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Abstract. This expository paper develops the theory behind Schramm-Loewner

Evolutions. While this paper states and proves major results regarding SLEs,

its primary goal is to provide an intuitive presentation of the subject. Sto-
chastic theory and complex analysis knowledge is required, but the necessary

theory of conformal mapping distortions is given in the appendix.
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1. Motivation and Introduction

Consider a drunkard’s walk in downtown Chicago. At every intersection, the
drunk has an equal chance of veering towards any direction. The twist in this
random walk is that whenever the drunkard goes in a loop, he is able to go back
in time to when the loop started. He performs this Loop Erased Random Walk
(LERW) away from the lake until he gets tired. The results of his journey around
Chicago are shown in Figure 1, where we scale his journey to include more and
more intersections. He keeps doing this scaling up to infinity. Will he ever make
it back to the lake? Is there a continuous curve he limits towards? What kind
of (mathematical) object is this limit? What are the chances he makes it home?1

The study of the Schramm-Loewner Evolution (SLE) seeks to answer this drunken
Chicagoan.

Much like this drunk, the mathematical narrative to building these SLEs will
take us on a loop. There will be two stories in the narrative. First, the pedagogical
one. Here, we conveniently start with a curve γ in the upper half plane H. This
curve gives rise to a family of sets—denoted by (Kt)—which are attached to the
real axis. For each such Kt, the Riemann Mapping Theorem2 will assure us of

1Low.
2See [1] or any complex analysis textbook for the statement and a proof of this classic result.
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Figure 1. Loop Erased Random Walks

the existence of a unique conformal map gt : H \ Kt → H. Placing just a few
conditions on the Kt will yield the flow of how the maps gt change over time, with
its evolution governed by the Loewner differential equation, which itself is driven by
some continuous function Ut. Placing two more assumptions on this evolution will
result in the gt being directed by

√
κBt in place of the Ut, where Bt is a standard

Brownian motion and κ > 0. This story is interesting in its own right, but it ends
here, which is why this paper concentrates more on the second story.

The second story begins with a parameter κ > 0, a standard Brownian motion,
and the conformal maps gt which satisfy the Loewner differential equation. It is
these gt which are called the Schramm-Loewner Evolutions, and we’ll see that they
give rise to the family (Kt) we will now call the SLE chains. A very deep theorem
will see us proving that the evolutions are generated by curves γ. Indeed, it will
be these continuous curves we will most be interested in. Among other things, we
will see that the κ parameter controls how wild the curve will be, how the curves
are the scaling limits of various critical models (the drunkard will see his loopy
race LERW converging towards an SLE2 path), and how distortion estimates are
important tools in all these results.

The map for both of these stories (the blue arrows being for the first story and
the red being for the latter) — as well as for the paper as a whole — is given by
Figure 2.
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Figure 2. The Mathematical Narrative of SLE

2. Preliminaries

For the rest of the paper, we denote H to be the upper half plane.

Definition 2.1. We define K to be a compact H−hull if K = K ∩H and H \K is
simply connected.

Example 2.2. The recurring example for this section will be the family of growing
vertical slits in the upper half plane given by the compact H−hulls Kt = [0, 2i

√
t].

Note that for each time t ≥ 0, H \ [0, 2i
√
t] is simply connected.

Proposition 2.3. Suppose K is a compact H−hull. Then there exists a unique
conformal map gK : H \K → H such that |gK(z)− z| → 0 as z → ∞ which admits
the Laurent expansion

gK(z) = z +
c1
z

+O(z−2),(2.4)

where c1, c2, . . . ,∈ R.

Proof. (Existence) Define the set D := {− 1
z | z ∈ H\K}. By the Riemann mapping

theorem, there exists some conformal ϕ : D → H with ϕ(0) = 0 and ϕ′(0) > 0. By

the Schwarz reflection principle, we set ϕ(z) = ϕ(z) and find that ϕ extends to a
conformal transformation defined on D ∪ {z | z ∈ D} ∪ (R ∩ ∂D)). Noting that for
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z ∈ R \K, we have that z = z and thus ϕ(z) = ϕ(z) = ϕ(z), we see that the Taylor
expansion of ϕ about zero yields

∞∑
i=1

aiz
i =

∞∑
i=1

aizi =

∞∑
i=1

aiz
i.

Hence, all the coefficients in the Taylor expansion of g about 0 are real valued and
are such that

1

ϕ(− 1
z )

=
1

ϕ(−1/z)
= − z

a1
+
a2
a21

− a22 − a1a3
a31

· 1
z
+ · · ·

Define gK : H \K → H by

gK(z) := −a1
1

ϕ(− 1
z )

+
a2
a1
.

Clearly, gK is conformal and

gK(z) = z +
a22 − a1a3

a21

1

z
+O(z−2)

and hence |gK(z) → ∞| as |z| → ∞.
(Uniqueness) Suppose g∗K is another such conformal map. It is known that since

h := g∗K ◦ g−1
K : H → H is a conformal automorphism, then h must be of the form

h(z) = az+b
cz+d with a, b, c, d > 0 and ad− bc = 1. Thus, |h(z)− z| → 0 with |z| → ∞

implies a = c = 1, and hence b = d = 0. Finally, h ≡ id implies g∗K = gK . □

Definition 2.5. Suppose K is a compact H−hull with the mapping out function
gK . We define the half-plane capacity of K to be

hcap(K) = lim
z→∞

z(gK(z)− z).

It is not hard to see that hcap(K) can be uniquely identified with c1 in (2.4) In
a sense, one can think of hcap(K) as a measure of the size of the set K. To make
this statement clearer, consider the following example and proposition.

Example 2.6. Keeping with Example 2.2, it can be easily shown that the unique
mapping out function assigned to Kt = [0, 2i

√
t] is given by gt = gKt

: H \
[0, 2i

√
t] → H such that

gt(z) =
√
z2 + 4t.

Recalling that the expansion of z 7→
√
1 + z is given by 1 + 1

2z −
1
8z

2 + · · · ,

gt(z) = z

√
1 +

4t

z2
= z

(
1 +

1

2
(
4t

z2
)− 1

8
(
4t

z2
)2 + · · ·

)
= z +

2t

z
+ · · · .

It is now clear that |gt(z)− z| → 0 as z → ∞ and that hcap(Kt) = 2t.

