RANDOM CURVES AND SCHRAMM-LOEWNER EVOLUTIONS

AGUSTIN ESTEVA

ABSTRACT. This expository paper develops the theory behind Schramm-Loewner
Evolutions. While this paper states and proves major results regarding SLEs,
its primary goal is to provide an intuitive presentation of the subject. Sto-
chastic theory and complex analysis knowledge is required, but the necessary
theory of conformal mapping distortions is given in the appendix.
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1. MOTIVATION AND INTRODUCTION

Consider a drunkard’s walk in downtown Chicago. At every intersection, the
drunk has an equal chance of veering towards any direction. The twist in this
random walk is that whenever the drunkard goes in a loop, he is able to go back
in time to when the loop started. He performs this Loop Erased Random Walk
(LERW) away from the lake until he gets tired. The results of his journey around
Chicago are shown in Figure 1, where we scale his journey to include more and
more intersections. He keeps doing this scaling up to infinity. Will he ever make
it back to the lake? Is there a continuous curve he limits towards? What kind
of (mathematical) object is this limit? What are the chances he makes it home?!
The study of the Schramm-Loewner Evolution (SLE) seeks to answer this drunken
Chicagoan.

Much like this drunk, the mathematical narrative to building these SLEs will
take us on a loop. There will be two stories in the narrative. First, the pedagogical
one. Here, we conveniently start with a curve « in the upper half plane H. This
curve gives rise to a family of sets—denoted by (K;)—which are attached to the
real axis. For each such K, the Riemann Mapping Theorem? will assure us of

How.
2See [1] or any complex analysis textbook for the statement and a proof of this classic result.
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FiGure 1. Loop Erased Random Walks

the existence of a unique conformal map ¢; : H\ K; — H. Placing just a few
conditions on the K; will yield the flow of how the maps g; change over time, with
its evolution governed by the Loewner differential equation, which itself is driven by
some continuous function U;. Placing two more assumptions on this evolution will
result in the g; being directed by /By in place of the Uy, where By is a standard
Brownian motion and > 0. This story is interesting in its own right, but it ends
here, which is why this paper concentrates more on the second story.

The second story begins with a parameter x > 0, a standard Brownian motion,
and the conformal maps ¢; which satisfy the Loewner differential equation. It is
these g; which are called the Schramm-Loewner Evolutions, and we’ll see that they
give rise to the family (K;) we will now call the SLE chains. A very deep theorem
will see us proving that the evolutions are generated by curves ~. Indeed, it will
be these continuous curves we will most be interested in. Among other things, we
will see that the k parameter controls how wild the curve will be, how the curves
are the scaling limits of various critical models (the drunkard will see his loopy
race LERW converging towards an SLE; path), and how distortion estimates are
important tools in all these results.

The map for both of these stories (the blue arrows being for the first story and
the red being for the latter) — as well as for the paper as a whole — is given by
Figure 2.
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FIGURE 2. The Mathematical Narrative of SLE

2. PRELIMINARIES
For the rest of the paper, we denote H to be the upper half plane.

Definition 2.1. We define K to be a compact H—hull if K = K NH and H\ K is
simply connected.

Example 2.2. The recurring example for this section will be the family of growing
vertical slits in the upper half plane given by the compact H—hulls K; = [0, 2iv/%].
Note that for each time ¢ > 0, H \ [0, 2iv/#] is simply connected.

Proposition 2.3. Suppose K is a compact H—hull. Then there exists a unique
conformal map gr : H\ K — H such that |gx (2) — z| — 0 as z — 0o which admits
the Laurent expansion

c
(2.4) gr(z) =2+~ +0(z7),
where c1,¢co, ..., € R,

Proof. (Existence) Define the set D := {—1 | z € H\ K'}. By the Riemann mapping
theorem, there exists some conformal ¢ : D — H with ¢(0) = 0 and ¢'(0) > 0. By
the Schwarz reflection principle, we set ¢(Z) = ¢(z) and find that ¢ extends to a
conformal transformation defined on DU {zZ | z € D} U(R N 9D)). Noting that for
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z € R\ K, we have that z = 7 and thus ¢(z) = ¢(Z) = ¢(z), we see that the Taylor
expansion of ¢ about zero yields

o0 oo oo
E a; 2t = E a; 2t = E a; 2"
i=1 i=1 i=1

Hence, all the coefficients in the Taylor expansion of g about 0 are real valued and
are such that

1 1 z a a2 —ajaz 1
= _7_|_7;_ 27313.74_...
o(—1) o(—1/2) a;  af a3 z

Define g : H\ K — H by

( ) 1 as
gk (%) ‘= —ai —
(=1 @
Clearly, gk is conformal and
a2 —ajas 1
QK(Z) —z+ QT;S; + 0(272)
1

and hence |g(z) = oo| as |z] — oo.

(Uniqueness) Suppose g} is another such conformal map. It is known that since
h:=gyo gf{l : H — H is a conformal automorphism, then h must be of the form
h(z) = Zj_ts with a,b,¢,d > 0 and ad — be = 1. Thus, |h(z) — z| — 0 with |z| = oo
implies a = ¢ = 1, and hence b = d = 0. Finally, h = id implies ¢}, = gk O

Definition 2.5. Suppose K is a compact H—hull with the mapping out function
gi - We define the half-plane capacity of K to be

heap(K) = lim 2(gx(2) = 2).

