
AUTOMORPHISMS OF Rn, STABLE HOMEOMORPHISMS, AND

KIRBY’S TORUS TRICK

WILLIAM EASTON

Abstract. We investigate the space of all homeomorphisms from Rn to itself

with the goal of understanding its general topological behavior. We begin by
proving some interesting initial facts using fairly elementary techniques, but

we are quickly led to quite deep rabbit holes. In particular, considerations of

path-connectedness bring us to studying the Stable Homeomorphism Theorem,
an important result in geometric topology. We dedicate much of the paper to

proving it, following Kirby’s delightful proof which marked the introduction of

his “torus trick”.
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1. Introduction

Definition 1.1. We denote by Top(n) the set of all homeomorphisms from Rn to
itself. We give Top(n) the compact-open topology, with which it is a topological
group under composition.

The goal of this paper is to explore this space. The literature on it is somewhat
disorganized, and it is usually considered in a subsidiary role, rather than being in
the limelight. This is despite the fact that it is not just a natural object to study,
but quite an interesting one, and one which comes up in a number of places. Indeed,
when one considers fiber bundles with fiber Rn, but does not wish to preserve the
linear structure, Top(n) is the natural structure group to impose. Thus BTop(n),
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the classifying space for Top(n), plays the same role in the topological category
that BPL(n) and BDiff(n) ≃ BO(n) play in the PL and differentiable categories.

In fact, in his famous paper [22], Kister showed that the entire theory of mi-
crobundles, a generalization of fiber bundles, can be reduced to the study of fiber
bundles of this kind, with structure group Top∗(n) – the origin-fixing subgroup of
Top(n). If one needs convincing that Top(n) is interesting, consider the following:
it is unknown whether there are any finitely generated torsion-free groups that are
not subgroups of Top(n) [29]. Further, despite some significant progress in recent
years, the homology of Top(n) remains unknown. Indeed, just to pursue our goals
in this paper, we will have to cover a theorem that was a significant open problem
for many years. Suffice it to say, this is quite an intriguing and enigmatic object.

We will begin with an elementary discussion of basic topological facts about this
space, which we will take care to deal with explicitly and clearly. In particular we
will emphasize proving and justifying the definitions and properties that are often
stated without explanation in the literature (or not stated at all). This will lead
us to discussing the Stable Homeomorphism Theorem, which is equivalent to the
fact that π0(Top(n)) ∼= Z/2Z. We will go into detail on Kirby’s well-known “torus
trick”, which he used to prove that theorem. We will assume basic knowledge of
point-set topology and some familiarity with topological and smooth manifolds,
including covering spaces, but anything beyond that will be explained. Finally, we
take care to provide a wealth of references and suitable sources for further reading,
especially when we use results without proof.

Remark 1.2. A note on terminology: Some authors refer to Top(n) as TOP(n)
or occasionally TOPn. Further, sometimes this refers to all self-homeomorphisms
of Rn fixing a basepoint (usually 0), we will call that set Top∗(n). Others use the
same term to mean the topological group of all homeomorphisms Sn → Sn fixing a
basepoint (for concreteness, say the north pole N). We’ll call this object TopS(n).
Thankfully, there are very convenient connections between these objects, which
we will detail soon (see Propositions 2.4 and 2.5). More generally, Homeo(M)
is often used to mean the homeomorphism group of any manifold M , and some
authors just use this convention for Rn. Finally, some sources only call Top(n)
a topological monoid, but it is indeed a topological group [1, Theorem 4]. When
confusion is impossible, we will refer to homeomorphisms from a space to itself as
automorphisms.

2. General Topological Properties

A prudent place to begin is a discussion about the topology we have elected to
put on our space. Any sensible function space should be such that functions whose
outputs are near each other in the codomain are close in the function topology. We
might try to impose a metric like

ρ(f, g) = sup
x∈X

d(f(x), g(x))

on the function space Y X (supposing of course that Y is a metric space, which it
is in the case we’re interested in). This is actually not too näıve, and turns out to
be a valid metric on TopS(n). The trouble of course is when Y is unbounded, as it
is for Top(n). Even something as innocuous as a rotation in R2 by some tiny ε > 0
will move points arbitrarily far from the identity. So trying to construct a topology
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preserving global information about the functions is doomed to failure. The natural
next thing to try is a topology which considers functions close if they are close on
some compact region. Closeness of course being measured by containment in an
open set, we come to the following definition:

Definition 2.1. The compact-open topology on a space of functions Y X = {f :
X → Y } is the topology generated by a subbasis of all sets of the form

V (K,U) = {f ∈ Y X | f(K) ⊂ U},
where K is compact and U is open. That is, it is the coarsest topology in which
every V (K,U) is open.

There are certainly other topologies one might put on function spaces, and
Top(n) has been considered with others, such as in [46] and [31]. However, the
following key fact should persuade the reader that compact-open is the “correct”
topology to put on Top(n). Note than an isotopy is a homotopy that is a homeo-
morphism at all times.

Proposition 2.2. Isotopies of maps from Rn to itself are the same as paths in
Top(n). That is, any isotopy H : Rn × I → Rn yields a path γ : I → Top(n) with
γ(t)(x) = H(x, t), and any such path yields an isotopy.

Proof. If we are given a path or an isotopy, we can always form the other via the
recipe γ(t)(x) = H(x, t), and the condition that H be a homeomorphism for all
t says the same thing as γ mapping into Top(n). So all we need to check is that
continuity of one of these maps implies the other.

First suppose H is continuous. Then

γ−1(V (K,U)) = {t ∈ I | γ(t)(K) ⊂ U} = {t ∈ I | K × {t} ⊂ H−1(U)}.
Since H−1(U) is open, every point in K×{t} has a ball of maximal radius around it
contained in H−1(U). But K is compact, so the minimum of these radii is achieved
at some point and is some nonzero ε. We then have that K×(t−ε, t+ε) ⊂ H−1(U),
hence (t− ε, t+ ε) ⊂ γ−1(V (K,U)) for all t ∈ γ−1(V (K,U)). Thus γ−1(V (K,U))
is open, so γ is continuous.

Now suppose γ is continuous. Then for any open U ⊂ Rn,

H−1(U) = {(x, t) ∈ Rn × I | γ(t)(x) ∈ U} =
⋃
t∈I

γ(t)−1(U)× {t}.

Since γ(t) is a homeomorphism, γ(t)−1(U) is open for all t. In particular, this
means that around every x0 ∈ γ(t0)

−1(U), there is some precompact ball Ox0

whose closure is contained in γ(t0)
−1(U). Thus γ(t0) ∈ V (Ox0 , U), and since γ is

continuous, there is some (t0− δ, t0+ δ) ⊂ γ−1(V (Ox0 , U)). Thus Ox0 × (t0− δ, t0+
δ) ⊂ H−1(U) is a neighborhood around (x0, t0), so H

−1(U) is open, hence H is
continuous. □

In fact, something stronger is true: compact-open is the finest topology for which
the above is true [1, Theorem 2]. See also [19].

Lemma 2.3. The evaluation map φ : f 7→ f(x) for some fixed x is continuous.

Proof. This is standard, just note φ−1(U) = V ({x}, U). □

We now clear up some of the definitional inconsistencies mentioned above.
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Proposition 2.4. Top(n) and TopS(n) are isomorphic as groups.

