
THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS

JALEN CHRYSOS

Abstract. Reverse mathematics studies the precise strengths of theorems, defined by their

ability to prove axioms (over a weak base theory). This paper discusses the strengths of two

theorems in infinitary combinatorics: König’s Lemma and Ramsey’s Theorem. We compare
weakened cases of each to theories of second-order arithmetic, to theorems from real analysis,

and to one another. The method of forcing features prominently.

KL ACA0 RT≥3
k

WKL RT2
k

RCA0

Thm 2.5

Thm 3.5

Thm 4.4

Thm 4.5

Thm 4.6

Thm 3.1 Thm 4.2

Contents

Introduction 2
1. Measures of Set Complexity 4
1.1. Algorithms and Computability 4
1.2. The Arithmetical Hierarchy 7
1.3. Mixing Arithmetic with Algorithmic 9
2. Theories of Second Order Arithmetic 12
2.1. The Baseline: RCA0 13
2.2. The Ceiling: ACA0 15
2.3. König’s Lemma and Weak König’s Lemma 16
3. Separation of Problems 20
3.1. Methods of Model-building 20
3.2. Forcing and its Uses 22
3.3. The Weakness of WKL 24
4. Ramsey Theory 28
4.1. RT over RCA0 28
4.2. RT over ACA0 29
4.3. Study of RT2

2 33
Acknowledgments 36
References 36

Current draft as of September 27, 2025.

1

2 JALEN CHRYSOS

Introduction

Mathematics aims to determine the truth through deduction. We begin with statements that

we assume to be true—axioms—and combine them using basic logical rules to generate new

statements. A statement that can be reached this way is “proven true.” Of course, the notion of

provability depends on one’s foundations.

In the late 19th and early 20th centuries, when foundational questions seemed a pressing concern

even for regular mathematicians, it was hoped that in some sufficiently strong base theory, all true

statements could be proven. Gödel’s work showed this was impossible for all but the weakest formal

languages. In simple settings like Euclidean geometry, all statements could be decided. But in

the areas most relevant to working mathematicians, like Arithmetic or Set Theory, there would

always be unprovable true statements—or, in the case that the theory was contradictory, provable

false statements. Gödel had revealed an inherent relativity within logic; knowing that all theories

are incomplete, why should we privilege one over the others?

Mathematics adapted around this discovery. Later work by Paul Cohen gave the first natural

examples of undecidability in Zermelo-Fraenkel Set Theory: the Axiom of Choice and the Con-

tinuum Hypothesis. Since that time, Choice has been mostly accepted as an axiom of set theory

(though it is still common to point out where it is relied upon) and much mathematics has been

built on top of it. The legitimacy of the continuum hypothesis, on the other hand, is still debated

among logicians and is of little relevance to anyone else. Even in the absence of completeness,

the mathematical community has settled on a satisfactory foundation of set theory, and alternate

foundations are seldom discussed.

Nevertheless, the particulars of the foundations remain deeply involved in the results they

support. Just as some theorems depend on the axiom of choice, others rely on (for example)

the formation of sets whose elements satisfy a given arithmetically-complex property, though the

latter cases are almost never noted. Suffice it to say, the relationships between theorems and

their constituent axioms are complex and not fully understood. The field of Reverse Mathematics

studies these relationships.

The study of reverse mathematics began in the 1970s through the work of Harvey Friedman.

As a young professor at Stanford working in mathematical logic, Friedman wanted to impress

upon his colleagues the influence of the foundations of mathematics on their work in analysis

and algebra, and so began to precisely map out this influence.1 The subject has since developed

beyond Friedman’s original conception, but the fundamental pieces have remained constant.

Reverse mathematics seeks to compare the strengths of different theories. The notion of strength

is a partial order based on the space of sentences which can be proven; if T1 proves everything

that T2 does, then T1 is at least as strong as T2. It is called “reverse” because it assesses the

strength of theorems from ordinary mathematics as if they were axioms. In ideal cases, one can

show that within a given theory, some subset of axioms can be equivalently replaced by a certain

theorem, resulting in a precise classification of the theorem’s power—a reversal.

