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Abstract. This expository paper is an introduction to the braid group from

three different perspectives. We start with the geometric definition of the
braid group. Then, we provide some basic topology background to define the

braid group as the fundamental group of the configuration space of the complex

plane. With this definition, we work on proving that the braid group is torsion-
free. Lastly, we define the braid group through the mapping class group and

prove that the center of the braid group is infinite cyclic and generated by the

Dehn twist about the boundary.
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1. Introduction

This paper introduces the concept of the braid group, which was first used by
Emil Artin in 1925. The braid group is named for its geometric counterpart: a braid
with strands that cross over each other. One important feature of the braid group
is that it has many equivalent definitions in many different mathematical areas,
including in the study of configuration spaces, mapping class groups, polynomials,
and hyperplane complements. Having this large variety of definitions in different
areas allows the braid group to transfer its properties from one field to another. For
example, we can prove that the braid group is torsion-free via its representation in
the configuration spaces and transfer it to its representation in the field of mapping
class groups, and conclude that the mapping class group of an n-punctured disk is
torsion-free.
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In this paper, we will start with the geometric definition and Artin presentation
of the braid group to gain an intuition of the braid group. Then we will move
on to the definition of the braid group via the configuration space and prove that
the braid group is torsion-free. Lastly, we will dive into the definition of the braid
group via the mapping class group and prove that the center of the braid group is
infinite cyclic and generated by the Dehn twist around the boundary. The reader
can find more expository information about the braid group in Wilson’s paper “The
Geometry and Topology of Braid Groups.” [6].

2. Geometric Definition of Braid Groups and Artin Presentation

In this section, we will provide the geometric definition of the braid group, along
with some diagrams to help readers better understand the concept. First, we will
define the braid group. We will use the definition provided by Farb and Margalit
in their book A Primer on Mapping Class Groups [2].

Definition 2.1. Let p1, . . . , pn be distinguished points in the complex plane C. A
braid is a collection of n paths

fi : [0, 1] −→ C× [0, 1], 1 ≤ i ≤ n,

called strands, together with a permutation s̄ of {1, . . . , n} such that:

(i) the strands fi([0, 1]) are disjoint,

(ii) fi(0) = pi,

(iii) fi(1) = ps̄(i),

(iv) fi(t) ∈ C× {t}.

The braid group on n strands, denoted Bn, is the group of isotopy classes of
braids. For now, readers can consider two braids to be equivalent (isotopic) if they
can be continuously deformed from one to the other by only bending the strands.
We will define isotopy in Section 3 when we introduce homotopy.

We now show that the braid group is a group.

Proposition 2.2. The braid group is, in fact, a group.

Proof. In order to show this statement, we first define the operation for the group.
Let f, g ∈ Bn, where f and g are two representative braids for their isotopy classes.
Note that fi, gi, for every 1 ≤ i ≤ n, represent the ith strand in f and g, respec-
tively. We define f · g as:

(fi · gi)(t) =

{
fi(2t), 0 ≤ t ≤ 1

2 ,

gs̄(i)(2t− 1), 1
2 ≤ t ≤ 1.

Here, s̄ is a permutation of {1, . . . , n}. This operation scales f and g by 1
2 ,

and then concatenates the strands of f on top of the corresponding strands of
g, giving a new strand in Bn. The associativity of the group can be verified by
reparameterizing t. We define the inverse braid, f−1, by taking the reflection
of the original braid through the plane C × {1}, meaning for each fi, f

−1
i (t) =

fi(1 − t). The identity braid, id, will be the braid with idi(t) = pi for every
t ∈ [0, 1]. Geometrically, the identity braid is n straight strands with no crossings
at all. Notice that f · f−1 is isotopic to the trivial braid, thus showing that the two
braids are indeed inverses. □
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For the braid group, there is a special subgroup called the pure braid group,
denoted PBn. The pure braid group can be considered as the braid group with
fi(0) = fi(1) = pi.

Next, we will look at the presentations of the braid group. We define the half-
twist of the ith strand and the (i + 1)th strand as σi shown below in Figure 1.
Every braid in Bn can be written as a word in the half-twists σ1, . . . , σn−1.

