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Abstract. This paper gives a concise exposition of the Lubin–Tate defor-
mation theorem for one-dimensional commutative formal group laws of finite
height. For a perfect field of characteristic p and a height-n law, it verifies
Schlessinger’s criteria, identifies the universal deformation ring as a power-
series ring over the Witt vectors in (n−1) variables, and explains the resulting
universal deformation. As an application, it constructs the associated Morava
E-theory via Landweber exactness. An appendix reformulates the discussion
in the language of formal groups, and clarifies the compatibility of height and
deformation across the two contexts.

Contents

1. Introduction 1
2. Preliminaries 4
2.1. Heights 4
2.2. Infinitesimal Thickenings and Deformations 7
3. The Lubin–Tate Theorem 8
3.1. Statement of the Main Theorem 8
3.2. Schlessinger’s Criteria 8
3.3. Applying Schlessinger’s Criteria 11
4. The Morava E-Theory 13
Acknowledgments 16
Appendix A. Formal Groups: An Algebro-Geometric Approach 16
A.1. Functor of Points 16
A.2. Formal Groups and Their Height 17
A.3. Deformations of Formal Groups 19
References 21

1. Introduction

One of the central concepts discussed in this paper is that of formal group laws
over a commutative ring R.

Definition 1.1. Let R be a commutative ring with unit. A one–dimensional
commutative formal group law over R is a formal power series

F (x, y) ∈ R[[x, y]]
satisfying the following three axioms.
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(1) Identity: F (x, 0) = x and F (0, y) = y.
(2) Commutativity: F (x, y) = F (y, x) in R[[x, y]].
(3) Associativity: F (x, F (y, z)) = F (F (x, y), z) in R[[x, y, z]].

For simplicity, throughout this discussion we will refer to such power series as
formal group laws over R, and sometimes we write F (x, y) as x +F y. Fixing the
ring R, a morphism f : F → G, between two formal group laws F and G over R is
defined to be a single-variable power series f ∈ R[[x]] with zero constant term such
that

f(x+F y) = f(x) +G f(y).

It is straightforward to verify that formal group laws over R together with their
morphisms form a category, denoted Fgl (R), for any commutative ring R.

The notion of formal group laws was first introduced in [1] as formal analogues of
Lie groups. It provided a framework for encoding the infinitesimal behavior of Lie
groups in purely algebraic terms, making it possible to work over general coefficient
rings (not just R or C) and to apply algebraic techniques to problems in differential
geometry and number theory.

However, the power of formal group laws is not confined to the realm of Lie
groups. Two consecutive papers by J. Lubin and J. Tate established the founda-
tional role of formal group laws in both algebraic number theory and algebraic
topology.

The first paper [7] addressed a problem in number theory. Let K be a non-
Archimedean local field with ring of integers OK , maximal ideal mK , and uni-
formizer π. The paper provided an explicit construction of the totally ramified
abelian extensions of K via a formal group law over OK , now known as the Lubin–
Tate formal group law.

Consider the family of power series Fπ ⊆ K[[x]] defined by

Fπ = {f ∈ OK [[x]] : f(x) ≡ πx (mod deg 2), f(x) ≡ xq (mod π)},

where q is the cardinality of OK/mK . The formal group law is constructed from
the following key lemma, now known as the Lubin–Tate lemma.

Lemma 1.2 ([7, Lem. 1]). Let f, g ∈ Fπ, and let L(x1, . . . , xk) =
∑k

i=1 aixi ∈
OK [x1, . . . , xk] be a linear form. Then there exists a unique power series F (x1, . . . , xk) ∈
OK [[x1, . . . , xk]] such that

(1) F (x1, . . . , xk) ≡ L(x1, . . . , xk) (mod deg 2), and
(2) f(F (x1, . . . , xk)) = F (g(xk), . . . , g(xk)).

For a given g ∈ Fπ, the Lubin–Tate formal group law F = Fg ∈ OK [[x, y]]
is defined to be the one obtained by applying Lemma 1.2 to the case f = g and
L(x, y) = x+ y.

Using the Lubin–Tate lemma again, for each a ∈ OK we define [a]F [x] ∈ OK [x]
to be the unique power series satisfying

[a]F (x) ≡ ax (mod deg 2), g([a]F (x)) = [a]F (f(x)).

These so-called a-series gives a useful description of the endomorphism ring of F ,
as stated in the following theorem.

Theorem 1.3 ([7, Thm. 1]). For g ∈ Fπ, the formal group law F = Fg is the unique
formal group law over OK such that [π]F (T ) = g(T ). For every a ∈ OK , the series
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[a]F (T ) defines an endomorphism of F . Moreover, the assignment a 7→ [a]F is an
injective ring homomorphism OK → EndOK

(F ).

Once F is determined, the πn–torsion points of F are defined by

F [πn] := {x ∈ mK | [π
n]F (x) = 0 },

where mK denotes the maximal ideal of the valuation ring OK of a fixed algebraic
closure K of K. We then set

K(n)
π := K

(
F [πn]

)
,

the extension of K obtained by adjoining all πn–torsion points of F .
By construction, we have a tower of finite extensions:

K ⊂ K(1)
π ⊂ K(2)

π ⊂ · · · ,

and we write
K(∞)

π :=
⋃
n≥1

K(n)
π .

Theorem 1.4 ([7, Thm. 2]). Let F be the Lubin–Tate formal group law for a fixed
uniformizer π of K. Then:

(1) For n ≥ 1, the extension K
(n)
π /K is totally ramified of degree qn−1(q − 1).

(2) The extension K
(∞)
π /K is abelian, and its Galois group is canonically iso-

morphic to O×K via the Lubin–Tate reciprocity map, which sends a ∈ O×K
to its action on the torsion points:

a 7→
(
x 7→ [a]F (x)

)
.

(3) In particular, K(∞)
π is the maximal abelian totally ramified extension of K.

We refer readers to Chapter 5 of [12] and Chapter 7 of [2] for a clearer exposition
of this result and its further applications.

We now return to the discussion of the Lubin–Tate formal group law F ∈
Fgl (OK). We can examine its reduction to other related base rings. Let k =
OK/mK be the residue field, with ramification index e and residue degree f (so
k ∼= Fq = Fpf is a perfect field with characteristic p). Let F0 ∈ Fgl (k) be defined
by F0 = F (mod π). Then F may be regarded as a lift of F0 to OK subject to the
condition [π]F = g for some fixed power series g ∈ OK [[x]].

This leads to a natural question: are there other lifts of F0 to OK that are not
isomorphic to F? If so, how many? More generally, let k be a perfect field with
char (k) = p, and let R be a complete Noetherian local ring whose residue field is
isomorphic to k. For a fixed F0 ∈ Fgl (k), how many lifts to R exist, and how many
isomorphism classes do they form? More formally, such lifts are called deformations,
and the Lubin–Tate deformation theorem, proved in the second paper [8], provides
the answer: the number of isomorphism classes depends on an invariant named
height of F0. The larger the height of F0, the more lifts it admits. In the case of
local fields, F0 has height exactly ef , and hence there are |mK |ef−1 non-isomorphic
liftings of F0.