We mostly work within second-order arithmetic, a language whose objects are only numbers

and sets of numbers (there are no sets of sets, e.g.). Second-order arithmetic is expressive enough

to state most theorems of interest but simpler to work with than full set theory. The theories

of greatest interest all share certain axioms about the arithmetical properties of +, · and <, but
vary especially in their axioms concerning the existence of sets. One weak set-existence axiom

allows for the construction of all computable sets, which are considered to be the simplest. An-

other guarantees the existence of any set that can be arithmetically defined, which allows for much

more complex sets. The set existence principles of most interest here fall in between these extremes.

1See [3].

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 3

This expository paper focuses on two of these in-between theorems in second-order arithmetic,

each originating from infinitary combinatorics. Both have played essential roles in the development

of reverse mathematics:

• König’s Lemma: Every finitely-branching infinite tree has an infinite path.

• Ramsey’s Theorem: If one assigns every n-tuple in N to one of k colors, then there is an

infinite subset of N within which every n-tuple is the same color.

We will explore the differences in strength between special cases of each of these theorems, com-

paring each to theories of second-order arithmetic of varying complexities and also to several

well-known theorems in real analysis.

In Section One, we’ll use some ideas from computability theory and formal logic in order to

define exactly what we mean by “complexity” in sets and functions.

Section Two will introduce second-order arithmetic and use the established notions of complex-

ity to define the weakest and strongest theories we will consider: RCA0 and ACA0. We’ll see what

regular mathematics looks like in these theories by showing some formal proofs in real analysis.

We’ll also characterize the precise strengths of König’s Lemma and a restricted version, Weak

König’s Lemma, and equate them to real-analytic principles.

Section Three will introduce forcing, a set-construction framework originally developed by Paul

Cohen to separate the Axiom of Choice and the Continuum Hypothesis from ZF set theory. We’ll

use forcing to separate König’s Lemma from Weak König’s Lemma.

Finally, in Section Four, we will bring all of the developed techniques from the previous three

sections to the study of Ramsey’s Theorem, culminating in a proof of separation between the

n = 2 and n = 3 cases, first proven by Seetapun.

4 JALEN CHRYSOS

1. Measures of Set Complexity

In this first section, we discuss the idea of complexity in N → N functions—particularly in
subsets of N. We’ll see two fairly natural ways of formalizing this notion: first from computability
theory, and second from syntactic logic. Finally, we will show that our two types of complexity
interact well and share a common structure.

1.1. Algorithms and Computability. The fundamental concept behind all of computability
theory is the partial-computable function (alternatively, algorithm or Turing machine). We think
of p.c. functions intuitively as those whose values can be determined by carrying out a finite list
of instructions. They are “partial” in the sense that they may fail to return any output (in the
case where they run forever), in contrast to “total” functions which always return an output.

Partial computable functions can naturally arise in several ways. First, one can define them as
a subset of all partial functions via a precise characterization of their expressive power: they are
the unique subset of partial functions containing

• Zero: f(x) = 0 is p.c.
• Successor : f(x) = x+ 1 is p.c.
• Projection: f(x1, . . . , xk) = xj is p.c.

and generated by (finitely-many) applications of

• Composition: If f(x1, . . . , xk), g1(y⃗1), g2(y⃗2), . . . , gk(y⃗k) are p.c., then

f(g1(y⃗1), g2(y⃗2), . . . , gk(y⃗k))

is p.c.
• Primitive Recursion: If g, h are p.c., then the function f(x, y⃗) defined inductively by

f(0, y⃗) = g(y⃗) and f(x, y⃗) = h(f(x− 1, y⃗), x, y⃗)

is p.c.
• Unbounded Search: If g(x, y⃗) is p.c. then

f(y⃗) = (µx)g(x, y⃗) := “the least x such that g(x, y⃗) = 0”

is p.c.

Note that of these generating rules, unbounded search is the only one that can initially produce
non-total functions. If there is no x such that g(x, y⃗) = 0, then (µx)g(x, y⃗) = ↑ (read undefined).
After the genesis of non-total functions, however, it is possible that undefined functions are used
as inputs to compositions, or might need to be checked during an unbounded search. In either of
these cases, we say that the resulting function is always undefined on that input.

For any partial function A (not necessarily p.c.), we can also define the p.c. functions relative
to A by taking the set of functions containing zero, successor, projection, and A, generated by the
same operations. We can also do this with any collection of partial functions.