Proof. Let σ : Sn ∖ N → Rn be stereographic projection from the north pole.
Define Φ : Top(n) → TopS(n) and Ψ : TopS(n) → Top(n) by

Φ(f) = σ−1fσ and Ψ(g) = σgσ−1,

where it should be understood that Φ(f) : N 7→ N . Clearly these are inverses of
each other, and since σ is a homeomorphism, Ψ(g) is indeed always a homeomor-
phism. Similarly, Φ(f) is evidently a homeomorphism of Sn ∖ N to itself, but it
remains to check continuity at N . But this is quickly seen, since any homeomor-
phism f must map every compact region around 0 to some other compact region,
and thus maps neighborhoods of infinity to neighborhoods of infinity. The same is
true for Φ(f)−1 = σ−1f−1σ, so Φ(f) is indeed an element of TopS(n).

Finally, Φ is certainly a group homomorphism:

Φ(fg) = σ−1fgσ = σ−1fσσ−1gσ = Φ(f)Φ(g),

as is Ψ.

Note that these maps do not provide a homeomorphism between these spaces
because stereographic projection identifies every closed subset of Rn with a compact
subset of Sn (just by adding the north pole to the set if it is unbounded in Rn).
As such, if these were homeomorphisms, every V (K,U) would be open not just for
compact K but for all closed K, which is not the case. □

Proposition 2.5. Top(n) is homeomorphic to Top∗(n) × Rn, but they are not
isomorphic as groups.

Proof. Let Tx : Rn → Rn be translation by x. Define maps Γ : Top∗(n) × Rn →
Top(n) and Θ : Top(n) → Top∗(n)× Rn by

Γ(f, x) = Tx ◦ f Θ(g) = (T−g(0) ◦ g, g(0))
First, these maps are inverses of each other:

Γ(Θ(g)) = Γ(T−g(0) ◦ g, g(0)) = Tg(0) ◦ T−g(0) ◦ g = g

Θ(Γ(f, x)) = Θ(Tx ◦ f) = (T−Tx(f(0)) ◦ Tx ◦ f, Tx(f(0)))
= (T−Tx(0) ◦ Tx ◦ f, Tx(0)) = (T−x ◦ Tx ◦ f, x) = (f, x)

We need to check continuity of these maps, and since evaluation and composition
are continuous (the former by Lemma 2.3 and the latter because Top(n) is a topo-
logical group), we just need to verify that T : x 7→ Tx is continuous. To that end,
consider any x ∈ T−1(V (K,U)), which is some value such that K + x ⊂ U . Every
point in K + x is contained in some maximal open ball inside U , and Since K is
compact, there is some nonzero minimum of these balls’ radii. If ε is this mini-
mum, then any y ∈ Bε(x) is also in T−1(V (K,U)), so this set is open, hence T is
continuous.

Note however that these maps are not group homomorphisms:

Γ(f ◦ g, x+ y) = Tx+y ◦ f ◦ g = Tx ◦ Ty ◦ f ◦ g ̸= Tx ◦ f ◦ Ty ◦ g = Γ(f, x) ◦ Γ(g, y).
We defer the proof that Top(n) ̸∼= Top∗(n) × Rn as groups until after we have
discussed orientation-preserving maps. □
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2.1. Metrizability. Perhaps surprisingly, Top(n) is metrizable. One valid metric
is

ρ(f, g) = sup
r>0

min(1/r, sup
x∈Dr

d(f(x), g(x))),

where Dr is the closed ball of radius r centered at the origin. This can equivalently
be written as

ρ(f, g) = inf
r>0

max(1/r, sup
x∈Dr

d(f(x), g(x))).

Either expression may be more sensibly interpreted as “ρ(f, g) = 1/r, where r is
the largest value such that f and g differ by at most 1/r on Dr”. Hence a smaller
distance under ρ corresponds to a larger region on which f and g are closer. These
metrics are asserted to be valid in [11] and [37] respectively (although they define
it in terms of cubes rather than balls). The standard conditions for a metric are
straightforward to check for ρ, and indeed ρ yields the right topology:

Proposition 2.6. The metric topology induced by ρ on Top(n) is the same as the
compact-open topology.

Proof. Let any V (K,U) be given, and fix any f ∈ V (K,U). Since K is compact,
there is some ε > 0 such that

Pε =
⋃

y∈f(K)

Bε(y) ⊂ U.

Next, choose r > 0 large enough that K ⊂ Dr and 1/r < ε. Now consider:

Bρ
1/r(f) = {g | d(f(x), g(x)) < 1/r for all x ∈ Dr}

⊂ {g | d(f(x), g(x)) < ε for all x ∈ K}
⊂ {g | g(K) ⊂ Pε}
= V (K,Pε)

⊂ V (K,U)

So ρ’s metric topology is at least as fine as compact-open. For the converse, let
any Bρ

ℓ (f) be given. Since D1/ℓ is compact, we may cover f(D1/ℓ) by finitely many
balls of radius ℓ/3, call them {Bℓ/3(xi)}mi=1. Let

O =

m⋂
i=1

V
(
f−1(Bℓ/3(xi)), Bℓ/2(xi)

)
,

and observe that O is open in the compact-open topology and contains only maps
that send elements of D1/ℓ to within ℓ of where f sends them, so O ⊂ Bρ

ℓ (f). □

Largely by virtue of it being a metric space, Top(n) has basically every nice
topological property one could ask for. Indeed, we automatically know that Top(n)
is first countable, paracompact, and satisfies all the usual separation axioms. The
main difficulty in dealing with it is its sheer size, although even that is not too bad:

Proposition 2.7. Top(n) is second countable.

Proof. Let {Ui}i∈N be some countable basis of Rn. Let B be the set of all finite
intersections of sets of the form V (U i, Uj). Note that B is countable, we claim it is
the desired basis. Fix any V (K,U) and any f ∈ V (K,U). We need to find some
set in B within V (K,U) that contains f . Since f(K) is compact, we can cover it
with finitely many Ui’s, call them {Uij}mj=1, which may each be chosen to be within
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U . Each x ∈ K is in some f−1(Uij ), and we can find some Uk containing x such

that Uk ⊂ f−1(Uij ). By compactness again, we only need finitely many such Uk’s

to cover K. The intersection of all such V (Uk, Uij )’s is the desired basis set. □

2.2. Orientation and Path-connectedness. Even the simple question of how
many path components Top(n) has turns out to be very difficult, although for now
we can develop some general theory. First, we can always split Top(n) into at
least two path-components by considering orientation-preserving and orientation-
reversing maps.

More formally1, we can define a map on Rn to be orientation-preserving if it
has degree 1 as a map on Sn. That is, in the same way as in Proposition 2.4,
we lift the map up to the sphere via stereographic projection, mapping the north
pole to itself. If this automorphism of the sphere has degree 1, the original map is
orientation-preserving, and if it has degree −1, it is orientation-reversing.

Recall that the degree of a continuous map f : Sn → Sn is equal to f∗(1) ∈ Z,
where we are identifying Hn(S

n) ∼= Z and f∗ is the map f induces on homology.
Since every element of TopS(n) is a homeomorphism, they all induce isomorphisms
on homology groups, hence the only possible degrees are ±1. Also recall the stan-
dard fact from degree theory that two maps between Sn are homotopic if and only
if they have the same degree [32].