This paper focuses on the deformation theorem. Section 2 reviews preliminaries,
including the notion of height for formal group laws. Section 3 presents a proof of
the deformation theorem via Schlessinger’s criteria—an important tool for estab-
lishing (pro-)representability of functors on Artinian local rings. Section 4 explains
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how this theorem leads to the construction of Morava E-theory, a cornerstone
of modern chromatic homotopy theory. Finally, Appendix A introduces formal
groups—an algebro-geometric generalization of formal group laws—and shows how
their deformations reveal the moduli-theoretic structures.

2. Preliminaries

Assume we are given a field k, a formal group law F0 ∈ Fgl (k), and a local
ring R whose residue field is k. The Lubin–Tate deformation theorem determines
the number of isomorphism classes of lifts of F0 to R, but only in the case where
char(k) = p > 0. That is because the characteristic-zero case is trivial. Indeed, any
local ring whose residue field has characteristic zero is a Q-algebra, and a direct
computation yields the following proposition, which shows that there is only one
isomorphism class of formal group laws over a fixed Q-algebra.

Proposition 2.1. Let R be a Q-algebra, and let F ∈ Fgl (R). Then the formal
power series

logF (x) =

∫
dx

∂yF (x, y)|y=0
∈ R[[x]]

satisfies
logF (F (x, y)) = logF (x) + logF (y).

Consequently, logF is an isomorphism of formal group laws from F to G(x, y) =
x+ y, the additive formal group law.

In positive characteristic the situation is quite different: one introduces the no-
tion of height to distinguish isomorphism classes.

2.1. Heights. The height of a formal group laws is defined only over rings of pos-
itive characteristic. So throughout this section we fix a prime number p, a commu-
tative Fp-algebra R, and a formal group law F ∈ Fgl (R). We first introduce the
n-series of F , which plays an important role in the definition of height.

Definition 2.2. Fix F ∈ Fgl (R). For each integer n ≥ 0 define the n-series
[n]F (x) ∈ R[[x]] recursively by

[0]F (x) = 0, [n]F (x) = F ([n− 1]F (x), x) (n ≥ 1).

Remark 2.3. By induction and the three axioms of formal group laws, one checks
immediately that [n]F (F (x, y)) = F ([n]F (x), [n]F (y)), i.e. [n]F is an endomorphism
of F for every n. Moreover, since

F (x, y) = x+ y + ( terms of total degree ≥ 2),

we have [n]F (x) = nx + O(x2). Therefore, the n-series agree with the a-series
constructed from Lemma 1.2; this justifies the shared notation.

Since R is a Fp-algebra, we have p = 0 in R. Thus, the linear term of [p]F
vanishes. This yields a clean description of the p-series:

Proposition 2.4. Let R be an Fp-algebra and F ∈ Fgl (R). Then either [p]F (x) =

0, or else there exists n ≥ 0 such that [p]F (x) = f(xp
n

) with f(x) = cx+O(x2) for
some c ̸= 0.

The height of such a formal group law F can therefore be defined as follows.



THE LUBIN-TATE DEFORMATION THEOREM AND THE MORAVA E-THEORY 5

Definition 2.5. Let F be a formal group law over a commutative Fp-algebra R.
We say that F has height at least n if [p]F (x) = f(xp

n

) for some f ∈ R[[x]]. We
say that F has height exactly n if, in addition, f is invertible in R[[x]]. We say that
F has infinity height if [p]F (x) = 0.

Some tools should be introduced before the proof of Proposition 2.4. Let R[[x]]dx
be the free rank 1 R[[x]]-module on a symbol dx, whose elements are called the R[[x]]
differentials. (Actually, these are differentials over the formal spectrum Spf(R[[x]]),
whose definition will be stated in Definition 3.1 and are more thoroughly discussed
in Appendix A.) Given an R[[x]] differential g(x)dx and a formal group law F ∈
Fgl (R), we define

F ∗(g(x)dx) = g(F (x, y))

(
∂F

∂x
dx+

∂F

∂y
dy

)
∈ R[[x, y]]{dx, dy}.

We say g(x)dx is a translation invariant differential of F if

F ∗(g(x)dx) = g(x)dx+ g(y)dy.

The submodule of R[[x]] translation invariant differentials for a given F ∈
Fgl (R) is free of rank 1 over R, generated by

ωF := (∂yF (x, y)|y=0)
−1dx = (1 + a1x+ a2x

2 + · · · )dx.

It is the unique invariant differential whose constant term is 1.

Proof of Proposition 2.4. Consider a slightly more general situation. let F and F ′

be formal group laws over R, and let h ∈ xR[[x]] be a morphism F → F ′. It induces
a map

h∗ : R[[x]]dx→ R[[x]]dx, g(x)dx 7→ (g ◦ h(x))dh,
where dh = h′(x)dx is the formal derivative of h. A direct computation shows that
h∗ sends translation invariant differentials of F to translation invariant differentials
of F ′. Hence, there exists c ∈ R such that h∗ωF = cωF ′ . Writing ωF (x) = u(x)dx
and ωF ′(x) = u′(x)dx with u(0) = u′(0) = 1, we obtain

u(h(x))h′(x)dx = cu′(x)dx.

Evaluating at x = 0 gives c = h′(0), so h(x) ≡ cx (mod x2). Now take F = F ′ and
h = [p]F . Then c = [p]′F (0) = p, which is 0 in R. That implies [p]∗FωF = 0. By
construction ωF is a unit in the R[[x]]-module R[[x]]dx, so [p]∗F = 0.

Now, write [p]F (x) =
∑

i aix
i for ai ∈ R. Since [p]∗F = 0, we have iai = 0 for all

i > 0. Over an Fp-algebra every integer i not divisible by p is a unit. That implies
ai = 0 unless p | i. Consequently, there exists f1 ∈ R[[x]] with [p]F (x) = f1(x

p).
Next, let F (p) ∈ Fgl (R) denote the formal group law obtained from F by raising

every coefficient to the p-th power. This implies F (p)(xp, yp) = F (x, y)p. Therefore,
we have

F (f1(x
p), f1(y

p)) = F ([p]F (x), [p]F (y))

= [p]F (F (x, y)) = f1(F (x, y)
p) = f1(F

(p)(xp, yp)).

Since the variables are formal, this is equivalent to F (f1(x), f1(y)) = f1(F
(p)(x, y)).

We can therefore regard f1 as a morphism F (p) → F . For every n ≥ 1, as long as
the linear term of fn is zero, iterating this argument produces fn+1 ∈ R[[x]] such
that [p]F (x) = fn+1(x

pn+1

). If the process never terminates, the lowest degree term
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of [p]F (x) would have arbitrarily large degree, forcing [p]F (x) = 0. This completes
the proof. □

The following result is Lazard’s theorem, and it leads to another description of
height.

Theorem 2.6 ([6, Thm. 2]). Let A := Z[{ai,j}i,j≥1] and define

FA(x, y) = x+ y +
∑
i,j≥1

ai,j x
iyj ∈ A[[x, y]].

Let I ⊂ A be the ideal generated by the coefficients of FA(x, y) − FA(y, x) and
FA(FA(x, y), z) − FA(x, FA(y, z)). Set L := A/I and let ci,j be the images of ai,j.
Then

FLaz(x, y) = x+ y +
∑
i,j≥1

ci,j x
iyj ∈ L[[x, y]]

is a formal group law, and for every commutative ring R it gives a natural bijection

HomCRing(L,R)→ Fgl (R),

(ϕ : L→ R) 7→ ϕ∗(FLaz) =
∑
i,j

ϕ(ci,j)x
iyj ,

where CRing denotes the category of commutative rings. Moreover, L carries a
natural grading with L ∼= Z[t1, t2, . . . ], |ti| = 2i.