Another way of looking at p.c. functions is as step-by-step computations carried out by Turing
machines. I will not give a precise definition of Turing machines,2 but instead I’ll give an intuitive
description: a Turing machine is a finitely-specified “program” that can be carried out in steps,
and which may reach a step in which it “halts,” reporting an output in N. Given a Turing machine
Φ and x, t ∈ N, we use the notation

Φ(x)[t] := “Output of running Φ on input x for t steps.”

If Φ(x) has not halted by time t, we write Φ(x)[t] = ↑, and otherwise we write Φ(x)[t] ↓. Thus,
the outputs of Φ(x)[t] for increasing values of t will look something like

↑, ↑, ↑, ↑, ↑, 19, 19, 19, 19, . . .
or, if Φ(x)[t] does not halt for any t,

↑, ↑, ↑, ↑, ↑, ↑, ↑, ↑, ↑, ↑, ↑, . . .

2See [9] for a rigorous definition of Turing machine.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 5

We denote by Φ(x) the limit of Φ(x)[t] as t→∞. So in the first case above, Φ(x) = 19, and in the
second case, Φ(x) = ↑. Though Φ(x)[t] can be computed for any x, t, Φ(x) can not—informally,
this is because when Φ(x) ↑, one must check infinitely many values of t in order to be sure.

In this paper, for partial functions f, g, I will occasionally reference the following relations:

f⊥g := ∃x : f(x) ↓ ≠ g(x) ↓, and f ∥ g := ¬f⊥g.
Note that f⊥g is stronger than f ̸= g, though if f and g are both total then it is equivalent. In
particular, if σ is a partial function with finite domain {0, 1, 2, . . . , k} such that σ ∥ f we say

σ is an initial segment of f , denoted σ ≺ f .
The set of such partial functions corresponds to the set of finite sequences, 2N.

One additional type of instruction that we can allow algorithms to use is to query an outside
source of information called the “oracle,” which takes the form of a partial function. If Φ is an
algorithm and A a partial function, then ΦA denotes the function Φ with A treated as the oracle.
The output of an algorithm may differ depending on which A plays the role of the oracle.

By convention, if Φ(x) queries A(y) and A(y) = ↑, then ΦA(y) = ↑ as well. Thus, if ΦA(x) ↓,
and B is a total function such that A ∥ B, then ΦA(x) = ΦB(x). This is because ΦA(x) never
queries A(y) for any y where A and B differ. We can also say that any oracle computation ΦA(x)
which halts must query only finitely-many of the inputs of A. Thus, there is some initial segment
of A sufficient (and necessary) to cause halting:

ΦA(x) ↓ ⇐⇒ ∃σ ∈ 2N : (σ ≺ A) ∧ (Φσ(x) ↓)
Note that for σ ∈ 2N, the function Φσ is partial computable, since σ only contains a finite amount
of information, thus an algorithm can be written for Φσ which hard-codes the values of σ rather
than querying the oracle.

Likewise, if A is computable, then ΦA is computable as well, since the algorithm for computing
A can be grafted into Φ in place of querying A. In general, Turing machines ΦA are exactly the
p.c. functions relative to A. If a function f is equal to ΦA for some algorithm Φ, we say that

“f is Turing reducible to A” or “f is A-computable, ” denoted f ≤T A.

Turing reducibility is a partial order on functions, and its equivalence classes are called “Turing
degrees.” As we have seen, p.c. functions are in the minimum class, [∅], which we will usually
write without brackets.

One might naturally consider Turing machines ΦA,B with multiple oracles, which could express
p.c. functions relative to {A,B}. But this notion can already be captured with single-oracle
machines: for any A,B, there exists a unique minimum Turing degree among all degrees above
both A and B, called the effective join of A and B:

deg(A)⊕ deg(B) = min
≤T

{D : (deg(A) ≤T D) ∧ (deg(B) ≤T D)}.

This degree has a canonical representative A⊕B, defined

A = (aj)j , B = (bj)j =⇒ A⊕B = (a0, b0, a1, b1, a2, b2, . . .).

One can easily verify that A ⊕ B ≤T C iff A ≤ C and B ≤ C. Making use of the effective join
operation, we can see that functions computable from A,B are exactly the ones computable from
the single partial function A⊕B.