It is not hard to see that hcap(K) can be uniquely identified with ¢; in (2.4) In
a sense, one can think of hcap(K) as a measure of the size of the set K. To make
this statement clearer, consider the following example and proposition.

Example 2.6. Keeping with Example 2.2, it can be easily shown that the unique
mapping out function assigned to K; = [0,2iv/t] is given by g = gg, : H\

[0, 2i/t] — H such that
gi(2) = V22 + 4.
Recalling that the expansion of z — /1 + z is given by 1+ %z — %2’2 4+

m 14t 1 4t 2
ae) =1+ 5 =2 (14500 - g b ) = Ernn,

It is now clear that |g;(z) — z| — 0 as z — oo and that hcap(K;) = 2t.

Proposition 2.7. Suppose K, K are compact H—hulls such that K C K. Then
(1) for x € R, K +x is a compact H—hull with gx1+.(2) = gx(z — x) + = such
that heap(K + ) = hecap(K);
(2) for r > 0, rK is a compact H—hull with g.x(z) = rgx(Z) such that
heap(rK) = r?hcap(K);
(8) if L = g (K \ K), then L is a compact H—hull with gr(z) = hcap(K) +

heap(L) = hcap(K). Moreover, hcap(K) < hcap(K).
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Proof. We will show (3) to give a taste of the other proofs.
Since gx is conformal, clearly L is a compact H—hull, and thus the map gy, is
well defined. Since gz = g1 © gk, we know by (2.4) that

29z (2) —2) = 2 (92(9x (2)) — 2) = 2(91(9x (2)) — 9k (2)) + 2(9K (2) = 2),
and so hcap(K) = hcap(L) 4 heap(K).

For the second claim, it will suffice to show that hcap(K) > 0 for any K compact
H—hull. To see this, let B; be a standard Brownian motion, let 7 be the first exit
time of B from H \ K. Since (:) is harmonic and z — gx(z) is holomorphic, we
can apply the optional stopping theorem to the martingale B; — S(gx (B¢)). Then
since S(g(z)) = 0 for any z € OH \ K,

Ez [S[B:]] = Ez[S[Br — gk (B7)]] = Ez[S [Bo — gk (Bo)]] = [z — gk (2)] -
We are done if we can show that hcap(K) = lim yE;,[3(B,)]. Since hcap(K) € R,
Y—0o0

then
heap(K) = R(heap(K)) = R( lim_iy(gx (iy) — iy)) = S( lim y(iy — gx (@)))-
But from what we just showed above, we are done. (Il

Example 2.8. Consider the closed unit disk in the upper half plane, D+. Since
g5t = 2+ <, then thus hcap(D¥) = 1. If we define rad(K) = sup{|z| | z € K}, then
K Crad(K) - DF. Using Proposition 2.7,

hcap(K) < heap(rad(K)DT) = rad(K)?.

Proposition 2.9. Let K be a compact H—hull and suppose |z| > 2rad(K). Then
there is some ¢ > 0 such that

(2.10) gx(z) —z — heap(¥) < crad(K)hcap(K)

2l 1™ |22

The proof for this proposition can be found in [2].

3. INTRODUCING SLE,: THE PEDAGOGICAL APPROACH

Consider a simple curve in the upper half plane given by ~(t) with v(0) = 0.
If we let H; be the unbounded complement of +([0,¢]), then we are interested in
the map given by Proposition 2.2, ¢; : H\ K; — H, where K; = H\ H; is the
curve and all the regions the curve has “swallowed.” We developed the theory of
g with the above results, and now we are interested in the flow of ¢ — g;(z). This
flow is most interesting at or near -y, and it stops for points on the curve when
g:(2) = gi(y(t)) € R. This time is so important we denote it by U; := g:(v(¢)).
In fact, we will show that if we perform a time change so that hcap(y([0,t])) = 2t
for any time ¢, then the flow of the curve over time is governed by the Loewner
Differential Equation given by

2

(3.1) Dege(2) = S

Imposing a Markov property on this flow will yield the very interesting result that
U; is a transformation of a standard Brownian motion.

There’s a much deeper converse to this narrative. If given a dilated standard
Brownian motion, and a family g; whose evolution satisfies (3.1), we can obtain
the continuous curve (and its corresponding compact H—hulls). Such an evolution

go(z) = z.
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is aptly named a Schramm-Loewner Evolution, and the dilation of the Brownian
motion will correspond to how wild the curve is.

Theorem 3.2. Suppose that (K;) is a family of compact H—hulls satisfying the
following:

(1) For 0 <s<t, K, CK;.

(2) Ast] s, we have diam(gs(K; \ K)) — 0.

(3) For any t > 0, hcap(K;) = 2t.
Then if Ko # O, there exists some continuous U : [0,00) — R that satisfies (3.1).

Proof. Define Uy :=(,>, 9:(K; \ K¢). By the first and second assumptions, Uy is a
single point and lies on the real line. To see that it is continuous in ¢, it suffices to
show by (2) that
|Up — Us| < 4diam(gs(Ky \ Ks)).-
Let € > 0. Define gs¢ := gt 0 9! = gy, (k,\k.)- Letting K = g;(Kyye \ Ky)
in (2.10), we see that for |z| > 2rad(K)

h K d(K h K
gK(Z):gKJrgc(Z—l')-FSU:Z-FL—zx)-FO Cra( +2) cag( +2) .
|z — x| |z — |
Letting = U; and using Proposition 2.7,
2e c
9K (2) = grpre(z) = 2 + E-op "t 2¢- 1“BLd(K)O(m)-

Computing the difference quotient,

Gi+e(2) — gi(2) (gt,t1e — 91.4(2)) 0 ge(2)

€ €
2 c
= ————— 4+ 2rad(K O()
o - P\ e -
Taking € — 0 and using the second assumption to see that rad(K) | 0, we arrive
at the result. O

We call U, in (3.1) the Loewner driving function. While it is true that in the
above theorem it is (K3;) that generates Uy, we will mostly be interested in the
converse. We will see that U; actually drives the process because it generates a
series of random (K;) sampled from H—hulls above. Interestingly, the (K;) form a
continuous curve.