Proposition 2.7. Suppose K, K̃ are compact H−hulls such that K ⊆ K̃. Then

(1) for x ∈ R, K + x is a compact H−hull with gK+x(z) = gK(z − x) + x such
that hcap(K + x) = hcap(K);

(2) for r > 0, rK is a compact H−hull with grk(z) = rgK( zr ) such that

hcap(rK) = r2hcap(K);

(3) if L = gK(K̃ \ K), then L is a compact H−hull with gL(z) = hcap(K) +

hcap(L) = hcap(K̃). Moreover, hcap(K) ≤ hcap(K̃).
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Proof. We will show (3) to give a taste of the other proofs.
Since gK is conformal, clearly L is a compact H−hull, and thus the map gL is

well defined. Since gK̃ = gL ◦ gK , we know by (2.4) that

z(gK̃(z)− z) = z (gL(gK(z))− z) = z(gL(gK(z))− gK(z)) + z(gK(z)− z),

and so hcap(K̃) = hcap(L) + hcap(K).
For the second claim, it will suffice to show that hcap(K) ≥ 0 for any K compact

H−hull. To see this, let Bt be a standard Brownian motion, let τ be the first exit
time of B from H \ K. Since ℑ(·) is harmonic and z − gK(z) is holomorphic, we
can apply the optional stopping theorem to the martingale Bt −ℑ(gK(Bt)). Then
since ℑ(g(z)) = 0 for any z ∈ ∂H \K,

EZ [ℑ [Bτ ]] = Ez[ℑ [Bτ − gK(Bτ )]] = Ez[ℑ [B0 − gK(B0)]] = ℑ [z − gK(z)] .

We are done if we can show that hcap(K) = lim
y→∞

yEiy[ℑ(Bτ )]. Since hcap(K) ∈ R,
then

hcap(K) = ℜ(hcap(K)) = ℜ( lim
y→∞

iy(gK(iy)− iy)) = ℑ( lim
y→∞

y(iy − gK(iy))).

But from what we just showed above, we are done. □

Example 2.8. Consider the closed unit disk in the upper half plane, D+. Since
gD+ = z+ 1

z , then thus hcap(D+) = 1. If we define rad(K) = sup{|z| | z ∈ K}, then
K ⊆ rad(K) · D+. Using Proposition 2.7,

hcap(K) ≤ hcap(rad(K)D+) = rad(K)2.

Proposition 2.9. Let K be a compact H−hull and suppose |z| ≥ 2rad(K). Then
there is some c > 0 such that∣∣∣∣gK(z)− z − hcap(K)

|z|

∣∣∣∣ ≤ c
rad(K)hcap(K)

|z|2
.(2.10)

The proof for this proposition can be found in [2].

3. Introducing SLEκ: The Pedagogical Approach

Consider a simple curve in the upper half plane given by γ(t) with γ(0) = 0.
If we let Ht be the unbounded complement of γ([0, t]), then we are interested in
the map given by Proposition 2.2, gt : H \ Kt → H, where Kt = H \ Ht is the
curve and all the regions the curve has “swallowed.” We developed the theory of
gt with the above results, and now we are interested in the flow of t 7→ gt(z). This
flow is most interesting at or near γt, and it stops for points on the curve when
gt(z) = gt(γ(t)) ∈ R. This time is so important we denote it by Ut := gt(γ(t)).
In fact, we will show that if we perform a time change so that hcap(γ([0, t])) = 2t
for any time t, then the flow of the curve over time is governed by the Loewner
Differential Equation given by

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z.(3.1)

Imposing a Markov property on this flow will yield the very interesting result that
Ut is a transformation of a standard Brownian motion.

There’s a much deeper converse to this narrative. If given a dilated standard
Brownian motion, and a family gt whose evolution satisfies (3.1), we can obtain
the continuous curve (and its corresponding compact H−hulls). Such an evolution
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is aptly named a Schramm-Loewner Evolution, and the dilation of the Brownian
motion will correspond to how wild the curve is.

Theorem 3.2. Suppose that (Kt) is a family of compact H−hulls satisfying the
following:

(1) For 0 ≤ s ≤ t, Ks ⊆ Kt.
(2) As t ↓ s, we have diam(gs(Kt \Ks)) → 0.
(3) For any t ≥ 0, hcap(Kt) = 2t.

Then if K0 ̸= Ø, there exists some continuous U : [0,∞) → R that satisfies (3.1).

Proof. Define Ut :=
⋂

s≥t gt(Ks \Kt). By the first and second assumptions, Ut is a
single point and lies on the real line. To see that it is continuous in t, it suffices to
show by (2) that

|Ut − Us| ≤ 4diam(gs(Kt \Ks)).

Let ϵ > 0. Define gs,t := gt ◦ g−1
s = ggs(Kt\Ks). Letting K = gt(Kt+ϵ \ Kt)

in (2.10), we see that for |z| ≥ 2rad(K)

gK(z) = gK+x(z − x) + x = z +
hcap(K + x)

|z − x|2
+O

(
c
rad(K + x)hcap(K + x)

|z − x|2

)
.

Letting x = Ut and using Proposition 2.7,

gK(z) = gt,t+ϵ(z) = z +
2ϵ

|z − Ut|2
+ 2ϵ · rad(K)O(

c

|z − Ut|2
).

Computing the difference quotient,

gt+ϵ(z)− gt(z)

ϵ
=

(gt,t+ϵ − gt,t(z)) ◦ gt(z)
ϵ

=
2

|gt(z)− Ut|2
+ 2rad(K)O

(
c

|gt(z)− Ut|2

)
.

Taking ϵ → 0 and using the second assumption to see that rad(K) ↓ 0, we arrive
at the result. □

We call Ut in (3.1) the Loewner driving function. While it is true that in the
above theorem it is (Kt) that generates Ut, we will mostly be interested in the
converse. We will see that Ut actually drives the process because it generates a
series of random (Kt) sampled from H−hulls above. Interestingly, the (Kt) form a
continuous curve.

Definition 3.3. Let (Kt) be a random family of conformal H−hulls satisfying
(1)-(3) in Theorem 3.2.

