THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS

JALEN CHRYSOS

ABSTRACT. Reverse mathematics studies the precise strengths of theorems, defined by their
ability to prove axioms (over a weak base theory). This paper discusses the strengths of two
theorems in infinitary combinatorics: Konig’s Lemma and Ramsey’s Theorem. We compare
weakened cases of each to theories of second-order arithmetic, to theorems from real analysis,
and to one another. The method of forcing features prominently.

KL Thm 2.5 ACA) —tmid ., RT3
Thm 3.5 Thm 4.5
Thm 4.6 2
WKL —--mmmmmmm o RT
Thm 3.1 Thm 4.2
RCA,
CONTENTS

Introduction 2
1. Measures of Set Complexity 4
1.1. Algorithms and Computability 4
1.2. The Arithmetical Hierarchy 7
1.3. Mixing Arithmetic with Algorithmic 9
2. Theories of Second Order Arithmetic 12
2.1. The Baseline: RCAq 13
2.2. The Ceiling: ACA 15
2.3. Konig’s Lemma and Weak Konig’s Lemma 16
3. Separation of Problems 20
3.1. Methods of Model-building 20
3.2. Forcing and its Uses 22
3.3. The Weakness of WKL 24
4. Ramsey Theory 28
4.1. RT over RCAq 28
4.2. RT over ACAq 29
4.3. Study of RT3 33
Acknowledgments 36
References 36

Current draft as of September 27, 2025.

2 JALEN CHRYSOS

INTRODUCTION

Mathematics aims to determine the truth through deduction. We begin with statements that
we assume to be true—axioms—and combine them using basic logical rules to generate new
statements. A statement that can be reached this way is “proven true.” Of course, the notion of
provability depends on one’s foundations.

In the late 19th and early 20th centuries, when foundational questions seemed a pressing concern
even for regular mathematicians, it was hoped that in some sufficiently strong base theory, all true
statements could be proven. Goédel’s work showed this was impossible for all but the weakest formal
languages. In simple settings like Euclidean geometry, all statements could be decided. But in
the areas most relevant to working mathematicians, like Arithmetic or Set Theory, there would
always be unprovable true statements—or, in the case that the theory was contradictory, provable
false statements. Godel had revealed an inherent relativity within logic; knowing that all theories
are incomplete, why should we privilege one over the others?

Mathematics adapted around this discovery. Later work by Paul Cohen gave the first natural
examples of undecidability in Zermelo-Fraenkel Set Theory: the Axiom of Choice and the Con-
tinuum Hypothesis. Since that time, Choice has been mostly accepted as an axiom of set theory
(though it is still common to point out where it is relied upon) and much mathematics has been
built on top of it. The legitimacy of the continuum hypothesis, on the other hand, is still debated
among logicians and is of little relevance to anyone else. Even in the absence of completeness,
the mathematical community has settled on a satisfactory foundation of set theory, and alternate
foundations are seldom discussed.

Nevertheless, the particulars of the foundations remain deeply involved in the results they
support. Just as some theorems depend on the axiom of choice, others rely on (for example)
the formation of sets whose elements satisfy a given arithmetically-complex property, though the
latter cases are almost never noted. Suffice it to say, the relationships between theorems and
their constituent axioms are complex and not fully understood. The field of Reverse Mathematics
studies these relationships.

The study of reverse mathematics began in the 1970s through the work of Harvey Friedman.
As a young professor at Stanford working in mathematical logic, Friedman wanted to impress
upon his colleagues the influence of the foundations of mathematics on their work in analysis
and algebra, and so began to precisely map out this influence.! The subject has since developed
beyond Friedman’s original conception, but the fundamental pieces have remained constant.

Reverse mathematics seeks to compare the strengths of different theories. The notion of strength
is a partial order based on the space of sentences which can be proven; if T7 proves everything
that T, does, then T} is at least as strong as Th. It is called “reverse” because it assesses the
strength of theorems from ordinary mathematics as if they were axioms. In ideal cases, one can
show that within a given theory, some subset of axioms can be equivalently replaced by a certain
theorem, resulting in a precise classification of the theorem’s power—a reversal.

We mostly work within second-order arithmetic, a language whose objects are only numbers
and sets of numbers (there are no sets of sets, e.g.). Second-order arithmetic is expressive enough
to state most theorems of interest but simpler to work with than full set theory. The theories
of greatest interest all share certain axioms about the arithmetical properties of +,- and <, but
vary especially in their axioms concerning the existence of sets. One weak set-existence axiom
allows for the construction of all computable sets, which are considered to be the simplest. An-
other guarantees the existence of any set that can be arithmetically defined, which allows for much
more complex sets. The set existence principles of most interest here fall in between these extremes.

1See [3].

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 3

This expository paper focuses on two of these in-between theorems in second-order arithmetic,
each originating from infinitary combinatorics. Both have played essential roles in the development
of reverse mathematics:

e Konig’s Lemma: Every finitely-branching infinite tree has an infinite path.
e Ramsey’s Theorem: If one assigns every n-tuple in N to one of k colors, then there is an
infinite subset of N within which every n-tuple is the same color.

We will explore the differences in strength between special cases of each of these theorems, com-
paring each to theories of second-order arithmetic of varying complexities and also to several
well-known theorems in real analysis.

In Section One, we’ll use some ideas from computability theory and formal logic in order to
define exactly what we mean by “complexity” in sets and functions.

Section Two will introduce second-order arithmetic and use the established notions of complex-
ity to define the weakest and strongest theories we will consider: RCAg and ACAg. We'll see what
regular mathematics looks like in these theories by showing some formal proofs in real analysis.
We'll also characterize the precise strengths of Konig’s Lemma and a restricted version, Weak
Konig’s Lemma, and equate them to real-analytic principles.

Section Three will introduce forcing, a set-construction framework originally developed by Paul
Cohen to separate the Axiom of Choice and the Continuum Hypothesis from ZF set theory. We'll
use forcing to separate Konig’s Lemma from Weak Konig’s Lemma.

Finally, in Section Four, we will bring all of the developed techniques from the previous three
sections to the study of Ramsey’s Theorem, culminating in a proof of separation between the
n = 2 and n = 3 cases, first proven by Seetapun.

4 JALEN CHRYSOS

1. MEASURES OF SET COMPLEXITY

In this first section, we discuss the idea of complexity in N — N functions—particularly in
subsets of N. We’ll see two fairly natural ways of formalizing this notion: first from computability
theory, and second from syntactic logic. Finally, we will show that our two types of complexity
interact well and share a common structure.

1.1. Algorithms and Computability. The fundamental concept behind all of computability
theory is the partial-computable function (alternatively, algorithm or Turing machine). We think
of p.c. functions intuitively as those whose values can be determined by carrying out a finite list
of instructions. They are “partial” in the sense that they may fail to return any output (in the
case where they run forever), in contrast to “total” functions which always return an output.

Partial computable functions can naturally arise in several ways. First, one can define them as
a subset of all partial functions via a precise characterization of their expressive power: they are
the unique subset of partial functions containing
e Zero: f(xz)=01is p.c.
e Successor: f(x) =x+1is p.c.
e Projection: f(x1,...,x5) = x; is p.c.
and generated by (finitely-many) applications of

—

e Composition: If f(x1,...,2%),91(¥1),92(¥2), ..., 9x(yr) are p.c., then
f91(91), 92(2), - - -, 9 (k)

is p.c.
e Primitive Recursion: If g, h are p.c., then the function f(z,¥) defined inductively by

f(ovg):g(g> and f(x@')zh(f(x—l@'),mﬂ’)

is p.c.
e Unbounded Search: If g(x, %) is p.c. then
f(@) = (px)g(z,¥) := “the least x such that g(x,y) = 07
is p.c.
Note that of these generating rules, unbounded search is the only one that can initially produce
non-total functions. If there is no x such that g(z,y) = 0, then (ux)g(x,) =1 (read undefined).
After the genesis of non-total functions, however, it is possible that undefined functions are used
as inputs to compositions, or might need to be checked during an unbounded search. In either of
these cases, we say that the resulting function is always undefined on that input.
For any partial function A (not necessarily p.c.), we can also define the p.c. functions relative

to A by taking the set of functions containing zero, successor, projection, and A, generated by the
same operations. We can also do this with any collection of partial functions.

Another way of looking at p.c. functions is as step-by-step computations carried out by Turing
machines. T will not give a precise definition of Turing machines,” but instead I'll give an intuitive
description: a Turing machine is a finitely-specified “program” that can be carried out in steps,
and which may reach a step in which it “halts,” reporting an output in N. Given a Turing machine
® and z,t € N, we use the notation

O (z)[t] := “Output of running ® on input z for ¢ steps.”

If ®(z) has not halted by time ¢, we write ®(x)[t] =1, and otherwise we write ®(x)[t] J. Thus,
the outputs of ®(x)[t] for increasing values of ¢ will look something like

&N 1,19,19,19,19, ...
or, if ®(x)[t] does not halt for any ¢,

LN R R P K P P PR PR

2See [9] for a rigorous definition of Turing machine.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 5

We denote by ®(x) the limit of ®(z)[t] as t — oo. So in the first case above, ®(z) = 19, and in the
second case, ®(x) =1. Though ®(z)[t] can be computed for any z,¢, ®(x) can not—informally,
this is because when ®(x) 1, one must check infinitely many values of ¢ in order to be sure.

In this paper, for partial functions f, g, I will occasionally reference the following relations:

flg:=3w: f(@)4#g(x)), and f|g:=~fLg.

Note that flg is stronger than f # g, though if f and g are both total then it is equivalent. In
particular, if o is a partial function with finite domain {0,1,2,...,k} such that o || f we say

o is an wnitial segment of f, denoted o < f.

The set of such partial functions corresponds to the set of finite sequences, 2~.

One additional type of instruction that we can allow algorithms to use is to query an outside
source of information called the “oracle,” which takes the form of a partial function. If ® is an
algorithm and A a partial function, then ®* denotes the function ® with A treated as the oracle.
The output of an algorithm may differ depending on which A plays the role of the oracle.

By convention, if ®(x) queries A(y) and A(y) =1, then ®4(y) =1 as well. Thus, if ®4(x) |,
and B is a total function such that A || B, then ®*(x) = ®Z(z). This is because ®4(x) never
queries A(y) for any y where A and B differ. We can also say that any oracle computation ®*(x)
which halts must query only finitely-many of the inputs of A. Thus, there is some initial segment
of A sufficient (and necessary) to cause halting:

dMx) | = Foec2V: (e < A)A((2) |)

Note that for o € 2V, the function ®7 is partial computable, since o only contains a finite amount
of information, thus an algorithm can be written for ®? which hard-codes the values of o rather
than querying the oracle.

Likewise, if A is computable, then ®4 is computable as well, since the algorithm for computing
A can be grafted into ® in place of querying A. In general, Turing machines ®4 are exactly the
p.c. functions relative to A. If a function f is equal to ®4 for some algorithm ®, we say that

“f is Turing reducible to A” or “f is A-computable,” denoted f < A.

Turing reducibility is a partial order on functions, and its equivalence classes are called “Turing
degrees.” As we have seen, p.c. functions are in the minimum class, [§], which we will usually
write without brackets.

One might naturally consider Turing machines &2 with multiple oracles, which could express
p.c. functions relative to {A, B}. But this notion can already be captured with single-oracle
machines: for any A, B, there exists a unique minimum Turing degree among all degrees above
both A and B, called the effective join of A and B:

deg(A) © deg(B) = min{D : (deg(4) <r D) A (deg(B) <r D)}.

This degree has a canonical representative A @ B, defined
A:(aj)j, B:(bj)j - A@B:(ao;bo;alablaa%b%"')'

One can easily verify that A® B <p C iff A < C and B < C. Making use of the effective join
operation, we can see that functions computable from A, B are exactly the ones computable from
the single partial function A ® B.

As each Turing machine is specified by a finite “program,” the collection of all Turing machines
is countable. Thus, they can be enumerated
Dy, Py, D3, ...

One characterizing fact about Turing machines is that they can be computably enumerated; that
is, there is a single partial computable function

Q' (e,2,) — Bo(2)[t]-

6 JALEN CHRYSOS

In particular, the fact that the behavior of ®. can be computed from the index e is the key thing.
We call Q2 the universal Turing machine.