We call L the Lazard ring, and FLaz the universal formal group law. Let vn ∈ L be
the coefficient of xp

n

in the p-series of FLaz. For any F ∈ Fgl (R), Lazard’s theorem
associates to F a unique ring map ϕF : L → R. We set vn(F ) := ϕF (vn) ∈ R.
By construction, vn(F ) is precisely the coefficient of xp

n

in the p-series [p]F (x).
Therefore, if R is an Fp-algebra, then F ∈ Fgl (R) has height at least n if and only
if vi(F ) = 0 for all i < n. If in addition vn(F ) is invertible, then F has height
exactly n (and conversely).

Note that every formal group law has height at least 1, since the linear term of
[p]F (x) must vanish. Moreover, if F and F ′ are isomorphic formal group laws over
the same Fp-algebra R, then they have the same height. Indeed, if g ∈ R[[x]] is an
isomorphism from F to F ′, then

[p]F ′(x) = g ◦ [p]F ◦ g−1(x).

Since g is invertible, it has the form g(x) = rx+ O(x2) for some r ∈ R×. Thus, if
[p]F (x) = cxp

n

+O(xp
n+1) then [p]F ′(x) = cr1−p

n

xp
n

+O(xp
n+1), maintaining the

same height.
We end this part of discussion by presenting some examples of formal group laws

and computing their heights.

Example 2.7. Let R be any Fp-algebra. The additive formal group law Fa(x, y) =
x+ y ∈ Fgl (R) has infinite height, because [p]Fa

(x) = px = 0. The multiplicative
formal group law Fm(x, y) = x+y+xy ∈ Fgl (R) has height 1, because [p]Fm

(x) =
(1 + x)p − 1 = xp.

Example 2.8. Further classical examples arise from the Lubin–Tate lemma (Lemma
1.2). Fix an integer n ≥ 1. In the context of the lemma, we take K/Qp be the
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unique unramified extension of degree n, with ring of integers OK =W (Fpn) (here
W (−) represents the Witt vectors) and residue field Fpn . We then take

f(x) = px+ xp
n

∈ OK [[x]],

which indeed satisfies f ∈ Fπ. Apply the lemma with k = 2, L(x, y) = x+ y, and
g = f . We obtain a unique power series Fn(x, y) ∈ OK [[x, y]] such that

Fn(x, y) ≡ x+ y (mod deg ≥ 2), f(Fn(x, y)) = Fn(f(x), f(y)).

By uniqueness, Fn satisfies the three axioms of formal group laws, and its p-series
is [p]Fn = f . Reducing the coefficients modulo p yields a formal group law Hn ∈
Fgl (Fpn) with [p]Hn

(x) = xp
n

. So Hn has height exactly n; this is the Honda
formal group law of height n.

2.2. Infinitesimal Thickenings and Deformations. We now define deforma-
tions of a formal group law: informally, they record how a formal group law over a
residue field can be lifted to larger base rings.

Throughout this section, we fix k to be a field of characteristic p > 0.

Definition 2.9. An infinitesimal thickening of k is an Artinian local ringA equipped
with a surjective ring map α : A↠ k whose kernel ker(α) = mA is the unique max-
imal ideal of A.

Morphisms of infinitesimal thickenings over the same field k are local ring maps
f : A→ A′ that commute with the quotient maps to k. In this way, all infinitesimal
thickenings over k and their morphisms form a category, denoted Artk.

Definition 2.10. Let A ∈ Artk be an infinitesimal thickening, and let F0 be
a formal group law over k. A deformation of F0 over A is a formal group law
F ∈ Fgl (A) such that F ≡ F0 (mod mA).

An isomorphism of deformations F → F ′ is an isomorphism of formal group
laws f(x) : F → F ′ ∈ A[[x]] with f(x) ≡ x (mod mA). These form a groupoid
DefF0(A). Equivalently, A 7→ DefF0(A) defines a groupoid-valued functor on Artk.

The height of a formal group law over a fixed field has even stronger implications
in the context of deformations. Suppose the formal group law F0 over k has height
exactly n; then vi(F0) = 0 for all i < n. If we lift F0 to a thickening A ∈ Artk, we
may choose the parameters vi(F ) ∈ mA arbitrarily for i < n. However, we do not
have freedom on all higher coefficients vj(F ) for j ≥ n, because they must coincide
with vj(F0). Consequently, the larger the height of F0, the more free parameters a
lift possesses; in this sense, height measures the rigidity of liftings of a given formal
group law.

Before formalizing this statement in the next section, we first make an important
observation about the deformation functor: if formal group law F0 ∈ Fgl (k) has
finite height, then the functor DefF0

factors through Set.

Proposition 2.11 (see, e.g., [13, Thm. 17.15]). Let A ∈ Artk, and let F0 ∈ Fgl (k)
have finite height. Then the groupoid DefF0(A) is discrete. That is every object
has only the identity automorphism.

Therefore, when F0 has finite height we may (and will) regard DefF0 : Artk →
Set as the functor sending A to the set of isomorphism classes of F0’s deformations
over A.
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3. The Lubin–Tate Theorem

3.1. Statement of the Main Theorem. We now turn to our main topic: the
Lubin–Tate deformation theorem. This result provides a complete description of the
deformation space of a finite-height formal group. Before stating it, we introduce
one further piece of notation borrowed from algebraic geometry. A more thorough
treatment of this notion can be found in Appendix A.

Definition 3.1. Let A be a commutative ring, and I ⊆ A be an ideal. We define
a functor Spf(A) : CRing→ Set by

Spf(A)(B) = lim−→
n

HomCRing(A/I
n, B).

That is, Spf(A) maps a ring B to the collection of all ring maps A → B that
annihilate some power of I.

We call Spf(A) the formal spectrum of A. A functor F : CRing → Set is said
to be pro-representable by a ring A if F is naturally isomorphic to Spf(A).

In fact, if we equip A with the I-adic (linear) topology, whose neighborhood
basis at 0 is {In}n≥1, then there is a canonical identification

lim−→
n

HomCRing(A/I
n, B) ∼= Homcont

CRing(A,B),

where the right-hand side denotes the set of all continuous ring maps A→ B when
B is given the discrete topology.

Theorem 3.2 ([8, Thm. 3.1]). Let k be a perfect field k of characteristic p > 0,
and let F0 ∈ Fgl (k) be a formal group law of height exactly n < ∞. Then there
exists a complete local Noetherian W (k)-algebra E0 := E0(F0, k), non-canonically
isomorphic to W (k)[[u1, . . . , un−1]], that pro-represents the functor DefF0 : Artk →
Set.

More precisely, there exists a universal formal group law Funiv ∈ Fgl (E0) with
Funiv ≡ F0 (mod mE0

), which induces a natural bijection

Spf(E0)(A) ∼= DefF0
(A), f 7→ f∗(Funiv)

for every infinitesimal thickening A ∈ Artk. Here f is understood to be a local ring
map f : E0 → A.

The proof of Theorem 3.2 relies heavily on Schlessinger’s criteria, first introduced
in [17]. These criteria provide sufficient conditions for a functor on the category of
local Artinian rings to be pro-representable.