Figure 1. Diagram of σi

Emil Artin described the braid group presentations in 1947 as follows:

Definition 2.3. The Artin braid group on n strands, Bn, is the finitely generated
group with generators σ1, σ2, . . . , σn−1 that satisfy

σiσj = σjσi whenever |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2.

We provide the diagrams of the two relations (Figure 2 and Figure 3) below for
readers to have a better understanding of the Artin presentation.

Figure 2. Diagram of σiσj = σjσi
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Figure 3. Diagram of σiσi+1σi = σi+1σiσi+1

For the pure braid group with n strands, Artin showed that it is generated by
Ti,j , where Ti,j is defined as (σj−1 · · · σi+1)σ

2
i (σj−1 · · · σi+1)

−1. The geometric
representation of Ti,j is shown in Figure 4.

Definition 2.4. The pure braid group on n strands, PBn, is the finitely generated
group with generators Ti,j for 1 ≤ i < j ≤ n that satisfy

[Tp,q, Tr,s] = 1 for p < q < r < s,

[Tp,s, Tq,r] = 1 for p < q < r < s,

Tp,r Tq,r Tp,q = Tq,r Tp,q Tp,r = Tp,q Tp,r Tq,r for p < q < r,

[Tr,s Tp,r T
−1
r,s , Tq,s] = 1 for p < q < r < s.

Figure 4. Diagram of Ti,j

We will not verify Artin presentation of the braid group and the pure braid group
in this paper. For readers interested in this topic, please refer to Joshua Lieber’s
“Introduction to Braid Groups”[5].

3. Braid Groups via Configuration Spaces

In this section, we will define the braid group using the fundamental group and
the configuration space. Then we will prove the braid group is torsion-free.

3.1. Braid Groups are the Fundamental Groups of the Configuration
Space of the Complex Plane.

Before discussing the braid group through the lens of the configuration space,
we will introduce some algebraic topology concepts related to this topic. The first
is the fundamental group, which is built up from homotopy. Note that we will use
the definitions and theorems from Hatcher [1] in this subsection.



BRAID GROUPS IN CONFIGURATION SPACES AND MAPPING CLASS GROUPS 5

Let X and Y be topological spaces and let p, q : X → Y be continuous maps. A
homotopy from p to q is a continuous map H : X×I → Y such that H(x, 0) = p(x)
and H(x, 1) = q(x) for all x ∈ X, where I = [0, 1] is the unit interval. We say
p and q are homotopic, written as p ≃ q, if there exists such H. Isotopy can be
considered as a special case of homotopy, where the path from p to q must lie
entirely in the space of embeddings. Next, we will need to understand what a loop
is to understand the fundamental group. A path in a space X is a continuous map
f : I → X, where I is the unit interval. A loop is a path f with the additional
condition that f(0) = f(1). X is called path-connected if there exists a path for
any two points in X. Finally, we are capable of defining the fundamental group.

Definition 3.1. The fundamental group of a topological space X with a base point
x0, denoted as π1(X,x0), is the set of all loops starting and ending at x0, up to
homotopy.

Proposition 3.2. The fundamental group of a topological space X is a group.

Proof. The proof is similar to the proof of Proposition 2.2. □

Now we are ready to understand the relation between the braid group and the
configuration space.

Definition 3.3. For a topological space M and a positive integer n, the unordered
configuration space of M on n points is

UConfn(M) =
{
{m1,m2, . . . ,mn} ⊂M

∣∣ mi ̸= mj for i ̸= j
}
.

Thus UConfn(M) is composed of n-element subsets of M .

Similarly, the ordered configuration space of M on n points is

Confn(M) =
{
(m1,m2, . . . ,mn) ∈Mn

∣∣ mi ̸= mj for i ̸= j
}
.

From the definitions above, we know that the unordered configuration space is
obtained from the corresponding ordered configuration space by quotienting out
the free action of the symmetric group, Sn, that permutes the n coordinates.

Definition 3.4. The n-strand braid group is the fundamental group of the un-
ordered configuration space of the complex plane:

Bn = π1
(
UConfn(C)

)
.