This is a characteristic advantage of working with p.c. functions rather than restricting our
attention to the fully computable functions: we can easily list all possible algorithms, but we have
no computable way of only listing the total ones. To prove that there is no such listing, we can
apply a Cantor-style diagonal argument. For any proposed computable function

O (e,x) = To(x)

which would act as a universal Turing machine for total computable functions specifically, we have
the computable function

Uz Q(z,x) + 1.
By design, U(z) # W, (x), thus ¥ # U, for every z. Yet ¥ can clearly be computed from Q*,
which is itself computable, so it should be equal to ¥, for some x, given that Q* enumerates all
computable functions. This is a contradiction. The same issue does not occur with 2 because
&, () might not halt, making it impossible to computably choose a different value for ®(x).

A related example is the Halting Problem, which is the function H defined by

H:ew 0 ®efe) T
1 ®.(e)

One can prove that H is not computable by using H to compute an off-diagonal function:

D, 1 H(e)=1
D:e— (e) + ()
0 H(e)=0
D is not computable because it differs from every computable function, yet D < H (because
. (e) is computable when one knows that it will halt), so H is not computable either.

Though H is not computable, it is “half computable” in the sense that one could verify H(e) = 1
computably, by finding a ¢ such that ®.(e)[t] J, but could not do the same if H(e) = 0. In general,
for any algorithm @, the set

We :={e: ®(e) |}
is called computably enumerable (or c.e.). This terminology comes from the fact that every c.e. set
is the range of an injective computable function f, so that f enumerates the set, computably. To
see this for W, let (e;,t;) be a computable enumeration of N x N, and define f as the algorithm

A+

j+0

while |A| < n do

if ®(e;)[t;] | then
A+ AU {ej}
end if
j—g+1
end while
Return e;.

Conversely, if such an f exists for W, then W is the domain of
D) = () (f(n) =).
Returning to the case of the halting problem, H is the domain of the function
2 () (Do(e)[1] 1)

and thus c.e., but it is not co-c.e.; that is, its complement H is not c.e. If a set A is computable
then it is both c.e. and co-c.e., and in fact the converse is also true: if

€A = O(z) | <= TU(x)1,
then A can be computed by the function
Az) = 0(@)[(ut) (®(@)[1] 4V B(@)[E] 1)] 4.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 7
Since it is guaranteed that either ®(x) | or ¥(z) |, this function is defined on all inputs.

The notion of a set being c.e. or co-c.e. can also be naturally relativized: we say A is c.e. in
B if it is equivalent to the halting of a B-computable algorithm ®%.

Because H is non-computable, it follows that the Turing degree of H is above (). We will
denote deg(H) by @', which we call the Turing jump of 0. In general, for any partial function f,
the Turing jump f’ is the function defined

fliem

0 ®f(e)?
1 ®l(e) |

and again f’ £ f. But the “jump” is in a sense bounded: while f’ is not computable in f, it is
still c.e. in f. Thus, the jump can be thought of as a standard increment of Turing complexity.
By repeatedly applying the Turing jump to (), we have an increasing chain of Turing degrees

] <T @/ <T @H <rT (2)(3) <7 ...

Thus, one can see that there are infinitely many different gradations of complexity that a function
can have. In fact, there are far more than these.

1.2. The Arithmetical Hierarchy. So far, we have considered functions in general, but now
we will focus in on {0, 1}-valued functions, which we treat interchangeably with subsets® of N. As
we’ve seen, sets can be ordered and classified from the viewpoint of computability, using algorithms
as the fundamental objects. Now, we will consider them from the viewpoint of arithmetic, whose
central objects are formulas.

The language of first-order arithmetic, which we call £y, consists of the following symbols:

Constants: {0,1}, Functions: {+,-}, Relations: {<,=},
along with symbols common to all languages:
Quantifiers: {V,3}, Logical Operators: {—,A,V,=}, and Variables: {a,b,c,...}.

A formula in L is a finite string of these symbols which satisfies some simple syntactic rules (e.g.
“0 = 4”7 is not a sentence). We will also use parenthesis and commas for clarity. Here is an
example of a formula:

Prime(x) := [Va,b|((a <z Ab<z)= (a-b#x))A(z>1).

Within a formula, a variable is called “bound” if it is quantified over. Otherwise it is called “free.”
In Prime(z), as it is states above, x is a free variable and a, b are bound. A formula with no free
variables is called a sentence.

Formulas and sentences are not inherently true or false—their truth values must be decided by
an interpretation M of first-order arithmetic, which consists of a set M, called the “universe” of
M, and a specification of how the constants, functions, and relations of £; act within M. These
choices determine the truth values of all sentences. For example, one could define a model in
which the result of all multiplication or addition is 0, and in this model Prime(4) would be true.
In our discussion, we’ll stick with the standard model of first-order arithmetic, denoted N, whose
universe is {0,1,2,...}, and which interprets arithmetic in the expected way (i.e. satisfying the
axioms of Peano Arithmetic).

With a model chosen, all formulas of £; have corresponding sets. For example, in N, the
formula Prime(z) given above acts as

Prime(0) = 0, Prime(1) = 0, Prime(2) = 1, Prime(3) = 1, Prime(4) =0, ...
and corresponds, naturally, to the set of prime numbers. The sets that can be expressed by for-

mulas of £, are called arithmetically definable, or just arithmetical.

Now, just as all sets can be classified along computability-theoretic lines by their Turing degrees,
they can also be divided by their quantifier-complexity as formulas: this is called the Arithmetical

3In particular, for a set A C N, we define A : N — {0,1} such that A(z) =1if 2 € A, and A(z) =0 if = ¢ A.

8 JALEN CHRYSOS

Hierarchy. Its lowest level, Ay, consists of the bounded-quantifier formulas—those whose quanti-
fiers are all “bounded,” as is the case with the Vy in the following formula:

NotSquare(z) :=Vy: (y < x) = (y -y # x).
For any given x, NotSquare(x) can be equivalently expressed as a finite conjunction
0-0£)AN1-1#£2)N(2-2#2)N...AN(z -z #x).

Of course, the number of terms in this conjunction depends on z, so NotSquare(x) cannot readily
be expressed without the use of the bounded quantifier, but we nevertheless consider such quanti-
fiers to be fundamentally less complex than unbounded ones because they are “finitely-verifiable,”
roughly speaking. This is somewhat motivated by computability, as bounded-quantifier formulas
can be computably checked (more on this later).

On the foundation of the quantifier-free formulas, we have the class %1, which consists of for-
mulas whose only (unbounded) quantifiers are existential, and similarly the class IT; whose only
quantifiers are universal. For general n,

Yo ={Fy: Y [Yell,_1UX, 1}
I, ={Yy:9¥(y) | Y ell,1 U, 1}
so that for any ¢ € Ay,

(F1) (Vo) Bas) (V) - - (Q) = 0(T) € 5,

(whether @ is V or 3 depends on whether n is odd or even) and likewise for II,,. Note that the
negation of a ¥, formula is II,, and vice versa. Every formula of £; has an equivalent expression
in ¥, or II,, for some n, or Ay.

Now, given any definable set A C N, we say that A is ¥, if it is represented by any X, formula.
There will be many ways to express A as an L£q-formula. For instance, one can always add on
quantifiers with dummy variables to a sentence without affecting its truth value. Thus, if A is 3,
then it is ¥, 1 and II,, ;1 as well.

Finally, if A is definable in both ¥,, and II,, we say that it is A,,. The arithmetical hierarchy
consists of the classes A,,,3,,II,, for n € N (we consider Ay = £y = IIy by convention). Viewed
as a whole, we have the following diagram, ordered bottom-to-top by inclusion:

S

z / 3\H

W

II / 2\2

o
\

FIGURE 1. The Arithmetical Hierarchy.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 9

An essential feature of the arithmetical hierarchy is its distinction between opposites; unlike in
the Turing hierarchy, A and A are not necessarily of the same class. In the case® A € Xn \ IL,,
this has the consequence that the graph of A(z) may be more complex than either A or A:

“Alx) =y = (reANy=1)V(@egANy=0) €A, y1.

Zn H"

Finally, as with the Turing hierarchy, we can also define the arithmetical hierarchy Ef,ﬂg ,
etc., relative to a base set B. These are defined in the same way, except that we expand the
language £ to include relation “€ B,” so that for example,

“reB” € AP and “Wy:z.ye B elb.

1.3. Mixing Arithmetic with Algorithmic. At this point, we’ve established two separate no-
tions of the complexity of sets: one originating from computability, and another from syntax.
Now, we’ll see that the two are closely linked.

There are two natural questions that we will answer in this section:

1 What are the computability properties of each arithmetic complexity class?
2 What are the arithmetical properties of each Turing degree?

In answer to question 1, we have the following lemma:

Lemma 1.1:

(1) Quantifier-free formulas are computable.
(ii) Ag sets are computable.
(iii) X sets are c.e., and II; sets are co-c.e.
(iv) Aj sets are computable.

(v) B, sets are c.e. in 0»~1) and II,, sets are co-c.e. in H(»~1).
(vi) A, sets are p("~1-computable.

Proof. (i) We can show this by induction on the number of symbols in the formula. The base case
is the constants 0 and 1, which are clearly computable. For the inductive step, we must show that
if a,b are computable terms, then

a+b, a-b, a<b, a=0
are all computable, and that if ¢, are computable formulas, then
A, eV, o=, g
are all computable. These are all fairly straightforward, though not entirely trivial either, so I will

show explicitly that a = b is computable and leave the rest as simple exercises.
First, we can see that |a — b| is computable by using primitive recursion:

a b=0
la—b=<0b a=0
(a=1)=(b-1)] a,b#0
(here we use the fact that checking equality with 0 is computable by definition). Now,
a=b < |la—b=0

thus a = b is computable.

(ii) Having shown that the computable sets include all quantifier-free definable sets, it suffices
to show that they are closed under bounded quantification. If ¢ is some computable term and
o(z,y) is computable, then (Jy < ¢t) : p(z,y) can be defined recursively in ¢:

By <0) :p(z,y) <= ¢(,0).
Ty <t):p(z,y) <= p(r,t)V(Fy <t—1):p(z,y).

40f course, we have not yet proven that ¥, and II,, are actually distinct classes, but that will come in the next
section.

10 JALEN CHRYSOS
And bounded V can be handled similarly.”

(iii) We know that the c.e. sets include all Ay sets, so it suffices to show that the space
of c.e. sets is closed under existential quantification. If A(z,y) is {0,1}-valued and c.e. via
Az,y) < ®(z,y) |, then

Jy: Alz,y) < ((uy)fb(x,y)) 1

thus Jy : A(z,y) is c.e. as desired. The statement for II; formulas follows by negation.
(iv) Aj sets are both 37 and II;, so they are c.e. and co-c.e., hence computable.

(v) We'll use induction. The base case n = 1 is established by (iii). Thus, assume that the
result is true for 3,,_1,II,_1. For the inductive step, suppose

p(r) = (Fy) : ¢(z,y)
where ¥ € II,,_; or ¢ € ¥,,_1. In either case, by the inductive hypothesis, v is co-c.e. or c.e. in
P(»=1) and hence computable in (™. Thus, ¢ is c.e. relative to (™) by (iii) relativized.

(vi) A, sets are 3, and IL,, hence c.e. and co-c.e. relative to (™), hence computable in (™).
O

Thus, question 1 is resolved. As for question 2, we can now show converses to several of the
results from the previous lemma.

Lemma 1.2:

(i) C.e. sets are X;.

(ii) Computable sets are Aj.
(iii) 0™-c.e. sets are X, 1, and §(™-co-c.e. sets are II,,| ;.
(iv) B™)-computable sets are A, 1.