3.2. Schlessinger’s Criteria. To introduce Schlessinger’s criteria, we first set up
a relative version of the category Artk.

Definition 3.3. Let k be a field of characteristic p > 0, and let R be a local
Noetherian ring with residue field k. An R-algebra A is called an infinitesimal
thickening of k if A is an Artinian local ring and the structure map R→ A induces
an isomorphism

k ∼= R/mR
∼= A/mA.

Equivalently, A has the same residue field as R. We write ArtR for the full sub-
category of CRingR (the category of commutative R-algebras) whose objects are
infinitesimal R-algebra thickenings.
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Proposition 3.4 (Schlessinger’s criteria, [17, Thm. 2.11]). Let F : ArtR → Set
be a functor. Assume F satisfies the following properties:

(1) The functor F assigns a singleton to k.
(2) (Mayer–Vietoris property): for any pullback diagram A0 → A0,1 ← A1 in

ArtR with both maps surjective, the canonical map

F (A0 ×A0,1
A1)→ F (A0)×F (A0,1) F (A1)

is a bijection.
(3) (Formal Smoothness) For every surjection A → A′ in ArtR, the induced

map F (A)→ F (A′) is also surjective.
(4) The tangent space F (k[ϵ]/ϵ2) has finite k-dimension n <∞.

Then F is pro-representable by the formal power series ring R[[u1, . . . , un]]. Equiv-
alently, for every thickening A ∈ ArtR there is a natural isomorphism

F (A) ∼= Spf(R[[u1, . . . , un]])(A) ∼= m×nA .

For brevity, we write

k[ϵ] := k[ϵ]/ϵ2, and k[ϵ1, . . . , ϵn] := k[ϵ1, . . . , ϵi]/(ϵ1, . . . , ϵi)
2.

We observe that if F satisfies the first three properties, then F (k[ϵ]) automatically
acquires the structure of a k-vector space, which justifies the terminology tangent
space. To see this, first note that k[ϵ] is an abelian group object in CRingk,
witnessed by the addition map

k[ϵ]×k k[ϵ] ∼= k[ϵ1, ϵ2]→ k[ϵ], x+ yϵ1 + zϵ2 7→ x+ (y + z)ϵ.

Assume F satisfies the first three properties. Applying F to the map above yields
a set map

F (k[ϵ])× F (k[ϵ]) ∼= F (k[ϵ])×F (k) F (k[ϵ]) ∼= F (k[ϵ]×k k[ϵ])→ F (k[ϵ]).

Here, the condition F (k) = pt shows that the fiber product over F (k) is triv-
ial, giving the first isomorphism. The second isomorphism is guaranteed by the
Mayer–Vietoris property. Consequently, F (k[ϵ]) becomes an abelian group object.
Moreover, for each a ∈ k, we can define a scalar multiplication map

k[ϵ]→ k[ϵ], x+ yϵ→ x+ ayϵ.

It is immediate to check that these two maps endow F (k[ϵ]) with the structure of
a k-vector space.

We are now prepared to prove Schlessinger’s criteria.

Proof. We begin by constructing a natural transformation Spf(R[[u1, . . . , un]]) →
F . For simplicity, write R[[u]] := R[[u1, . . . , un]], and let n = (m, u1, . . . , un) denote
its unique maximal ideal. By Yoneda’s lemma, after passing to inverse limits, giving
such a natural transformation is equivalent to choosing a distinguished element
ā ∈ lim←−i

F (R[[u]]/ni). To produce this element, consider the surjective local R-
algebra map

ϕ : R[[u]]→ k[ϵ1, . . . , ϵn], ui 7→ ϵi (1 ≤ i ≤ n).
Since (ϵ1, . . . , ϵn)

2 = 0, we have ϕ(n2) = 0, and therefore ϕ(ni) = 0 for all i ≥ 2.
Hence, ϕ is continuous with respect to the n-adic topology and induces a compatible
system of surjections

. . .→ R[[u]]/n3 → R[[u]]/n2 → k[ϵ1, · · · , ϵn].
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By the formal smoothness of F , applying F to this tower yields another sequence
of surjections

· · · → F (R[[u]]/n3)→ F (R[[u]]/n2)→ F (k[ϵ1, . . . , ϵn]).

Now, choose a k-basis {a1, . . . , an} of F (k[ϵ]) and set

a = (a1, . . . , an) ∈ F (k[ϵ1, . . . , ϵn]) ∼= F (k[ϵ]×k · · · ×k k[ϵ]) ∼= F (k[ϵ])×n.

We can then lift a inductively to obtain an element ā ∈ lim←−i
F (R[[u]]/ni). The

induced natural transformation is

Spf(R[[u]])(A)→ F (A), (f : R[[u]]→ A) 7→ F (f)(ā),

for any thickening A ∈ ArtR.
The second step is to show that the natural transformation Spf(R[[u]]) → F

just constructed induces an isomorphism on tangent spaces. The tangent space of
Spf(R[[u]]) is

Spf(R[[u]])(k[ϵ]) ∼= Homcont(R[[u]], k[ϵ]) ∼= (ϵ)×n, via
(f : R[[u]]→ k[ϵ]) 7→ (f(u1), . . . , f(un)).

For each 1 ≤ i ≤ n, define local R-algebra maps σi : R[[u]] → k[ϵ] by ui 7→ ϵ and
uj 7→ 0 for j ̸= i. Then {σ1, . . . , σn} is a k-basis of Spf(R[[u]])(k[ϵ]). Moreover,
under the induced map on tangent spaces each σi is mapped to F (σi)(ā) = ai ∈
F (k[ϵ]). Thus, a basis of Spf(R[[u]])(k[ϵ]) maps to a basis of F (k[ϵ]), and the tangent
spaces are indeed isomorphic.

For the third step, we consider functors F and G, both satisfying the four
properties of Schlessinger’s criteria. We claim that any natural transformation
ϕ : F → G is in fact a natural isomorphism. More precisely, our goal is to show
that ϕA : F (A) → G(A) is an isomorphism for all A ∈ ArtR. We establish this
claim by induction on length(A). The base case length(A) = 1 is immediate,
since in this case A = k, and the map F (k) → G(k) must be a bijection because
F (k) = pt = G(k).

For the inductive step, take A ∈ ArtR with length(A) = n > 1. Because A
is Artinian, there exists a nonzero element x ∈ A that annihilates mA. In the
commutative square

F (A)
ϕA //

��

G(A)

��
F (A/x)

ϕA/x

// G(A/x)

the map ϕA/x is an isomorphism by the induction hypothesis, since length(A/x) <
n. As F and G are formally smooth, the two vertical arrows are surjective. There-
fore, it suffices to show that the fibers of F (A)→ F (A/x) are carried bijectively to
the fibers of G(A)→ G(A/x). To see this, consider the action map

α : k[ϵ]×k A→ A, (ã+ bϵ, a) 7→ a+ bx,

where ã denotes the image of a under the quotient A → A/mA
∼= k. Applying F

on α yields an action of the tangent space F (k[ϵ]) on F (A):

αF : F (k[ϵ])× F (A) ∼= F (k[ϵ]×k A)→ F (A).
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Composing α with the quotient A→ A/x gives the map (ã+ bϵ, a) 7→ a. Therefore,
the action αF preserves the image in F (A/x); thus F (k[ϵ]) acts only on the fibers
of F (A) → F (A/x). We claim that this action is free and transitive, i.e., F (A)
is a F (k[ϵ])-torsor over F (A/x). With the trivial F (k[ϵ])-action on F (A/x), the
surjection F (A)→ F (A/x) is F (k[ϵ])-equivariant, hence it suffices to show that αF

induces an isomorphism

F (k[ϵ])× F (A) ∼= F (A)×F (A/x) F (A).