• Let τ be a stopping time for the family (Kt). We say that (Kt) possesses
a conformal Markov property if for any s ≥ 0, {gτ (Kτ+s) − Uτ} is equal
in distribution to the process (Ks), and if it is independent of any time
t ∈ [0, τ)

• We say that (Kt) is scale invariant if for any r > 0, (rKt/r2) is equal in
distribution to (Kt).

Theorem 3.4. Suppose (Kt) satisfies the conformal Markov property and is scale
invariant. Then there exists some κ ≥ 0 such that

√
κBt = Ut where Bt is a

standard Brownian motion.
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Proof. Clearly, (Kt) satisfying the conformal Markov property implies that {Uτ+s−
Us}s≥0 is equal in distribution to Us and is independent of any time before τ. Since
the increments are independent, there exist constants κ ≥ 0 and a ∈ R such that
Ut =

√
κBt+at, where Bt is a standard Brownian motion. Indeed, since Kt is scale

invariant, then so is Ut, and thus by the scale invariance of Brownian motion,

rUt/r2 =
√
κrBt/r2 +

a

r
t =

√
κBt +

a

r
t =

√
κB̃t + at,

where B̃t is a standard Brownian motion. Hence, a = 0, and we are done. □

Definition 3.5. Let Bt be a standard Brownian motion, κ ≥ 0, and gt be the
solution to

∂tgt(z) =
2

gt(z)−
√
κBt

, g0(z) = z.

We define gt to be a Schramm-Loewner evolution of parameter κ (SLEκ).

4. SLEκ Is Generated By a Curve: The Second Approach

Here, we begin with the converse to Theorem 3.2 mentioned in the previous
section.

Theorem 4.1. Suppose Ut : [0,∞) → R is a continuous function and for each
t ≥ 0, let gt be the solution to the Loewner differential equation in (3.1). Define Kt

as the set for which gt is not defined:

τ(z) := inf{t ≥ 0 | gt(z) ∈ ∂H} Kt := {z ∈ H | τ(z) ≤ t}.
Then gt is a conformal map of the domain H \ Kt to H that can be expressed as
in (2.4).

Proof. Since gt is defined for when gt−Ut ̸= 0, we see from (3.1) that gt is analytic.
First, we will show that gt has nonzero derivative on H \ Kt. We differentiate gt
with respect to z and see

∂

∂t
g′t(z) =

∂

∂z

2

gt(z)− Ut
= − 2

(gt(z)− Ut)2
g′t(z).

Since ∂t log g
′
t(z) =

∂tg
′
t(z)

g′
t(z)

, then dividing by g′t(z) above yields

∂

∂t
log g′t(z) = − 2

(gt(z)− Ut)2
.

Since Ut ∈ R, then | ∂∂t log g
′
t(z)| ≤ 2

[ℑ(gt)]2
. By considering the imaginary component

in (3.1), it is not hard to see that ℑ(g′t(z)) decreases over time. Letting t0 < τ(z),
we see that log g′t(z) is uniformly bounded for each t ≤ t0. Thus, log g

′
t0(z) is well

defined and bounded, and thus g′t0(z) is nonzero for any t0 ≤ τ(z). Let z1, z2 ∈ H\Kt

be distinct and such that gt(z1) = w1 and gt(z2) = w2. Now consider

∂

∂t
log(g′t(z1)− g′t(z2)) = − 2

(gt(z1)− Ut)(gt(z2)− Ut)
,

which implies by our previous work that w1 ̸= w2.
To see that gt(H \Kt) = H, let w ∈ H. Define ht(w) for any 0 ≤ t ≤ T, where

T ≥ 0 is a fixed time such that

∂ht(w) = − 2

ht(w)− UT−t
, h0(w) = w.
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It takes little work to show that ht is well defined for all such w and T ≥ 0. However,
if we suppose that for some time 0 ≤ t ≤ T, it holds that gt(z) = hT−t, then it is
clear that z is determined by z = g0(z) = hT (w).

Finally, to show gt satisfies (2.4), we integrate over the Loewner differential
equation over [0, t] to see

gt(z) = g0(z) +

∫ t

0

2

gs(z)− Us
ds = z +

∫ t

0

2

gs(z)− Us
ds.

In the limit as z → ∞, we see that gt(z) − z → 0, implying that the Laurent
expansion contains no terms of higher order than one.

□

Definition 4.2. We say that SLEκ is generated by a curve if for every t ≥ 0,

γ(t) = lim
y↓0

g−1
t (Ut + iy)(4.3)

exists and is a continuous curve. We call γ(t) the SLEκ path.

The following results will show that SLEκ is generated by a continuous curve for
κ ̸= 8. The result holds for κ = 8, but is outside the scope of the paper (the proof is
given by [7]). We follow the methodology outlined in section 3.8 of [5]. Any proof
not provided can be found there. First, we provide the necessary assumptions for
SLEκ to be generated by a curve using Theorem 4.4. Then, we briefly mention how
SLEκ satisfies those assumptions. Note that Theorem 4.4 does not directly imply
that SLEκ is generated by a curve, but the ideas presented in them are similar
enough that it is still useful to discuss them.

Theorem 4.4. Suppose c0 ≤ 4 and for all s, t such that 0 ≤ s < t ≤ 1 we have
that

|Ut − Us| ≤ c0|s− t| 12 .(4.5)

Then the limit in (4.3) exists and γ is a continuous simple curve.

In order to prove Theorem 4.4, we need the following lemma:

Lemma 4.6. Define ft(w) = g−1
t (w) and

∆(r) = 1 + max
0≤s<t≤1,t−s≥r

{
|Ut − Us|√

s− t

}
,

I(y) = sup
0≤y≤1

{∫ y

0

f ′t(Ut + ir) dr

}
.

If I(y) <∞, the limit in (4.3) exists, and there exist c1 such that

|γ(t)− γ(s)| ≤ c1I(
√
t− s)∆(t− s)4.

Proof. Let y′ < y so that

|ft(Ut + iy)− ft(Ut + iy′)| ≤
∫ y

y′
|f ′t(Ut + ir)| dr.