Proof. (1): We'll leverage the inductive definition of p.c. functions to show that for any algorithm
®, the formula

P(z) =y
in x,y (the graph of ®) is ¥;. Since
O(z) | = (Fy): ®(x) =y,
this will imply that halting of all p.c. functions is ¥, as desired.
The collection of functions ® whose graphs are ¥; clearly includes zero, successor, and projec-

tion, thus it suffices to show that this collection is closed under composition, primitive recursion,
and unbounded search.

o (Composition: Suppose that

f(x_i,x_'27 s 71’._;6) = h(gl(if_i)792($_é), e 9k 7))

—

where the graphs of g; and h are all ¥;. Then f(z7,

, X)) = z is equivalent to

2,k (91(T1) = yi) A A (ge(@R) = yk) A (Y- yk) = 2)

which is Y.

e Primitive Recursion: Suppose that f(z,y) is recursively defined such that

f0,9) =g(y) and f(z,§) = h(f(z—1,9),2,7)
and that the graphs of g, h are each ¥1. Then f(z,7) = z is equivalent to
(Fo €2%): (jo| =2) A (9(a(7) = 0(0)) A (V1 < j < @) : 0(j) = h(o(j —1).5,9))
which is Y.
5Note that Ag is not only computable but primitive recursive, i.e. all Ag formulas can be computed without

unbounded search. The converse is not true; one can define a primitive-recursive function that contradicts every
Ag formula by using a diagonal argument.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 11

e Unbounded Search: Suppose that f(z,7) is defined
f(@) = (px)g(z,7)
where g has ¥; graph. Then f(x, %) = z is equivalent to
(B0 €2%): (9(2,9) = 0) A ((Vj < 2) : 9(j.) = o (j) Aa(j) # 0)
which is .
Thus, the graph of every p.c. function is 3, as desired.

(ii) Computable implies c.e. and co-c.e., which implies ¥; and II; by (i), which implies A;.

(iii) If A is c.e. in (™), then it can be written
Ax) == 0" () |

for some algorithm ®. To get at the oracle)™, we’ll use the fact that halting with an oracle is
equivalent to the halting with a finite initial segment of that oracle:

" (2) | == o e 2N (o < 0M) A (97 (2) L)
Now we check the complexities of o < (™ and ®7(x) | :
e $7(x) is computable (because o is finite), so we have ®7(z) | € X1 by (i).
e 0 < 0™ can be expressed
o< 0" = Vj<|o|:0(j) =0 ().
By the inductive hypothesis, §(") € ,,, so its graph is A, 4;. Thus, ¢ < 0 € %, ;.

Putting these together,
Alx) =30 : Zp1 AZ1 €Xnpr
as desired.

(iv) #™-Computable implies c.e. and co-c.e. in (™, which implies ¥,,;1 and I, by (iii),
which implies A, 41. O

The results of both lemmas together amount to the statement of Post’s Theorem:

Theorem 1.3 (Post):
e Ac X, — Aisc.e. relative to (™.
e AcTl,;; < Aisco-c.e. relative to (™).
e AcA, = A<y,
With Post’s Theorem, we can now deduce that (™ € %, \ II,, and §(®) € II,, \ %,,, finally
establishing that 3, and II,, are truly distinct.

12 JALEN CHRYSOS

2. THEORIES OF SECOND ORDER ARITHMETIC

In order to achieve the aim of reverse mathematics—to classify theorems by their proof-theoretic
strength—first-order arithmetic is insufficient. Many important theorems state the existence of a
certain set or function; the statement that two infinite fields k1 and kg are isomorphic is of this
form. Even real numbers, which we think of as fairly tame, cannot be put in correspondence with
N, and thus can only be expressed as sets or functions on N. Therefore, to state most theorems
requires a language which also takes sets and functions as its objects: Second-Order Arithmetic.

In first-order arithmetic, the objects under description are numbers. In second-order arithmetic,
we also consider sets of numbers®. With the addition of sets as objects of study, we distinguish
between variables representing first- and second-order objects, and add in a new relation, €,
denoting membership. Thus the language £, consists of the following symbols:

Constants: {0, 1},

Functions: {+,-},

Relations: {<,=, €},

Quantifiers: {V,3},

Logical Operators: {—,A,V, =},

Number Variables: {a,b,c, ...},

Set Variables: {4, B,C,...}.

Formulas in L4 can likewise be classified according to the arithmetical hierarchy, but we distinguish
between quantifying over numbers and quantifying over sets: the complexity classes are denoted
A% 30 TI0 when referring to number-quantifiers, and AL, $1 TIL for set-quantifiers”. Formulas
without set-quantifiers are called arithmetic formulas.

An interpretation of second-order arithmetic, M, has a universe of elements M and specifica-
tions of how the symbols {0,1,+,, <} act within M. The axioms determining the behavior of
these symbols in M are PA™, which is Peano Arithmetic without the axioms scheme of induction—
we will reintroduce induction, but it may be weaker than the full arithmetical induction that PA
enjoys. M must also specify a class S C 2™ collecting the sets of M. The exact composition of
S determines many properties of interest in M; most theorems in mathematics are claims about
the existence of sets with certain properties, after all.

The class of sets S must also satisfy certain axioms in relation to the first-order elements. The
full theory of second order arithmetic consists of PA™ along with two more axioms: the first is
Set Induction, which states

VX:(OGX)/\((Vn):neX:>n+leX> = (Vn):neX.

That is, the property of membership in a set can be inducted upon.
The second is the axiom scheme of Full Comprehension, which consists of the statement

X . ((Vn) neX < @(n))

for each formula ¢ € Lo—this includes formulas ¢ with free variables (parameters), in which case
the axiom is universal over all possible parameters. In other words, the collection of numbers
satisfying a given arithmetical property form a set. Along with the set induction axiom, this
automatically proves the axiom scheme of Full Formula Induction, which consists of

(@(0) A () s p(n) = p(n+1)) = (¥) : ()
for ¢ € Lo. Thus, all definable properties can be inducted upon.

Full second-order arithmetic also has a standard or “intended” model, where the first-order
part is the standard model of first-order arithmetic, and & = P(N). As far as most areas of
mathematics are concerned, the axioms of full second-order arithmetic are simply True, and the
intended model reflects the numbers and sets as they actually are.

GSimilarly, nth order logic treats nested chains of sets of length at most n. In the language of ZFC, in contrast,
chains of arbitrary (finite) depth are permitted, and they’re all considered the same type of object.
7If the superscript is omitted, assume that it is 0.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 13

Nevertheless, it is perfectly possible to develop the various branches of mathematics on more
limited arithmetical foundations. One can do this by weakening the comprehension and induction
axioms, restricting the formulas to which they apply, and thus reducing the range of sets which
S must recognize. For example, for each arithmetical class I' € {X9 TI2}, we can consider the
I'-comprehension scheme, which only applies to ¢ € I'. Or we can restrict attention to A9 sets
via the A%-comprehension scheme, which applies to equivalent pairs ¢, € X0 TI9:

((Vn) : (p(n) <= w(n))> = ((HX)(Vn) i(neX <= ¢n) = w(n)))

Likewise, we can consider I'-induction.

By varying the complexity of comprehensible sets and inductible formulas, the truth of state-
ments changes in response. Two formerly isomorphic fields would be separated if their underly-
ing isomorphism lost its status as a set. Statements claiming the existence of a particular real
number—the limit of a sequence or the zero of a polynomial, for instance—rely on the compre-
hension axiom to some extent. Every theorem of full second-order arithmetic has a precise level
of axiom-complexity upon which it depends.

Reverse mathematics is interested in this interplay between theories of second-order arithmetic
and the theorems they support. In this section, we will begin to define some of the most essential of
these principles. At the same time, we will develop a formal study of R in second-order arithmetic,
and compare various theories on what they are able and unable to prove about R.

2.1. The Baseline: RCAj. The most basic theory of second-order arithmetic is called RCAq, or
Recursive Comprehension Aziom. RCAq consists of the axioms of PA™ applied to its first-order
elements, and the second-order axiom schemes of A9-comprehension and X{-induction.

By Post’s Theorem, AY-comprehension is equivalent to the existence of all computable func-
tions. Thus, we can think of RCAg as a theory in which computing a set is sufficient and necessary
to prove that it exists.

If A,B € S, then RCAq proves that the set A @ B exists, via the computation

AGB= {n : ((n odd) A ((n—1)/2) € A)) v ((n even) A ((n —2)/2) € B))}

(note that “e A” and “€ B” are part of the language because A, B € §). Similarly, S is closed
under the effective join of any finite number of sets. Moreover, A{-comprehension implies that S is
downward-closed by <7; if A <7 B by A(n) = ®Z(n) for some algorithm ®, then A € AP = AJ.

A collection of sets closed under @ and <7 is called a Turing ideal, thus we have just shown that
RCAq proves S to be a Turing ideal. Equivalently, we can show that S is closed under composition,
primitive recursion, and unbounded search. This is perhaps a natural place to start, since there
isn’t much room below the computable sets to prove anything; AJ-comprehension is too weak to
really get anywhere.

Why Y{-induction, then? AY-comprehension does prove that if a set is computable then it is
in S, but it is not actually strong enough to prove that all the functions we think of as com-
putable actually are! In particular, it fails to show that even the primitive recursive functions are
computable.

Suppose we define an algorithm @ using primitive recursion, so that ®(0) is computable and
®(n+ 1) is computably determined from ®(n) for each x. To show that such ® are actually total
requires the axiom

(@(0) ¢) A ((\m) . ®(n) L = B(n+1) ¢) — (Vn):®(n)),

which is exactly @-induction for ¢(x) := ®(z) | . Since ®(x) | is 1 by Post’s Theorem, the axiom
scheme of ¥;-induction is sufficient to prove this fact. We can easily show (without the need for
Y1-induction) that the collection of total functions is closed under composition, proving that all
primitive recursive functions are total. Moreover, we can also show that this collection is closed
under unbounded search (assuming that the goal of the search exists). Thus, X{-induction is just
the right level to allow for the use of all algorithms we might come up with.

14 JALEN CHRYSOS

As we’ve shown, every model of RCAy has a Turing ideal for its universe of sets. Thus, the
minimal w-model (i.e. model whose universe of numbers is {0,1,2,...}) of RCAg is one in which
S = Af. Because it is possible to model RCAy without any non-computable sets, without the
existence of Turing jumps, etc., we immediately see that RCAy cannot prove the existence of any
non-computable set. But RCAg doesn’t prove that any non-computable sets don’t exist, as any
individual set can generate a Turing ideal and thus exist in a model of RCAq.

RCAy is strong enough to prove many basic mathematical facts about the finite numbers and
their arithmetical properties. When reasoning about objects containing infinite information, RCAg
is limited in that it can only talk about computable things. This can come up even in seemingly
tame settings—for example, each real number contains infinite information. The study of R pro-
vides a striking example of both the surprising strength and severe limitations of RCAg®.

We define Q as Z x NT endowed with the operations and relations +, -, <, = given by
(a,b) + (¢,d) +— (ad+ be,bd)

(a,b) - (e,d) +— (ac,bd)
(a,b) < (¢,d) <= a-d<b-c
(a,b) =(¢,d) <= a-d=b-c

Note that +, -, <, = are all computable.

In defining R, the classical way is to identify real numbers with Cauchy sequences in Q, with
two sequences being equivalent if they have the same limit. In the interest of making this definition
more RCAp-friendly, we’d like a computable way to get a rational approximation of any accuracy,
which is not possible if we don’t know anything about the rate of convergence. Thus, we define R
as the set of “rapidly-converging” sequences in Q,

{(g)) €Q": (Vi,j €N i < j= g — g5 <27}
We can think of a real number as a sequence of rational approximations whose error is bounded in
a consistent way. Likewise, addition and multiplication are operations which take two sequences
of approximations and produce one which approximates the sum or product.

To add two real numbers (a;) and (b;), the sequence (a;+b;) will not work as their sum because
the error of each approximation potentially doubles, losing the property of rapid convergence.
Thus, we instead define addition by

(a;) +(b;) = (aj41+bj41)
which ensures that the sum is still a real number.
In defining multiplication, the issue becomes even worse, as the error of (a; - b;) can be as high
as (a; +b;)277 + 2727, This error is bounded for all j by some N - 277, as |a; — aol, |b; — bo| < 1
(specifically one can take N = |ag| + |bo| + 3). Thus, we can define multiplication by

(aj) - (bj) = (@j4n - bjtn)
where n is chosen so that N -277—" < 277,
The most important thing about these somewhat awkward definitions of + and - is that they
are computable. The relations < and =, on the other hand, cannot be made computable. We
define them as follows:

(a;) < (b)) == (Vj) 1a; —b; <2794

(a;) = (b)) = (V4) : |aj —bj| <277FL
The relations (a;) < (b;) and (a;) = (b;) are co-c.e. though not computable. If two real numbers
really are equal, then one can never conclude this from only looking at finitely-many of their
approximations. However, if one knows that two real numbers are different, then their order is
computable.