The n-strand pure braid group is the fundamental group of the ordered configuration
space of the complex plane:

PBn = π1
(
Confn(C)

)
.

Remark 3.5. Connecting this definition of the braid group and the pure braid
group back to the definition in Section 2, we can see that since each strand of
a braid is a map fi : [0, 1] → C × [0, 1], the intersection of any slice C × {t}
with any strand is a point in UConfn(C). Thus, the full collection of slices gives
an element of π1(UConfn(C)). Intuitively, a braid is tracing out a loop in the
unordered (respectively, the ordered) configuration space of C. The isotopy of the
braids corresponds exactly to the homotopy of loops in C.
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3.2. Braid Groups are Torsion-Free.
One important property of the braid group is that it is torsion-free. Recall that

a torsion element g ∈ G, where G is a group with identity element e, is an element
for which there exists a positive integer n such that gn = e. The group G is called
torsion-free if the only torsion element is the identity element e.

To prove this property, we will show that the configuration space is an Eilenberg-
MacLane space, denoted as K(G, 1). Below is the definition of the K(G, 1) space.

Definition 3.6. A path-connected spaceX whose fundamental group is isomorphic
to a given group G and which has a contractible universal covering space is called
a K(G, 1) space.

It is known that for a finite K(G, 1), π1(K(G, 1)) is torsion-free. The read-
ers can refer to [4] for the detailed proof of this claim. Since, by Definition 3.6,
π1(K(G, 1)) ∼= G, G is torsion-free. Thus, our eventual goal of proving that the
braid group is torsion-free is to show that UConfn(C) is a K(Bn, 1) space, and
Confn(C) is a K(PBn, 1) space. However, before we delve into the formal proof,
we will provide some background definitions on higher homotopy groups, exact se-
quences, and fiber bundles. The readers can read through Hatcher [1, chap. 4] for
more information on these definitions.

A homotopy group, denoted πn(X,x0), for a space X with a base point x0 ∈ X is
the set of homotopy classes of maps f : (In, ∂In) −→ (X,x0), where homotopies are
required to satisfy ft(∂I

n) = x0 for all t. We can see that the previous definition of
the fundamental group corresponds to this definition when n = 1, since (I, ∂I) −→
(X,X0) is mapping the unit interval onto X, while fixing the two endpoints at x0,
forming a loop.

Remark 3.7. Note that for a finite CW complex X, the second condition of a
K(G, 1) space is equivalent to saying that all the higher homotopy groups are
trivial(i.e., πk(X) are trivial for every k ≥ 2). This is because a covering space pro-

jection p : (X̃, x̃0) −→ (X,x0) induces isomorphism p∗ : πk(X̃, x̃0) −→ πk(X,x0)
for every k ≥ 2, and a universal cover is simply-connected (path-connected and
trivial fundamental group).

Next, we will introduce exact sequences and a proposition that will be frequently
used in the actual proof that braid groups are torsion-free.

Definition 3.8. A sequence of homomorphisms of groups

· · · −→ An+1
αn+1−−−−→ An

αn−−→ An−1 −→ · · ·

is exact at An if kerαn = Imαn+1, which means αn ◦ αn+1 is trivial. It is an exact
sequence if it is exact at every term. An exact sequence of the form

1 −→ A
f−−→ B

g−→ C −→ 1

is called a short exact sequence. Notice that Im f = ker g.

Proposition 3.9. Let

1
i−→ A

j−→ B
k−→ 1

be a short exact sequence of groups. Then j is an isomorphism, so A ∼= B.
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Proof. To show j is an isomorphism, we only need to show that it is bijective
because j is a homomorphism given by the definition of the exact sequence. Since i
is a homomorphism that maps the identity to the identity element in A, its image
is just the identity element in A. We know that Im(i) = ker(j), so ker(j) is only
the identity element in A, proving j is injective. Since k maps the entire B to the
identity element, the kernel of k is B. From the exactness of B, Im(j) = ker(k) = B,
it follows that j is also surjective. Thus, j is bijective and is an isomorphism. □

We now define the concepts of fibration and fiber bundle, which are the last two
concepts related to our proof.