Since the integral exists by I(y) < ∞ and is continuous, then taking y′ ↓ 0 yields
the existence of the limit in (4.3) along with

|ft(Ut + iy)− γ(t)| ≤ I(y).
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Now let y
2 ≤ y′ ≤ 2y. The distortion principle3 implies there exists some c2 > 0

such that

I(y) ≥
∫ y

y
2

|f ′t(Ut + ir)| dr ≥ c2y|f ′t(Ut + iy′)| ≥ |fs(Ut + ir)− ft(Ut + ir)|,

where the last inequality is again a consequence of the distortion theorems. Hence,
for 0 ≤ s ≤ t ≤ s+ δ2 ≤ 1+ δ2, we apply the triangle inequality and then Corollary
8.6 in the appendix to conclude

|γ(t)− γ(s)| ≤ |γ(t)− ft(Ut + iy)|+ |ft(Ut + iy)− fs(Ut + iy)|+ |fs(Ut + iy)− γ(s)|
≤ 2I(y) + |ft(Ut + iy)− fs(Ut + iy)|+ |fs(Ut + iy)− fs(Us + iy)|

≤ 3I(y) + cδ

[
1 +

|Ut − Us|4

δ4

]
|f ′s(Us + iδ)| ≤ c∆(δ2)I(δ).

□

Lemma 4.7. For each c0 < 4, there is some θ < 1 and c < ∞ such that if Ut

satisfies (4.5), then for all 0 ≤ t ≤ 1, if y ≤ 1, then

|f ′t(iy)| ≤ cy−θ, I(y) ≤ cy1−θ, θ = 1− c20
16
.

Together, Lemmas 4.6 and 4.7 imply Theorem 4.4. Note that the last part of
Lemma 4.6 implies that if I(r) ↓ 0 as r → 0, then γ is a continuous curve. It suffices
to show that for κ ̸= 8, the SLE satisfies these conditions.

Theorem 4.8. For κ ̸= 8, SLEκ paths are generated by a curve.

We provide a sketch of Theorem 4.8. To prove this, we will show that there
exists δ > 0 such that for sufficiently small y and finite t0 <∞ the following holds
for SLEκ :

max
0≤t≤t0

|f ′t(Ut + iy)| ≤ yδ−1.

By the distortion theorem, we can consider y = 2−n and t0 = 1. Let k = 0, 1, . . . , 22n

and suppose t = k2−2n. Applying the distortion estimate (Corollary 7.6) to t ≤ s ≤
t+ 2−2n gives

|f ′s(Us + i2−n)| ≤ c [2n|Ut − Us|+ 1]
4 |f ′s(Ut + i2−n)|.

Using similar techniques to those found in Lemma 4.6, we know |f ′s(Ut + i2−n)| ≤
c1|f ′t(Ut + i2−n)|, and since the modulus of continuity of Brownian motion gives
|Ut − Us| ≤ c2

√
n2−n, we have that

max
0≤t≤1

{f ′t(Ut + i2−2n)} ≤ Cn2 max
t=k2−2n

{f ′t(Ut + i2−2n) : k = 0, 1, . . . , 2−2n}.

To conclude, it suffices to show that if n is sufficiently large, then

|f ′t(Ut + i2−n)| ≤ 2(1−δ)n.

It is in this claim that our methodology fails for κ = 8. The proof of this claim,
and the proof for when κ = 8, is outside the scope of the paper, but can be found
in [5].

3Found in the appendix as Theorem 7.4.
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5. Phases of the SLEκ Path

The main results in this section deal with the behavior of the SLEκ paths de-
pending on the κ. Indeed, we will see that as κ increases into higher ‘phases’, the
curve becomes ‘wilder’, up to the point where it is plane-filling. This result is
striking in two ways. The first is that a single parameter governs the evolution
and behavior of random curves. The second is that this property hints at scaling
limits of discrete critical models. Indeed, it is proved that the LERW converges as
a scaling limit to an SLE2 in [6]. See Figure 3 for reference.

Figure 3. Phases of the SLEκ. Pictured by Hang Du in [8]

Theorem 5.1. If κ ≤ 4, the SLEκ path a.s. never intersects itself. For κ > 4, the
SLEκ path a.s. is self intersecting but not plane-filling. For κ ≥ 8, the SLEκ path
is plane-filling a.s.

Definition 5.2. Xt is called a Bessel process with parameter a if it satisfies the
equation

dXt =
a

Xt
dt+ dBt, t < T0, X0 = x0,(5.3)

where T0 = inf{t ≥ 0 | X0 = 0}, x0 > 0, and Bt is a standard Brownian motion.

Remark 5.4. By setting a = d−1
2 in (5.3), Xt becomes a Bessel process of dimen-

sion d and we write Xt ∼ BESd. When d ≥ 1 is an integer and Bis a d-dimensional
Brownian motion then |B| is a d-dimensional Bessel process. To see this calculation
as well as more on Bessel processes, see [9].
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Theorem 5.5. Suppose Xt ∼ BESd. If d < 2, then Xt hits 0 a.s. If d ≥ 2, then
Xt does not hit 0 a.s.

Proof. We will show that X2−d
t is a continuous martingale. To see this, consider

that by Ito’s formula,

dX2−d
t = (2− d)X1−d

t dXt +
1

2
(1− d)(2− d)X−d

t d⟨X⟩t

= (2− d)X1−d
t

(
(
d− 1

2
)
1

Xt
dt+ dBt

)
+

1

2
(2− d)(1− d)X−d

t dt

=
1

2
(d− 1)(d− 2)X1−d

t

1

Xt
dt+ (2− d)X1−d

t dBt +
1

2
(1− d)(2− d)X−d

t dt

= (2− d)X1−d
t dBt.

Since X2−d
t is an Ito integral, then it is a continuous martingale. Letting τz :=

inf{t ≥ 0 : Xt = z}, we apply the optional stopping theorem to the process

X2−d
t∧τa∧τb

, where 0 < a < b. Thus, for d ̸= 2,

X2−d
0 = E[X2−d

τa∧τb
] = a2−dP{τa < τb}+ b2−d(1− P{τa < τb}).

Hence,

P{τa < τb} =
X2−d

0 − b2−d

a2−d − b2−d

a→0−−−→

{(
X2−d

0

−b2−d

)
+ 1, d < 2

0, d > 2

Thus, as b→ ∞, τb → ∞, and

P{τ0 <∞} =

{
1, d < 2

0, d > 2
.