As each Turing machine is specified by a finite “program,” the collection of all Turing machines
is countable. Thus, they can be enumerated

Φ1,Φ2,Φ3, . . .

One characterizing fact about Turing machines is that they can be computably enumerated; that
is, there is a single partial computable function

Ω : (e, x, t) 7→ Φe(x)[t].

6 JALEN CHRYSOS

In particular, the fact that the behavior of Φe can be computed from the index e is the key thing.
We call Ω the universal Turing machine.

This is a characteristic advantage of working with p.c. functions rather than restricting our
attention to the fully computable functions: we can easily list all possible algorithms, but we have
no computable way of only listing the total ones. To prove that there is no such listing, we can
apply a Cantor-style diagonal argument. For any proposed computable function

Ω∗ : (e, x) 7→ Ψe(x)

which would act as a universal Turing machine for total computable functions specifically, we have
the computable function

Ψ : x 7→ Ω∗(x, x) + 1.

By design, Ψ(x) ̸= Ψx(x), thus Ψ ̸= Ψx for every x. Yet Ψ can clearly be computed from Ω∗,
which is itself computable, so it should be equal to Ψx for some x, given that Ω∗ enumerates all
computable functions. This is a contradiction. The same issue does not occur with Ω because
Φx(x) might not halt, making it impossible to computably choose a different value for Φ(x).

A related example is the Halting Problem, which is the function H defined by

H : e 7→
{
0 Φe(e) ↑
1 Φe(e) ↓

One can prove that H is not computable by using H to compute an off-diagonal function:

D : e 7→
{
Φe(e) + 1 H(e) = 1

0 H(e) = 0

D is not computable because it differs from every computable function, yet D ≤T H (because
Φe(e) is computable when one knows that it will halt), so H is not computable either.

ThoughH is not computable, it is “half computable” in the sense that one could verifyH(e) = 1
computably, by finding a t such that Φe(e)[t] ↓, but could not do the same if H(e) = 0. In general,
for any algorithm Φ, the set

WΦ := {e : Φ(e) ↓}
is called computably enumerable (or c.e.). This terminology comes from the fact that every c.e. set
is the range of an injective computable function f , so that f enumerates the set, computably. To
see this for WΦ, let (ej , tj) be a computable enumeration of N×N, and define f as the algorithm

A← ∅
j ← 0
while |A| < n do

if Φ(ej)[tj] ↓ then
A← A ∪ {ej}

end if
j ← j + 1

end while
Return ej .

Conversely, if such an f exists for W , then W is the domain of

Φ(x) := (µn)
(
f(n) = x

)
.

Returning to the case of the halting problem, H is the domain of the function

x 7→ (µt)
(
Φe(e)[t] ↓

)
,

and thus c.e., but it is not co-c.e.; that is, its complement H is not c.e. If a set A is computable
then it is both c.e. and co-c.e., and in fact the converse is also true: if

x ∈ A ⇐⇒ Φ(x) ↓ ⇐⇒ Ψ(x) ↑,
then A can be computed by the function

A(x) = Φ(x)
[
(µt)

(
Φ(x)[t] ↓ ∨ Ψ(x)[t] ↓

)]
↓ .

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 7

Since it is guaranteed that either Φ(x) ↓ or Ψ(x) ↓, this function is defined on all inputs.

The notion of a set being c.e. or co-c.e. can also be naturally relativized: we say A is c.e. in
B if it is equivalent to the halting of a B-computable algorithm ΦB .

Because H is non-computable, it follows that the Turing degree of H is above ∅. We will
denote deg(H) by ∅′, which we call the Turing jump of ∅. In general, for any partial function f ,
the Turing jump f ′ is the function defined

f ′ : e 7→
{
0 Φf

e (e) ↑
1 Φf

e (e) ↓
and again f ′ ≰T f . But the “jump” is in a sense bounded: while f ′ is not computable in f , it is
still c.e. in f . Thus, the jump can be thought of as a standard increment of Turing complexity.

By repeatedly applying the Turing jump to ∅, we have an increasing chain of Turing degrees

∅ <T ∅′ <T ∅′′ <T ∅(3) <T . . .

Thus, one can see that there are infinitely many different gradations of complexity that a function
can have. In fact, there are far more than these.