So indeed, there cannot be any paths in Top(n) between orientation-preserving
and orientation-reversing maps, as that would correspond to an isotopy on Rn,
which could be lifted to an isotopy on Sn.

We will refer to the collection of orientation-preserving maps in Top(n) (that is,
maps corresponding to degree 1 maps on the sphere) as STop(n). Note that degree
theory does not give us that STop(n) and the complementary set are themselves
path-connected, as being of the same degree only guarantees the existence of a
homotopy, rather than the isotopy we need. Thanks to the following result, we can
largely reduce our study of Top(n) to focusing on STop(n):

Proposition 2.8. The spaces of orientation-preserving and orientation-reversing
maps in Top(n) are homeomorphic. That is, STop(n) ∼= Top(n)∖ STop(n).

Proof. Fix any orientation-reversing f ∈ Top(n). Multiplication by f is an auto-
morphism of Top(n) since it is a topological group. Because degree is multiplica-
tive (i.e. deg gh = (deg g)(deg h)), this is a homeomorphism sending orientation-
preserving maps to orientation-reversing maps and vice versa. □

Note that this also shows that STop(n) is an index 2 subgroup of Top(n).

Proving much more here is almost impossible with elementary techniques; it will
be the goal of the next section to prove that STop(n) is path-connected. Local
path-connectedness is also difficult to show in general for Top(n), but after laying
the groundwork for path-connectedness it will be achievable. We can however tie
up one loose end:

Continuation of proof of 2.5. To show that there is no group isomorphism between
Top(n) and Top∗(n) × Rn, we appeal to the recent fact [2] that every map in

1There are many formulations of orientation, but suffice it to say, they are all equivalent. For
some of their definitions and discussions of equivalence, see [15], [25, Chapter 15], and [39].
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STop(n) is a commutator. And because [f, g] = fgf−1g−1 is orientation-preserving
for any f, g ∈ Top(n) (since the composition of two orientation-reversing maps
is orientation-preserving), we get that STop(n) is in fact the entire commutator
subgroup of Top(n). Thus, since STop(n) has index 2 in Top(n), we get that any
abelian quotient of Top(n) has at most two elements. But this is manifestly untrue
for Top∗(n)× Rn: we can take Top∗(n)× Rn/Top∗(n)× 0 ∼= Rn. □

2.3. Top(1). Before continuing further, we provide a fairly thorough description
of the one-dimensional situation, which is the only directly tractable case (the case
of Top(0) is uninteresting - there is only one map R0 → R0). The key fact that
makes this case accessible is the standard result from elementary analysis that any
continuous bijective map from R to itself is either strictly increasing or strictly
decreasing.

Proposition 2.9. STop(1) is contractible and open, hence Top(1) ≃ S0.

Proof. Any f ∈ STop(1) is strictly increasing, so we consider the straight-line
isotopy:

H(x, t) = tx+ (1− t)f(x).

This is a homotopy between f and the identity map, and since it is a linear combina-
tion of increasing functions with nonnegative coefficients (that are never both zero),
it is increasing. So Ht ∈ STop(1) for all t, meaning this is an isotopy. It also varies
continuously with f , so it is actually a deformation retraction STop(1) ≃ {Id}.

For openness, it suffices to prove that the identity has a neighborhood in STop(1).
Indeed it does, namely⋃

n∈N
V ({0}, (−1/n, 1/n)) ∩ V ({1}, (1/n,∞)).

□

3. The Stable Homeomorphism Theorem

Our goal in this section is to prove the following result (in high dimensions),
which turns out to be equivalent to a basic topological property of Top(n):

Theorem 3.1 (Stable Homeomorphism Theorem). Every orientation-preserving
automorphism of Rn is stable.

An automorphism f is said to be stable if f = h1h2 · · ·hm, where each hi is
an automorphism of Rn and there is some open Ui such that hi|Ui

is the identity.
We can also consider stability of a map defined only on an open subset of Rn by
requiring each point in the domain have a neighborhood such that its restriction to
that neighborhood can be be extended to a stable automorphism of Rn as above2.

For some examples of maps that can be easily shown to be stable, the reader is
directed to the upcoming lemmas.

This theorem and the closely related Annulus Theorem were open problems for
many years. In low dimensions they were proven case by case, dimension 4 was
particularly difficult as usual and took until the 80’s to be proved [33]. However,
for dimensions 5 and above, an ingenious technique of Kirby (his “torus trick”)
allows it to be reduced to an easier problem that can be handled with piecewise

2This is a reasonable definition to make in light of Lemma 3.5 below.
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linear surgery theory [20]. We will discuss his method and prove all the core ideas.
Before getting too into the weeds, we justify why we should want this result:

Lemma 3.2. Stable maps are isotopic to the identity, so the Stable Homeomor-
phism Theorem implies STop(n) is path-connected.

Proof. If f is stable, we can write f = h1 · · ·hm with hi|Ui
= Id|Ui

. We claim each
hi is isotopic to the identity. To prove this, it suffices to consider some h such that
h|B1(0) = Id|B1(0). We use a version of Alexander’s isotopy:

H(x, t) =

{
1
th(xt)

1
2t ≤ |x|

x |x| < 1
2t

Note that H(x, 0) = Id(x) and H(x, 1) = h(x). Also, H is continuous because at
|x| = 1

2t , we get 1
th(xt) = 2|x|h( x

2|x| ) = 2|x| x
2|x| = x, since h is the identity on

B1(0). Also, H(x, t0) is a homeomorphism for each fixed t0 since each of the two
forms it takes is a homeomorphism onto its domain:

1

t0
h(t0B1/2t0(0)

c) =
1

t0
h(B1/2(0)

c) =
1

t0
B1/2(0)

c = B1/2t0(0)
c.

So indeed there are isotopies Hi : hi ≃ Id for each i. By composing these isotopies
we get an isotopy between f and the identity, as desired. □

In fact, we will see that path-connectedness of STop(n) is actually equivalent to
the Stable Homeomorphism Theorem. Before we start proving things, we must dis-
cuss some necessary machinery. We begin with an introduction to some structures
on manifolds that we will need.

3.1. Piecewise-linear Topology. We need to discuss a geometric framework which
serves as a sort of middle ground between the topological and smooth categories.
We will only introduce the very basics here, just enough to define piecewise-linear
manifolds and to see their connection to other kinds of manifolds. We will mainly
be summarizing from [34], [14], [35], [26, Lecture 2], and [7, Appendix B]

A polyhedron P ⊂ Rn is a subset such that every a ∈ P has a neighborhood
around it contained in a cone in P . That is, there is some compact L ⊂ P such
that aL = {λa+ µq | q ∈ L;λ, µ ∈ [0, 1];λ+ µ = 1} is contained in P and contains
a neighborhood of a in P . In this situation, L is called a link of a, and aL is called
a star. Any open subset of Rn is a polyhedron, and this is the situation we will
generally be concerned with. Indeed, just take a small enough precompact ball
around any point and its boundary will be the desired link:

Figure 1. Every open set in Rn is a polyhedron.
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A continuous map f : P → Q between polyhedra is piecewise-linear (PL) if
there is a triangulation of P such that f is affine when restricted to each simplex3.
Here by affine, we mean a linear map composed with a translation. If a PL map
has a PL inverse, then it is a PL homeomorphism (or equivalence or isomorphism
– this is just the isomorphism in the PL category).