The Mayer–Vietoris property of F yields a pullback diagram

F (A×A/x A) //

��

F (A)

��
F (A) // F (A/x)

Since x annihilates mA, there is an isomorphism

k[ϵ]×k A ∼= A×A/x A, (ã+ bϵ, a) 7→ (a+ bx, a).

Applying F to this, we obtain

F (A×A/x A) ∼= F (k[ϵ]×k A) ∼= F (k[ϵ])× F (A).
Putting the right-hand side into the pullback diagram, we finally get the desired
isomorphism F (k[ϵ])× F (A) ∼= F (A)×F (A/x) F (A).

An identical argument shows that G(A) → G(A/x) is a G(k[ϵ])-torsor. Recall
that the tangent spaces of F and G are both isomorphic to the tangent space
of Spf(R[[u]]); in particular, they are naturally isomorphic to each other. Hence,
ϕA : F (A) → G(A) is a map of torsors with isomorphic structure groups, and the
base map F (A/x)→ G(A/x) is a bijection. It follows that ϕA is a bijection. This
completes the proof. □

3.3. Applying Schlessinger’s Criteria. To apply Schlessinger’s criteria to the
functor DefF0

: Artk → Set, we first choose a complete local Noetherian ring R
with residue field k, and relate the category Artk to ArtR. When k is perfect,
there is a canonical choice, namely the ring of Witt vectors W (k).

Proposition 3.5. Let k be a perfect field of characteristic p > 0. For any A ∈
Artk, there exists a unique ring map W (k) → A compatible with the natural pro-
jections to k. Hence, the forgetful functor ArtW (k) → Artk is an equivalence of
categories.

Proof. Since k has characteristic p, each A ∈ Artk is a p-complete local ring. The
existence and uniqueness of the map W (k) → A then follow from Proposition 10
and Theorem 5 in [18, §2.5]. □

With R =W (k), we can verify that the functor DefF0
: ArtW (k) → Set satisfies

Schlessinger’s four conditions.

Proof. To begin, DefF0
(k) = pt, since the only deformation of F0 over k is F0 itself.

To prove the Mayer–Vietoris property, let A0 → A0,1 and A1 → A0,1 be surjec-
tions in ArtW (k). Let L be the Lazard ring. By Lazard’s theorem, every formal
group law F over A0 ×A0,1 A1 is classified by a ring map ϕF : L→ A0 ×A0,1 A1. If
F is a deformation of F0, then composing ϕF with the projection map to k yields
a ring map L→ k corresponding to F0. This condition is equivalent to giving ring
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maps L → A0 and L → A1 that agree on A0,1, and that both reduce to F0 after
composing with projections to k. Equivalently, it amounts to choosing deformations
of F0 over A0 and A1 whose restriction to A0,1 coincide. By Proposition 2.11, this
correspondence passes through isomorphism classes, and hence yields a bijection

DefF0
(A0 ×A0,1

A1) ∼= DefF0
(A0)×DefF0

(A0,1) DefF0
(A1).

This is exactly what we need.
To prove the formal smoothness condition, let A → A′ be a surjection in

ArtW (k). Every deformation of F0 over A′ is classified by a ring map L → A′.
Because A→ A′ is surjective, this map lifts to L→ A, which corresponds to a de-
formation of F0 over A. Hence, the set map DefF0

(A)→ DefF0
(A′) is surjective.

Finally, we show that the tangent space DefF0(k[ϵ]) is a k-vector space of dimen-
sion n− 1 when F0 ∈ Fgl (k) has height exactly n. Fix a deformation F of F0 over
k[ϵ], We know F ≡ F0 (mod ϵ). Since the height of F0 is n, we have vi(F0) = 0 for
all i < n. It follows that

vi(F ) = aiϵ (ai ∈ k, i < n).

We claim that isomorphic deformations determine the same coefficients ai. In-
deed, if F and F ′ are isomorphic deformations over k[ϵ], then there exists an iso-
morphism of formal group laws ϕ : F → F ′ with ϕ ∈ k[ϵ][[x]] of the form of
ϕ(x) = x + a(x)ϵ. As a power series, ϕ has an inverse ψ(x) = x − a(x)ϵ under
composition, since for any δ ∈ k[ϵ][[x]] with δ2 = 0 the first-order Taylor expansion
gives

a(x+ δ) = a(x) + a′(x)δ,

where a′ is the formal derivative of a. Taking δ = ±a(x)ϵ shows ψ ◦ϕ = ϕ ◦ψ = id.
Consequently, the p-series satisfy

[p]F ′(x) = ϕ ◦ [p]F ◦ ψ(x).

Moreover, we know [p]F (x) ≡ [p]F0
(x) (mod ϵ). So if we write [p]F (x) =

∑
cix

pi

,
then ci are divisible by ϵ for all i < n. Since ϵ2 = 0, we compute

ϕ ◦ [p]F ◦ ψ(x) =
∑
i

ci(x− a(x)ϵ)p
i

+ a

(∑
i

ci(x− a(x)ϵ)p
i

)
ϵ

=
∑
i

cix
pi

+ a

(∑
i

cix
pi

)
ϵ.

In the last term on the right-hand side, all contributions with i < n vanish, since
ciϵ ∈ (ϵ2) = 0. Consequently, [p]F ≡ [p]F ′ (mod xp

n

), and in particular vi(F ) =
vi(F

′) for all i < n. Therefore, we obtain a well-defined map

Φ : DefF0
(k[ϵ])→ kn−1, F 7→ (a0 = p, a1, . . . , an−1).

Observe that the map constructed above is a map of k-vector spaces. Indeed, as
in Schlessinger’s criteria, the sum of two (isomorphism classes of) deformations F1

and F2 over k[ϵ] is induced by the composite

L→ k[ϵ]×k k[ϵ] ∼= k[ϵ1, ϵ2]→ k[ϵ],

where the last arrow is the addition map x+yϵ1+ zϵ2 7→ x+(y+ z)ϵ. That implies
vi(F1 + F2) = vi(F1) + vi(F2). So Φ is a map of abelian groups. The k-linearity is
similar: for a ∈ k, scalar multiplication of a deformation F1 is induced by

L→ k[ϵ]→ k[ϵ],
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with the second arrow given by x+ yϵ 7→ x+ ayϵ. Therefore vi(aF1) = avi(F1). It
follows that Φ is k-linear.

Finally, we show that Φ is a bijection. For surjectivity, recall that the Lazard ring
L is graded and is (non-canonically) isomorphic to L ∼= Z[t1, t2, . . .] with |ti| = 2i.
Let I ⊆ L be the ideal of positive-degree elements. We may choose generators
ti ∈ L, each homogeneous of degree 2i, so that each ti lifts any chosen generator
of the graded piece (I/I2)2i. In particular, we may take tpi−1 = vi for every i > 0.
Since these classes generate L, their images under a ring map L → k[ϵ] can be
prescribed freely. Thus, for any choice of a1, . . . , an−1 ∈ k, define a map L → k[ϵ]
by sending vi 7→ aiϵ for 0 < i < n and vi 7→ vi(F0) for i ≥ n. This yields a
deformation realizing the prescribed coefficients, so Φ is surjective.

