = 1. As such,

et = {t}+
∑

{u}<{t}

αu {u} (αu ∈ C),

so {t} is the (unique) leading term of et with coefficient 1. (No other c ∈ Ct yields
the same tabloid, since Ct ∩Rt = {1} for a rectangular grid with distinct labels.)

Now, we aim to show linear independence of standard et. Suppose
∑

t standard atet =
0. Pick t0 standard such that {t0} is the biggest among {{t} | at ̸= 0}. Per above,
{t0} appears in et0 with coefficient 1, while in each et with t ̸= t0 all tabloids are less
than {t0}. But now if we compare coefficients of {t0} we would get at0 = 0, which
is a contradiction. Therefore all the et with t standard are linearly independent.

We can now show that every et is a Z-linear combination of et′ with t′ standard,
by induction. Assume t is not standard. By column-antisymmetrizing within each
column (if needed), we can ensure columns of t are strictly increasing. Then there
exist adjacent columns where a row decreases (with ak > bk):

a1 b1

a2 b2
...

...

ak bk
...

...
... bs
...
...

ar

We can now form the Garnir belt by taking X = {ak, . . . , ar} from the left column
and Y = {b1, . . . , bk} from the right column. The Garnir relation (Proposition 4.4)
gives us that the signed sum over shuffles of X ∪ Y that respect internal orders of
X and Y turns et to zero: ∑

ρ∈SX∪Y /(SX×SY )

sgn(ρ) eρ·t = 0.

In each nontrivial term ρ · t moves some aj into a b-slot, strictly increasing the tuple(
rn, rn−1, . . .

)
. Then {ρ · t} is strictly larger than {t} in the lexicographical order.

Therefore,

et =
∑
ρ̸=1

βρ eρ·t,

with all {ρ · t} > {t}. By induction on the well-founded order, each eρ·t is a Z-
linear combination of et′ with t′ standard. Thus et lies in the span of the standard
polytabloids.

Combining the above shows the standard polytabloids form a basis of Sλ, as
desired. □
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Corollary 4.8. dimC Sλ = #{standard λ-tableaux}, and every et is a Z-linear
combination of et′ with t′ standard (hence the matrices of Sn in this basis have
integer entries)2

5. Transpose and sign twist

We began the construction of Specht modules by considering permutation mod-
ules for transposed tableau (the Mλ and Nλ). The following result adds to the
intuition about the connection of transposition and sgn.

First, we remind a standard result from representation theory:

Theorem 5.1 (Frobenius reciprocity: left and right adjoints). Let H ≤ G be finite
groups and work over C.

(Left adjoint) For any H-representation W and G-representation V there is a nat-
ural isomorphism

HomG

(
IndGH W, V

) ∼= HomH

(
W, ResGH V

)
.

(Right adjoint) Let the coinduced representation be

CoIndGH W := HomC[H](C[G], W ),

with G acting by
(
(g · F )(x) = F (g−1x)

)
for F ∈ CoIndGH W and x ∈ C[G]. Then

for any G-representation V there is a natural isomorphism

HomG

(
V, CoIndGH W

) ∼= HomH

(
ResGH V, W

)
.

In particular, for finite groups over C one has a natural G-isomorphism IndGH
∼=

CoIndGH , so both adjunctions may be stated with IndGH .

Proposition 5.2. For any partition λ ⊢ n, there is a canonical Sn-isomorphism

Sλ ⊗ η ∼= Sλ†
.

Proof. Fix a λ-tableau t and let t† be its transpose (a λ†-tableau). As previously,
let Rt and Ct be the row and column stabilizers of t, and let

ρt =
∑
r∈Rt

r ∈ C[Sn], κt† =
∑

c∈C
t†

sgn(c)

Recall Sλ is spanned by polytabloids et = κt{t} inside Mλ, and Mµ = C[Sn/Sµ]
for any µ. Then by Frobenius reciprocity 5.1,

HomSn

(
Mλ† , Sλ⊗η

) ∼=
(
Sλ⊗η

)S
λ† ,

with the isomorphism sending f to f({t†}) (here Sλ† = Rt†). Since Rt† = Ct, and
c · et = sgn(c) et for c ∈ Ct while η adds another factor sgn(c) in Sλ ⊗ η, so et ⊗ 1
is fixed by Rt† . Thus there is a unique Sn-equivariant map

f : Mλ† −→ Sλ ⊗ η

with

f({t†}) = et ⊗ 1.

2There exists an explicit expression for the number of standard tableaux, known as the hook
length formula. See more in [2].



16 ANTON GAEK

Now, compute

f(et†) = f
(
κt†{t†}

)
= κt† · (et ⊗ 1) =

( ∑
r∈Rt

sgn(r) r
)
· (et ⊗ 1) =

=
∑
r∈Rt

sgn(r) (ret)⊗ sgn(r) =
( ∑

r∈Rt

r
)
et ⊗ 1 = ρtet ⊗ 1,

using Rt† = Ct, the invariance ret = et for r ∈ Rt, and that sgn(r)2 = 1. We want
to show that ρtet ̸= 0. Since we have an Sn-invariant inner product on Mλ for
which ⟨{u}, {v}⟩ = δ{u},{v}, it must then hold that

⟨ρtet, {t}⟩ = ⟨et, ρt{t}⟩ = |Rt| · ⟨et, {t}⟩ = |Rt| ≠ 0,

since the coefficient of {t} in et = κt{t} is 1. As such, f(et†) ̸= 0, as desired.

Finally, for the image we notice that the restriction f |
Sλ† : Sλ† → Sλ ⊗ η is a

nonzero Sn-map between irreducible representations, and therefore an isomorphism

by Schur’s lemma. This proves Sλ ⊗ η ∼= Sλ†
. □
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