Definition 3.10. A map p : E −→ B is said to have the homotopy lifting property
with respect to a spaceX if, given a homotopy gt : X −→ B and a map g̃0 : X −→ E
lifting g0, so p · g̃0 = g0, then there exists a homotopy g̃t : X −→ E lifting gt.

Definition 3.11. A fibration is a map p : E −→ B having the homotopy lifting
property with respect to all spaces X.

Theorem 3.12. [1, p. 376] Suppose p : E → B has the homotopy lifting property
with respect to disks Dk for all k ≥ 0. Choose basepoints b0 ∈ B and x0 ∈ F :=
p−1(b0). Then the induced map p∗ : πn(E,F, x0) −→ πn(B, b0) is an isomorphism
for every n ≥ 1. Consequently, if B is path-connected, there is a long exact sequence

· · · −→ πn(F, x0) −→ πn(E, x0)
p∗−−→ πn(B, b0) −→ πn−1(F, x0) −→ · · ·

We will not discuss the proof of this theorem in this paper, since our primary
focus is on the braid group. The reader should refer to Hatcher [1] for the details
of this proof.

Definition 3.13. A fiber bundle structure on a space E, with fiber F , consists of a
projection map p : E −→ B such that each point b ∈ B has an open neighborhood
U for which there exists a homeomorphism h : p−1(U) −→ U × F making the
diagram below commute, where proj1 is the natural projection onto the first factor.

p−1(U)
h //

p
##

U × F

proj1||
U

Note that every fiber bundle induces the long exact sequence in Theorem 3.12,
because for a fiber bundle, the open neighborhood U gives the map p the homotopy
lifting property required.

We now shift to discuss two propositions about the braid group that will be used
in our proof.

Proposition 3.14. There is a short exact sequence

1 −→ PBn −→ Bn
η−→ Sn −→ 1.

Proof. For each braid in Bn, we can associate the permutation it induces on its
strands and an element of the symmetric group Sn, giving a well-defined group
homomorphism η from Bn to Sn. Note that η(σi) = (i, i + 1) for i = 1, ..., n − 1.
The kernel of η is the subgroup of Bn that induces the trivial permutation, which is
precisely PBn. Since the map from PBn to Bn is just the inclusion map, the image
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of the map is PBn itself, which is equal to the kernel of η, proving the exactness
of Bn. The exactness of the remaining terms is all given by the corresponding
definitions. □

Proposition 3.15. For n ≥ 1 there is a short exact sequence

1 −→ Fn
ι−→ PBn+1

ρ−→ PBn −→ 1.

Proof. Given a pure braid β ∈ PBn+1, we define the map ρ : PBn+1 −→ PBn

to remove the (n + 1)th strand, so that ρ(β) ∈ PBn. The map ρ is a well-defined
homomorphism and clearly surjective, proving the exactness of PBn.

We note that π1(
∨n

i=1 S
1) ∼= Fn. Since Cn deformation retracts to

∨n
i=1 S

1,
Fn

∼= π1(Cn). Thus, the map ι can be viewed as mapping π1(Cn) into PBn+1. The
kernel of ρ consists of the pure braids in PBn+1 that make the first n strands the
trivial braid, meaning that we can think of the first n strands as n vertical strands
up to isotopy. The image of ι is letting the (n+1)st strand follow the trace of the
loops in π1(Cn), while fixing the first n strands up to isotopy, which is exactly the
kernel of ρ, so Im(ι) = ker(ρ). The map ι is injective because distinct words in the
free group give non-isotopic motions of the last strand, proving exactness of Fn. □

Theorem 3.16. [4](Fadell Neuwirth Fibration) For n ≥ 1, the map

p : Confn+1(C) −→ Confn(C)
(z1, . . . , zn+1) 7−→ (z1, . . . , zn)

is a locally trivial fiber bundle.

Remark 3.17. We will make a remark on this theorem, but not prove it in this
paper. First, the map p can be viewed as the “forgetful” map that forgets the
(n+1)st point in the far right. Thus, the fiber of a given base point (z1, . . . , zn) ∈
Confn(C) is just the n-punctured complex plane, C \ (z1, . . . , zn).