To prove injectivity, let F ∈ ker(Φ). That means vi(F ) = 0 for all i < n. It
suffices to show that F is isomorphic to the trivial deformation of F0 over k[ϵ],
which we again denote by F0. Any isomorphism ϕ : F → F0 is given by a power
series with some compatibility conditions. Accordingly, define

AF,F0
=

k[ϵ][b0, b1, . . .]

{compatibility conditions}
to be the k[ϵ]-algebra representing such isomorphisms: giving an isomorphism ϕ :
F → F0 is equivalent to giving a map θ : AF,F0

→ k[ϵ], and the coefficients of ϕ are
the images θ(bi). Since both F and F0 have height exactly n, a technical result in
the theory of formal group laws (see, e.g., [13, Thm. 15.2]) shows that AF,F0 is a
filtered colimit of finite étale k[ϵ]-algebras; in particular, AF,F0 is formally étale over
k[ϵ]. Therefore, as indicated in the diagram below, every isomorphism ϕ : F → F0

corresponds to a lift AF,F0
→ k[ϵ] of the map classifying the identity of F0 over k.

AF,F0

ĩd //

""

k

k[ϵ]

ϕ

OO

id
// k[ϵ]

OO

Such a lift exists because of the formally étale property of AF,F0
. Therefore, we

know F ∼= F0. That completes the whole proof. □

From the proof of Schlessinger’s criteria, we can now describe the construction
of the universal formal group law Funiv ∈ Fgl (E0). Recall that DefF0

(k[ϵ]) is a
(n − 1)-dimensional k-vector space. For each 0 < i < n, choose Fi ∈ DefF0

(k[ϵ])
such that vi(Fi) = ϵ and vj(Fi) = 0 for all j ̸= i, j < n. Since each Fi is a
deformation, we have vj(Fi) = vj(F0) for all j ≥ n. The tuple F = (F1, . . . , Fn−1)
thereby defines a deformation of F0 over k[ϵ]×kn−1 ∼= k[ϵ1, . . . , ϵn−1]. Under the
natural map

E0 =W (k)[[u1, . . . , un−1]]→ k[ϵ1, . . . ϵn−1], ui 7→ ϵi,

any formal group law over E0 lifting F can serve as the universal formal group law.
Equivalently, we require vi(Funiv) = ui for all 0 < i < n.

4. The Morava E-Theory

Fix a perfect field k of characteristic p and a formal group law F0 ∈ Fgl (k)
of height exactly n. From the Lubin–Tate ring E0 = E0(F0, k) we construct the
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Morava E-theory, a cohomology theory central to chromatic homotopy theory. This
section carries out that construction, beginning with a brief review of the relation-
ship between spectra and formal group laws.

Definition 4.1. Let E be a commutative ring spectrum. A complex orientation of
E is a distinguished class xE ∈ Ẽ2(CP∞) whose restriction to

Ẽ(CP 1) ∼= Ẽ(S2) ∼= π0(E)

is the unit 1. Here CPn denotes the n-dimensional complex projective space. We
call a spectrum E complex orientable if it admits a complex orientation.

Proposition 4.2 ([15, Lem. 4.1.4]). Let E be a spectrum with complex orientation
xE. Then there are isomorphisms

E∗(CP∞) ∼= E∗(pt)[[xE ]] and E∗(CP∞ × CP∞) ∼= E∗(pt)[[xE ⊗ 1, 1⊗ xE ]].
Moreover, let t : CP∞ × CP∞ → CP∞ be the map corresponding to the tensor
product of complex line bundles. The power series FE ∈ E∗(pt)[[x, y]] defined by

t∗(xE) = FE(xE ⊗ 1, 1⊗ xE)
is a formal group law over E∗(pt).

This proposition shows that every complex orientation determines a formal group
law. As basic example, consider the integral Eilenberg–Mac Lane spectrum HZ.
The usual generator of HZ2(CP∞) is a complex orientation of HZ, and the asso-
ciated formal group law is the additive law F (x, y) = x+ y over Z.

Another example arises from the complex cobordism spectrum MU. Construct
MU from the Thom spaces MU(n) of complex vector bundles over BU(n), the
classifying space of the unitary group U(n) (see, e.g., [15, §4.1]). The composite

CP∞ = BU(1)
≃−→ MU(1)→ MU

determines a complex orientation xMU ∈ MU2(CP∞). Quillen proved that the
corresponding formal group law is the universal formal group law.

Theorem 4.3 ([14, Thm. 2]). The formal group law FMU ∈ Fgl (MU∗(pt)) induced
by xMU corresponds, by Lazard’s theorem, to a ring map θ : L → MU∗(pt). This
map θ is an isomorphism. Under this identification, FMU is the universal formal
group law FLaz ∈ Fgl (L).

By Quillen’s theorem, specifying a complex orientation on a spectrum E induces
a ring map MU∗(pt) ∼= L → E∗(pt), which classifies the associated formal group
law. However, the converse does not hold in general: a formal group law over E∗(pt)
need not arise from a complex orientation of E. The Landweber exact functor
theorem gives a precise algebraic criterion for when such a realization exists.

Definition 4.4. Let R be a commutative ring and M be an R-module. A sequence
of elements r0, r1, , r2, . . . ∈ R is regular for M if r0 is a non-zero-divisor on M , and
for each i ≥ 1 the element ri is a non-zero-divisor on M/(r0, . . . , ri−1)M .

Theorem 4.5 (Landweber Exact Functor Theorem; see, e.g., [16, Thm. B.6.2]).
Let M be a module over the Lazard ring L. If, for each prime p, the sequence
v0 = p, v1, v2, . . . is regular on M , then M determines a homology theory E∗ given
by

E∗(X) = MU∗(X)⊗L M.
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If an L-module M satisfies the hypothesis of Theorem 4.5, we say that M is
Landweber exact. By Lazard’s theorem, every formal group law F over a commu-
tative ring R induces a ring map L→ R. Viewing R as an L-module via this map,
we say that F is Landweber exact if the L-module R is Landweber exact.

For every Landweber exact formal group law F over E∗, Theorem 4.5 gives
a homology theory E∗(−). By Brown’s representability theorem, there exists a
spectrum E with π∗(E) = E∗ and E∗(X) ∼= π∗(E∧X) for all spectra X. Therefore,
E is a complex orientable spectrum, with an orientation given by the image of xMU

under the canonical map MU→ E.

Proposition 4.6. Let k be a perfect field of characteristic p > 0, and let F0 ∈
Fgl (k) have height exactly n. Form the graded ring

E(n)∗ := E0[β
±1] ∼=W (k)[u1, . . . , un−1][β

±1],

where E0 = E0(F, k) and |β| = 2. Define a formal group law F ∈ Fgl (E(n)∗) from
the universal one Funiv ∈ Fgl (E0) by prescribing

vi(F ) = vi(Funiv)β
i

for all i ≥ 0. Then F is Landweber exact.

Proof. For every prime number q ̸= p, the Landweber conditions are vacuous.
Indeed, E0 is p-local, so q is a unit in E0 (and hence in E(n)∗), whence q is not
a zero divisor and E(n)∗/q = 0. The remaining checks over E(n)∗/q are therefore
automatic.