For d = 2, we can apply the fact that log(z) is harmonic, and hence can immediately
say (as per the optional stopping theorem) that

P{τa < τb} =
log(X0)− log(b)

log(a)− log(b)

a→0−−−→ 0,

and thus P{τ0 <∞} = 0. □

The most important process in this section will be the cutting off process defined
by

V x
t := gt(x)− Ut = gt(x)−

√
κBt,

where x > 0. If we define τx = inf{t ≥ 0 : V x
t = 0}, then we think of τx as the first

time x which is absorbed into the Kt−hulls and “cut off from infinity.”

Proposition 5.6. The process V x
t /

√
κ is a BESd.

Proof. Using Ito’s formula,

dV x
t =

2

gt(x)−
√
κBt

dt−
√
κdBt =

2

V x
t

dt−
√
κdBt.

Hence,

d
(
V x
t /

√
κ
)
=

2

κ

(√
κ

V x
t

)
− dBt.

Letting d := 1 + 4
κ so that d−1

2 = 2
κ , we see that V x

t /
√
κ ∼ BESd. □
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Theorem 5.7. If κ ≤ 4, then the SLEκ path is a simple curve. If κ > 4, then
SLEκ is self-intersecting.

Proof. By Theorem 5.5 and Proposition 5.6, it is clear that if κ ≤ 4, then V x
t ̸= 0 for

any t ≥ 0 a.s. Letting γ denote the SLEκ path, we see that γ never hits ∂H. Assume
for the sake of contradiction that there exist 0 < t1 < t2 such that γ(t1) = γ(t2).
Define

γs(t) = gt(γ(t+ s))−
√
κBt.

We know by the conformal Markov property that γs has the same distribution as
γ. In particular, it never hits ∂H. However,

γt2−t1(t1) = gt1(γ(t2))−
√
κBt1 = gt1(γ(t1))−

√
κBt1 ,

and by definition, γ(t1) ∈ ∂Kt1 , and thus gt1(γ(t1)) ∈ R. Hence, γt2−t1(t1) ∈ R, a
contradiction.

If κ > 4, then V x
t = 0 a.s, and thus γ hits R a.s. If γ is a simple curve, then

Kt = γ([0, t)), and so for any s > 0, γ(t+ s) ∈ H \Kt. Since gt : H \Kt → H, then
γs(t) ∈ H ∪ {0}, and never intersects R, a contradiction to the conformal Markov
property. □

Lemma 5.8. Let r > 1. Then the events {τx = τy} and

E = sup
t<τ1

{V
r
t − V 1

t

V 1
t

<∞}

are equivalent.

Proof. For ease, we denote g(x, y) = P{τx = τy} to be the probability that x and
y are “swallowed” by the SLEκ path γ at the same time. By scale invariance,
g(x, y) = g(1, yx ), so it suffices to show that g(1, r) and E are equivalent for any

r > 1. It will be useful to note that g(1, r)
r→∞−−−→ 0.

Suppose E occurs, then there is some C > 0 such that for all t < τ1,

V r
t < V 1

t (C + 1)

Since Vτ1 = 0 , then V r
t → 0 as t ↑ τ1, and thus τr ≤ τ1. It is a fact of the

mapping out functions that gt(x) < gt(x
′) if x < x′ (see [2]), and thus V x

t < V x′

t

a.s. Hence, we know that τr ̸< τ1 since r > 1, so then E ⊆ {τ1 = τr}. If we show
that P{τ1 = τr ∩ Ec} = 0, we are done. Define

σM := inf{t ≥ 0 :
V r
t − V 1

t

V 1
t

≥M},

we have by definition that

P{τ1 = τr | sup
t<τ1

V r
t − V 1

t

V 1
t

≥M} = P{τ1 = τr | σM < τ1}.

Scaling the curve by the map z 7→ z
V 1
σM

, we use the scale invariance property to

show that g(1, r) = g(1, 1+M). Using the conformal Markov property by restarting
the SLEκ path at time σM ,

P{τ1 = τr | σM < τ1} = g(1, 1 +M)
M→∞−−−−→ 0.

Thus, P{τ1 = τr ∩ Ec} = 0, and so we have shown that the two events differ by a
set of at most measure zero, implying they are equivalent. □
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Theorem 5.9. If κ ∈ (4, 8), then the SLEκ path almost surely cuts regions off from
infinity. If κ ≥ 8, then the SLEκ path is almost surely plane-filling.

Proof. Step 1. Consider the process Zt = log
(

V r
t −V 1

t

V 1
t

)
. Using Ito’s formula, we

plug in d = 1 + 4
κ to show that

dZt =

(
(
3

2
− d)

1

(V 1
t )

2
+

(
d− 1

2

)(
V r
t − V 1

t

(V 1
t )

2V r
t

))
dt− 1

V 1
t

dBt.(5.10)

We will transform Zt into a Brownian motion using the time change

σ(t) = inf{u ≥ 0 |
∫ u

0

1

(V 1
s )

2
ds = t}.

We see from this definition that σ(∞) = τ1 and

dt =
dσ(t)

(V 1
σ(t))

2
.(5.11)

Define the continuous local martingale

Yt := −
∫ σ(t)

0

1

V 1
s

dBs.

Then using Ito’s isometry,

⟨Y ⟩t =

〈
−
∫ σ(t)

0

1

V 1
s

dBs

〉
t

=

∫ σ(t)

0

1

(V 1
s )

2
dt = t,

and so Yt is a standard Brownian motion via Levy’s characterization. Defining
Zt = Zσ(t), we use (5.10) and (5.11) and compute

dZ̃t = d(Zσ(t))

=

(
(
3

2
− d)

1

(V 1
σ(t))

2
+

(
d− 1

2

)(
V r
σ(t) − V 1

σ(t)

(V 1
σ(t))

2V r
σ(t)

))
dσ(t)− 1

V 1
σ(t)

dBσ(t)

=

(
(
3

2
− d)

1

(V 1
σ(t))

2
+

(
d− 1

2

)(
V r
σ(t) − V 1

σ(t)

(V 1
σ(t))

2V r
σ(t)

))
(V 1

σ(t))
2 dt+ dYt

=

(
(
3

2
− d) +

(
d− 1

2

)(
V r
σ(t) − V 1

σ(t)

V r
σ(t)

))
dt+ dYt.

Integrating,

Z̃t = Z̃0 + Yt +
(

3
2 − d

)
t+

(
d−1
2

) ∫ t

0

(
V r
σ(s) − V 1

σ(s)

V r
σ(s)

)
ds

≥ Z̃0 + Yt +
(

3
2 − d

)
t.