Definition 3.3. Let (K;) be a random family of conformal H—hulls satisfying
(1)-(3) in Theorem 3.2.

e Let 7 be a stopping time for the family (K;). We say that (K;) possesses
a conformal Markov property if for any s > 0, {g,(K,4+s) — U, } is equal
in distribution to the process (Kj), and if it is independent of any time
tel0,7)

e We say that (K;) is scale invariant if for any r > 0, (rK;/2) is equal in
distribution to (K}).

Theorem 3.4. Suppose (K;) satisfies the conformal Markov property and is scale
invariant. Then there exists some k£ > 0 such that /B, = U, where By is a
standard Brownian motion.
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Proof. Clearly, (K;) satisfying the conformal Markov property implies that {U,1s—
Us}s>o is equal in distribution to U, and is independent of any time before 7. Since
the increments are independent, there exist constants x > 0 and a € R such that
U, = /KB +at, where By is a standard Brownian motion. Indeed, since K, is scale
invariant, then so is Uy, and thus by the scale invariance of Brownian motion,

a a -
TUt/rz = \/E?"Bt/rz + —t=+kB+ —t= \/EBt + at,
r r
where B, is a standard Brownian motion. Hence, a = 0, and we are done. (]

Definition 3.5. Let B; be a standard Brownian motion, £ > 0, and g; be the

solution to 5
a = — = Z.
tgt<z) gt(z) — \/EBt’ gO(z> z

We define g: to be a Schramm-Loewner evolution of parameter k (SLE,).

4. SLE, Is GENERATED By A CURVE: THE SECOND APPROACH

Here, we begin with the converse to Theorem 3.2 mentioned in the previous
section.

Theorem 4.1. Suppose Uy : [0,00) — R is a continuous function and for each
t >0, let g; be the solution to the Loewner differential equation in (3.1). Define K,
as the set for which g; is not defined:

7(z) :=1inf{t > 0| g:(2) € OH} K :={zeH|71(z) <t}
Then g; is a conformal map of the domain H \ K; to H that can be expressed as
Proof. Since g, is defined for when g, — Uy # 0, we see from (3.1) that g; is analytic.
First, we will show that g; has nonzero derivative on H \ K;. We differentiate g;
with respect to z and see
0 0 2 _ 2 ,
(9:2) — U)*

4 —_ e

8tgt(z) 9z gi(z) — U,

= 291 then dividing by g:(2) above yields
2

Since 0, IOggg(Z) = gi(z)
—loggi(z) = ———s.
57 108 91(2) (9:(2) — U,)2

Since U; € R, then |% log g;(2)] < W. By considering the imaginary component
in (3.1), it is not hard to see that (g;(z)) decreases over time. Letting tg < 7(2),
we see that log g;(2) is uniformly bounded for each ¢ < to. Thus, logg; (z) is well
defined and bounded, and thus g; (2) is nonzero for any to < 7(2). Let 21, 2o € H\ K
be distinct and such that g¢(z1) = wy and g;(22) = wy. Now consider

0 2

—log(g,(z1) — g,(22)) = — ,

at g(gt( 1) gt( 2)) (gt(zl)_Ut)(gt(ZZ)_Ut)
which implies by our previous work that w; # ws.

To see that ¢g.(H \ K;) = H, let w € H. Define h;(w) for any 0 < ¢t < T, where
T > 0is a fixed time such that

(2)-

2

aht(’lU) = _Aht(’w) — UT_t’

ho(w) = w.
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It takes little work to show that h; is well defined for all such w and T' > 0. However,
if we suppose that for some time 0 < ¢ < T, it holds that g;(z) = hr_¢, then it is
clear that z is determined by z = go(z) = hr(w).

Finally, to show g; satisfies (2.4), we integrate over the Loewner differential
equation over [0,] to see

t 2 t 2
gt(Z) B 90(2) +/0 gs(z) - US ds =z +/0 gs(z) - Us ds.

In the limit as z — oo, we see that g:(z) — z — 0, implying that the Laurent
expansion contains no terms of higher order than one.

O
Definition 4.2. We say that SLE, is generated by a curve if for every t > 0,

(43) y(t) = lim g (Uy + iy)
y40
exists and is a continuous curve. We call v(¢) the SLE, path.

The following results will show that SLE, is generated by a continuous curve for
k # 8. The result holds for k = 8, but is outside the scope of the paper (the proof is
given by [7]). We follow the methodology outlined in section 3.8 of [5]. Any proof
not provided can be found there. First, we provide the necessary assumptions for
SLE, to be generated by a curve using Theorem 4.4. Then, we briefly mention how
SLE, satisfies those assumptions. Note that Theorem 4.4 does not directly imply
that SLE, is generated by a curve, but the ideas presented in them are similar
enough that it is still useful to discuss them.