1.2. The Arithmetical Hierarchy. So far, we have considered functions in general, but now
we will focus in on {0, 1}-valued functions, which we treat interchangeably with subsets3 of N. As
we’ve seen, sets can be ordered and classified from the viewpoint of computability, using algorithms
as the fundamental objects. Now, we will consider them from the viewpoint of arithmetic, whose
central objects are formulas.

The language of first-order arithmetic, which we call L1, consists of the following symbols:

Constants: {0, 1}, Functions: {+, ·}, Relations: {<,=},
along with symbols common to all languages:

Quantifiers: {∀,∃}, Logical Operators: {¬,∧,∨,⇒}, and Variables: {a, b, c, . . . }.
A formula in L1 is a finite string of these symbols which satisfies some simple syntactic rules (e.g.
“0 = +” is not a sentence). We will also use parenthesis and commas for clarity. Here is an
example of a formula:

Prime(x) := [∀a, b]((a < x ∧ b < x)⇒ (a · b ̸= x)) ∧ (x > 1).

Within a formula, a variable is called “bound” if it is quantified over. Otherwise it is called “free.”
In Prime(x), as it is states above, x is a free variable and a, b are bound. A formula with no free
variables is called a sentence.

Formulas and sentences are not inherently true or false—their truth values must be decided by
an interpretation M of first-order arithmetic, which consists of a set M , called the “universe” of
M, and a specification of how the constants, functions, and relations of L1 act within M . These
choices determine the truth values of all sentences. For example, one could define a model in
which the result of all multiplication or addition is 0, and in this model Prime(4) would be true.
In our discussion, we’ll stick with the standard model of first-order arithmetic, denoted N, whose
universe is {0, 1, 2, . . . }, and which interprets arithmetic in the expected way (i.e. satisfying the
axioms of Peano Arithmetic).

With a model chosen, all formulas of L1 have corresponding sets. For example, in N, the
formula Prime(x) given above acts as

Prime(0) = 0, Prime(1) = 0, Prime(2) = 1, Prime(3) = 1, Prime(4) = 0, . . .

and corresponds, naturally, to the set of prime numbers. The sets that can be expressed by for-
mulas of L1 are called arithmetically definable, or just arithmetical.

Now, just as all sets can be classified along computability-theoretic lines by their Turing degrees,
they can also be divided by their quantifier-complexity as formulas: this is called the Arithmetical

3In particular, for a set A ⊆ N, we define A : N → {0, 1} such that A(x) = 1 if x ∈ A, and A(x) = 0 if x ̸∈ A.

8 JALEN CHRYSOS

Hierarchy. Its lowest level, ∆0, consists of the bounded-quantifier formulas—those whose quanti-
fiers are all “bounded,” as is the case with the ∀y in the following formula:

NotSquare(x) := ∀y : (y < x)⇒ (y · y ̸= x).

For any given x, NotSquare(x) can be equivalently expressed as a finite conjunction

(0 · 0 ̸= x) ∧ (1 · 1 ̸= x) ∧ (2 · 2 ̸= x) ∧ . . . ∧ (x · x ̸= x).

Of course, the number of terms in this conjunction depends on x, so NotSquare(x) cannot readily
be expressed without the use of the bounded quantifier, but we nevertheless consider such quanti-
fiers to be fundamentally less complex than unbounded ones because they are “finitely-verifiable,”
roughly speaking. This is somewhat motivated by computability, as bounded-quantifier formulas
can be computably checked (more on this later).

On the foundation of the quantifier-free formulas, we have the class Σ1, which consists of for-
mulas whose only (unbounded) quantifiers are existential, and similarly the class Π1 whose only
quantifiers are universal. For general n,

Σn = {∃y : ψ(y) | ψ ∈ Πn−1 ∪ Σn−1}
Πn = {∀y : ψ(y) | ψ ∈ Πn−1 ∪ Σn−1}

so that for any ψ ∈ ∆0,

(∃x1)(∀x2)(∃x3)(∀x4) . . . (Qxn) : ψ(x⃗) ∈ Σn

(whether Q is ∀ or ∃ depends on whether n is odd or even) and likewise for Πn. Note that the
negation of a Σn formula is Πn and vice versa. Every formula of L1 has an equivalent expression
in Σn or Πn for some n, or ∆0.