A PL manifold is a polyhedron such that every point has a neighborhood which
is PL homeomorphic to an n-ball [26] [34] [7]. Equivalently, and more conveniently
for our purposes, a PL manifold is a topological manifold equipped with a maximal
PL atlas [35][6]. That is, a collection of charts such that the transition map between
any pair of them is a PL map. This gives a nice abstract perspective on these
manifolds and gives a convenient symmetry to the definition of smooth (and stable,
as we will see) manifolds. It also makes it sensible to speak of different PL structures
on the same topological manifold. We can then consider a PL map on PL manifolds
as we have defined it above or as a map whose local representation under PL charts
is PL. That is, if φ and ψ are charts in the PL structures for M and N , then
f : M → N is PL if ψ ◦ f ◦ φ−1 is PL as a map between polyhedra in Rn. This is
equivalent to the above definition if M and N are themselves viewed as polyhedra
[18].

It is worth noting that not every topological manifold has a PL structure, and in
fact even triangulable manifolds need not be PL manifolds. Further, if a manifold
has a PL structure, it need not be unique up to PL homeomorphism.

What is true however is that every smooth manifold has a PL structure, which
is unique if we insist upon “Whitehead compatibility”. Specifically, given a smooth
manifold, there is a PL structure such that the transition maps between the PL
charts and smooth charts are piecewise-differentiable (PD). So if ψ is a smooth
chart and φ is a PL chart, then ψφ−1 restricts to a differentiable map on each
simplex of some triangulation, with injective differential at every point [26, Lecture
3] [6]. Further, this PL structure is unique up to PL homeomorphism [45]. To see
that this is even a sensible condition to impose on the PL structure, note that if
the above is true for ψ and φ, then for any other smooth chart χ and PL chart θ,
we have

χθ−1 = χψ−1︸ ︷︷ ︸
smooth

ψφ−1︸ ︷︷ ︸
PD

φθ−1︸ ︷︷ ︸
PL

.

Since linear maps are certainly differentiable4, we get that χθ−1 is piecewise-
differentiable. We will see later that the stable structure induced by a smooth
structure is the same as that which is induced by the associated PL structure.

Just to get a taste of how PL manifolds work, let’s look at a simple example.

Example 3.3. Consider the open unit interval (0, 1), which has a natural topolog-
ical manifold structure, and consider the map φ : (0, 1) → (0, 1) given by

φ(x) =

{
1
2x x ≤ 1

2
3
2x− 1

2 x > 1
2

3One often sees another definition, but this is equivalent [34, Ex. 1.5 and Cor. 2.3] and more

convenient for us.
4Although C1 is sufficient for much of what we will be doing, for ease we will always mean

C∞ when we say smooth or differentiable.
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This is a PL map between subsets of R, but what about as a map of manifolds?
We could take this to be a chart defining a PL structure on (0, 1), but since it’s
already PL, that structure would be the same as the one defined by the identity
map. We could put a more interesting structure on our manifold with a chart like

ψ(x) =

{
x2 x ≤ 1

2
3
2x− 1

2 x > 1
2

This certainly isn’t a PL map, so it couldn’t be part of the same PL structure as
φ or the identity, since the transition map between the charts wouldn’t be PL. It
nonetheless determines a perfectly good PL structure, consisting of all charts χ
such that χψ−1 and ψχ−1 are PL.

Even though φ and ψ define different PL structures, the resultant PL manifolds
are still PL isomorphic. Indeed, if M is (0, 1) with the identity structure and N is
the same space with the ψ structure, then ψ itself is a PL homeomorphism N →M .
It is PL because Id◦ψ◦ψ−1 = Id is, and its inverse is as well, since ψ◦ψ−1◦Id = Id.

We are interested in PL manifolds now because of one of the key steps in the
proof of the Stable Homeomorphism Theorem, and because all piecewise-linear
homeomorphisms are stable. This enables us to leverage stronger structures to
get at stability, but before proving this fact, we need to introduce a more robust
framework for stability.

3.2. Stable Manifolds. Recall that we can consider whether a map defined only
on an open subset of Rn is stable. Because of this and the fact that composi-
tions of stable maps are stable (Lemma 3.4), we can define a stable structure on
a topological manifold. We do so in the same way as we define smooth or PL
structures: we take a maximal collection of charts such that for any φ and ψ, the
map ψφ−1 is stable as a map between subsets of Rn. We thus get the notion of
stable manifolds, and maps between such manifolds are stable if their local ver-
sions are. That is, f :M → N is stable if ψ◦f ◦φ−1 is stable for every pair of charts.

We will see soon (Lemmas 3.12 and 3.10) that all orientation-preserving diffeo-
morphisms and PL maps on Rn are stable, so oriented smooth and PL manifolds
automatically inherit a stable structure. We can just take the stable charts to be
all the oriented smooth/PL charts, as well as all that are stably compatible with
them. Unless otherwise stated, any PL or smooth manifold (particularly Tn) will
be assumed to have that stable structure.

Something important to note is that the stable structure induced by a smooth
structure is the same as that induced by the PL structure one can put on the smooth
manifold. Indeed, suppose ψ is a smooth chart on some n-manifoldM and φ is a PL
chart in the induced PL structure onM . Then ψφ−1 is piecewise-differentiable with
injective differential (this is the Whitehead compatibility condition). Restricting
to the interior of some n-simplex in the triangulation, we have that ψφ−1 is a local
diffeomorphism. So by Lemma 3.12, this transition map is stable. But then φψ−1,
when suitably restricted, is also a diffeomorphism, hence stable. Thus one can take
either the smooth or PL charts as defining the stable structure, and the others come
along anyways. Because of this, we can freely speak of stable maps between smooth
manifolds, and we can switch between viewing them as PL and smooth manifolds
without any issues.
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3.3. Initial Lemmas. We start with some basic facts about stable maps that
we will need repeatedly. If the reader is willing to believe that various “nice”
homeomorphisms (linear maps, diffeomorphisms, etc.) and maps “near to” stable
maps are stable, then this section can be skipped painlessly enough.

Lemma 3.4. A composition of stable maps is stable (in Rn or on a manifold).

Proof. First, in Rn, if f and g are each compositions of homeomorphisms which
are each the identity on an open subset, then their composition is as well. Next,
suppose they are only defined on open subsets of Rn such that their restriction
around any point can be extended to a stable map on Rn. Then, the composition
of those extensions will be stable, and this will be an extension of a restriction of
the composition of the original maps.

In general, let M , N , and P be stable manifolds, and suppose h : M → N and
k : N → P are stable maps. That means that given any stable charts φ, ψ, and χ
on M , N , and P respectively, the maps

ψ ◦ h ◦ φ−1 and χ ◦ k ◦ ψ−1

are stable as maps on (open subsets of) Rn. We already know the composition of
stable maps on Rn is stable, so

(χ ◦ k ◦ ψ−1) ◦ (ψ ◦ h ◦ φ−1) = χ ◦ k ◦ h ◦ φ−1

is stable, hence kh is stable as a map of manifolds. □

Lemma 3.5. If two automorphisms of Rn agree on some open subset and one of
them is stable, then so is the other. The same is true on connected manifolds.