Theorem 4.4. Suppose cy < 4 and for all s,t such that 0 < s <t < 1 we have
that

(4.5) Uy — U] < cols — 1]
Then the limit in (4.3) exists and vy is a continuous simple curve.
In order to prove Theorem 4.4, we need the following lemma:

Lemma 4.6. Define fi(w) = g; *(w) and

A(,r.):l_;'_ |U’t_[]3|}7

O§s<?§laﬁ§—327‘{ Vs—t
y
I(y) = sup {/ (U +ir) dr} .
0<y<1 0
If I(y) < oo, the limit in (4.3) exists, and there exist ¢1 such that

(1) = v(s)] < el (VE—5)A(t —s)".
Proof. Let ' < y so that
y
U+ i) = SO+ i) < [ 15+ in)ar

Y

Since the integral exists by I(y) < oo and is continuous, then taking y’ | 0 yields
the existence of the limit in (4.3) along with

|fe(Us +iy) —v()| < I(y).
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Now let § < gy’ < 2y. The distortion principle® implies there exists some ¢ > 0
such that

Yy
I(y) > / U+ i) dr > ey (U, + igf)| > |fo(Us + i) — f(Us + ir)],

where the last inequality is again a consequence of the distortion theorems. Hence,
for 0 < s <t <s+62 <1462, we apply the triangle inequality and then Corollary
8.6 in the appendix to conclude

Iv(t) = v(s)| < |v(t) = fe(Us +iy)| + | fe(Us + iy) — fs(Us +iy)| + | fs(Us +iy) —v(s)]
<2I(y) + | (U + iy) — fs(Us +iy)| + | fs(Ur +iy) — f5(Us +iy)|
|Ut - US|4

<3I(y)+cd [14— 5

} (U, + )] < cAB)I().
O

Lemma 4.7. For each cy < 4, there is some 8 < 1 and ¢ < oo such that if Uy

satisfies (4.5), then for all 0 <t <1, if y <1, then
2
fly) <ey™, Iy)<ey'™® 0=1- %

Together, Lemmas 4.6 and 4.7 imply Theorem 4.4. Note that the last part of
Lemma 4.6 implies that if I(r) | 0 as » — 0, then 7 is a continuous curve. It suffices
to show that for x # 8, the SLE satisfies these conditions.

Theorem 4.8. For k # 8, SLE,; paths are generated by a curve.

We provide a sketch of Theorem 4.8. To prove this, we will show that there
exists § > 0 such that for sufficiently small y and finite ¢ty < oo the following holds
for SLE,. :

/ . 5—1
U. < .
omax. |fi(U+iy)| <y

By the distortion theorem, we can considery = 2 " andty = 1. Let k = 0,1, ...,22"
and suppose t = k272", Applying the distortion estimate (Corollary 7.6) to t < s <

t + 272" gives
fL(Uy +i27™)| < e [2"|U; — Uy| + 1 | f4(Us +i27).

Using similar techniques to those found in Lemma 4.6, we know |f.(U; +i27™)| <

c1|f{(Uy +427™)|, and since the modulus of continuity of Brownian motion gives
|Us — Us| < c24/n27", we have that

/ c—2n < 2 / cy—2n k= —2n .
Olélgigxl{ft (Ut + 12 )} <Cn tzrggﬁn{ft(Ut + 12 ) k=01, '2 }

To conclude, it suffices to show that if n is sufficiently large, then
iU +i27™)] < 2070,

It is in this claim that our methodology fails for kK = 8. The proof of this claim,
and the proof for when x = 8, is outside the scope of the paper, but can be found
in [5].

3Found in the appendix as Theorem 7.4.
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5. PHASES OF THE SLE, PATH

The main results in this section deal with the behavior of the SLE, paths de-
pending on the k. Indeed, we will see that as k increases into higher ‘phases’, the
curve becomes ‘wilder’, up to the point where it is plane-filling. This result is
striking in two ways. The first is that a single parameter governs the evolution
and behavior of random curves. The second is that this property hints at scaling
limits of discrete critical models. Indeed, it is proved that the LERW converges as
a scaling limit to an SLE; in [6]. See Figure 3 for reference.

FIGURE 3. Phases of the SLE,. Pictured by Hang Du in [§]

Theorem 5.1. If kK < 4, the SLE, path a.s. never intersects itself. For k > 4, the
SLE, path a.s. is self intersecting but not plane-filling. For k > 8, the SLE, path
s plane-filling a.s.

Definition 5.2. X, is called a Bessel process with parameter a if it satisfies the
equation

(5.3) dX; = Xi dt +dB;, t<Ty, Xo= o,
t

where Ty = inf{t > 0 | Xg = 0}, g > 0, and B; is a standard Brownian motion.

Remark 5.4. By setting a = % in (5.3), X; becomes a Bessel process of dimen-
ston d and we write X; ~ BES?. When d > 11is an integer and Bis a d-dimensional
Brownian motion then |B] is a d-dimensional Bessel process. To see this calculation
as well as more on Bessel processes, see [9].



RANDOM CURVES AND SCHRAMM-LOEWNER EVOLUTIONS 11

Theorem 5.5. Suppose X; ~ BES®. If d < 2, then X, hits 0 a.s. If d > 2, then
X does not hit 0 a.s.