Now, given any definable set A ⊆ N, we say that A is Σn if it is represented by any Σn formula.
There will be many ways to express A as an L1-formula. For instance, one can always add on
quantifiers with dummy variables to a sentence without affecting its truth value. Thus, if A is Σn,
then it is Σn+1 and Πn+1 as well.

Finally, if A is definable in both Σn and Πn, we say that it is ∆n. The arithmetical hierarchy
consists of the classes ∆n,Σn,Πn for n ∈ N (we consider ∆0 = Σ0 = Π0 by convention). Viewed
as a whole, we have the following diagram, ordered bottom-to-top by inclusion:

...
...

Π3 Σ3

∆3

Σ2 Π2

∆2

Π1 Σ1

∆1

∆0

Figure 1. The Arithmetical Hierarchy.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 9

An essential feature of the arithmetical hierarchy is its distinction between opposites; unlike in
the Turing hierarchy, A and A are not necessarily of the same class. In the case4 A ∈ Σn \ Πn,
this has the consequence that the graph of A(x) may be more complex than either A or A:

“A(x) = y” = (x ∈ A ∧ y = 1)︸ ︷︷ ︸
Σn

∨ (x ̸∈ A ∧ y = 0)︸ ︷︷ ︸
Πn

∈ ∆n+1.

Finally, as with the Turing hierarchy, we can also define the arithmetical hierarchy ΣB
n ,Π

B
n ,

etc., relative to a base set B. These are defined in the same way, except that we expand the
language L1 to include relation “∈ B,” so that for example,

“x ∈ B” ∈ ∆B
0 and “∀y : x · y ∈ B” ∈ ΠB

1 .

1.3. Mixing Arithmetic with Algorithmic. At this point, we’ve established two separate no-
tions of the complexity of sets: one originating from computability, and another from syntax.
Now, we’ll see that the two are closely linked.

There are two natural questions that we will answer in this section:

1 What are the computability properties of each arithmetic complexity class?
2 What are the arithmetical properties of each Turing degree?

In answer to question 1, we have the following lemma:

Lemma 1.1:

(i) Quantifier-free formulas are computable.
(ii) ∆0 sets are computable.
(iii) Σ1 sets are c.e., and Π1 sets are co-c.e.
(iv) ∆1 sets are computable.
(v) Σn sets are c.e. in ∅(n−1) and Πn sets are co-c.e. in ∅(n−1).
(vi) ∆n sets are ∅(n−1)-computable.

Proof. (i) We can show this by induction on the number of symbols in the formula. The base case
is the constants 0 and 1, which are clearly computable. For the inductive step, we must show that
if a, b are computable terms, then

a+ b, a · b, a < b, a = b

are all computable, and that if φ,ψ are computable formulas, then

φ ∧ ψ, φ ∨ ψ, φ⇒ ψ, ¬φ
are all computable. These are all fairly straightforward, though not entirely trivial either, so I will
show explicitly that a = b is computable and leave the rest as simple exercises.

First, we can see that |a− b| is computable by using primitive recursion:

|a− b| =


a b = 0

b a = 0

|(a− 1)− (b− 1)| a, b ̸= 0

(here we use the fact that checking equality with 0 is computable by definition). Now,

a = b ⇐⇒ |a− b| = 0

thus a = b is computable.

(ii) Having shown that the computable sets include all quantifier-free definable sets, it suffices
to show that they are closed under bounded quantification. If t is some computable term and
φ(x, y) is computable, then (∃y ≤ t) : φ(x, y) can be defined recursively in t:

(∃y ≤ 0) : φ(x, y) ⇐⇒ φ(x, 0).

(∃y ≤ t) : φ(x, y) ⇐⇒ φ(x, t) ∨ (∃y < t− 1) : φ(x, y).

4Of course, we have not yet proven that Σn and Πn are actually distinct classes, but that will come in the next
section.

10 JALEN CHRYSOS

And bounded ∀ can be handled similarly.5

(iii) We know that the c.e. sets include all ∆0 sets, so it suffices to show that the space
of c.e. sets is closed under existential quantification. If A(x, y) is {0, 1}-valued and c.e. via
A(x, y) ⇐⇒ Φ(x, y) ↓, then

∃y : A(x, y) ⇐⇒
(
(µy)Φ(x, y)

)
↓

thus ∃y : A(x, y) is c.e. as desired. The statement for Π1 formulas follows by negation.