Proof. Let f, g be maps on Rn as described, with g stable and f |U = g|U . Then
g−1f is the identity on U , so f = gg−1f is a composition of stable homeomorphisms,
hence stable.

If we treat them now as maps between manifolds, then their local representations
on U will be the same, hence both stable there. Let S be the collection of all
stable charts φ such that there is any chart ψ with ψ ◦ f ◦ φ−1 stable. Let N be
all remaining stable charts. Now, let S be the union of the domains of the charts
in S , and N the same for the charts in N . Both S and N are open, and S is
nonempty by above. Crucially, they are disjoint, since if a chart θ ∈ S and a chart
χ ∈ N overlap, then on that overlap,

ψ ◦ f ◦ χ−1 = (ψ ◦ f ◦ θ−1)︸ ︷︷ ︸
stable

◦ (θ ◦ χ−1)︸ ︷︷ ︸
stable

,

hence χ ∈ S . Thus, to avoid a disconnection, we must have that N is empty, hence
f is stable with respect to any chart in the domain. Applying the same argument to
charts on the codomain, we get that f is stable with respect to any pair of charts,
hence stable. □

This is a rather surprising fact. It indicates that stability is somehow locally de-
tectable, which is good for our definition of stable manifolds, but is peculiar given
that the definition of stability is seemingly so nonlocal. It’s further surprising how
simple the proof is, with the key argument being just a sentence long. It might
be viewed best as a first hint that stability isn’t so strong a condition after all. In
any case, it means that often the easiest way of proving some map is stable is to
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construct a map that is the identity somewhere and that map somewhere else.

This next lemma will be of crucial importance for showing that all automor-
phisms of the torus are stable. It’s worth noting however that the condition it
requires is quite strong. Indeed, every neighborhood around a map will contains
maps that differ from it at some points by arbitrarily large amounts.

Lemma 3.6. For maps f, g ∈ Top(n), if d(f(x), g(x)) is bounded for all x ∈ Rn,
and g is stable, then so is f .

Proof. (After [8, Lemma 5 & Theorem 5], but the proof there is quite scant on
details). If f(x) and g(x) are within some distance for all x, then the same is true
for fg−1(x) and x. Further, if fg−1 is stable, and so is g, then f = (fg−1)g is also
stable. Thus it suffices to consider the case where one of the maps, say g, is the
identity. For the purposes of this proof, Ba is the open ball of radius a around the
origin.

Fix some r large enough that f(B1) ⊂ Br and choose any s > r. Next, define a
map h : Bs → Rn that is the identity on Br and which radially stretches Bs ∖ Br

homeomorphically onto Rn ∖Br. Explicitly, we could take

h(x) =

{
x |x| < r
s−r
s−|x|x r ≤ |x| < s

Note that h−1fh is a automorphism of Bs, as is h
−1f−1h. We now define j : Rn →

Rn by

j(x) =

{
h−1f−1h(x) |x| < s

x |x| ≥ s

Each of the two forms j takes are automorphisms of their domains, so to see j is
a homeomorphism, it suffices to check continuity (and continuity of the inverse) at
∂Bs. Indeed, for x ∈ Bs, the distortion caused by f or f−1 is applied to an enlarged
version of the space, and thus will be lessened overall since the space is scaled back
down by h−1 afterwards. As |x| → s, the scale factor gets larger, so the distortion
becomes less and less. And since the initial distortion is bounded, the distortion
tends to zero, meaning the map tends to the identity.

So j is a homeomorphism, and stable because it is the identity outside of Bs.
Also, since f(B1) ⊂ Br and h leaves Br untouched, jf is the identity on B1. So jf
is stable, meaning that f = j−1(jf) is stable. □

We also note a related result:

Lemma 3.7. For maps f, g ∈ Top(n), if d(f(x), g(x)) is bounded for all x ∈ Rn,
then f is isotopic to g.

Proof. It suffices to prove this in the case g = Id, since then the general case follows
by multiplying the isotopy from Id to f−1g by f . We use a version of Alexander’s
trick: define H : Rn × I → Rn by

H(x, t) =

{
tf(x/t) t ∈ (0, 1]

x t = 0
.
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Clearly this goes from Id to f , and at every t ̸= 0, we have the inverse tf−1(x/t),
so we just need to check continuity. And indeed:

lim
t→0

d(H(x, t), x) = lim
t→0

td(f(x/t), x/t) ≤ lim
t→0

tB = 0.

Note that one could also prove this by appealing to the previous lemma for Id and
f−1g, then applying Lemma 3.2. □

Finally, we will prove that some special cases of the Stable Homeomorphism
Theorem are true, where we restrict to various nice subsets of Top(n). We will need
these to prove the general case, and also to show that smooth and PL manifolds do
in fact have induced stable structures.

Lemma 3.8. Any orientation-preserving (i.e. positive determinant) linear trans-
formation of Rn to itself is stable.

Proof. Let some positive-determinant T ∈ GL(n) be given, and suppose first that
T maps every sphere centered at the origin to itself homeomorphically (i.e. T is
length-preserving). Recall the standard fact that GL+(n) is path-connected [42,
Theorem 3.68], meaning there is an isotopy H : T ≃ Id that is linear at all times.
By normalizing the images of the basis vectors at each time, we can make it length-
preserving at all times. Since the vectors never pass through zero, this presents no
continuity or invertibility issues. Now consider the following map:

g(x) =


T (x) x ∈ B1(0)

H(x, |x| − 1) x ∈ B2(0)∖B1(0)

x x ∈ B2(0)
c

This is evidently a stable homeomorphism that agrees with T on some region, so
T is stable.

Figure 2. The homeomorphism g, bridging between T and Id
using the length-preserving isotopy.

For the general case, we just scale the region around the origin along the di-
rections of the images of each basis vector so that the transformation is length-
preserving. We’ve seen that the resultant map is stable, so we need now only show
that these scaling maps are stable. Then the original map will be the inverse of the
scaling maps composed with the normalized map, hence stable.
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We need to prove that for any nonzero v ∈ Rn and positive α ∈ R, we can stretch
a region by a factor of α in the direction v with a stable homeomorphism. We first
consider this problem in the one-dimensional case, which will look like this:

s(x) =


x x > nK

αK + n−α
n−1 (x−K) nK ≥ x ≥ K

αx K > x

,

where K is some large number and n > max(α, 1). Notice that αK+ n−α
n−1 (x−K) is

αK at x = K and is nK at x = nK. Further, n−α
n−1 > 0, so this intermediate section

is increasing, meaning s is a (stable) homeomorphism. In the n-dimensional case,
just take a basis containing v and define a map which is s on the v component and
the identity on all the rest. □

Lemma 3.9. Any translation in Rn is stable.