One nice property of this definition of R is that from each irrational x € R, it is possible to
compute the unique binary representation of x. The digits can be derived from comparisons with

8The formalization of R described here roughly follows [8].

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 15

finitely-many dyadic rationals, which we know to be computable. Moreover, if z is rational, then it
may have multiple binary representations (e.g. 0.0111 = 0.1000) but all of them are computable.
In either case, the real number corresponding to any binary string can always compute that string.

We can leverage this fact to show a key weakness of computable mathematics: that RCAg fails
to prove the completeness of R.

Anti-Lemma 2.1 [over RCAq]: R is complete, i.e. every Cauchy sequence has a limit.

Anti-Proof. The limit is unique if it exists, so it suffices to exhibit a computable sequence whose
limit is a non-computable real number. RCAj can never prove the existence of any non-computable
real number, therefore the statement must be unprovable in RCA.

In particular, we can construct a computable sequence whose limit corresponds to the binary
expansion of (', which is non-computable: let

J
¢ = Z‘I)(k)m 1-27% and ¢:= lijrncj.
k=0

c; is clearly Cauchy. But if ¢ existed, then it could be used to compute its binary representation,
which is (/". This would imply that (' exists. However, RCAq does not prove this. Contradiction. [

We can conclude from this example that taking general limits an essentially non-computable
problem. The limit of a given sequence is definable, but not computable. In order to prove that
a limit exists, we need more sets.

2.2. The Ceiling: ACAgy. In extending RCAg, one natural choice is to expand the class of for-
mulas in the comprehension axiom scheme. But if comprehension is extended to even 39 or 119,
then it automatically implies comprehension for all arithmetic formulas:

Lemma 2.2 [over RCAg]: X{-comprehension is equivalent to full arithmetic comprehension.

Proof. We will induct on formula complexity. Assuming ¥,, and II,, comprehension, we’ll show
that ¥,,+1 and II,,11 comprehension also hold.

Let ¢(x) be a formula of arithmetic complexity ,, 11, so that

e(x) =Ty : ¥(z,y)
where 1 € II,,. By the inductive hypothesis, there is a set

A= {(z,y) - ¥(z,y)}

and thus we can write ¢(z) as the ¥; formula

p(z) =Ty : (z,y) € A.

Now @-comprehension follows from ¥;-comprehension.

Likewise, if ¢(x) is II,,41, then its complement is 3,41 and has a corresponding set, hence ¢(z)
does as well, since the existence of complements follows from Ag-comprehension. O

Thus, the natural choice for extending the arithmetic domain of comprehension gives us ACAg,
the Arithmetical Comprehension Axiom. Naturally, ACAg has arithmetical induction as well. It is
still weaker than full second-order arithmetic, however, because it does not allow comprehension
and induction over ¥} or II} formulas.

By Post’s Theorem, ACAy is also equivalent (over RCAg) to the statement that for every set X,
there exists a set X’ having the properties of the Turing jump of X. This implies, in particular,
that in w-models of ACAp, S itself is closed under the Turing jump operation, in addition to Aj-
comprehension. This characterization is convenient to work with, and we will use it often.

16 JALEN CHRYSOS

There are more powerful theories between ACAg and full second-order arithmetic, but for our
purposes here, ACA,y will be the ceiling. It is strong enough to prove essentially all of the familiar
results about R. For example, we can now go beyond what was possible in RCAg and prove the
completeness of R:

Lemma 2.3 [over ACAg]: R is complete, i.e. every Cauchy sequence has a limit.

Proof. Let 2%, zt, 22, ... be a Cauchy sequence of in R, with each 27 denoting the sequence of
rational approximations (z),27,...). For each k, define jj such that
e = (pd)(Vi > j) : 27 — '] < 27%,
Now define the real number L by
Lk = l'likzl
+2
First, to show that this is actually a real number, for m > k,
|Lk _ Lm| < |xi7:r21 _ x.jk+1| + ‘x.jk+l _ xj7n.+1‘ + |:ij+1 _ qu:::tg
<9 k-2 gkl 4 g-m-2
<27k
And moreover, L is the limit of 27, as
(V§ > i)« |l — 27| < 27K,
O

If this proof were attempted in RCAg, it would fail because RCAy cannot prove the sequence
ji exists; it is definable, but not computable. The core issue is that if a sequence has unknown
convergence rate, then there is no way to compute its limit. In contrast, RCAg can prove that
nested intervals with length approaching 0 will converge around a limit point, since the closeness
of the approximation is known at every stage.

More surprising is the fact that the converse is also true: the completeness of R implies ACAg!

Theorem 2.4 [over RCAg]: Completeness of R = ACA,.

Proof. Tt suffices to show that if R is complete then for any set A, the Turing jump A’ exists. Let
J
cj =Y @Ak |- 27k
k=0

Each ¢; is A-computable, therefore the sequence (c;) exists. It’s also clearly Cauchy. By the
completeness of R, this ¢; has a limit ¢ € R. From ¢, one can compute all of the binary digits of
¢, which correspond to values of A’. Thus, A" exists. O

This is our first concrete example of a reverse mathematical result—we have established an
equivalence between an axiomatic theory and a result of that theory.

2.3. Konig’s Lemma and Weak Ko6nig’s Lemma. Several of the set-existence principles dis-
cussed so far have been problems, by which we mean statements of the form

vX:0(X) = Y : I(X,Y).
O(X) means that X is an instance of the problem, and I'(X,Y) means that Y is a solution to the
instance posed by X. For example,
“for every set X there exists a set Y so that Y is the Turing jump of X,”

and
“for every sequence (x;) there is a real number y such that y is the limit of (z;).”

These two problems each have the property that there can be at most one solution. But one
can also consider problems with potentially many different solutions. We study problems from a
reverse-mathematical perspective by treating them as axiomatic additions to RCAg.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 17

A tree is a set of finite sequences which is downward closed (i.e. if o € T then all of its initial
segments are in T'). A path in T is an infinite sequence whose initial segments are all in 7. We
use the notation [T'] to mean the set of paths in T'.

Definition (Ko6nig’s Lemma or KL): Ko6nig’s Lemma is the statement that for every infinite
tree T C NN in which each node has finite degree, there exists an infinite path in 7.

Imagine standing at the root node of T and staring out at an infinite expanse of pathways in
front of you. Each step forward advances you down one sequence, and you cannot go back once a
step is taken. Can you manage to avoid hitting any dead ends?

The set of nodes in T which extend to paths is Il relative to T'. Thus, with knowledge of ACAg
sets, it is possible to find such a path. With only computable sets, there seems no way forward;
indeed, ACAy is sufficient and necessary to prove Konig’s Lemma:

Theorem 2.5 [over RCAq]: ACA;, — KL.

Proof. (ACAg = KL): Given T'C NY, we can prove the existence of a path P € [T'] as follows:
first, ACAg shows the existence of a set Ext(T') C T defined by

o€ Ext(T) <= (Vn)3reN"):7>=0AT€T.
Now using Ext(T'), we define a path ¢ := (0¢, 01,...) recursively via

0j41 = 0; x; where z; := (ux) (U;l‘j € Ext(T))

Every initial segment of £ is in Ext(7) and hence in T, so it suffices to show that ¢ is infinite.

We can inductively prove that ¢ contains a sequence of length > n for each n: for n = 0 it is
vacuous. For the inductive step, suppose o,, € ¢ with |o,| = n. 0, € Ext(T), so it has children
T, T2, T €T If 75 & Ext(T) for all these 7j, then each one has a largest depth d; of all
its descendants, but then o,,’s descendants would be bounded in depth by max{7,1a,..., 7k}, a
contradiction of ¢,, € Ext(T'), thus some 7; € Ext(T), hence 0,41 is well-defined.

(KL = ACAy): We will show via KL that for every set A, the Turing jump A’ exists. Define
a tree T as follows: a sequence o belongs to T if for all e < |o], either o(e) is the halting time
of ®2(e), or o(e) = 0 and ®2(e) has not halted at time |o|. This is indeed a tree because every
requirement of membership for o is also required of its extensions.

5—0—3—--

0—0—1
FIGURE 2. The tree T, in the case where the path begins 4,0,1,5,0,3,...

Membership in T is computable (since checking a particular halting time can be done in finite
time) thus RCAq proves that this tree T exists. For each e, there are exactly two possible values
that o(e) could ever have for any o € T: either 0, or the halting time (if it exists). If ®4(e) does
halt, then for sufficiently short sequences o, it is possible that both values could appear in T

Every ®4(e) has either a correct halting time or never halts, thus there is an infinite path in T
consisting of these correct answers. No other infinite path can be contained in 1" because whether
or not ®2'(e) halts, there is a depth beyond which no node o € T' can be wrong about e: if it halts,
this depth is the halting time, and if it diverges, then no o can be wrong at any depth. Thus, the
set produced by KL is this path, from which A’ can easily be computed. Thus A’ exists. |

18 JALEN CHRYSOS

It might be somewhat surprising that a problem like KL can prove the comprehension axiom
for every arithmetic formula. In the T constructed for the previous proof, though ¢ € T can be
computed, the questions of whether ¢ has any children and how many children ¢ has are both
non-computable. This is why non-computable information—the halting time of ®4(e)—can be
coded in the paths of T

We might also ask about the strength of a weakened version of KL; one which bears only on
trees where the nodes of a fixed depth can be explored computably:

Definition (Weak Ko6nig’s Lemma or WKL): WKL states that for any infinite binary tree T
(considered as a subset of 2V), T' contains an infinite path.

Note the distinction between binary and degree-at-most-2. The tree utilized in the proof that
KL = ACA(has degree at most 2 at each node, but from the perspective of computability it is
not a binary tree, since there are more than 2 (indeed, infinitely many) potential children of each
node, all of which would need to be checked in order to compute the tree up to a fixed depth.

Weak Ko6nig’s Lemma is equivalent to the strengthened statement for trees T' € NY whose nodes
are bounded by some computable function b, in the sense that
ceT = o(n) <b(n) Vn.

Like binary trees and unlike general trees in NV, these bounded trees can be computably explored
up to any finite depth. For any computably bounded tree T, define

f:T — 2N

by mapping each o to the concatenation of the binary representations of o(j) for each j, with

[log,(b(7))] bits in each place.
7’777 e
1

\1,0,1\,\0,0,0,0,0,0,1,1\,\1,0,0,1,1\,\0,0,1,0,0\,

1,0,1,1\,...

Let S C 2" be defined by o € S iff o is an initial segment in some f(7). Since b(n) is computable,
this S is T-computable, and any path in S corresponds to a path in 7. Thus, the computably-
bounded case of KL reduces to WKL.

We denote the theory RCAg +WKL as WKLy. A priori, it’s not clear whether WKLy is actually
weaker than ACAg, or even whether it’s stronger than RCAg. This question will be resolved in the
next section. For now, let’s get an idea of what WKL can do on its own.

From the perspective of real analysis, WKLy is notable for its ability to prove compactness
results:

Theorem 2.6 (Heine-Borel) [over WKLg]: The closed interval [0,1] C R is compact; that is,
every countable collection of open intervals (¢;, d;) covering [0, 1] has a finite subcover.

Proof. To each finite binary string o € 2V, we associate a closed interval [a,, by] defined by
Uy 1= Z o(k) - 27k = a, + 2~ lol
k<|o|

So that each [a,,b,] is partitioned in half by the intervals [as,0,0s,0] and [ac. 1, bo,1]-

The idea behind this proof is this: we would like to find a tree T such that
(1) o ¢T = (FieN):ay,bs] C (¢;,d;),
(2) Le[T] = (Vo <O)(VieN):[as,bs] € (ci,d;).
Suppose such a T exists. Every path ¢ € [T'] corresponds to a real number z = (a,),<¢ € [0, 1].
Because (¢;, d;) are an open cover, there is some ¢ for which = € (¢;, d;), and thus some o for which

xr e [ag,bg] C (Cz,dz)

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 19

Thus, by (2), [T] = 0. By WKLy, this implies that T is finite. Then there is a depth d at which
lo| = d = o ¢ T, which implies by (1) that each of the 2¢ intervals [a,,b,] is covered by some
(¢i,d;). These 2¢ covering intervals cover all of [0, 1].