(iv) ∆1 sets are both Σ1 and Π1, so they are c.e. and co-c.e., hence computable.

(v) We’ll use induction. The base case n = 1 is established by (iii). Thus, assume that the
result is true for Σn−1,Πn−1. For the inductive step, suppose

φ(x) = (∃y) : ψ(x, y)
where ψ ∈ Πn−1 or ψ ∈ Σn−1. In either case, by the inductive hypothesis, ψ is co-c.e. or c.e. in
∅(n−1) and hence computable in ∅(n). Thus, φ is c.e. relative to ∅(n) by (iii) relativized.

(vi) ∆n sets are Σn and Πn, hence c.e. and co-c.e. relative to ∅(n), hence computable in ∅(n).
□

Thus, question 1 is resolved. As for question 2, we can now show converses to several of the
results from the previous lemma.

Lemma 1.2:

(i) C.e. sets are Σ1.
(ii) Computable sets are ∆1.
(iii) ∅(n)-c.e. sets are Σn+1, and ∅(n)-co-c.e. sets are Πn+1.
(iv) ∅(n)-computable sets are ∆n+1.

Proof. (i): We’ll leverage the inductive definition of p.c. functions to show that for any algorithm
Φ, the formula

Φ(x) = y

in x, y (the graph of Φ) is Σ1. Since

Φ(x) ↓ ⇐⇒ (∃y) : Φ(x) = y,

this will imply that halting of all p.c. functions is Σ1, as desired.
The collection of functions Φ whose graphs are Σ1 clearly includes zero, successor, and projec-

tion, thus it suffices to show that this collection is closed under composition, primitive recursion,
and unbounded search.

• Composition: Suppose that

f(x⃗1, x⃗2, . . . , x⃗k) = h(g1(x⃗1), g2(x⃗2), . . . , gk(x⃗k))

where the graphs of gj and h are all Σ1. Then f(x⃗1, . . . , x⃗k) = z is equivalent to

∃y1, y2, . . . , yk : (g1(x⃗1) = y1) ∧ . . . ∧ (gk(x⃗k) = yk) ∧ (h(y1, . . . , yk) = z)

which is Σ1.
• Primitive Recursion: Suppose that f(x, y) is recursively defined such that

f(0, y⃗) = g(y⃗) and f(x, y⃗) = h(f(x− 1, y⃗), x, y⃗)

and that the graphs of g, h are each Σ1. Then f(x, y⃗) = z is equivalent to

(∃σ ∈ 2N) : (|σ| = x) ∧
(
g(σ(y⃗)) = σ(0)

)
∧
(
(∀1 ≤ j ≤ x) : σ(j) = h(σ(j − 1), j, y⃗)

)
which is Σ1.

5Note that ∆0 is not only computable but primitive recursive, i.e. all ∆0 formulas can be computed without

unbounded search. The converse is not true; one can define a primitive-recursive function that contradicts every
∆0 formula by using a diagonal argument.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 11

• Unbounded Search: Suppose that f(x, y⃗) is defined

f(y⃗) = (µx)g(x, y⃗)

where g has Σ1 graph. Then f(x, y⃗) = z is equivalent to

(∃σ ∈ 2N) :
(
g(z, y⃗) = 0

)
∧
(
(∀j < z) : g(j, y⃗) = σ(j) ∧ σ(j) ̸= 0

)
which is Σ1.

Thus, the graph of every p.c. function is Σ1, as desired.

(ii) Computable implies c.e. and co-c.e., which implies Σ1 and Π1 by (i), which implies ∆1.

(iii) If A is c.e. in ∅(n), then it can be written

A(x) := Φ∅(n)

(x) ↓
for some algorithm Φ. To get at the oracle ∅(n), we’ll use the fact that halting with an oracle is
equivalent to the halting with a finite initial segment of that oracle:

Φ∅(n)

(x) ↓ ⇐⇒ ∃σ ∈ 2N : (σ ≺ ∅(n)) ∧ (Φσ(x) ↓)
Now we check the complexities of σ ≺ ∅(n) and Φσ(x) ↓ :

• Φσ(x) is computable (because σ is finite), so we have Φσ(x) ↓∈ Σ1 by (i).
• σ ≺ ∅(n) can be expressed

σ ≺ ∅(n) ⇐⇒ ∀j < |σ| : σ(j) = ∅(n)(j).
By the inductive hypothesis, ∅(n) ∈ Σn, so its graph is ∆n+1. Thus, σ ≺ ∅(n) ∈ Σn+1.