(5.12)

Step 2. In the case when κ ≥ 8, we have d ≤ 3
2 implying that Z̃t ≥ Z̃0 + Yt.

Since σ(∞) = τ1, and Yt is a standard Brownian motion, then

sup
t<τ1

Zt = sup
t≥0

Z̃t ≥ Z̃0 + sup
t≥0

Yt = ∞.

Since z ≤ ez, then
sup
t<τ1

eZt = ∞.
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By Lemma 5.8, this immediately implies that g(x, y) = 0.

When κ ∈ (4, 8), then d ≥ 3
2 . Let ϵ > 0 and define τ = inf{t ≥ 0 : log(Z̃t) = ϵ}.

Letting r = 1 + ϵ, we will show that g(1, r) = g(1, 1 + ϵ) > 0. From (5.12),

Z̃t∧τ = Z̃0 + Yt∧τ + (
3

2
− d)(t ∧ τ) + d− 1

2

∫ t∧τ

0

eZ̃s ds

≤ Z̃0 + Yt∧τ +

(
(
3

2
− d) + (

d− 1

2
)ϵ

)
(t ∧ τ)

=: Z̃0 + Yt∧τ + a(t ∧ τ),

where we defined a =
(
( 32 − d) + (d−1

2 )ϵ
)
. For ϵ small we have a < 0, and so

Z∗
t = Z̃0 + Yt + at is a Brownian motion with negative drift. It is clear from

previous work that the events

{sup
t<τ1

V r
t − V 1

t

V 1
t

<∞}, {sup
t<τ1

eZt < ϵ}, {sup
t≥0

log(Z̃t) < log(ϵ)}

are all equivalent. Since Z∗
t has negative drift, then P{supt≥0 Z

∗
t < log(ϵ)} > 0.

Since Z∗
t ≥ Z̃t, then P{supt≥0 log(Z̃t) < log(ϵ)} > 0 and we have stated this to be

equivalent by Lemma 5.8 to g(x, y) > 0.
Step 3. Suppose κ ≥ 8. Suppose γ does not fill ∂H. If x < y are on the region

not filled by γ, then both x, y are going to be cut off at time t0, when the curve
closes off the region. Then τx = τy, a contradiction to Step 2. It can similarly be
shown that if κ ∈ (4, 8) then γ cuts regions off from ∂H.

Step 4. Fix z ∈ H such that z = x+ iy. Call zt = xt+ iyt = gt(z), and let ρ ∈ H.
We can use Ito’s formula to calculate that

Mt = |g′t(z)|(8−2κ+ρ)ρ/(8κ)y
ρ2/8κ
t |Ut − zk|ρ/κ

is a continuous local martingale. Define Υt :=
yt

|g′
t(z)|

. By the Koebe-1/4 Theorem,

1

4
≤ Υt

dist(z, γ ∪ R)
≤ 4(5.13)

Defining St = sin(arg(zt − Ut)), we see that by plugging in definitions,

Mt = |g′t(z)|(8−κ+ρ)ρ/(4κ)Υ
ρ(ρ+8)/8κ
t S

−ρ/κ
t

Letting ρ = κ− 8, our martingale becomes

Mt =

(
Υ

1
8
t

S
1
κ
t

)κ−8

.

Let ϵ > 0. Define τz as

τz := inf{t ≥ 0 | Υt = 0}.
Thus, Mt∧τz is a continuous non-negative martingale. Using (5.13), we can apply
the martingale convergence theorems and letMt∧τz →M∞.We apply the Optional
Stopping Theorem to Mt∧τz , to see that

E[M0] = E[Mt∧τz ] = P{τz <∞}Mt∧τz + P{τz = ∞}M∞ = P{τz = ∞}M∞

and thus

P{τz = ∞} =
M0

M∞
.
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We have shown that for κ > 8, the curve almost surely fills ∂H. We also know
that limt→∞ Im(zt) → R. Then St limits to 0 or to π a.s. as t → ∞. Hence,
P{τz = ∞} = 0. Thus, almost surely there exists some time t ≥ 0 such that
γ(t) = z. □

6. SLE6 as a Scaling Limit

Figure 4. Hexagonal Percolation

Consider a hexagonal lattice in the upper half plane. Color all the hexagons
bordering the positive real axis lavender, and all the ones bordering the negative
real axis black. Independently, color every other hexagon in the half plane either
lavender or black with equal probability. From percolation theory, it is known that
there is almost surely no infinite cluster of either lavender or black hexagons. Start
a path from the origin such that at any step, there must be a lavender block to
the right and a black one on its left. Let δ be the size of the hexagons, and define
the path to be γδ. This percolation exploration satisfies two properties which hint
that its limit is an SLE path, the third property will suggest that the limit is
indeed SLE6. First, we need to define these properties in the context of the critical
exploration model. For an illustration of this process, refer to Figure 4. We now
introduce some useful terms and later justify that they are well defined.

Definition 6.1. Suppose D, D̃ are simply connected domains, x, y ∈ D, and x̃, ỹ ∈
D̃. Let φ : D → D̃ be a conformal transformation with φ(x) = x̃ and φ(y) = ỹ.
For each ϵ > 0, we let γδ be the percolation exploration in D from x to y. If
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the limit exists, we define γ = limδ→0 γ
δ and say γ is conformally invariant if

φ(y) = limδ→0 φ(γ
δ) has the same distribution as the percolation exploration from

x̃ to ỹ.

Definition 6.2. Let L be a compactH−hull that is bounded away from the origin.If
it exists, let γ be the scaling limit of the percolation exploration in H, and, if
it exists, let γ∗ be the scaling limit of percolation exploration in H \ L. Let TL
(respectively T ∗

L) be the hitting time at which γt (γ
∗
t ) intersects L (H \L). We say

that γ has the locality property if the two processes have the same distribution time
up to the hitting time of the set L (up to a time re-parametrization).

While the limits of γδ in the previous definitions are not known to exist priori,
it is known that they exist. See [10].

a To study γδ, one only needs to consider the hexagons to the left and right
of it. Thus, conditioning γδ up to time t, the distribution of the remainder
of γδ in the domain γδ(t) to y (for any y) is that of a critical exploration.

b Smirnov (2001) showed that the scaling limit of the percolation exploration
is conformally invariant in [10].

c By definition, percolation models have the locality property.