Another fact about this fiber bundle is that it admits a section s : Confn −→
Confn+1, defined as s((z1, . . . , zn)) = (z1, . . . , zn, |z1|+ · · ·+ |zn|+ 1).

Now, we are ready to walk through the formal proof that the braid group is
torsion-free. For simplicity, we will write Confn(C) as Mn and UConfn(C) as Nn.

Proposition 3.18. The braid group is torsion-free.

Proof. First, by the Fadell-Neuwirth fibration, the map p :Mn+1(C) −→Mn(C) is
a locally trivial fiber bundle, and each fiber F is isomorphic to the complex plane
C with n points removed, Cn. Since we know that Cn can be deformation retracted
to

∨n
i=1 S

1. Thus,

π1(F ) ∼= π1(Cn) ∼= Fn

π2(F ) ∼= π2(Cn) ∼= 1

Because
∨n

i=1 S
1 is a 1-dimensional CW complex, by cellular approximation,

π2(
∨n

i=1 S
1) ∼= 1.

From the long exact sequence of homotopy groups of the Fadell-Neuwirth fibra-
tion, we have:

· · · −→ π2(Cn) −→ π2(Mn+1)
p∗−→ π2(Mn)

∂−→ π1(Cn) −→ π1(Mn+1) −→ π1(Mn) −→ 1
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However, since we know that π2(Cn) is trivial, π1(Cn) ∼= Fn, and PBn
∼= π1(Mn),

the long exact sequence can be written as:

· · · −→ 1 −→ π2(Mn+1)
p∗−→ π2(Mn)

∂−→ Fn −→ PBn+1 −→ PBn −→ 1

Note that p∗ is the induced homomorphism from the map p in the Fadell-Neuwirth
fibration. From Remark 3.17, we know that there is a section s : Mn −→ Mn+1,
which is obtained by adding a point on the far right of Mn. Since s is continuous,
there exists an induced homomorphism s∗ : π2(Mn) −→ π2(Mn+1). Note that the
composite map p ◦ s is just adding an (n+1)st point in the far right of the complex
plane, then forgetting that point, which is exactly the identity map in Mn. Thus,

p∗ ◦ s∗ = (p ◦ s)∗ = (idMn)∗ = idπ2(Mn)

Since p∗ is right-invertible, p∗ is surjective. Thus, Im(p∗) = π2(Mn). But, by
exactness, Im(p∗) = ker(∂). Thus, we have the short exact sequence from this long
exact sequence that:

1 −→ π2(Mn+1)
p∗−−→ π2(Mn)

∂−−→ 1

Applying Proposition 3.9 to this short exact sequence, we get

π2(Mn+1) ∼= π2(Mn)

Now we will prove inductively that π2(Mn) ∼= 1 for every n ≥ 1. For the base
case n = 1, we know that M1

∼= C, and C is contractible, so π2(C) ∼= 1.
For the inductive step, we assume that π2(Mn) ∼= 1, then by the isomorphism

we get above, we have π2(Mn+1) ∼= π2(Mn) ∼= 1. Thus, we finish the proof that
π2(Mn) ∼= 1.

Last, we will prove inductively that all the higher homotopy groups of Mn are
trivial (i.e. πk(Mn) ∼= 1 for every k ≥ 2). We have already shown the base case
in the previous inductive proof. The key step of the proof is to notice that for
all k ≥ 2, πk(F ) ∼= πk(Cn) ∼= 1, which then by a similar argument for the case
of π2(Mn), we can force an isomorphism from the long exact sequence and get
πk(Mn+1) ∼= πk(Mn). Then by the same argument used in the previous induction
for the base case k = 2, we conclude that for every k ≥ 2

πk(Mn) ∼= 1

Thus, by the definition of a K(G, 1) space, we can see that Mn is a K(PBn, 1).
Thus, the n-strand pure braid group is torsion-free.