Now we show that RCAg proves the existence of such a tree. Let
o(o) := (Vi e N): [ay, bs| & (¢i,d;).
Note that
(a0, 0] & (ciydi) <= (ao < i)V (bs > d;)
which is co-c.e., thus ¢(o) is also co-c.e. (II; is co-c.e. by Post’s theorem). Thus, let ® be an
algorithm such that ®(0) + <= ¢(0). We define T by

c€eT < (V7 <0):D(1)|o]] 1.
This T is computable, and one can check that it satisfies (1) and (2). O

And conversely, WKLy is ezactly the necessary axiom to prove this:

Theorem 2.7 [over RCAg]: Heine-Borel = WKLy.

Proof. Let T C 2N be a binary tree with no infinite paths. We can map 2N bijectively to the

Cantor set via 5

f:JHZJ(k)'W'
k
For o € 2N, define f(o) similarly. Let a,,b, be the points
ay, = f(o) — 37lol=1 = f(o)+4- g3~ lol-1
so that
f(r) € (ap,by) < 7> 0.
Let U C 2N be the set of o ¢ T for which the parent of ¢ is in 7. We consider the collection of

open intervals
U= {(adv ba)}o-EU-

)R G

FIGURE 3. T embedded into the Cantor set. The blue intervals are U.

Because there are no infinite paths in T, every infinite binary sequence ¢ has a smallest initial
segment o where it first exits T, for which the real number f(¢) is in (a,,b,). This shows that U
covers all of f(2V), i.e. the Cantor set.

Now, Heine-Borel implies that [0,1] is compact, and the Cantor set is closed in [0, 1] hence it
is compact as well. Thus there must be a finite subcover of the Cantor set among U, represented
by some 01,02,...,0; € U. Every 7 € T must be an initial segment of one of these o;, so T is
bounded in depth by max{|o1|, |o2/|,...,|o|;}, and hence finite. O

These results suggest the idea that WKLy is the “combinatorial core” of compactness, one of
the many insights to come out of reverse mathematics. But the question remains: is WKL actually
weaker than KL over RCAg?

20 JALEN CHRYSOS

3. SEPARATION OF PROBLEMS

The goal for this section is to prove that WKLy does not prove KL, but we will approach the
question more generally: given two problems A and B, how can we prove that A =& B? We do it
by building a model of A in which B does not hold. If there is such a model, then that immediately
precludes any proof of A = B.

We'’ve already implicitly used this idea in a simple form when showing that RCAy does not
prove the existence of any non-computable set. Similarly, by again working with the S = A,
model of RCAg, we can show that WKLy is stronger than RCA:

Theorem 3.1: RCAy == WKLg.

Proof. In this model, we can construct a binary tree T in S for which there is no path in .S. In
particular, we will ensure that the path is not computable by making the eth element of all paths
differ from ®.(e): define T by

ceT < (Ve<|o]): ~(Pc(e)[|o]] L A a(e) = Pc(e)).

That is, T severs a path at the depth when it first detects that o(e) = ®.(e) for any e where P, (e)
halts, and it eventually detects all such discrepancies. Thus, any infinite path (there are many)
must disagree with all computable functions, and hence is non-computable. O

Note the difference in strength between KL and WKL here: from the perspective of ACAq, as
shown in the previous section, there exists a computable tree 7 C NN whose only path computes
(/. In contrast, among binary trees T C 2N, we can force all paths to be non-computable but
cannot hit any particular complexity. We could say that KL avoids solutions below (', whereas
WKL only avoids (as far as we know) solutions equivalent to (). These are examples of strength
properties. To separate WKL from KL, we will show that WKL holds some weakness property.

Showing that a problem is not provable in RCAg is a convenient case because RCAy has a
standard model that we already understand well. But what does a model of WKLy look like?
Here, there is not a simple choice for S we can just use—we have to make one ourselves. This
section will be about the process of model construction and the many tools one can use during
that process.

3.1. Methods of Model-building. Suppose that we want to construct a model of BA—A, where
A, B are two principles between RCAy and ACAg.

To construct a model of B is fairly simple: you just keep adding solutions to B instances until
(after N-many steps) everything has a solution. Define sets Zy <r Z; <r ... inductively as
follows: first, let Zy = (). To define Z; for j > 1, let

X := the e;th set computed by Z,,,

where j — (e;,n;) is an ordering of N x N such that n; < j (so that Z; is not defined referencing
itself). If this X is a B-instance without a Z;_;-computable solution, choose a solution Y and let

Zj = Z]‘_l @ Y

Otherwise we let Z; = Z;_;. Finally, define S to be the Turing ideal generated by the sets Z;.

For every B-instance X € S, there is a finite stage n in which X is first computable from Z,,,
and X is the eth set computable from Z,, for some e, so there must be a stage j > n for which
(ej,m;) = (e,n) and so a solution to X is added (or already exists).

The difficulty is not in modeling B, but in not modeling A. It suffices to pick a particular
A-instance and deliberately avoid adding any of its solutions to S at any stage. In the case of
A = KL, for example, we might avoid adding ()’. But moreover, one also has to avoid adding sets
which compute (', and instances whose only solutions compute (', and so on. Thus, we look for a
sharp dividing line between sets we must add (e.g.) and sets we don’t want to add (e.g. §") for
which we can keep the construction on the right side of the line.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 21

Definition (Preservation and Avoidance): Let Q be some collection of sets that is downward-
closed under <t (but not necessarily a Turing ideal). We say that B preserves Q if for every Z € Q
and every B-instance X <p Z, there is a solution Y such that Y & Z € Q.

If Q is upward-closed under <7 and B preserves Q, then we say B avoids Q.

FIGURE 4. Q-preservation inside the order <r. Here, Q separates @) from .

Clearly, if we find a suitable @ and prove that B preserves Q, then a model can be constructed
as above while keeping Zy, Z1, Z3,--- € Q, and hence § C Q, since by construction every set in S
is computable from some Z;.

Now the question becomes choosing a suitable class as Q. Below are some key examples of Q
commonly used in preservation and avoidance arguments:

e Cone Avoidance: Let Q be the “cone above” some non-computable set C, i.e.
Q:={A:C <r A}

In this case, if B avoids Q for all C, we say that B admits cone avoidance.

e Low Degree: Let Q be the collection of low sets, i.e.
Q = {A . AI =7 @/}

If B preserves Q, we say that B admits low solutions.
There is a similar notion of low, for each n € N, where Q is defined

Q:={A: A =5 (ZJ(")}.

e Hyperimmune-free: A function f is said to be hyperimmune if it is not dominated (i.e.
bounded above except at finitely-many values) by any computable function.
A set is hyperimmune-free if it does not compute any hyperimmune function. Being
hyperimmune-free is clearly downward-closed under <. If B preserves

Q :={A: A is hyperimmune-free},

we say that B admits hyperimmune-free solutions.

22 JALEN CHRYSOS

e PA Degree: A is of PA degree if every computable tree T C 2N has an A-computable
path’. From our discussions of KL and WKL so far, it follows that § does not have PA
degree, but (" does. If B avoids

Q:={A: A has PA degree},

we say that B admits PA avoidance.
Note that all four of these classes Q separate () from @)’ (choosing C' = (' in the case of cone
avoidance). In general, one can relativize each one to separate other pairs of sets.
To make a model of WKLy and not KL, it will suffice to show that WKL has any of the above
four properties. In fact, we will show all of them except PA avoidance, which WKL does not admit.

3.2. Forcing and its Uses. To show any Q-preservation for WKL entails constructing a path Y
through each Z-computable binary tree such that Y @& Z € Q. To make this and similar construc-
tions easier to follow, we’ll use a system of bookkeeping called forcing.

Forcing is a method of specifying an object (typically a subset of N), which we call G, through a
series of approximations. The construction follows a descending path through a partially-ordered
collection of conditions, denoted P. In each stage, the condition p is extended to some p* < p (the
extension is considered lower in the order because it allows a smaller space for possible sets G).

To instantiate a notion of forcing, then, requires a partially-ordered set (P, <), and an order-
preserving interpretation of each p € P as a formula. We also require that P enjoy the “saturation”
property that every descending chain of conditions is satisfied by some G.

Before explaining how to use forcing to construct sets with specific desirable properties, let’s
see a couple of examples of different notions of forcing, each with its own interpretation of P:

Cohen Forcing:

o P =2V ordered by p* < p:=p* = p.

e The condition p is interpreted as p < G.
Jockusch-Soare Forcing:

e P is the set of infinite computable sub-trees of 2V, ordered by p* < p := p* C p.

e The condition p is interpreted as G € [p], i.e. G is a path in p.

e Unlike the other two forcing notions here, it is not immediately clear that a descending
sequence of Jockusch-Soare conditions is satisfied (i.e. a descending sequence of trees has
a common path). But this actually follows from the compactness of [2V]: each [p] is
a closed (and thus compact) subset of [2V], and a descending sequence of compact sets
always has a nonempty intersection.

Mathias Forcing:

e P is the set of pairs (F, R), where E is a finite set and R is an infinite set, with £ < R.
The order is (E*,R*) < (E,R) it E* D EUR and R* C R. We think of R as the
“reservoir” of elements that are available to be added to E.
e (E,R) is interpreted as E CGC EUR.
Notice that each of these three forcing notions has a different range of formulas that its condi-
tions can articulate. For example, consider the two statements
“G is infinite” and “G is infinite.”
In Cohen forcing, there is no condition which could decide either of these for G, since at any
point the undecided elements could all be put in G or G.
In Jockusch-Soare forcing, there are conditions deciding both—in fact, a condition can specify
any computable G entirely by being a tree with only one path.
In Mathias forcing, there is an asymmetry: no condition can decide whether G is infinite because
at condition (E, R), G could be all of £ U R (infinite) or only E (finite) or anything in between.
However, (E, R) can decide that G is infinite, when R is infinite.

9The name “PA degree” comes from the fact that a set A has PA degree if and only if it can compute a complete,
consistent extension of Peano Arithmetic. Another equivalent condition is that A can compute a function which
can accurately tell which of two algorithms halts, given that at least one does.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 23

Cohen forcing with p = (0,1,0):

Jockusch-Soare forcing with
p = the black-outlined tree:

Mathias forcing with E = {1}, R = {3,4,6,...}:

FIGURE 5. The space of sets (visualized as paths in 2V) obeying each of three conditions.

Though they differ in precision, all three types of conditions are considerably less precise than
second-order arithmetic in general. This is what P gives up in exchange for its saturation property.
Conditions in P cannot usually enforce the properties that we want in G, but we can try to get
at these properties through infinite descending sequences in P, and get a corresponding G using
saturation.

For example, suppose we are working in the setting of Cohen forcing and we want to produce
a G which is infinite. As we know, there is no individual condition in P that can guarantee this.
However, for each n € N there are p € P which imply |G| > n. In fact, the property |G| > n is
equivalent to obeying at least one condition p € P which has more than n 1’s. If the set of such
p is denoted E,, C P, then we say

|G| >n < G “meets” E,.
To meet a condition-set means to obey at least one of its conditions. We can express |G| = N by
|G| =N < (Vn) : G meets E,.
So if we have a descending sequence of conditions
Po=P1 2P ...

for which p,, € E, for each n, then the G approximated by these conditions will meet each F,, and
hence be infinite. And it is easy to construct such a sequence, since any condition at all can be
extended to one in F,, which is to say that F,, is dense in P.

Of course, this is a very roundabout way of proving that an infinite set exists when one can much
more easily name a particular infinite set. But when the desired properties are more complicated,
forcing becomes increasingly helpful as a way of organizing the construction of G.

24 JALEN CHRYSOS

In general, when we want a set G with some particular property F(G), we express F as a
countable list of dense condition-sets D, C P,

(Do, D1, Da,...)

such that if G meets each D, then F(G) holds. In all of the cases in this paper, meeting D, will
be equivalent to some definable property of G, but this is not always the case in general. Using
density, we produce a descending sequence of conditions

Po=>p1L=>p2 2>

where p. € D, for each e.
Expressing F' as a countable conjunction of dense condition-sets—and proving that they are
dense—is the essential piece of any forcing argument.