Proof. As in last part of the proof of Lemma 3.8, it suffices to consider the one-
dimensional case. So, let f(x) = x + a for some fixed positive a ∈ R. Then,
consider

g(x) =


x+ a 1 ≤ x

x+ ax 0 < x < 1

x x ≤ 0

This is a homeomorphism which equals Id in one region and f in another, hence f
is stable. If a is negative, then f will be the inverse of a translation by a positive
number, hence also stable. □

Lemma 3.10. Any orientation-preserving PL map is stable.

Proof. A PL map certainly agrees with an affine map on some region, and an affine
map is just a linear map composed with a translation. □

The next two lemmas are adapted from [9, Chapter 5]. An alternative proof of
Lemma 3.12, as well as general discussion of stable maps, can be found in [5].

Lemma 3.11. Let h : Rn× I → Rn be a smooth isotopy and fix any x ∈ Rn. Then
there is a smooth isotopy H : Rn×I → Rn such that Ht ◦h0 = ht in a neighborhood
of x and Ht is the identity outside of some compact set.

The proof depends on the notion of flows on manifolds, which is too far afield
for us to discuss in the proper detail. The idea is to make a smooth vector field on
Rn × I that is uniform in the t direction in one region and which depends on h in
another region. This is done in such a way that integrating the vector field (that
is, “following where the points go as if pushed by the vector field”) yields h in one
region and the identity isotopy elsewhere. This fact will only be used to prove the
following:

Lemma 3.12. Any orientation-preserving self-diffeomorphism of Rn is stable.

Proof. Let f be such a map. We first want to construct an isotopy from f to the
identity. By translating first (which is certainly isotopic to the identity), we may
assume f(0) = 0. The following clever isotopy can be found in [32, §6]:

J(x, t) =

{
1
t f(tx) t ∈ (0, 1]

Df0(x) t = 0
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where Df0 is the differential of f at the origin. This is evidently a homeomorphism
(in fact a diffeomorphism) for each t, and it’s continuous by the definition of the
derivative. Thus this is an isotopy from f to a linear map. Since isotopies can
only connect orientation-preserving maps to other orientation-preserving maps, we
know that Df0 ∈ GL+(n). Since GL(n) is path-connected smooth manifold, we
can take a smooth path from Df0 to Id. We thus get a smooth isotopy h : f ≃ Id.

By the previous lemma, there is an isotopy H such that Ht ◦ f = ht in a region
around 0, and such that Ht is the identity outside some compact set. So then H1

is f−1 in one region and the identity in another. By Lemma 3.5, we have that f−1

is stable, hence so is f . □

Remark 3.13. We briefly digress here to discuss Diff(n), the space of all self-
diffeomorphisms of Rn. Just like Top(n), it is fruitful to split it into orientation-
preserving and orientation-reversing maps, between which there are no paths. In
fact, the isotopy J in the previous proof actually serves as a deformation retract
of the orientation-preserving subset of Diff(n) onto GL+(n). By Gram-Schmidt
orthogonalization, we know that GL(n) ≃ O(n), so in fact Diff(n) ≃ O(n) for all
n. A central result of Kirby and Siebenmann [21] says that for n ≤ 3 this also
coincides with Top(n). That is, Top(n) ≃ O(n) ≃ Diff(n).

3.4. Main Results. Up next is the key to the whole game. One of Kirby’s big
insights is that any homeomorphism of the torus lifts to a homeomorphism of Rn

which is fully determined by its action on [0, 1]n. Since the homeomorphism can only
move that fundamental domain so far, it is forced to be bounded everywhere (after
some correction to realign everything). We will prove this result slightly differently
to Kirby to avoid some technical dependencies, but the idea is the same. See his
classic paper [20] for the original proofs, which we will be adapting throughout this
section. Some other treatments of the argument can be found in [9, Chapters 13
and 14], [7, Appendix B.3.2], and [43, Section 9.3].

Lemma 3.14. Any orientation-preserving automorphism of Tn is stable.

Proof. Fix any such homeomorphism f . Let ε : Rn → Tn be the standard universal
covering map of the torus (just the exponential e2πix in each coordinate). The
composition fε is also a covering map of Tn, so by a standard fact about covering
spaces [24, Theorem 11.40], there is a homeomorphism F : Rn → Rn such that the
following commutes:

Rn Rn

Tn Tn

F

ε ε

f

Since ε is orientation-preserving, F also has to be orientation-preserving because
εF = fε is.

Note that ε maps two points to the same point on the torus if and only if they
differ by an integer in each coordinate. So, we get that

εF (x) = fε(x) = fε({x1}, . . . , {xn}) = εF ({x1}, . . . , {xn}),

where {xi} is the fractional part of xi. Thus,

F (x) = F ({x1}, . . . , {xn}) +A(x),
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where A maps into Zn. By composing with a translation, we can get a map F̃ that
fixes the origin and for which the above relation is still true. For x ∈ [0, 1)n, we can
see that A(x) = 0 since then xi = {xi}. So F ({x1}, . . . , {xn}) is continuous on each
unit cube, meaning A must be constant on each unit cube for F to be continuous.
Thus A depends only on the integer part of each xi, so it can be viewed as a map
on Zn, which we claim is Z-linear. Indeed, for any y ∈ Zn, by continuity we get

F̃ (y + ei) = lim
d→1−

F̃ (y + dei)

F̃ (0) +A(y + ei) = lim
d→1−

F̃ (dei) +A(y + dei)

A(y + ei) = F̃ (ei) +A(y).

Also,

F̃ (y) = F̃ ({y1}, . . . , {yn}) +A(y) = F̃ (0) +A(y) = A(y),

so F̃ |Zn = A|Zn . Then Z-linearity of A follows from the above and induction.
Extend A to a linear map on all of Rn by just reusing the same matrix. Notice
that A and F̃ are of bounded distance apart on all of space since they differ by
F̃ ({x1}, . . . , {xn}), so the maximum distortion occurs on the unit cube, which is
compact.

Figure 3. The maps F , F̃ , and A.

So, by Lemma 3.7, there is an isotopy between A and F̃ . Since F was orientation-
preserving, so is F̃ , and thus so is A, because an orientation-reversing map cannot be
isotopic to an orientation-preserving map. Hence, as A is an orientation-preserving
linear map, it is stable. Thus F̃ is stable by Lemma 3.6, meaning F is, since all
translations are stable.

Since the covering map ε is a smooth covering map (onto Tn with its standard
smooth structure), it is a local diffeomorphism. Thus the fact that F is stable says
exactly that any local coordinate representation of f is stable, hence f is stable. □

Before the main event, it’s worth pausing a moment to consider the key technical
machine that makes it possible. To shift the problem to the torus, Kirby immerses a
punctured n-torus into Rn. First, a clarification of terminology: what we are look-
ing for is not an embedding, but a smooth map that has invertible differential at
every point. So there’s no global injectivity requirement, but it needs to be a local
diffeomorphism. It is a result of Hirsch [16, Theorem 4.7] that any parallelizable,
open, smooth n-manifold can be smoothly immersed in Rn. Many more dimensions
are required in general (the Whitney Embedding Theorem requires 2n), so paral-
lelizability is doing much of the work here. The n-torus is indeed parallelizable
(meaning it admits a global frame), just take unit vectors in the counterclockwise
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direction around each circle. However, the torus is not an open manifold, so we
need to consider a punctured torus. We could just remove a single point, but it
will be convenient later to have removed a small disc (for concreteness, say the
image of Bδ(

1
2 , . . . ,

1
2 ) under the usual covering map for some small δ > 0). So we

have a smooth immersion α : Tn ∖D → Rn (which is also a submersion and local
diffeomorphism because they have the same dimension). For explicit constructions
of this map, see [21, Essay I, Appendix B], [10], and [36, Lemma 5.6.1].