Since Nn is the space obtained by quotienting out the symmetric group Sn from
Mn, there exists a natural projection h : Mn −→ Nn. This map is the regular
covering map with deck group Sn. Thus, Mn is a covering space of Nn. Because
the universal cover of Mn is contractible, it follows that the universal cover of
Nn is also contractible. Thus, Nn is also an Eilenberg-MacLane space, making it
torsion-free. □

4. Braid Groups via Mapping Class Groups

In this section, we will look at the braid group through the lens of the mapping
class group. We will first introduce the definition of the mapping class group. The
definitions, theorems, and proofs for this section will be based on A Primer on
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Mapping Class Groups [2]. Then we will give an example of the mapping class
group, specifically the mapping class group of an annulus, which is isomorphic to
Z. Lastly, we will show that the center of the braid group is infinite cyclic and
generated by the Dehn twist around the boundary.

4.1. Braid Groups are the Mapping Class Groups of the n-punctured
Disk.

We start by defining the mapping class group.

Definition 4.1. Let S = Sg,n be the oriented surface of genus g with n punctures.
The mapping class group of S, denoted as Mod(S), is the group

Mod(S) = π0
(
Homeo+(S, ∂S)

)
.

This definition means that the mapping class group of an oriented surface is the
group of all orientation-preserving homeomorphisms that fix the boundary of the
surface pointwise, up to isotopy. To help the readers understand, we will show why
Mod(D2) is trivial. This result also comes out to be an important lemma in the
theory of mapping class groups, known as the Alexander Lemma.

Proposition 4.2. (Alexander Lemma) Mod(D2) is trivial

Proof. We first define p : D2 −→ D2 to be a homeomorphism that restricts to the
identity on ∂D2. We define

H(x, t) =

{
(1− t)p( x

1−t ), 0 ≤ |x| < 1− t,

x, 1− t ≤ |x| ≤ 1.

for 0 ≤ t ≤ 1. We can see that H(x, t) is a well-defined isotopy for any orientation-
preserving homeomorphism in D2 that fixes the boundary to the identity. Figure 5
provides a visual representation of the isotopy H(x, t). □

Figure 5. Diagram of H(x, t)

From the Alexander Lemma, we can immediately conclude that Mod(D2
1) (i.e.

the mapping class group of a closed disk with one puncture point) is also trivial.
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Next, we will move on to another example: the mapping class group of an annulus
is Z. This example will help clarify the concept of Dehn twists and will be directly
applied in the later proof relating to the center of the braid group. The proof of
the example will be based on the proof in A Primer on Mapping Class Groups [2,
p. 51], but we will provide more detail in the proof.

Proposition 4.3. Mod(A) ∼= Z

Proof. Note that the universal cover of an annulus, Ã, is the infinite strip R× [0, 1].

There exists a map p : Ã −→ A defined as p(x, y) = (e2πix, y). Observe that shifting

x by an integer n does not change p(x, y), so the deck transformation group for Ã
is generated by T : (x, y) 7→ (x + 1, y). Now let h ∈ Mod(A) and let γ be a
representative homeomorphism of h. We define γ̃ to be the preferred lift of γ that
fixes the origin, so that p · γ̃ = γ · p. Next, we define γ̃1 : R −→ R to be the
restriction of γ̃ to R× {1}. Since homeomorphisms in the mapping class group fix
the boundary, γ̃1 is the lift to R of the identity on one of the boundaries of A, so
p · γ̃1 = id · p = p. By definition, γ̃1 is a deck transformation and is, thus, in the
deck transformation group with the form γ̃1(x) = x+ n, x ∈ R for a unique n ∈ Z.
Note that γ̃1(0) = n ∈ Z. By defining ρ(h) = γ̃1(0), we get a well-defined map
ρ : Mod(A) −→ Z.

Take two homeomorphisms g and f representing two different classes in Mod(A).
Note that ρ(g·f) = m+n = ρ(g)+ρ(f) since the composition of the two maps is sent
to the composition of two integer translations. Thus, the map ρ : Mod(A) −→ Z is
a homomorphism. To prove the proposition, we only need to show ρ is bijective.