Proof. We will show that X?~% is a continuous martingale. To see this, consider
that by Ito’s formula,

1
ax?™ = (2 - d)X} 1 dX + S (1- d)(2 - )X X)),

d—1_1 1
—d)x} <(2)Xt dt + dBt> +52-a)0- d)X;dt

(d—1)(d— 2)X§*dXit dt + (2 — d)X} 4B, + %(1 —d)(2 - d)X; % dt

= (
1
2
= (2—-d) X} %B,.

Since Xffd is an Ito integral, then it is a continuous martingale. Letting 7, :=
inf{t > 0 : X; = z}, we apply the optional stopping theorem to the process
XfA_T‘iATb, where 0 < a < b. Thus, for d # 2,

X4 =RBX24 | = > P{r, < 7} + b1 — P{7, < 1}).

TaN\Th

Hence,

—d
. X e [(F) 41, <2
R 0 d>2

Thus, as b — oo, 7, — o0, and

1, d<2

P{T0<OO}:{O d> 2

For d = 2, we can apply the fact that log(z) is harmonic, and hence can immediately
say (as per the optional stopping theorem) that

log(Xo) —log(b) a—o
log(a) — log(0)
and thus P{ry < oo} = 0. O

P{r, <1} = 0,

The most important process in this section will be the cutting off process defined
by
Vi = gi(x) — Uy = gi(2) — VB,
where x > 0. If we define 7, = inf{t > 0: V;* = 0}, then we think of 7, as the first
time x which is absorbed into the K;—hulls and “cut off from infinity.”

Proposition 5.6. The process Vi /\/r is a BES®.

Proof. Using Ito’s formula,

2 2
AV = —————dt — \/kdBy = —dt — \/kdB;.
t gt(x) _ \/EBt \/> t ‘/;z \/> t
Hence,
. 2 (VE

Letting d := 1 + £ so that 451 = 2, we see that V,%/\/k ~ BES*. O

=
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Theorem 5.7. If k < 4, then the SLE, path is a simple curve. If k > 4, then
SLE, is self-intersecting.

Proof. By Theorem 5.5 and Proposition 5.6, it is clear that if k < 4, then V;* # 0 for
any t > 0 a.s. Letting v denote the SLE,; path, we see that v never hits JH. Assume
for the sake of contradiction that there exist 0 < t; < to such that v(¢;) = v(t2).
Define

V() = g:(y(t+5)) — VKB
We know by the conformal Markov property that v* has the same distribution as
~. In particular, it never hits 0H. However,

7270 (1) = g, (7(t2)) — VEBy, = gt (7(t1)) — VEDBy,

and by definition, v(t;) € Ky,, and thus g, (7(¢1)) € R. Hence, v27%1(¢;) € R, a
contradiction.

If K > 4, then V¥ = 0 a.s, and thus v hits R a.s. If v is a simple curve, then
K =~([0,t)), and so for any s > 0, y(t + s) € H\ K;. Since ¢; : H\ K; — H, then
~v*(t) € HU {0}, and never intersects R, a contradiction to the conformal Markov

property. ([l
Lemma 5.8. Let r > 1. Then the events {t, = 7,} and
vV — Vl
E = sup{—+t—++ < oo}
t<m1 V;f

are equivalent.

Proof. For ease, we denote g(z,y) = P{r, = 7,} to be the probability that z and
y are “swallowed” by the SLE, path v at the same time. By scale invariance,
g(z,y) = g(1,%), so it suffices to show that g(1,r) and E are equivalent for any

T—00

r > 1. It will be useful to note that g(1,7) —— 0.
Suppose E occurs, then there is some C' > 0 such that for all ¢ < 7,

Vi <VHC+1)

Since V; = 0, then V7 — 0 as ¢t T 71, and thus 7, < 7y. It is a fact of the
mapping out functions that g(x) < g(2') if < 2’ (see [2]), and thus V;* < V'
a.s. Hence, we know that 7. £ 71 since r > 1, so then F C {r; = 7.}. If we show
that P{my = 7. N E°} = 0, we are done. Define
| VAR VA
oy :=1inf{t >0: tilt > M},

Vi

we have by definition that

v - v
P{ri =7 |sup L5t >M}=P{r =7, |on <7 }.

t<t1 V;
Scaling the curve by the map z — i—, we use the scale invariance property to
M

show that g(1,r) = ¢g(1,14+ M). Using the conformal Markov property by restarting
the SLE, path at time oy,

M —o0

P{rn=m|ou<n}=9(1,1+M) 0.

Thus, P{m; = 7. N E°} = 0, and so we have shown that the two events differ by a
set of at most measure zero, implying they are equivalent. [
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Theorem 5.9. If k € (4,8), then the SLE,; path almost surely cuts regions off from
infinity. If Kk > 8, then the SLE, path is almost surely plane-filling.

Proof. Step 1. Consider the process Z; = log(
plugind=1+ % to show that

i (& ot () () - o

We will transform Z; into a Brownian motion using the time change

. vl
o(t) =inf{u >0 | /0 st =t}.
We see from this definition that o(co) = 7 and
do(t)
Vow)?