Items (a) and (b) together imply that the percolation exploration satisfies the con-
formal Markov property. These facts imply that the percolation exploration limits
towards an SLEκ path. If we show that SLE6 satisfies a locality property, then by
(c) we have a good candidate for the scaling limit.

Theorem 6.3. Locality holds if and only if κ = 6. That is, if γ is an SLE6 curve,
then ψ(γ) is an SLE6 (up until first hitting ψ(∂D \ ∂H) modulo a time parameter-
ization).

Proposition 6.4. In the context of Theorem 3.2, let φ : D → φ(D) be a conformal

transformation, and define K̃t = φ(Kt), g̃t = gK̃t
, ãt = hcap(K̃t). If we define

φt = g̃t ◦ φ ◦ g−1
t , then the Loewner driving function is given by Ũt = φt(Ut) such

that

∂tg̃t(z) =
∂tã(t)

g̃t(z)− Ũt

dt g̃0(z) = z,

where

ã(t) =

∫ t

0

2(φ′
s(Us))

2 ds.

Proof. We assume that φ = φ0, φ(0) = 0, and φ′(0) = 1. We will show this
result for t = 0 because the argument is the same regardless of t. We claim that if
rad(Kt) ≤ 1

2 , then there is some c <∞ so that

|hcap(φ(Kt))− hcap(Kt)| ≤ c
√

rad(Kt)hcap(Kt).

A proof for this is found in [5]. Using this, we see that since ã(0) = hcap(Ø) = 0,
then

ã(t)− ã(0) = hcap(Kt)
(
1 +O(c

√
rad(Kt)

)
.

Hence, in the limit, ã′(0) = 2, as desired. It is left to the reader to check that after
scaling and translating, these assumptions are enough to prove the formula for ã(t).
By following the proof as in Theorem 3.2, it becomes clear that

∂tg̃t =
∂tã(t)

g̃t − φt(Ut)
.



RANDOM CURVES AND SCHRAMM-LOEWNER EVOLUTIONS 17

□

Proposition 6.5. In the context of the previous proposition, the maps (φt) satisfy

∂tφt(Ut) = lim
z→Ut

∂tφt(z) = −3φ′′
t (Ut).(6.6)

Proof. Modulo algebra, we can show via an application of the chain rule that

∂tφt(z) = 2

(
(φ′

t(Ut))
2

φt(z)− φt(Ut)
− φ′

t(z)
1

z − Ut

)
To see the result, use this expression and expand into Taylor series. □

Proof. (Proof of Theorem 6.3) Define φt and Ũt as in Propostion 6.4. Using Ito’s
formula and (6.6),

dŨt = dφt(Ut)

= (∂tφt(Ut) +
κ

2
φ′′
t (Ut)) dt+

√
κφ′

t(Ut)dBt

= (−3φ′′
t (Ut) +

κ

2
φ′′
t (Ut)) dt+

√
κψ′

t(Ut)dBt

= (
κ− 6

2
)ψ′′

t (Ut)dt+
√
κψ′

t(Ut)dBt.

Let

σ(t) = inf{u ≥ 0 :

∫ u

0

(ψ′
s(Us))

2 ds = t}

so that dt = (ψ′(Uσ(t)))
2dσ(t). Continuing from the above,

dŨt = (
κ− 6

2
)
ψ′′
σ(t)(Uσ(t))

(ψ′(Uσ(t)))2
dt+

√
κdB̃t,

where we defined

B̃t =

∫ σ(t)

0

ψ′
s(Us) dBs.

By our choice of σ and by Levy’s characterization of a Brownian motion, B̃t is a
standard Brownian motion. For κ = 6, we see that

dŨ∗
t =

√
6dB̃t.

Proposition 5.19 tells us that

∂tg̃σ(t)(z) =
∂t(ã(σ(t)))

g̃σ(t) − Ũσ(t)

dt =
2

g̃σ(t)(z)− Ũσ(t)

dt, ˜gσ(0)(z) = z

Thus, (K̃σ(t)) is equal in distribution to (Kt). □

This section so far has not shown that the scaling limit of the percolation explo-
ration is SLE6. We have, however, shown that SLE6 is a very good candidate for
the limit. The proof that it is indeed the scaling limit is given by Camia and New-
man (2007) in [12]. This result has resulted in advances to percolation theory. In
particular, Schramm showed left passage probabilities of percolation models. The
following Theorem by Schramm is to do with the left passage probability of SLEκ.
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Figure 5. From [3]: From the construction of the percolation
exploration, left figure represents the event Eθ.

Theorem 6.7. Let κ ≤ 8. Let E be the event that the SLEκ path passes to the left
of any z0 = x0 + iy0 ∈ H. Then

P[E] = 1
2 +

Γ
(
4
κ

)
√
π Γ
(
8−κ
2κ

) 2F1

(
1
2 ,

4
κ ;

3
2 ;−

x2
0

y2
0

) x0
y0
,

where

Γ(z) =

∫ ∞

0

tz−1e−t dt, ℜ(z) > 0.

and F1 is Gauss hypergeometric function given by

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (q)n = q(q + 1) · · · (q + n− 1).

Theorem 6.8. Consider a hexagonal lattice in the unit disk of mesh δ > 0. Let
θ ∈ [0, 2π), and let Aθ = {eiν : ν ∈ [0, θ]} be the arc of the unit circle towards θ. Let
Eθ be the event that there is a cluster of lavender hexagons connected to Aθ such
that they also surround the origin. Then

lim
δ↓0

P[Eθ] =
1

2
−

Γ
(
2
3

)
√
π Γ
(
1
6

) 2F1

(
1
2 ,

2
3 ;

3
2 ;− cot2( θ2 )

)
cot( θ2 ).

Proof. We will consider the percolation exploration from (1, 0) to eiθ as in Figure 5.
Let γδ be the path of the exploration. From Figure 5, it is clear that Eθ is equal
to the event that the origin lies in the component of D \ γδ to the right of the
path. Translating the setup into the context of Theorem 6.8, we send (1, 0) 7→ 0
and eiθ 7→ ∞. Generalizing, we can consider any point z0 ∈ H and use the inverse
of the map

φ(z) = eiθ
z + cot θ

2 − i

z + cot θ
2 + i

whose inverse sends z0 = i−cot( θ2 ) to the origin. We know that lim δ ↓ 0γδ = γSLE6 ,

and so we can apply Theorem 6.8 using x0 = cot θ
2 and y0 = 1.