∼ →

Figure 4. Immersing T2 ∖D into R2.

Before digging into Kirby’s fantastic proof of the Stable Homeomorphism The-
orem, let’s give an outline of the technique. Very broadly, the idea of the torus
trick is that instead of solving a difficult problem on Rn, we solve it on the torus,
then by immersing the torus into Rn, we somehow translate the problem in Rn to a
problem on the torus. Then we close up the hole on the torus and apply the known
solution there. For us, the lemma above takes the role of the known solution on
the torus. The argument gets tricky and technical at a few spots, so in somewhat
more detail, this is the progression we’ll be following:

(1) Immerse a punctured n-torus into Rn.
(2) Apply any (orientation-preserving) homeomorphism of Rn.
(3) Declare this composed map from the punctured torus to Rn to also be an

immersion, and consider the new smooth structure this forces the punctured
torus to have.

(4) The homeomorphism of Rn will be stable iff the identity map between the
original punctured torus and the punctured torus with the new smooth
structure is stable.

(5) Extend the identity to a homeomorphism of the unpunctured tori (this
requires a fair amount of technical fiddling).

(6) Get a PL homeomorphism of the tori.
(7) Use this new stable map together with the fact about all self-homeomorphisms

of Tn being stable to get that the identity map was stable.
(8) Thus the map on Rn is stable.

Theorem 3.15 (The Stable Homeomorphism Theorem). Every orientation-preserving
automorphism of Rn is stable for n ≥ 6.

Proof. Fix some orientation-preserving homeomorphism f and consider the com-
position fα : Tn ∖D → Rn, where α is some immersion as discussed above. This
generally will not be a smooth immersion, unless f happens to be a diffeomorphism,
so we consider a new structure on Tn ∖ D so that it is. That is, we take fα to
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define the smooth charts on the punctured torus, which we will call τn ∖D when
it has this smooth structure. We also take the orientation on τn ∖ D to be such
that these charts are orientation-preserving (that is, we pull back the orientation
by fα).

Note that α can be viewed as defining the standard (oriented) smooth structure
on Tn ∖D in the same way (we can choose α to be orientation-preserving). So, a
local representation of the identity map Id : Tn∖D → τn∖D is (fα)◦ Id◦σ, where
σ is a local section of α (which exists since α is a submersion). But (fα)◦Id◦σ = f ,
so we can see that f is stable if and only if Id is stable as a map of stable manifolds.
As usual, the stable structures are inherited from the (oriented) smooth structures.
Note that since f is orientation-preserving, we have that Id is orientation-preserving
as well. This is summarized in the following:

Tn ∖D τn ∖D

Rn Rn

Id

α fα

f

At this point, we would like to apply what we know about stable homeomor-
phisms on the torus, but before we can do that, we need to patch up the hole we
made. That is, we want to extend the identity to a homeomorphism Tn → τn,
where τn is some manifold extending the punctured torus with the new smooth
structure. This turns out to be geometrically nontrivial, so we’ll go through it step
by step, but thankfully, some well-established theorems in geometric topology will
handle it pretty easily. Since PL structures induce stable structures just as well as
smooth structures but give us a bit more freedom, this is the stage at which we
pivot to viewing the torus as a PL manifold.

First, by Theorem 1 in [3], we know that there is a smooth manifold with bound-
ary whose interior is diffeomorphic to τn∖D. The boundary is evidently homotopy
equivalent to a sphere, and has a smooth structure, hence a PL structure. We want
to glue a disc along the boundary, but to ensure that what results is a PL man-
ifold, we need to know that the PL structure on the boundary is (isomorphic to)
the usual PL sphere. The easiest way to see this is to appeal to the generalized
Poincaré conjecture5, which is known to be true in the PL category for dimension
5 and above [38] [34].

So, we are free to glue a disc (with its usual PL structure) along its boundary to
the boundary of our torus, and since these boundaries are PL isomorphic, we get a
PL manifold. Call this manifold τn. We now wish to extend Id : Tn ∖D → τn ∖D
to a map between the complete tori. To do this, we apply the Schönflies theorem
[4] to ∂2D, that is, the image of ∂B2δ(

1
2 , . . . ,

1
2 ). This tells us that the region in τn

bounded by ∂2D is homeomorphic to an n-ball. The same is true for Tn, so we just
need to map these balls to each other to extend our map. This is done by “coning”:
if one has some homeomorphism k : Sn−1 → Sn−1, then it can be extended to
x 7→ |x|k(x/|x|) on the whole ball (with 0 7→ 0). This gives a homeomorphism
of the balls bounded by ∂2D in the two tori, and we thus get a homeomorphism
h : Tn → τn extending the identity map (on Tn ∖ 2D).

5This where we need n ≥ 6, although a workaround using a result of Wall [40] and the h-
cobordism theorem can make it work for n = 5.
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Now, let η : Tn → Tn be the 2n-fold covering map given by the squaring map in
each component:

η(z1, . . . , zn) = (z21 , . . . , z
2
n),

where here we are considering S1 as a subset of C. On the torus with its standard
PL structure, this is a PL covering map (locally it’s just stretching by a factor of
two). Let τ̂n be the PL covering space of τn for which η is a PL covering map.
That is, τ̂n is a torus with the PL structure such that η is PL. In the same way
that we lifted the homeomorphism between tori to a homeomorphism of covering

spaces in the proof of Lemma 3.14, we can lift h to a map ĥ : Tn → τ̂n. It is
a result of Hsiang-Shaneson [17] and Wall [41] (quickly searched for after Kirby’s
initial announcement) that for n ≥ 5 there is in fact a PL homeomorphism between
Tn and τ̂n, call it g. This is all shown in the following diagram, which commutes
excluding g.

Tn τ̂n

Tn τn

g

ĥ

η η

h

Note that since Id is orientation-preserving, we have that h and ĥ are too (ĥ because
η is orientation-preserving as well). The map g can also be chosen to be orientation-
preserving – if it is not, just negate one component of the map. So, since g is PL,

it is stable. Now consider the orientation-preserving map g−1ĥ : Tn → Tn. By

Lemma 3.14, this composition is stable, so ĥ = gg−1ĥ, being a composition of
stable maps, is stable. Since η is a local PL homeomorphism on both sides of the
diagram, this implies h is stable. Restricting h to Tn∖2D, we get that the identity
map Tn ∖ 2D → τn ∖ 2D is stable. Hence, as discussed above, f is stable, as
desired. □

The proof we have given works only in high dimensions, but as mentioned above,
the Stable Homeomorphism Theorem is true in all dimensions. Up to dimension 3
was well-known by the time of Kirby’s paper, and dimension 4 was proved in [33],
so from here on we will drop the dimension condition. We are now ready to achieve
one of our major goals.

Theorem 3.16. The space Top(n) has exactly two path components.