Define the continuous local martingale

O'(t) 1
Y: = —/ — dB;.
0

v -v} : )
tth t ). Using Ito’s formula, we

(5.11) dt =

Vl

S

Then using Ito’s isometry,

o) 1 o)
Y), = (- — 4B, = =t
We=(-] 7 [t

and so Y; is a standard Brownian motion via Levy’s characterization. Defining
Zs = Zg(ty, we use (5.10) and (5.11) and compute

dZ; = d(Zyy)

3 1 d—1\ (Vow — Val(t) 1
=|(-4d +( ) - do(t) — —— dByu
< 2 (Vo) 2 V)2V Vi ©
1 d—1\ (Vaw = Vo 1\
_( N ( ) 0 ) ) (V)2 dt + dY,
< (Vow)? 2 Vo)V ©

3 d—1\ (Ve =V
- (—d)+( )( _ dt + dY;.
< 2 2 Vg(t)

Integrating,

| W
|
S
=

~ ~ t vr _Vl
st (B
—d)t.

Step 2. In the case when x > 8, we have d < % implying that Zy > Zo+ Y,

Since o(00) = 11, and Y; is a standard Brownian motion, then

(5.12)

njee

zZo+Yt+(

sup 2y = supZt > Z, +supY; = 0.
t<T1 t>0 t>0
Since z < €7, then

sup et = 0.
t<T1
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By Lemma 5.8, this immediately implies that g(x,y) = 0.
When « € (4,8), then d > 3. Let € > 0 and define 7 = inf{t > 0: log(Z;) = €}.
Letting r = 1 + ¢, we will Show that g(1,7) = g(1,1+¢) > 0. From (5.12),

- ~ 3 tAT
Zt/\.rZZO'FY%/\T'F(i—d)(t/\T)"‘ri/ dS

3 d—

< o+ Yine 4 ({5 = @+ (50 n )

= Zo+ Yinr +a(t A7),

where we defined a = ((2 —d) + (%5)e) . For € small we have a < 0, and so

Z; = ZO + Y; + at is a Brownian motion with negative drift. It is clear from
previous work that the events
r_ /1 ~
{sup < oo}, {supe?t <e}, {suplog(Z;) < log(e)}
t<t1 V;t t<T1 t>0

are all equivalent. Since Z; has negative drift, then P{sup,~, Z; < log(e)} > 0.
Since Z; > Z;, then P{sup,~, log(Z;) < log(€)} > 0 and we have stated this to be
equivalent by Lemma 5.8 to g(z,y) > 0.

Step 3. Suppose k > 8. Suppose v does not fill 9H. If x < y are on the region
not filled by -y, then both x,y are going to be cut off at time ¢y, when the curve
closes off the region. Then 7, = 7, a contradiction to Step 2. It can similarly be
shown that if x € (4,8) then v cuts regions off from OH.

Step 4. Fix z € H such that z = z +4y. Call z; = x; + iy = g:(2), and let p € H.
We can use Ito’s formula to calculate that

2 /8% o
= [g1(=)| (=240 BRI 1y — e/
is a continuous local martingale. Define T, := %. By the Koebe-1/4 Theorem,

1_ T,
4~ dlst(z ~yUR)
), we see that by plugging in definitions,

(5.13) <4

Defining S; = sin(arg(z: — U)
_ |g£(z)|(8—r€+p)p/ 4K)Tf(ﬁ+8)/8'<5;ﬁ/“

Letting p = k — 8, our martingale becomes

’rl K—38
Sy

=inf{t > 0| T; = 0}.
Thus, Mia,, is a continuous non-negative martingale. Using (5.13), we can apply

the martingale convergence theorems and let M., — Mo.. We apply the Optional
Stopping Theorem to Ma-_, to see that

E[My] = E[Mipr,] = P{1, < 00} Minr, + P{7. = 00} M, = P{7, = 00} M
and thus

Let € > 0. Define 7., as

My

P{TZ_OO}_M .
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We have shown that for k > 8, the curve almost surely fills H. We also know
that lim;— oo Im(z;) — R. Then S; limits to 0 or to 7 a.s. as ¢ — oo. Hence,
P{r, = oo} = 0. Thus, almost surely there exists some time ¢ > 0 such that
v(t) = z. O

6. SLEg AS A SCALING LimIT

FIGURE 4. Hexagonal Percolation

Consider a hexagonal lattice in the upper half plane. Color all the hexagons
bordering the positive real axis lavender, and all the ones bordering the negative
real axis black. Independently, color every other hexagon in the half plane either
lavender or black with equal probability. From percolation theory, it is known that
there is almost surely no infinite cluster of either lavender or black hexagons. Start
a path from the origin such that at any step, there must be a lavender block to
the right and a black one on its left. Let § be the size of the hexagons, and define
the path to be 4%. This percolation exploration satisfies two properties which hint
that its limit is an SLE path, the third property will suggest that the limit is
indeed SLEg¢. First, we need to define these properties in the context of the critical
exploration model. For an illustration of this process, refer to Figure 4. We now
introduce some useful terms and later justify that they are well defined.

Definition 6.1. Suppose D, D are simply connected domains, z,y € D, and z,y €
D. Let ¢ : D — D be a conformal transformation with p(z) = Z and ¢(y) = 3.
For each € > 0, we let 7° be the percolation exploration in D from z to y. If
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the limit exists, we define v = lims_0~° and say v is conformally invariant if
©(y) = lims_0 ¢(7?) has the same distribution as the percolation exploration from
T to 4.

Definition 6.2. Let L be a compact H—hull that is bounded away from the origin.If
it exists, let v be the scaling limit of the percolation exploration in H, and, if
it exists, let v* be the scaling limit of percolation exploration in H \ L. Let T,
(respectively T5) be the hitting time at which +; (v;) intersects L (H\ L). We say
that + has the locality property if the two processes have the same distribution time
up to the hitting time of the set L (up to a time re-parametrization).