It remains to show that the sequence v0 = p, v1, v2, . . . is regular on E(n)∗. Since
W (k) is a domain, the polynomial extension E(n)∗ over W (k) is also a domain. In
particular, v0 = p ̸= 0 is not a zero-divisor. By our analysis of Funiv in the end of
Section 3, the map L→ E(n)∗ determined by F sends

vi 7→ uiβ
i (0 < i < n), and vn 7→ vn(F0)β

n.

Therefore, vi is not a zero-divisor in the domain E(n)∗/(v0, . . . vi−1) ∼= k[ui, . . . , un−1][β
±1]

for all 0 < i < n. The element vn is not a zero divisor in E(n)∗/(v0, . . . , vn−1) ∼=
k[β±1], because F0 has height n implies vn(F0) ̸= 0. Finally, E(n)∗/(v0, . . . , vn) ∼= 0
implies that all the vj ’s for j > n are trivially non-zero-divisors. This completes
the proof. □

Proposition 4.6 therefore yields a homology theory E(n)∗(−) with coefficient
ring E(n)∗, and a complex orientable spectrum E(n) representing it. From E(n)
we obtain the associated cohomology theory

E(n)∗(X) := [X,E(n)]∗.

This is the Morava E-theory.
The Morava E-theory and its associated spectrum are important in several re-

spects. First, it is even-periodic and complex-orientable by construction. Another
notable feature is that it admits a canonical structure as an E∞-ring spectrum.

Theorem 4.7 (Goerss-Hopkins-Miller, [4, Cor. 7.6]). The Lubin-Tate spectrum
E(n) admits a unique E∞ ring structure compatible with the ring structure on its
homotopy groups.
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An E∞-ring spectrum is a spectrum with a multiplication that is commutative
and associative up to all higher coherences, providing the strongest form of multi-
plicative structure available in homotopy theory. This endows E(n) with powerful
multiplicative and equivariant properties, making it possible to import methods
from algebraic geometry and deformation theory into stable homotopy theory. See
[10] for an introduction to E∞-ring spectra in the original operadic framework. For
the recognition and comparison results that identify E∞-ring spectra with honest
commutative ring spectra—i.e. commutative monoids in any symmetric monoidal
category of spectra—and for the machine that constructs these from space-level
data, see [11]. For an ∞-categorical account, see [9, Ch. 7].
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Appendix A. Formal Groups: An Algebro-Geometric Approach

In modern chromatic homotopy theory, formal group laws are typically studied
within an algebro-geometric framework. Many results—such as the Landweber
exact functor theorem and the theory of the Morava stabilizer group—admit natural
reinterpretations in this setting (see, e.g., [13, §16, 19]). More specifically, every one-
dimensional commutative formal group law over a ring R corresponds to a formal
group, which is an abelian group object in ShvR, the category of étale sheaves
over SpecR. The collection of all such formal groups assembles into the moduli
stack of formal groups, denotedMFG. This stack plays a central role in chromatic
homotopy theory: its geometry governs localization and periodicity phenomena for
spectra.

A.1. Functor of Points. The language of formal groups is most naturally intro-
duced after adopting the functor-of-points viewpoint on sheaves and schemes. We
briefly introduce this perspective, assuming familiarity with the classical definition
of schemes as locally ringed spaces; see [5] and [3] for background.

Let Sch denotes the category of schemes. Intuitively, the functor of points of a
scheme X is the functor

hX : Schop → Set,

which sends a scheme Y to hX(Y ) = HomSch(Y,X), and a morphism f : Y → Z
to the set map hX(Z)→ hX(Y ) given by pre-composition with f . The assignment

h : Sch→ Fun(Schop,Set), X 7→ hX

is the Yoneda embedding: it is fully faithful and identifies Sch with the full subcat-
egory of representable functors. Using the canonical identification of affine schemes
AffSchop ∼= CRing, one obtains an even cleaner description.
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Proposition A.1 (Proposition 6.2, [3]). The restriction of the functor of points to
affine schemes determines a scheme. Equivalently, the functor

h′ : Sch→ Fun(AffSchop,Set) ∼= Fun(CRing,Set), X 7→ hX |AffSch

is fully faithful.

An identical construction applies to schemes over Spec(R) for a fixed commu-
tative ring R, yielding a functor h′ : SchR → Fun(CRingR,Set), where CRingR

denotes the category of commutative R-algebras.
Therefore, we can redefine schemes by their functor of points—namely, as certain

functors CRing→ Set. We make this explicit as follows.

Definition A.2. An étale sheaf is a functor X : CRing→ Set that satisfies étale
descent. Explicitly, for any finite collection of étale ring maps {A → Bi}ni=1 such
that A→

∏
Bi is faithfully flat, the diagram

X(A)→
n∏

i=1

X(Bi) ⇒
n∏

i,j=1

X(Bi ⊗A Bj)

is an equalizer.

Example A.3. Let A be a commutative ring. The affine scheme Spec(A) is the
étale sheaf Spec(A) : CRing→ Set given by

Spec(A)(B) = HomCRing(A,B).

In general, an affine scheme is an étale sheaf that is isomorphic (as a functor)
to one arising in this way. A scheme is an étale sheaf that is Zariski-locally affine
(i.e., it admits a Zariski cover by affine schemes).

Let A be a commutative ring and I ⊆ A an ideal. The formal spectrum Spf(A)
with respect to I (Definition 3.1) is also an étale sheaf. An affine formal scheme is
a sheaf isomorphic to such a formal spectrum.

A final note is that the same constructions work over a fixed base Spec(R): we
define étale sheaves, affine schemes, general schemes, and affine formal schemes over
Spec(R) via functors CRingR → Set.

A.2. Formal Groups and Their Height. We are now ready to define the notion
of a formal group.

Definition A.4. Let R be a commutative ring, and F ∈ R[[x, y]] a formal group
law. The associated formal group is the abelian group object GF : CRingR → Ab
in ShvR, defined on an R-algebra B by

GF (B) = Nil(B),

the set of nilpotent elements of B. The abelian group structure is given by

(b1, b2) 7→ F (b1, b2) = b1 +F b2.

Proposition A.5. For any formal group law F ∈ R[[x, y]] and any commutative
R-algebra B, the operation +F makes Nil(B) into a well-defined abelian group.

Proof. First, b1 +F b2 is always well-defined: since b1, b2 are nilpotent, the power
series F (b1, b2) involves only finitely many nonzero terms. It remains to show that
every b ∈ Nil(B) has an inverse.



18 ZE FAN

We argue by induction on the least integer n such that bn = 0. The base case
n = 1 is trivial, since then b = 0 already has an inverse. Suppose n > 1. The
expansion

x+F y = x+ y + (higher order terms)
implies b+F (−b) = b+(−b)+ b2x = b2x for some x ∈ B. By induction hypothesis,
(b2x)n−1 = 0 ensures the existence of some a ∈ Nil(B) with b2x +F a = 0. So
−b+F a is an inverse of b. This completes the proof. □

We also note that, as an étale sheaf, GF : CRingR → Set is an affine formal
scheme: GF

∼= Spf(R[[x]]), where for the right-hand side we take the associated
ideal to be the unique maximal ideal (x) ⊆ R[[x]].

Definition A.6. Let R be a commutative ring. A formal group over Spec(R) is
an abelian group object G : CRingR → Ab in the category ShvR that is Zariski-
locally of the form GF for some formal group law F .