A descending sequence pg > p1 > ... which meets every dense condition-set in some collection
is called generic, and a set G obeying it is called a generic set. The name “generic” is quite fitting,
since it seems much more unusual to not meet a dense set at N-many opportunities than to meet
it once. If there exists any sequence of dense condition-sets implying F', as described above, then
we say that F'(G) holds for any sufficiently generic G. In such a situation, we say that F' is forced.
It may also be that given a certain condition p, any sufficiently generic G obeying p is forced to
hold F(G), in which case we say p forces F.

Note that if F}, F5 are both forced, with the two corresponding sequences of dense condition-sets
(D}) and (D?), then Fy A Fy is also forced, with the sequence

(DY, D2, D}, D3, ...).

And naturally the same is true for any countable collection of forced formulas. Thus, conveniently,
we may treat every desired property separately.

When aiming to construct a set by forcing, the choice of which forcing notion to use is critical.
As we've seen, the strengths of each system differ. Cohen forcing is strictly coarser than both
Jockusch-Soare and Mathias forcing, and the latter two each have their own areas of high and
low precision. If we plan to achieve some property ¢(G) at the eth stage of the construction, i.e.
to correspond to a dense subset D, C P, then P must be coarse enough that no p € P can ever
imply —(¢(G)), yet fine enough that there are p € P (and densely-many!) implying ¢(G). This is
analogous to the choice of a suitable inductive hypothesis: it must be strong enough to prove the
inductive step, but weak enough that it can be maintained in each step.

In order to tweak the coarseness of P, we will often start with one of the three main forcing
notions as a base and then add further restrictions onto P. We may even add on new objects to
be tracked. For example, we will later see an instance of Mathias forcing which builds two sets at
once, each with its own reservoir.

3.3. The Weakness of WKL. With the structure of forcing as a guide, we can approach the
question of whether WKLy is genuinely weaker than ACAy or not. To do this, it will suffice to
show that WKLy admits preservation of some Q which separates it from (', which will allow for
the construction of a model of WKLg without () in it. We can actually show that WKL preserves
several of the classes Q that we introduced.

In all of these preservation results, we will use a version of Jockusch-Soare forcing, as it is a
natural way to constrain objects that we are thinking of as paths in the first place. In each one,
note how the fact that 7" is computably bounded plays an essential role. This is to be expected,
given that KL does not admit any of these weaknesses.

Theorem 3.2 (WKL Admits Hyperimmune-Free Solutions): If Z is hyperimmune-free and
T is a Z-computable binary tree, there is an infinite path ¢ € [T'] such that £® Z is hyperimmune-
free; that is, every function computed by ¢ @ Z is dominated by some computable function.

Proof. We’ll use Jockusch-Soare forcing with subtrees of T'.
We want to construct G € [T'] such that

(Ve) : 9% is computably bounded

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 25

for which it suffices to meet the condition sets
D, :={p:{€[p] = %% is computably-bounded}

for each e. We will show that D, is dense.

Assume otherwise, i.e. that for some tree p there is no extension p* meeting D.. This implies
that there is some depth d, such that ®7%%(x)[d,] | for |o| > d,; otherwise,

p* = {0 €p: %% (a)[o]] 1}
would be an infinite Z-computable tree whose paths ¢ all have ®/®Z(z) 1, and thus meet D..
Moreover, d, is Z-computable as a function of x, since p is binary and thus one can explore all
depths d until finding one for which ®7%Z(z)[d] | for all |o| = d. Using this fact, for any given
¢ € [p] we can construct a Z-computable function g(x) that dominates ®¢®%:
g(x) := max{®7%% (z) : |o| = d,}.

And because Z itself is hyperimmune-free, there is also a computable function dominating g(z).
Thus, in this case, p already meets D.. (Il

Theorem 3.3 (WKL Admits Cone Avoidance): Given a Z-computable binary tree 7' C 2N
and a set C' £ Z, there is a path ¢ € [T'] for which ¢ @ Z does not compute C.

Proof. We use Jockusch-Soare forcing, with the modification that all trees in P are subsets of T’
and are Z-computable. The desired condition, not computing C, can be expressed as
(Ve) : @807 £ O
and ®9Z £ (C is equivalent to meeting the condition set
D.:={p:lc[p]= 0% £C}.

Thus, it suffices to show that D, is dense in P, i.e. that for any tree p € P, there is an extension
p* < p (i.e. a subtree) for which £ € [p*] = ®¢®Z £ (.

Assume for the sake of contradiction that all extensions p* < p in P contain a path ¢ with
®LeZ = C. We will use this fact to compute C from Z, showing a contradiction. The key is that
this assumption greatly limits the extent to which the computable functions ®7%% can differ from
C, in two ways:

(a) No o € p that extends to a path in p has ®79Z 1 C; otherwise,
pr={rep:7 =0}
would be infinite and meet D..
(b) For every z, there is some depth d, such that ®°®Z(x) | for all ¢ € p with |o| > dg;
otherwise,
p*={rep: @7 (a)|7[] 1}
would be infinite and also all £ € [p*] have ®‘®Z(z) 1, thus p* would meet D.,.
Given d,,, we can calculate C(x) as follows: let
D={ocep:|o|=d;}.
Because p is a binary tree, D is Z-computable. We know by (b) that every o € D has ®°%%(z) |,
so we can Z-computably split D into
D= AUB == {al,ag,...,am}U{bl,bg,...,bn}

where ®%%Z(z) = 0 and ®%®Z(z) = 1. By (a), either A or B (whichever disagrees with C) is
entirely non-extendable, and hence the depth of its descendants is bounded. Then for each d’ > d,
we can compute from Z the set of nodes of depth d' (again relying on the fact that p is binary)
and check which are descended from A versus B. For sufficiently large d’, only one of the two
groups will remain, whence we will have computed C(z) from Z. O

From cone avoidance, it also follows as a corollary that WKLy has no minimal model; any non-
computable C can be avoided. In other words, like RCAy, WKLy does not imply the existence of

26 JALEN CHRYSOS
any particular non-computable set, though it does imply the existence of some non-computable set.

Next, we’ll show that WKL also admits low solutions. This argument will be a little bit different
from the previous two. It is an example of effective forcing, in which a constructed object is made
to be A-computable (for some A) by deciding each of its values at a particular finite stage, and
choosing each extension p* in an A-computable way.

Theorem 3.4 (WKL Admits Low Solutions): If Z C N is low, then for any Z-computable
infinite binary tree T' C 2V, there is an infinite path ¢ € [T'] such that (@7 is low, i.e. (¢®Z) <r 0.

Proof. We’'ll construct a path G € [T'] and a (f'-computable function f which computes (G & Z)'.

We employ a variant of Jockusch-Soare forcing as follows:

e p € P are of the form p = (U, o), where
— U is an infinite, Z-computable subtree of T,
— 0 is a finite binary sequence,
— g =oforallge|[U].

o (U*,o*)<(U,o)if U* CU and o* = 0.

e (U, o) is interpreted as G € [U] and o < f.

The properties of P already guarantee that f = ¢, so the only thing to be forced is that f is total:
(Ve) : fle) 4,
and f(e) | is equivalent to meeting the condition set
D. = {(U,0) : o] > ¢}.

To ensure that f is (’-computable, we will explicitly construct an extension for (U, o) computably
relative to (', and thus every place of f will be (’-computable.

We want an extension (U*, 0*) such that all G € [U* | have the same halting behavior on e, i.e.
7 (e) | = o (e),

and we need to decide o*(e) in a (/'-computable way. It might be that U already has this property,
so we first check if this is the case. We can do this Z’-computably (and hence (/'-computably, since
Z is low): it is equivalent to checking

V() = @A) (V7 eU): (1] =d) = ;% (e)[|7]] |

Note that the V is bounded because U is a binary tree, so ¥(U) is £ and hence Z’-computable.
If U(U) is true, then ®¢®Z(e) | for all G € [U], so we can extend (U, o) to U* := U and o*(e) = 1.
On the other hand, if U(U) is false, the subtree

E:={rcU:a>%(e)[|7]] 1}

is infinite and Z-computable, so we can take U* := U N E with o*(e) = 0.

In summary, we can extend (U, o) in a way depending only on the ('-computable function ¥(U):

R () it (),
(U, 0%) = {(UOE,J”O) if —W(U).

In either case, ®%®Z(e) has the same halting behavior for all G € [U*], and it is matched by o*(e).
Since every extension is found ('-computably, f = (G& Z)’ is ('-computable, thus G & Z is low, as
desired.]

With WKL shown to admit solutions in several complexity classes not containing (', we can
handily reach this section’s goal:

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 27

Theorem 3.5: WKLy =& ACA,.

Proof. This follows from any of the preservation results shown for WKL, which allow us to build
a model of WKLy consisting entirely of ('-cone-avoiding or low or hyperimmune-free sets. The
resulting model does not contain (' as a set, therefore it is not a model of KL (or ACA). (]

ACAq

RCA,

Historically, the hierarchy of these three theories has been a focus of reverse mathematics. They
are the bottom three of the “big five” hierarchy, which also includes the stronger theories ATRg
and I1}CAg.'" The big five are notable because of how many theorems from other areas have been
shown equivalent in strength to one of them.

We have seen already that the completeness of R is equivalent to ACAg and the compactness
of [0,1] is equivalent to WKLg. One can actually show that a wide range of results in algebra,
analysis, logic, and combinatorics are equivalent to one of these levels. A few key examples are
listed below.!!

Note that the language of second-order arithmetic is limited in what it can express; all results
below referring to algebraic structures and metric spaces apply only to countable structures and
separable metric spaces, as general uncountable sets are third-order objects and thus cannot be
discussed directly in second-order arithmetic. Continuous functions on separable metric spaces
are determined by their values on a countable dense set, and thus they can be described as second-
order objects.

e RCA,

— Intermediate Value Theorem

— Nested Interval Completeness

— Baire Category Theorem

— Existence of algebraic closures
o WKLy
Heine-Borel Theorem (compactness of [0, 1])

— The Hahn-Banach Theorem

— Riemann integrability of continuous functions

— Uniqueness of algebraic closures

— Existence of prime ideals in commutative rings

— Godel’s Completeness and Compactness Theorems
o ACAq
Completeness of R
— Bolzano-Weierstrass Theorem (sequential compactness of [0, 1])
Existence of maximal ideals in commutative rings
Existence of bases for Q-vector spaces
— Konig’s Lemma

In the next section, we will set our reverse-mathematical techniques onto Ramsey’s Theorem,
a problem from infinitary combinatorics, and investigate its relationship to this hierarchy.

10ATRy stands for Arithmetic Transfinite Recursion. Roughly speaking, it extends ACAq to allow induction and
comprehension along any well-order, rather than just N. H%CAO extends comprehension to H% formulas. It is
strictly weaker than full second-order arithmetic but stronger than ATRg.

HPproofs of all of these equivalences can be found in [8].

28 JALEN CHRYSOS

4. RAMSEY THEORY

So far, we’ve developed a nice hierarchy of three naturally-arising theories. We’ve seen that
many statements in second-order arithmetic can be located in one of these three levels. To com-
plicate this picture, we now consider Ramsey’s Theorem:

Definition (Ramsey’s Theorem in degree n for k colors, or RT}): Given a k-coloring of
[N]™ (the size-n subsets of N), i.e. a function ¢ : [N]* — {1,2,... k}, there exists an infinite set
X that is c-homogeneous, i.e. c is constant on [X]™.

In this section, we’ll use the methods developed in previous sections—forcing in particular—to
determine the precise strength of RT}) relative to the Big Five. This was not known for general
n,k € N until Liu closed the last remaining case in 2011.

4.1. RT over RCAy. First, we’ll see what can be proven about RT} over RCAg. RCAq does prove
some relationships between RT) for different n and k, but we will see that it does not actually
prove any RT} for n > 1.

Lemma 4.1 (Ramsey Theory over RCAg):

(a) For k > 2, RCAq - RT;.

(b) For k > 2, RCAq - RT} < RT; ;.