While the limits of 4 in the previous definitions are not known to exist priori,
it is known that they exist. See [10].

a To study 7°, one only needs to consider the hexagons to the left and right
of it. Thus, conditioning v° up to time ¢, the distribution of the remainder
of 4% in the domain +°(¢) to y (for any y) is that of a critical exploration.

b Smirnov (2001) showed that the scaling limit of the percolation exploration
is conformally invariant in [10].

¢ By definition, percolation models have the locality property.

Items (a) and (b) together imply that the percolation exploration satisfies the con-
formal Markov property. These facts imply that the percolation exploration limits
towards an SLE, path. If we show that SLE¢ satisfies a locality property, then by
(c¢) we have a good candidate for the scaling limit.

Theorem 6.3. Locality holds if and only if kK = 6. That is, if v is an SLEg curve,
then 1(7y) is an SLEs (up until first hitting (0D \ OH) modulo a time parameter-
ization).
Proposition 6.4. In the context of Theorem 3.2, let ¢ : D — (D) be a conformal
transformation, and define K; = ¢(K;), g1 = gg,, @ = hcap(Ky). If we define
Yt =gtopo gt_l, then the Loewner driving function is given by U, = ot (Ut) such
that Bt
~ a ~
O gi(2) = ~t7~dt go(z) = 2,
ge(2) = Uy
where

a(t) = / 2 (U,))? ds.

Proof. We assume that ¢ = ¢g, ¢(0) = 0, and ¢'(0) = 1. We will show this
result for ¢ = 0 because the argument is the same regardless of t. We claim that if
rad(K;) < 1, then there is some ¢ < oo so that

[heap(p(Ky)) — heap(Ky)| < ey/rad(Ky)heap(Ky).

A proof for this is found in [5]. Using this, we see that since a(0) = hcap(@) = 0,

then
a(t) — a(0) = heap(k,) (1 + O(cs/rad(Kt)) .

Hence, in the limit, a’(0) = 2, as desired. It is left to the reader to check that after
scaling and translating, these assumptions are enough to prove the formula for a(t).
By following the proof as in Theorem 3.2, it becomes clear that

N da(t)
Oy = ———— .
1t gt — Sﬁt(Ut)
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d

Proposition 6.5. In the context of the previous proposition, the maps (@) satisfy
z— Uy

Proof. Modulo algebra, we can show via an application of the chain rule that

R e
Opr(z) =2 (W) (A A Ut>

To see the result, use this expression and expand into Taylor series. O

Proof. (Proof of Theorem 6.3) Define ¢, and U, as in Propostion 6.4. Using Ito’s
formula and (6.6),

dUt = d‘pt(Ut)
= (p(U) + 1 (U) dt + /i (Ur)dBy
— (=3¢ (Uy) + 2/ (Uy)) dt + v/5eb(Uy)d By

2
= Sy + VryU)aB,

Let
o(t) = inf{u > 0 ;/ (W (UL)2 ds = 1}
0
so that dt = (¢ (Uy(r)))?do(t). Continuing from the above,

K — 6) wg(t)(Ua(t))
2 "W (Usw))?

dU; = ( dt + \/rdBy,

where we defined
_ a(t)
Bi— [ wiw. .,
0

By our choice of o and by Levy’s characterization of a Brownian motion, B, is a
standard Brownian motion. For x = 6, we see that

dﬁt* = \/6dét
Proposition 5.19 tells us that

a 2
Nat(a‘(o-(f))) dt = _ _ dt, go:~(0) (Z) = 2
Jot) — Us(t) Jo(t)(2) = Us(e

atga(t) (Z) =

Thus, (f(o(t)) is equal in distribution to (K%). O

This section so far has not shown that the scaling limit of the percolation explo-
ration is SLEg. We have, however, shown that SLEg is a very good candidate for
the limit. The proof that it is indeed the scaling limit is given by Camia and New-
man (2007) in [12]. This result has resulted in advances to percolation theory. In
particular, Schramm showed left passage probabilities of percolation models. The
following Theorem by Schramm is to do with the left passage probability of SLE,.



18 AGUSTIN ESTEVA

Ay Ay

FIGURE 5. From [3]: From the construction of the percolation
exploration, left figure represents the event Fy.

Theorem 6.7. Let k < 8. Let E be the event that the SLE, path passes to the left
of any zo = xo + tyo € H. Then
INE
IP)[E} _ 1 (n)

where

o0
I'(z) :/ t*"tetdt, R(z)>0.
0
and Fy is Gauss hypergeometric function given by

2F1(a,b;c;2) = Z (azZ)(f)ni;

n=0

;v (@n=qlg+1)---(g+n—1).

Theorem 6.8. Consider a hexagonal lattice in the unit disk of mesh § > 0. Let
0 € [0,27), and let Ag = {e*” : v € [0,0]} be the arc of the unit circle towards 6. Let
Ey be the event that there is a cluster of lavender hexagons connected to Ag such
that they also surround the origin. Then

1 r'(3)
IimP[Ey) = - — —3 o F1 (L, 23— cot?(%)) cot(2).
51?01 [ 0] D) \/7?1—‘(%)2 1(2a3727 CcO (2>)CO (2)
Proof. We will consider the percolation exploration from (1,0) to e? as in Figure 5.
Let 7 be the path of the exploration. From Figure 5, it is clear that Ej is equal
to the event that the origin lies in the component of D\ 4° to the right of the
path. Translating the setup into the context of Theorem 6.8, we send (1,0) — 0
and e? — oco. Generalizing, we can consider any point z; € H and use the inverse
of the map
o z+cotd —iq
p(z) =€ ———F—
z+cots +1
whose inverse sends zg = i—cot(g) to the origin. We know that limd | 09° =~
and so we can apply Theorem 6.8 using zy = cotg and yo = 1.