Concretely, G is a formal group if there exists elements f1, . . . , fn ∈ R generating
the unit ideal such that, for each i, the restriction of G to CRingRfi

is isomorphic
to GFi

for some Fi ∈ Fgl (Rfi).

Formal groups also have a notion of height, compatible with the height of formal
group laws, as described below. For brevity, we fix a prime number p, a commutative
Fp-algebra R, and a formal group G : CRingR → Ab over Spec(R).

Recall the Frobenius endomorphism Frob : R → R given by Frob(r) = rp. It
induces an étale sheaf map Frob : Spec(R) → Spec(R) by pre-composition. We
therefore define the Frobenius twist G(1) of G to be the pullback of G along the
Frobenius sheaf map, i.e.

G FrobG

##

��

FrobG/R

##
G(1) //

��

G

π

��
Spec(R)

Frob
// Spec(R)

Concretely speaking, for an R-algebra structure α : R→ A, we have

G(1)(A,α) = {(g, β) : g ∈ G(A,α), π(g) = β ◦ Frob} = G(A,α ◦ Frob).

Therefore, G(1) is again an abelian group object; in particular, it is a formal
group. If G is coordinatizable, i.e. G ∼= GF for some formal group law F (x, y) =∑
ci,jx

iyj ∈ Fgl (R), then G(1) ∼= GF ′ is also coordinatizable, with F ′ ∈ Fgl (R)
defined by F ′(x, y) = cpi,jx

iyj .
Since G is an étale sheaf over Spec(R), it can be expressed as a filtered colimit of

affine schemes Spec(Aα), where each Aα is an R-algebra. Because every Aα carries
the Frobenius endomorphism, each Spec(Aα) admits a Frobenius endomorphism
over Spec(R). Passing to the colimit yields an induced map of étale sheaves FrobG :
G → G over Spec(R). By the universal property of pullback, we then obtain a
canonical morphism of formal groups FrobG/R : G → G(1), as the diagram above
shows. We call it the relative Frobenius map. If, moreover, the formal group
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G ∼= GF is coordinatizable, this map corresponds to the morphism of formal group
laws ϕ : F → F ′ given by ϕ(x) = xp.

Definition A.7. Let G be a formal group over Spec(R). We say that G has height
at least n if the multiplication by p map p : G → G factors through the n-fold
relative Frobenius:

G
Frobn

G/R //

p
$$

G(n)

��
G

We say that G has height exactly n if it has height at least n, and the induced map
G(n) → G is an isomorphism. We say that G has infinity height if it has height at
least n for every positive integer n.

The notion of height admits a more concrete description when the formal group
is coordinatizable. Suppose G ∼= GF for some formal group law F ∈ Fgl (R). In
this case, the multiplication-by-p map corresponds, in coordinates, to the p-series
[p]F (x) ∈ R[[x]] Using the canonical identification GF

∼= Spf(R[[x]]) (as sheaves),
the diagram in Definition A.7 becomes

R[[x]] R[[x]]
xpn← [xoo

R[[x]]

g

OO

[p]F

cc

It follows that GF has height at least n if and only if [p]F (x) = g(xp
n

) for some
power series g ∈ R[[x]], and it has height exactly n if and only if in addition g is
invertible. This agrees with the usual definition of height of a formal group law.

A.3. Deformations of Formal Groups. Finally, we define deformations of for-
mal groups, and show that the Lubin-Tate deformation theorem applies to formal
groups as well.

Throughout this section, we fix a field k of characteristic p > 0.

Definition A.8. Let A ∈ Artk be an infinitesimal thickening, and let G0 be a
formal group over Spec(k). A deformation of G0 over A is a formal group G over
Spec(A) together with an isomorphism of formal groups over Spec(k)

ϕG : G×Spec(A) Spec(k)→ G0.

An isomorphism of deformations (G, ϕG)→ (G′, ϕG′) is an isomorphism of formal
groups f : G→ G′ such that the diagram

G×Spec(A) Spec(k)

ϕG
''

f∗ // G′ ×Spec(A) Spec(k)

ϕG′
ww

G0

commutes. For a fixed thickening A, the deformations of G0 over A and their
isomorphisms form a groupoid, which we denote by DefG0

(A).
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There are two important observations. First, since both the field k and the thick-
ening A ∈ Artk are local, every formal group over either base is coordinatizable.
Indeed, let G be a formal group over A. Choosing elements a1, . . . , an ∈ A generat-
ing the unit ideal such that each restriction G|Spec(Aai

) is coordinatizable. Because
A is local, some ai is invertible; hence Spec(Ai) = Spec(A), and therefore G itself
is coordinatizable. The same argument applies to formal groups over Spec(k).

Second, the deformation theories defined via coordinates and via formal groups
agree.

Proposition A.9. Let A ∈ Artk, F0 ∈ Fgl (k), and let G0 = GF0
be the corre-

sponding formal group over Spec(k). Then the groupoids DefF0
(A) and DefG0

(A)
are equivalent.

Proof. We show that the functor
DefF0

(A)→ DefG0
(A)

F 7→ (GF , id : GF ×Spec(A) Spec(k) = G0 → G0)

gives an equivalence of categories.
To show that it is fully faithful, it suffices to exhibit a bijection

HomDefF0
(A)(F, F

′) ∼= Hom DefG0
(A)((GF , id), (GF ′ , id))

for any two deformations F, F ′ ∈ DefF0(A). This is possible because each isomor-
phism f : GF → GF ′ is associated to an induced map f∗ by Definition A.8, and f∗
commutes with the identity map id : GF ×Spec(A) Spec(k) = G0 → G0. Identifying
G0
∼= Spf(k[[x]]), we see that as a power series f∗(x) is the identity id = x ∈ k[[x]].

That happens if and only if f(x) ≡ x (mod mA), which is exactly the defining
condition for an isomorphism in DefF0

(A).
It remains to prove essential surjectivity. Given any (G, ϕ) ∈ DefG0

(A), we must
produce a formal group law F ∈ DefF0

(A) and an isomorphism of deformations
(G, ϕ)→ (GF , id). Since A is local, G is coordinatizable: there exists F ′ ∈ Fgl (A)
with G ∼= GF ′ . Under this coordinate, ϕ is an isomorphism of formal group laws
ϕ : F ′ mod mA → F0, hence a power series in k[[x]]. Choose a lift ϕ̃ ∈ A[[x]] along
the surjection α : A→ k. Define F = ϕ̃ ◦ F ′ ◦ ϕ̃−1. Then

F mod mA = ϕ ◦ (F mod mA) ◦ ϕ−1 = F0,

so F ∈ DefF0
(A). Since the isomorphism of formal groups ϕ̃ : G→ GF makes the

diagram

G×Spec(A) Spec(k)

ϕ
''

ϕ̃∗=ϕ // GF ′ ×Spec(A) Spec(k)

id
ww

G0

commute, ϕ̃ indeed induces an isomorphism of deformations (G, ϕ) → (GF , id).
This completes the proof. □

Therefore, working with deformations of formal group laws or with deforma-
tions of formal groups themselves is essentially the same problem: results estab-
lished in one framework immediately translate into the other. So Theorem 3.2 can
be interpreted as a description of the geometric structure of infinitesimal formal
neighborhoods of the height-n stratification of MFG.
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