□

7. Appendix

Distortion estimates are one of the most useful tools in the study of complex
analysis. In fact, the proofs found in section 4 hinge on them. For the following,
we let D be a proper simply connected domain containing the origin, and define

S = {f : D → D | f is conformal, f(0) = 0, f ′(0) = 1}
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so that if f ∈ S, then clearly the power series of f is given by f(z) = z+a2z
2+ · · · .

Proposition 7.1. If f ∈ S, then

i area (f(D)) = π
∑∞

n n|an|2.
ii there exists some odd function h ∈ S such that h(z)2 = f(z2)
iii For each n ≥ 2, |an| ≤ n.

Proof. We prove (i) and a version of (iii) but leave (ii) to the reader. To show (i),
we apply Green’s theorem to γ = C where C is the circle of radius r to see

1

2i

∫
γ

z̄ dz =
1

2i

∫
γ

(x− iy)(dx+ i dy) =
1

2i

∫ ∫
f(rD)

2i dxdy = area(f(rD)).

Alternatively,

1

2i

∫
γ

z̄ dz =
1

2i

∫ 2π

0

f(reiθ)f ′(reiθ)riθ

=
1

2i

∫ 2π

0

∞∑
n=1

anr
ne−iθn

∞∑
n=1

nanr
n−1eiθ(n−1)iriθdθ = π

∞∑
n=1

r2n|an|2n

Sending r → 1 proves the result.
For (iii), we will only show the case for when n = 2. For a general n, this was

known as the Bierbach conjecture and was proved by de Branges in 1987 [13].
Consider the power expansion of h ∈ S from (ii). Since h is odd, its expansion
about 0 has no even powers of z. Thus, we can express

h(z) = z + c3c
3 + c5z

5 + · · ·

Since f(z2) = h(z)2, we have that

z2 + a2z
4 + · · · = (z + c3c

3 + c5z
5 + · · · )2 = z2 + 2c3z

4 + · · ·

implying that c3 = a2

2 . Defining g(z) = 1
h( 1

z )
so that

g(z) =
1

z−1 + (a2

2 )z−3 + · · ·
= z

(
1

1 + a2

2 z
−2 + · · ·

)
Letting r = 1

1+
a2
2 z−2+··· , we recognize the expression in the parenthesis above to be

a geometric sum

1

1 + r
= 1− r + r2 − · · · = 1− a2

2
z−2 +O(

1

z4
).

Hence g(z) = z − a2

2 z
−1 + O(z−3). But then (i) implies that |a2|

2

2
≤ 1, and so we

are done. □

Theorem 7.2. (Koebe 1/4) If f ∈ S and r ∈ (0, 1], then B r
4
(0) ⊂ f(rD).

Proof. By replacing f with gr(z) = f(rz)
r , it suffices to consider the r = 1 case.

Fixing r = 1 and z0 /∈ H, if we show that |z0| ≥ 1
4 , we are done. Define

f̃(z) :=
z0f(z)

z0 − f(z)
.
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Clearly, f(0) = 0, and it is not hard to see with the quotient rule that f ′(0) = 1.

Since f̃ : D → H, then f̃ ∈ S, and we can express f̃ using the power series of f

f̃(z) =
z0f(z)

z0 − f(z)
=

z0 (
∑∞

n=1 anz
n)

z0 −
∑∞

n=1 anz
n
=

( ∞∑
n=1

anz
n

)
1

1−
∑∞

n=1
an

z0
zn

Recognizing the last expression as geometric gives

˜f(z) =
(
z + a2z

2 +O(z3)
)
(1 +

(
z

z0
+O(z2)

)
+O(z2) = z + (a2 +

1

z0
)z2 +O(z3)

Using (iii) of Lemma 5.14 gives that |a2 + 1
z0
| ≤ 2. But we know that |a2| ≤ 2, so

then ∣∣∣∣ 1

|z0|

∣∣∣∣ ≤ ∣∣∣∣ 1z0 + a2

∣∣∣∣ ≤ 4

and we are done. □

Corollary 7.3. Suppose f : D → D̃ where D, D̃ ⊆ C are proper domains with
z ∈ D. Then

dist(f(z), ∂D̃)

4
≤ |f ′(z)|dist(z, ∂D) ≤ 4dist(f(z), ∂D̃)

Proof. For convenience, we define d = dist(z, ∂D) and d̃ = dist(f(z), ∂D̃). After
translations and post-composing, we can take without loss of generality z = f(z) =
0.

Create a function

f̃(w) =
f(dw)

df ′(0)
.

Indeed, we see that f̃(0) = 0 and an application of the product rule yields f ′(0) = 1.

Since f̃ ∈ S, we can apply Theorem 5.15. Let ϵ > 0. There is some δ such that if
1− δ then for w ∈ D \ (1− δ)D, we apply Koebe’s 1/4 Theorem with r = 1 to see

|f̃(w)| ≥ 1

4
− ϵ

Hence,
d̃

d|f ′(0)|
≥ inf

w∈D\(1−δ)D
|f(w)| ≥ 1

4
− ϵ.

Rearranging we see that 4d̃ ≥ f ′(0)d. The lower bound is given with similar logic
using f−1 instead of f. □

The following three results are all consequences of Koebe’s 1/4 theorem and
Proposition 5.14 and are used in the paper.

Theorem 7.4. (Distortion Theorem) Suppose f ∈ S and |z| < 1. Then if r = |z|,

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3

Corollary 7.5. (Distortion Principle) Suppose V ⊂ D is compact, and let z, w ∈ V.
If f : D → f(D) is conformal, then there exists some c = c(D,V ) <∞ such that

|f ′(z)| ≤ c|f ′(w)|
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Corollary 7.6. There exists some c0 > 0 so that if f : H → f(H) and x ∈ R, then
for any r > 0,

|f ′(ri)|
c0 (x4 + 1)

≤ |f ′(rx+ ri)| ≤ c0 (x
4 + 1) |f ′(ri)|,

|f(rx+ ri)− f(ri)| ≤ c0 r (|x|4 + 1) |f ′(ri)|.
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