We will first show that ρ is surjective. We define M to be the linear transforma-
tion of R2 given by

M =

(
1 n
0 1

)
Note thatM preserves R×[0, 1] setwise, making it a homeomorphism in Ã. Thus, we

define ϕ̃ to beM
∣∣
R×[0,1]

, and ϕ̃ is a well-defined oriented homeomorphism in Ã. The

homeomorphism ϕ̃ is equivariant with respect to the group of deck transformations
as shown below:

ϕ̃(T (x, y)) = ϕ̃(x+ n, y) = ((x+ n) + ny, y) = (x+ ny, y) + (n, 0) = T (ϕ̃(x, y))

for some T in the deck transformation group. Thus, ϕ̃ descends to an oriented
homeomorphism that fixes the boundary components in A. We then define ϕ̃1
to be ϕ̃

∣∣
R×{1}. Thus, we have ϕ̃1(0) = n and ρ([ϕ]) = ϕ̃1(0) = n, proving ρ is

surjective.
It remains to show ρ is injective. Let s ∈ Mod(A) be an element in the kernel of

ρ, and ψ be the representative homeomorphism of s. To show that ρ is injective, it
is sufficient to show that ψ is isotopic to the identity. Since ρ(ψ) = 0, the preferred

lift of ψ, ψ̃, fixes the boundary components of Ã. Thus, we can define a straight-line
homotopy Ht(x, y) = (1− t)id + tψ̃(x, y) for t ∈ [0, 1]. Thus, we need to show that
Ht(x, y) is equivariant with respect to the group of deck transformations to push
it down to A so that ψ is isotopic to the identity. To show Ht(x, y) is equivariant
with respect to the group of deck transformations, it is sufficient to show that
ψ̃(T ) = T (ψ̃) for any T in the deck transformation group. By the covering space
theory, we have

ψ̃(T ) = ψ∗(T ) · ψ̃
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where ψ∗ is the induced automorphism of the fundamental groups of the annulus.
However, since ψ fixes the boundary component of A and π1(A) ∼= Z, ψ∗(T ) = T .

Thus, ψ̃(T ) = T (ψ̃), and ρ is injective. □

The mapping class group of an annulus A is directly related to an important
concept called Dehn twist. Let T : A −→ A be a twist map of A. We define
T (θ, t) = (θ + 2πt, t). The map T takes a proper arc that has one endpoint on the
inner bound and the other on the outer bound and twists it so that the arc winds
around the annulus once, while the endpoints are fixed. From the definition, we
observe that T is an orientation-preserving homeomorphism that fixes ∂A pointwise.
Thus, [T ] ∈ Mod(A). Note that the map T here is the same map that was used
to show that ρ is surjective in Proposition 4.3. The mapping class group of A
is isomorphic to Z, which can be interpreted as fixing the boundary components
pointwise, how many times the homeomorphism winds around the annulus up to
isotopy. Hence, the mapping class group of the annulus can be seen as generated
by [T ]. Now we are ready to define the Dehn twist.

Definition 4.4. Let S be an oriented surface and let α be a simple closed curve.
Choose a regular neighborhood N of α in S and an orientation-preserving homeo-
morphism φ : A −→ N . We obtain a homeomorphism Tα : S −→ S, called a Dehn
twist about α as follows:

Tα(x) =

φ ◦ T ◦ φ−1(x), if x ∈ N,

x, if x ∈ S \N.

From the definition of the Dehn twist, we can think about it as taking a small
neighborhood of a simple closed curve, so the small neighborhood is homeomorphic
to an annulus since it has an outer bound and an inner bound, with the inner bound
being the simple closed curve. Then, we perform the twist map T in that small
neighborhood while fixing every point outside that neighborhood.

Now we will define the braid group as a mapping class group. If we have a
closed disk D2 with the set of n-marked points, then the mapping class group of
this n-marked points disk Dn is isomorphic to the braid group with n strands.

Theorem 4.5. Bn
∼= Mod(Dn)

Remark 4.6. Here, we will not prove this theorem, but will offer an intuitive un-
derstanding of it. The reader can find the proof of the theorem in [2, p. 243]. Since
the n-punctured points are unlabeled, the isotopy classes of orientation-preserving
homeomorphisms fix ∂Dn and permute the n-punctured points. If we trace the
path of the homeomorphism for the n-punctured points, then we get precisely the
crossing between the n strands for the braid group.