(c) For n>1, RCAq - RT}t! = RT}.
Proof. (a): This is essentially the infinitary pigeonhole principle for a fixed number of colors.
Given a coloring ¢ : N — {1,2,... k}, the homogeneous sets

cHG) = H{re(x) = 5}
are all computable from ¢, thus exist in RCAy. One of these sets must be unbounded; if there

exist upper bounds a; on each of these sets so that ¢~!(j) < a;, then the union of all of them is
bounded above by max{ay,az,...,a}, but their union is N, which is unbounded.

(b): Given a (k + 1)-coloring ¢ : [N]™ — {1,2,...,k + 1}, we can produce a slightly reduced
k-coloring by identifying 1 and 2:

L e(4) =1
¢ 'AH{C(A)_l o(A) > 1

This ¢* clearly c-computable, thus it is a function in RCAg. Assuming RT}, there exists an infinite
c*-homogeneous set X. If X is any color other than 1, then X is also c-homogeneous. Otherwise,
c*(A) € {1,2} for A € [X]", so ¢* is a 2-coloring of X. Thus, we can apply RT5 (which clearly
follows from RT}) to ¢ on X to get an infinite c-homogeneous set. Either case implies RT} ;.

(c): Given a k-coloring ¢ : [N]" — {1,2,...,k}, we have a k-coloring
NPT {1,2,...,k} given by ¢*(A) = ¢(A \ min(A)).
c* is clearly c-computable, thus it is also a function in RCAg. Assuming RTZH7 there exists a
c*-homogeneous set X (say with color j). For any size-n subset B C (X \ min(X)), we have
¢(B) = ¢*(BU{min(X)}) = j,
thus X \ min(X) is an infinite c-homogeneous set of color j, implying that RT} also holds. O

Thus, RCAq proves that the strength of RT) (for k& > 2) depends only on n, and that it is
non-decreasing in n. As a corollary, RCAg proves that the weakest case of RT is RT%. The natural
question is whether RCAg can actually prove this simplest case, and the answer is: no. To show
this, we will give a computable 2-coloring of [N]? with no computable infinite homogeneous set.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 29

Theorem 4.2: RCA; =4~ RT3.

Proof. We’ll describe a coloring algorithm that systematically makes every infinite computable set
non-homogeneous. In fact, we can do even better and avoid all infinite c.e. sets. Let

A ={n:®.(n) |}
and denote by A.[s] the approximation of A, up to input s and for s steps:
Acls] :={n < s: ®.(n)[s] 1}

Note that A.[s] is computable and that limg A.[s] = A.. We will ensure that if A.[s] gets suffi-
ciently large, then we eventually color two of its edges oppositely.

The construction will proceed in N-many stages: in stage s, we decide the colors of edges
E, :={(0,s),(1,5),...,(s—1,5)}.

During stage s, for each e < s we compute the set of x € A.[s] such that (x,s) is still uncolored.
If this set has at least two elements a, b, we color their edges oppositely:

c((a,s)) =0, c((b,s)) =1.
Otherwise we do nothing and move on. Note that at most 2 edges of E, can be colored for each
e < s. At the end of stage s, some of F,; may remain uncolored—their colors don’t matter.

Now to show that the coloring works: if A, is infinite, then for sufficiently large s,
|Ac[s]] > 2e.

For such s, our coloring is guaranteed to find a,b € A.[s] with (a, s) and (b, s) uncolored, since at
most 2(e — 1) edges of E can be colored up to this point in stage s. And because A, is infinite,
there will be some sufficiently large s which is also in A, so that (a, s), (b, s) are both edges in A,
and thus A, is not homogeneous. Thus, we’ve colored all infinite c.e. sets non-homogeneously. [

This argument focuses on the c.e. sets, but in fact it can be extended to all limit-computable

sets, i.e. sets A such that
A(n) = lim g(n,m)
m
for some computable g(n, m). This requires only a minor change: define A.[s] as
Als) = {n < 5 ge(m,5)[s] =1}

where (g.) enumerates the algorithms on two inputs. Define ¢ in the same way relative to A.[s],
and ¢ will color every limit-computable A non-homogeneously by the same argument.

So RT% implies the existence of non-limit-computable sets, but WKLg does not. Because WKL
admits low solutions, one can build an entirely low model of WKLgy. Low sets are (-computable,

and hence limit-computable as well,'> so we have a model of WKLy whose sets are all limit-
computable. Thus, WKL, is not strong enough to prove RT% (or any other RT}) either!

4.2. RT over ACAq. First, ACAy is strong enough to prove RT} for all n and k:

Theorem 4.3: ACA¢ — RT}.

Proof. Given a coloring ¢ : [N]* — {1,2,...,k}, we say that a set X is pre-homogeneous if the
coloring of n-edges in X does not depend on their largest element, in the sense that

Vs € [X]"! and a,b € X with a,b > max(s), c(sU{a}) = c(sU{b}).
Such c and X give rise to a derived coloring
X = {1,2,...,k} ¢*(s) = c(sU{a}) where a € X,a > max(s).

Any c*-homogeneous set is also c-homogeneous, so if such an X exists for any coloring ¢, then
RTL“1 = RT}. We've shown that RT,lC is provable in RCAg, so to prove RT} for every n, it suffices
to show that an infinite, pre-homogeneous set exists for every coloring.

121 fact, 0’-computable and limit-computable are equivalent properties. This is Shoenfield’s Limit Lemma.

30 JALEN CHRYSOS

Now given ¢ we’ll construct an infinite pre-homogeneous set G via a variation of Mathias forcing:

e p € P are of the form (E, R) where E is finite, R is infinite, and E < R.

— Additionally, £ must be pre-homogeneous with respect to c.

— All elements of R must be able to be added to E while maintaining pre-homogeneity.
e (F*,R)< (E,R)if ECE*CFEURand R* CR.
e (E,R) is interpreted as E CGC EUR.

We’d like to construct a G that is infinite, for which it suffices to meet
D, :={(E,R) : max E > e}

for all e. Any such G will automatically be pre-homogeneous because of the additional constraints
on P. We’ll show that D, is dense.

Let (E,R) € P and fix e. For each o : [E]"! — {0,1} (of which there are finitely many) let
R, ={r€R: (VA€ [E]") :c(AU{x}) =0a(A)},

so that every element of R, has the same coloring behavior with respect to E, and
R=|]JR,.
g

R is infinite, so by the pigeonhole principle, at least one of these R, is infinite. Selecting such an
R, let x € R, be its least element above e, and choose the extension

(E*,R") = (EU{x}, Ry N (x,00))
which indeed meets D, and one can check that (E*, R*) € P. Thus, D, is dense, as desired. O

A note on the complexity of this construction: R, is c-computable, and testing whether R,
is infinite is ¢’-computable, as being infinite is a Iy property. This shows that one can find an
infinite pre-homogeneous set that is ¢’’-computable. Thus, one can reduce an instance ¢ of RT}
to a ¢’-computable instance of RT; . To prove RT}, this reduction must be done n — 1 times,
after which RT,lc can be computably solved, giving a ¢(2"~2)-computable solution to c.

We can also show a partial reversal of this result: RT3 (and thus all RT} for n > 3) implies
ACAy. To prove this requires an A-computable coloring of triples whose infinite homogeneous sets
all compute A’:

Theorem 4.4 (Jockusch): RT5 = ACA,.

Proof. Let A be a set. We will describe a Af' coloring ¢ : [N — {0,1} whose only infinite
homogeneous sets compute A’, and thus show that A’ exists for all A.
Specifically, consider the following coloring: given a triple (a, s,t) with a < s < t, let

e (a51) s {0 (e < a): @2 (e)[s] T A L[])
o 1 otherwise

There are no infinite c-homogeneous sets of color 0; if such a set {a1,as,...} existed, then there
would be Turing machines of index at most a; which halt in time-windows (a2, as], (a3, a4], . ..
but this is impossible because there are only finitely many of these.

Thus, the infinite set X guaranteed by RT% must have color 1. Let X = {a1,as,...}. Given X,
we can compute A’: to test whether e € A’, take some a, > e (one exists because X is infinite)
and check ®2'(e)[a,11]. If this doesn’t halt then it never will, since ¢((a,, ag, ag+1)) = 1 for ¢ > p,
hence ®(e) does not halt in (a,,a,+1] for any ¢ > p, and these intervals cover the rest of N. [J

This proves that RT% is equivalent to ACAg, and likewise for RT} with n > 3, so now RT% is
the only outstanding case. It is unclear how one could encode the halting problem with only a
coloring of pairs. Indeed, there turns out to be a genuine difference in strength between RT% and
RTS. To prove this, we will use a forcing argument to show that RT% admits cone avoidance.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 31

Theorem 4.5 (Seetapun): RT; =4 ACA,.

Proof. We will prove this by establishing cone avoidance for RT%. That is, we’ll show that for any
Z,if ¢ : [N]*> = {0,1} is Z-computable and C' £ Z, then there is an infinite c-homogeneous set
G for which Z & C' &7 G. We'll assume Z = () wlog, as it does not affect the argument.

We can’t simply choose a color and begin the construction, since it’s possible that there is only
an infinite homogeneous set of one color, and it’s not apparent which color will work. Instead, we
can start constructing two homogeneous sets at once, one in each color, and show that at least
one will have the desired properties.

Proceeding by contradiction, we’ll assume that no such G exists. This assumption is necessary
to force both sets to be infinite.

We construct Gy and Gy with a variation of 2-fold Mathias forcing defined as follows:

e p € P are of the form (Ey, F1, R), where Ey, E; are finite, R is infinite, and Ey, B < R.
— Additionally, Fy and E; must be c-homogeneous of colors 0 and 1 respectively.
— All elements of R can be added to Fy or E; while maintaining homogeneity.
— R must not compute C.
o (Ej,Ef,R*) < (Eyp,E1,R)iIt E; CEf CE;URforie{0,1} and R* C R.
e (Ey, E1, R) is interpreted as F; CG; C E; UR for i € {0,1}.
Now we seek to force three properties:
(1) Go is infinite.
(2) Gy is infinite.
(3) At least one of Go and Gy does not compute C.

We'll show separately that each one is forced.

First, some notation: for any set A and color ¢ € {0,1}, define the i-neighborhood of A as
N;(A):={z: (Va € A): c((a,x)) =i}.
Note that the conditions on P imply that R C No(Ep) N N1(E1) for (Eo, Eq, R) € P.

(1): It suffices to meet the condition-sets
D, :={(FEo, F1,R) : (max{Ey} >e)}
for e € N. If a given (Ep, E1, R) has no extension meeting D,, then for every x > e in R,
(ES,EY,R") := (Eg U{x}, E1, RN No(x))

must not be a valid extension, otherwise it would meet D,. This can only be because R N Ny(x)
is finite for all z > e in R. But if this is true, then RN Ny(z) is infinite for all z > e in R, which
makes it R-computable to find an infinite c-homogeneous set of color 1: the extension

(E6<7ET,R*> = (E(),El U {SL‘},Rﬁ Nl(l‘))

(where = min{R>.}) is guaranteed to be valid, so one can repeatedly choose such extensions,
resulting in a Gy that is R-computable and infinite, and hence witnesses cone avoidance. We had
assumed that such G; did not exist, so we must now assume that D, is dense.

(2): This follows similarly.

(3): This property is the most substantive. The only case we must avoid is both Gy and Gy
compute C, i.e. for some eg,e; € N, @gg = (I>gi = C. Thus, it suffices to meet the condition-sets

Diey,er) = {(Eo, E1, R) : (28 # C) v (22 # C)}

1

for (e, e1) € N2. We aim to show that D¢y e, is dense. Assume otherwise, and that (Eo, 1, R)

is a condition in P with no extensions meeting D¢, e,)-

We define an i-fork to be a pair of finite i-homogeneous sets (X,Y") for which
Fw <max(X UY): FYY(w)max(X UY)] | # @57 (w)[max(X UY)].

32 JALEN CHRYSOS

Whereas the property of differing from C' is non-computable, the two extensions in an i-fork differ
from one another in a bounded way, which can be verified R-computably. Say an i-fork is valid if

(EiUX,Elfi,R*) and (EZUYv,Elfl,R*)

are both in P, for some R*. If (X,Y) is valid, then one of these two extensions (the one that
differs from C') must meet D,), thus it suffices to show that a valid i-fork exists. We'll first
show the existence of many i-forks, and then show there is a valid one among them.