Proof. Since the spaces of orientation-preserving maps and orientation-reversing
maps are homeomorphic, and there are no isotopies between them, this follows
from the Stable Homeomorphism Theorem and Lemma 3.2. □

Remark 3.17. The mapping class group of a manifold is defined to be its home-
omorphism group modulo isotopy. That is, it is the group of isotopy classes of
homeomorphisms. What we have just shown amounts to the fact that the mapping
class group of Rn (and Sn) is Z/2Z for all n > 0.

The reader may have a few objections or questions at this point. Notably, we
haven’t shown that STop(n) is actually an open set, so this may only be a path-
disconnection (i.e. Top(n) may still be connected). Also, a reasonable response
to all this is to question whether it was actually necessary. How do we know that
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we didn’t needlessly prove an overpowered tool for our purpose? The next result,
another application by Kirby [20, Theorem 2] of his torus trick, should lay both
these concerns to rest.

Theorem 3.18. Top(n) is locally path-connected.

Proof. Since it is a topological group, it suffices to prove that the identity map has
a path-connected neighborhood. Since stable maps are isotopic to the identity, we
need only find a neighborhood of stable maps around the identity. For any compact
C ⊂ Rn and any ε > 0, we define a set N(C, ε) as follows. Cover C with finitely
many ε

4 -balls, call them Bi. Let 2Bi be the ball centered at the same point as Bi

but with radius ε
2 . Then let

N(C, ε) =
⋂
i

V (Bi, 2Bi).

Certainly Id ∈ N(C, ε), and it is a finite intersection of open sets, hence open.
Further, note that for any f ∈ N(C, ε), every point in C is moved by f by less than
ε. That is, d(x, f(x)) < ε for all x ∈ C. We will prove that every map in N(C, ε)
is stable.

The idea this time is to immerse tori with different sized holes into Rn, then
after applying the homeomorphism, consider that as a map from one punctured
torus into another. Then, again, we close up the hole and use what we know about
stable maps between tori. The geometric technicalities will take some clearing up,
but it won’t be too bad with the experience we have.

First, we use Hirsch’s immersion α to map Tn∖D into Rn. We will be considering
α(Tn∖nD), where nD is just the same disc removed from the torus, but scaled up
by a factor of n. Choose ε small enough that every point in α(Tn ∖ nD) has an ε-
ball around it contained in α(Tn∖(n−1)D) for 2 ≤ n ≤ 4. That is, such that every
point in α(Tn ∖ nD) can be moved by up to ε without leaving α(Tn ∖ (n− 1)D).
This is possible because ∂nD is compact, so we can find some constant-width collar
in α(nD ∖ (n− 1)D).

Now, fix any f ∈ N(C, ε), where C is any compact set containing α(Tn ∖ D).
We then have that fα(Tn ∖ 2D) ⊂ α(Tn ∖D). We would now like to lift f up to
a map on the punctured tori.

This is fairly easily done; since α is an immersion, there is a neighborhood around
every point on which it is an embedding. Just restrict to a smaller neighborhood
inside each of those such that after mapping down by α then perturbing by f , the
image is still in the image of the larger neighborhood. Reduce ε if necessary to
make this possible, and to make it so that any two points which α maps to the
same place have disjoint such neighborhoods. We can then pull back up by the

embedding and thus get a locally defined map f̂ : Tn ∖ 2D → Tn ∖D. This glues
together properly since we are always just applying α, then f , then an inverse of
α, which is always unique on any overlaps.

We can see f̂ is an embedding because of the disjointness condition we required,
which forces any points that might be sent to the same place to be lifted back to
different neighborhoods.

By the same arguments as in the proof of 3.15, we can extend the map f̂ to a

map f̃ : Tn → Tn. More specifically, since f̂(∂3D) ⊂ 4D ∖ 2D, we can map 3D

to the ball bounded by f̂(∂3D) and get a homeomorphism f̃ . By Lemma 3.14,

we know that f̃ is stable, and since it agrees with f̂ on an open region (namely,
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Tn ∖ 4D), that map is also stable. But then, shifting down by α, which can act as
charts since it is locally an embedding, we get that f is stable, as desired. □

Corollary 3.19. The set of stable maps in Top(n) is open and closed.

Proof. It is open by the proof of the theorem, but note that it is a subgroup
of Top(n), since compositions and inverses of stable maps are stable. So, since
multiplication is a homeomorphism, we get that every coset of the set of stable
maps is also open. Take the union of all of the other cosets and we get that the
complement of the set of stable maps is open. □

Corollary 3.20. The set of stable maps in Top(n) is exactly the component of the
identity.

Proof. From the previous corollary and the fact that it is path-connected (because
all stable maps are isotopic to the identity). □

So indeed, the Stable Homeomorphism Theorem was necessary to our under-
standing the structure of Top(n). Putting it together, we get the following:

Corollary 3.21. Top(n) has two components, STop(n) and a space homeomorphic
to STop(n), which are also its path components.

4. Further Directions

Although we now have a good grasp on the basic point-set topology of Top(n),
there are still many questions to be asked. The answers to some of these questions
are known, but many are not. The remarkable work of Kirby and Siebenmann in
the 60s and 70s yields some information, notably that Top(n) ≃ O(n) for n ≤ 3,
but their understanding is far from complete. See [21, Essay 5], particularly Section
5. Another good source summarizing some of this is [13, Chapter 7].

It was actually known before Kirby, thanks to some elaborate surgery theory of
Černavskĭı [46], that Top(n) is locally contractible, as is the space of homeomor-
phisms for any compact manifold. In the same paper where he proved the Stable
Homeomorphism Theorem, Kirby reproved the former result very elegantly.

One of the primary reasons people are interested in Top(n) is for its classifying
space, BTop(n). But even less is known about that space than about Top(n).
Somewhat surprisingly, the colimit of these spaces, that is,

BTop =
⋃
n

BTop(n),

is significantly better understood. Note that the union here makes sense since we
can embed Top(n) into Top(n+1) by just not touching the last component, hence
we can map BTop(n) into BTop(n+ 1). The main source here is [27], and [44] has
some more modern results. For instance, the homology of BTop is known, unlike
BTop(n). Of course, if one knew the homology of Top(n), a standard Serre spectral
sequence argument should do the trick, but that too is difficult.

However, very recently there has been some progress here. In [23], BTop(n) is
shown to have finitely generated homotopy and homology groups, and [12] computes
the bounded cohomology of Top(n). Regardless, deep understanding of these spaces
remains elusive.

Finally, one could reasonably wonder about the algebraic properties of Top(n).
These are also difficult; as mentioned in the introduction, it is an open question
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whether every finitely generated torsion-free group is a subgroup of the homeomor-
phism group of a manifold. One notable fact is that Top(n) has a normal subgroup
made up of all compactly supported maps. That is, all maps which are the identity
except on a compact set. This group is actually significantly better understood, and
is known to have zero group homology [30]. The equivalent of this on TopS(n) is all
maps that are the identity on some neighborhood of the north pole. One incredible
recent fact is that any homomorphism from Top(n) to any separable topological
group is automatically continuous [28]. There also turns out to be an interesting
connection between homeomorphism groups and Lie groups which is discussed well
in [29].

Suffice it to say, Top(n) and automorphism groups of manifolds more generally
are objects of remarkable wonder and complexity.
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