SLEsg
)

O

7. APPENDIX

Distortion estimates are one of the most useful tools in the study of complex
analysis. In fact, the proofs found in section 4 hinge on them. For the following,
we let D be a proper simply connected domain containing the origin, and define

S={f:D— D| fis conformal, f(0) =0, f'(0) =1}
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so that if f € S, then clearly the power series of f is given by f(2) = z+ag22+--- .

Proposition 7.1. If f € S, then

i area(f(D)) =7y 7 nla,|*.
ii there exists some odd function h € S such that h(z)? = f(2?)
i1t For each n > 2, |a,| < n.

Proof. We prove (i) and a version of (iii) but leave (ii) to the reader. To show (i),
we apply Green’s theorem to v = C where C' is the circle of radius r to see

1 1 1
— Zdz:—_/(x—iy)(dx—l—idy): —// 2i dxdy = area(f(rD)).
2 J, 2 J, 27 F(rD)
Alternatively,
L[ sas= 2 [T R s retyrin
— [ zdz= = re re'’)ri
2 J, 2 Jo

1 21 00 oo oo
_ 27 § @,}nne—ﬁn § nanrn—lezﬁ(n—l)irwde = § T’2n|CLn|2’I’L
tJo n=1 n=1 n=1

Sending » — 1 proves the result.

For (iii), we will only show the case for when n = 2. For a general n, this was
known as the Bierbach conjecture and was proved by de Branges in 1987 [13].
Consider the power expansion of h € S from (ii). Since h is odd, its expansion
about 0 has no even powers of z. Thus, we can express

h(z) = z+c3c® +c52° + - - -
Since f(2?) = h(z)?, we have that
2 dat+ =2+ st 4 )2 =22 F 2320 -

implying that c3 = %2. Defining g(z) = ﬁ so that

(2) 1 1
z) = =z —m78M8M
g T+ (Z)2 B+ T+ %221
Letting r = 1+%2+2+’ we recognize the expression in the parenthesis above to be
a geometric sum
1 a9 1
=1- 2_ .= 1-22.7240 (2.
T r+r > 27+ (24)

2
Hence g(z) = z — %2z~ + O(z~?). But then (i) implies that % < 1, and so we
are done. ]

Theorem 7.2. (Koebe 1/4) If f € S and r € (0,1], then Bz (0) C f(rD).

Proof. By replacing f with g¢,.(z) = @, it suffices to consider the r = 1 case.
Fixing r = 1 and 2o ¢ H, if we show that |2| > 1, we are done. Define
z0f(2)

T& ==y
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Clearly, f(0) = 0, and it is not hard to see with the quotient rule that f(0) = 1.
Since f: D — H, then f € S, and we can express f using the power series of f

o 2f(z) 20 a 1
=0 =% anz"‘<z" )1—2

n=1 zg

Recognizing the last expression as geometric gives

. 1

f(Z) = (z + a222 + 0(23)) (1 + (ZZ + 0(22)) + 0(7;2) =z 4+ (ag + Z—)Zz 4 O(zS)
0 0

Using (iii) of Lemma 5.14 gives that |ag + %| < 2. But we know that |as| < 2, so

then
1

EY
and we are done. O

1
— +aq9| <4

20

Corollary 7.3. Suppose f : D — D where D,D C C are proper domains with
z € D. Then

dist oD s

% < |f'(2)|dist(z, 0D) < Adist(f(z),dD)
Proof. For convenience, we define d = dist(z,dD) and d = dist(f(z),dD). After
translations and post-composing, we can take without loss of generality z = f(z) =

0.
Create a function F(dw)
~ w
=gy
Indeed, we see that f (0) = 0 and an application of the product rule yields f/(0) = 1.
Since f € S, we can apply Theorem 5.15. Let € > 0. There is some § such that if
1 — 4 then for w € D\ (1 — 0)D, we apply Koebe’s 1/4 Theorem with r = 1 to see

3 1
‘f(w)| Z Z — €
Hence, )
d 1
> inf 1.
d|f’(0)| - wGD{?l_(;)D |f(’LU)| =3 €
Rearranging we see that 4d > 1'(0)d. The lower bound is given with similar logic
using f~! instead of f. g

The following three results are all consequences of Koebe’s 1/4 theorem and
Proposition 5.14 and are used in the paper.

Theorem 7.4. (Distortion Theorem) Suppose f € S and |z| < 1. Then if r = |z,

m_|f()| A=
1-— 1+7r
m_|f()|_ﬁ

Corollary 7.5. (Distortion Principle) Suppose V. C D is compact, and let z,w € V.
If f: D — f(D) is conformal, then there exists some ¢ = ¢(D,V) < oo such that

[F'(2)] < el f'(w)]
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Corollary 7.6. There exists some co > 0 so that if f : H — f(H) and x € R, then
for any r > 0,
o
LIS < I e i) < oo+ 1))

|f(rz +7i) = f(ri)] < cor (|| + 1) | f'(ri)].
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