4.2. The Center of the Braid Group is Infinite Cyclic.
Next, we will discuss the center of the braid group. Recall that the definition of

the center of a group G, denoted Z(G), is the set of elements that commute with all
elements in G. For the center of the braid group, we have the following Theorem.
The proof for this theorem will be based on the proof in [7, p. 9].

Theorem 4.7. For n ≥ 2, the center of the braid group Bn and the center of the
pure braid group PBn are infinite cyclic. They are generated by the Dehn twist
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about the boundary,

∆2
n−1 =

(
σ1 (σ2σ1) · · · (σn−1 · · ·σ1)

)2
.

Proof. We first define δj = σj · · ·σ1 and ∆j = σ1(σ2σ1) · · · (σj · · ·σ1) for every
j = 1, 2, ..., n − 1. Then, from Artin presentation (Definition 2.3), we have the
following three relationships:

(1) σi = σ
δj
i−1 when j ≥ i ≥ 2, and σ1 = σ

δ−1
j δj

j for all j ≥ 1;

(2) σi = σ
∆j

j−i+1 when j ≥ i ≥ 2, and σ1 = σ
∆j

j for all j ≥ 1;

(3) [σi, ∆
2
j ] = 1 for all j ≥ i.

Here, the representation σ
δj
i−1 means δ−1

j σi−1δj . The readers can verify these

relations using Artin’s presentation. From relation (3), we observe that ∆2
n−1 com-

mutes with every σi, making ∆2
n−1 ∈ Z(Bn).

Now, we will prove why ∆2
n−1 generates Z(Bn). Let ϕi be a simple closed curve

in Dn around only pi and pi+1 (the ith and (i+1)th puncture points). Let βi ∈ Bn

be such that Fix(βi) = {ϕi}, where we define Fix(βi) as the set of ϕi that βi
preserves up to isotopy. Take any z ∈ Z(Bn), since βi = zβiz

−1 we observe that:

{ϕi} = Fix(βi) = Fix(zβiz
−1) = zFix(βi) = {z(ϕi)}

Here we will explain the middle part of the equation above, Fix(zβiz
−1) =

zFix(βi). Take [ϕi] ∈ Fix(βi), then zβiz
−1(z[ϕi]) = zβi([ϕi]) = z[ϕi]. Thus,

zFix(βi) = Fix(zβiz
−1).

Now, because {ϕi} = {z(ϕi)}, we may assume without loss of generality that
z fixes each ϕi pointwise. Let Gi be the region enclosed by ϕi. We define N =
{G1 \G2, G1 ∩G2, . . . , Gn−2 ∩Gn−1, Gn−1 \Gn−2} and let H ∈ N . Figure 6 shows
the set N for a 3-punctured disk. The black dotted line represents the simple closed
curve ϕ1, while the blue dotted line represents the simple closed curve ϕ2.

Figure 6. N for a 3-punctured Disk

We observe from Figure 6 that for anyH ∈ N , H is homeomorphic to an annulus.
Since Mod(A) ∼= Z, we may assume that z acts trivially onH. Because the elements
in N are disjoint, and the unions of the elements in the set contain all n punctured
points, z acts trivially on G1∪G2∪. . .∪Gn−1∪Gn−2. Note that the region Dn\N is
homeomorphic to an annulus. Since z fixes a region enclosing the punctures of Dn

pointwise, it must be a multiple of the Dehn twist about the boundary of Dn. □
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5. Conclusion

This paper introduced the geometric definition, the configuration space defini-
tion, and the mapping class group definition for the braid group. The paper focused
on proving two properties of the braid group: the braid group is torsion-free and
the center of the braid group is infinite cyclic. The braid group has some equivalent
definitions in mathematical areas such as knot theory, polynomials, and hyperplane
complements. Thus, readers can research how the braid group is applied in these
fields and can transfer the two properties proved in this paper to these fields. The
beauty of the braid group lies in its role as a bridge between different mathematical
areas, connecting their various properties and allowing us to move freely between
them.
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