Lemma (x): Every infinite set R* C R which does not compute C must contain an i-fork.

Proof. Suppose otherwise. We have assumed that no extension meets D, ,). This implies that
for every w there is some finite X C R* with

@eEiiUX (w)[max(X)] 4 = C(w).

Otherwise, the extension (Ey, E1, R*) would meet D, .,), as it implies ® (w) is either undefined
or disagrees with C'(w). If, in addition, there are no i-forks in R*, then

O (w)[max(X)] € {1,C(w)}

for all finite X C R*, since no two X can contradict one another. Now we can check all such X
until halting, thus computing C'(w) from R*, which contradicts the assumption that C' £, R*. O

As an immediate corollary, there are infinitely many i-forks (one can take R* = RN {z > M}
to get an i-fork of arbitrarily high minimum). So let (X;,Y;) be a computable sequence of 0-forks
(one can compute it by repeatedly taking the next largest 0-fork in some computable ordering):

Xo<Yy<Xi<Yi<Xo<Yy<...

By assumption, all of these 0-forks are invalid. This is actually a rather strong condition, because
it tells us that for any potential reservoir R*, each X; UY; contains some z; for which Ny (z;) N R*
is infinite; otherwise, R* N.cx,;uy; No(z) would be a valid reservoir for the fork (Xj,Y;).

The goal now is to leverage the invalidity of the 0-forks to produce a valid 1-fork within (z;).
We'll first show that such a sequence z; of sufficient depth d will eventually include a 1-fork. Then,
we'll find a reservoir R* with respect to which all z € {X; UY},<q have edges of only one color.
This R* will serve as reservoir to the 1-fork included in (z;), hence the 1-fork will be valid.

Construct a computable tree T C NN from all sequences o with
oe) e X, UY,

such that the immediate parent of o does not contain any 1-forks. T is computably bounded
(since X, UY, is finite), so if T is infinite then it contains a C-cone avoiding path by WKL cone
avoidance. But by (), any infinite non-C-computing set necessarily contains 1-forks, so there can
be no such path, and thus T must be finite. Let its depth be d.

LN bl lol fe] ol
20| o\o o
NG R A
OO0 W Y
XOJYO X,}UYd

FIGURE 6. The elements of X; UY; for j < d colored by 7 (blue = 0, red = 1).
The sequence (z;) must contain a valid 1-fork with reservoir R*.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 33

Finally, for each function
d
7 X0y - {0,1}
§=0
let
R, :={re R:(¥VzeDom(r)):c((z71)) =71(2)}
There are finitely many such 7 since T is finite, and R, finitely partitions R into R-computable
parts. For some 7, R, will be infinite: call this R*. Since the O-forks (X;,Y;) are all invalid,
there is a sequence z; € X; UY; which all have 7(2;) = ¢(z;, R*) = 1. By the definition of T,
there is a 1-fork among this sequence. This 1-fork is valid, with R* as its corresponding reservoir. [J

This shows that RT% is strictly weaker than RTS, casting RT% out of the RCAg — WKLqg — ACA
hierarchy, though we haven’t yet ruled out the possibility that RT% lies between WKLy and ACA,.
Seetapun’s proof was published in 1995, but the relationship between RT% and WKLy was left
open until 2011, when Jiayi Liu proved that RT% =~ WKL. Liu showed that RT% admits PA
avoidance by using a Mathias forcing argument.

Theorem 4.6 (Liu): RT3 =& WKL.

Proof. Omitted. See [2] or [6] for full proofs of Liu’s Theorem. O

With Liu’s proof, RT% could be placed firmly outside of the Big Five hierarchy:

KL «&— ACA;j &— RT{’

FIGURE 7. The full dependency chart between RT and KL. WKL and RT? are independent.

But unlike WKL, which we find embedded within proofs of all sorts of major theorems through-
out mathematics, RT% is mysteriously not equivalent to any other major theorems. RT% is its own
principle, with its own set of consequences. Much of the work in reverse mathematics in recent
decades has been dedicated to studying it.

4.3. Study of RT3. In this final section, we'll take a look at the world of RT3 and several
related coloring principles, and see some longstanding open problems. First, we introduce two
new properties a coloring ¢ : [N]? — {0, 1} can have on a domain X:

e Stable: For x € X, c takes a single value on all but finitely-many edges containing x.

o Transitive For x <y < z € X, ¢((x,y)) = c((y,2)) =q¢ = c((x,2)) = q.

Stability and Transitivity turn out to be quite significant classes of colorings. In a sense, they

are the only two classes that must be considered; as we will see, if RT% holds on all stable colorings
and all transitive colorings, then it holds in general.

RT) says any coloring has an infinite subset on which it is homogeneous. This principle can be
weakened in several ways. If C and D are two classes of colorings, let

C — D denote “Vc € C, 3 an infinite subset X C N such that ¢ € D on X.”

34 JALEN CHRYSOS

Note that — is transitive. Using this notation,
RT% := Any — Homogeneous.

RT% can be split into several interesting coloring principles based on the coloring classes of stable
and transitive, many of which are collected in Figure 8.

Homogeneous

SADS

Transitive + Stable

_— \

CADS SEM

Transitive Stable

EM CRT?
Any

FIGURE 8. A decomposition of the coloring principles below RT2.

The abbreviations are:

e RT: Ramsey’s Theorem.
— SRT = Stable Ramsey’s Theorem.
— CRT = Cohesive Ramsey’s Theorem.
e ADS: The Ascending/Descending Sequence Principle.
— For every linear order on N, there is an infinite increasing or decreasing sequence. A
linear order can be expressed as a transitive coloring of [NJ]?.
— SADS = Stable Ascending/Descending Sequence.
— CADS = Cohesive Ascending/Descending Sequence.
e EM: The Erdds-Moser Principle.

— This is sometimes called the “Tournament Principle,” because it can be interpreted
as the statement “for every infinite set of teams, there is an infinite subset on which
teams can be linearly ordered by their strength.”

— SEM = Stable Erdés-Moser.

It is known that all of these principles lay in the expanse strictly between RCAy and RT%, though
in many cases this is very nontrivial. In terms of their relative strengths, some equivalences can
be found by identifying paths in the diagram: for instance,

ADS +EM <= SRT;+CRT5 <= RT3.

But there are also some unexpected implications—for example, we will show that ADS = CRT%.
In fact, ADS proves the Cohesive Set Principle (COH), which is a stronger result.

COH states that for any sequence of functions f; : N — {0, 1}, there is a set A for which all of
the f; are stable (i.e. converge to 0 or 1) on A—we say that A is a cohesive set for (f;). CRT3
follows from a special case of COH where

fi(x) = (i, x))

and, say, f;(7) := 0 (the diagonal values do not matter to the cohesiveness of A). The essential dif-
ference is that f;(x) must be stable on A for all 4, whereas ¢((4, z)) only needs to be stable for i € A.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 35

Lemma 4.7: ADS — COH.

Proof. Given a sequence of functions f; : N — {0,1}, let f(z) denote the binary sequence

f(@) = (@), f2(2), fs(@),...).
We may assume that f is injective'®. Between two binary sequences there is a lexicographic order;
e.g. (1,0,0,1,1,...) > (1,0,0,1,0,...). Let ¢ : [N]* = {0,1} color pairs based on this ordering:
0 f(z) <f(y)
L fz)> f(y)

Given that f(x) # f(y), the sequences differ at some finite index, so ¢ is computable relative to
the functions f;. Then, by ADS there must exist an infinite ascending (wlog) subsequence

A:{al,ag,...},

for x < y, c:(x,y)l—>{

so that
fla1) < flaz) < flas) < ...
Now we can show (in RCAg) that A is a cohesive set for the functions f;: for any n, the n-tuple

(f1(az), f2(aj), ..., fa(ay))

is non-decreasing in j, and takes at most 2™ values, so it changes at most 2™ times. In particular,
this implies { f,(a;)}; changes between 0 and 1 at most 2" times, and thus is eventually constant.
As this is true of all n, A is cohesive for the functions f;. O

Thus, as promised, RT% can be reduced to the two cases of transitive and stable colorings, as

SRT; + ADS —> SRT3+ CRT; <= RT3.

This decomposition is unique to n = 2, as the property of transitivity does not make sense for
colorings with n > 3. The decomposition can be used to more easily prove weakness principles
for RT3 by proving them for SRT3 and ADS (or COH), which are often simpler. Both Seetapun’s
Theorem and Liu’s Theorem have “modernized” proofs along these lines.

RT2

/

ADS SRT3

CRT2 SADS EM

-

CADS SEM

\/

RCA,

F1GURE 9. Known dependencies between principles below RT%.

31 general, we can interleave the sequence f; with a characteristic functions x; for each ¢, which makes f injective.
Proceeding with the proof will yield a set A that is cohesive for both f; and x;, which also serves as a cohesive set
for just the f;.

36 JALEN CHRYSOS

The presently-known implications among the coloring principles discussed in this section are
listed above in Figure 9.

The single arrows denote implications that are not proven to be strict (i.e. may be equivalences).
Two open questions are whether SEM is weaker than EM and whether CADS is weaker than CRT%.
Between CRT%, SADS, and EM, five of six non-implications have been proven; the only unproven
one is whether EM = CRT%, or more generally whether EM = COH. The precise strength of EM
remains uncertain.

The full state of progress on these and many other questions in reverse mathematics is cata-
loged and displayed in the Reverse Mathematics Zoo, though the diagrams there are not up to date.

ACKNOWLEDGMENTS

I would like to thank Professors Maryanthe Malliaris and Denis Hirschfeldt for giving helpful
advice and direction during this project. I am especially grateful to my REU mentor Miles
Kretschmer for teaching me all that I know about reverse mathematics and providing excellent
feedback on dozens of drafts of this paper.

REFERENCES

[1] Jeremy Avigad. Mathematical Logic and Computation. Cambridge University Press, 2023.
ISBN: 978-1-108-47875-5.

[2] Damir D. Dzhafarov and Carl Mummert. Reverse Mathematics. Theory and Applications of
Computability. Springer, 2022. 1SBN: 978-3-031-11366-6.

[3] Harvey M. Friedman. “The Emergence of (Strict) Reverse Mathematics”. In: (2021). URL:
https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts/.

[4] John P. Burgess George S. Boolos and Richard C. Jeffrey. Computability and Logic. Cambridge
University Press, 2007. 1SBN: 978-0-521-87752-7.

[5] Ivor Grattan-Guinness. The Search For Mathematical Roots, 1870-1940. Princeton University
Press, 2001. 1sBN: 978-0-691-05858-0.

[6] Denis R. Hirschfeldt. Slicing the Truth. Lecture Notes Series, Institute for Mathematical
Sciences, National University of Singapore. World Scientific, 2014. 1SBN: 978-981-4612-62-3.

[7] Ludovic Patey. Lowness and Avoidance. Unpublished, 2024-ongoing. URL: https://ludovicpatey.

com/lowness-avoidance/.

[8] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic. Cam-
bridge University Press, 2009. 1SBN: 978-0-521-88439-6.

[9] Robert I. Soare. Turing Computability. Theory and Applications of Computability. Springer,
2016. 1SBN: 978-3-642-31932-7.

https://rmzoo.math.uconn.edu/diagrams/
https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts/
https://ludovicpatey.com/lowness-avoidance/
https://ludovicpatey.com/lowness-avoidance/

	Introduction
	1. Measures of Set Complexity
	1.1. Algorithms and Computability
	1.2. The Arithmetical Hierarchy
	1.3. Mixing Arithmetic with Algorithmic

	2. Theories of Second Order Arithmetic
	2.1. The Baseline: RCA
	2.2. The Ceiling: ACA
	2.3. König's Lemma and Weak König's Lemma

	3. Separation of Problems
	3.1. Methods of Model-building
	3.2. Forcing and its Uses
	3.3. The Weakness of WKL

	4. Ramsey Theory
	4.1. RT over RCA
	4.2. RT over ACA
	4.3. Study of RT22

	Acknowledgments
	References