Putting these together,
A(x) = ∃σ : Σn+1 ∧ Σ1 ∈ Σn+1

as desired.

(iv) ∅(n)-Computable implies c.e. and co-c.e. in ∅(n), which implies Σn+1 and Πn+1 by (iii),
which implies ∆n+1. □

The results of both lemmas together amount to the statement of Post’s Theorem:

Theorem 1.3 (Post):

• A ∈ Σn+1 ⇐⇒ A is c.e. relative to ∅(n).
• A ∈ Πn+1 ⇐⇒ A is co-c.e. relative to ∅(n).
• A ∈ ∆n+1 ⇐⇒ A ≤T ∅(n).

With Post’s Theorem, we can now deduce that ∅(n) ∈ Σn \ Πn and ∅(n) ∈ Πn \ Σn, finally
establishing that Σn and Πn are truly distinct.

12 JALEN CHRYSOS

2. Theories of Second Order Arithmetic

In order to achieve the aim of reverse mathematics—to classify theorems by their proof-theoretic
strength—first-order arithmetic is insufficient. Many important theorems state the existence of a
certain set or function; the statement that two infinite fields k1 and k2 are isomorphic is of this
form. Even real numbers, which we think of as fairly tame, cannot be put in correspondence with
N, and thus can only be expressed as sets or functions on N. Therefore, to state most theorems
requires a language which also takes sets and functions as its objects: Second-Order Arithmetic.

In first-order arithmetic, the objects under description are numbers. In second-order arithmetic,
we also consider sets of numbers6. With the addition of sets as objects of study, we distinguish
between variables representing first- and second-order objects, and add in a new relation, ∈,
denoting membership. Thus the language L2 consists of the following symbols:

• Constants: {0, 1},
• Functions: {+, ·},
• Relations: {<,=,∈},
• Quantifiers: {∀,∃},
• Logical Operators: {¬,∧,∨,⇒},
• Number Variables: {a, b, c, . . . },
• Set Variables: {A,B,C, . . . }.

Formulas in L2 can likewise be classified according to the arithmetical hierarchy, but we distinguish
between quantifying over numbers and quantifying over sets: the complexity classes are denoted
∆0

n,Σ
0
n,Π

0
n when referring to number-quantifiers, and ∆1

n,Σ
1
n,Π

1
n for set-quantifiers7. Formulas

without set-quantifiers are called arithmetic formulas.

An interpretation of second-order arithmetic,M, has a universe of elements M and specifica-
tions of how the symbols {0, 1,+, ·, <} act within M . The axioms determining the behavior of
these symbols inM are PA−, which is Peano Arithmetic without the axioms scheme of induction—
we will reintroduce induction, but it may be weaker than the full arithmetical induction that PA
enjoys. M must also specify a class S ⊆ 2M collecting the sets ofM. The exact composition of
S determines many properties of interest inM; most theorems in mathematics are claims about
the existence of sets with certain properties, after all.

The class of sets S must also satisfy certain axioms in relation to the first-order elements. The
full theory of second order arithmetic consists of PA− along with two more axioms: the first is
Set Induction, which states

∀X : (0 ∈ X) ∧
(
(∀n) : n ∈ X ⇒ n+ 1 ∈ X

)
=⇒ (∀n) : n ∈ X.

That is, the property of membership in a set can be inducted upon.
The second is the axiom scheme of Full Comprehension, which consists of the statement

∃X :
(
(∀n) : n ∈ X ⇐⇒ φ(n)

)
for each formula φ ∈ L2—this includes formulas φ with free variables (parameters), in which case
the axiom is universal over all possible parameters. In other words, the collection of numbers
satisfying a given arithmetical property form a set. Along with the set induction axiom, this
automatically proves the axiom scheme of Full Formula Induction, which consists of

(φ(0)) ∧
(
(∀n) : φ(n)⇒ φ(n+ 1)

)
=⇒ (∀n) : φ(n)

for φ ∈ L2. Thus, all definable properties can be inducted upon.

Full second-order arithmetic also has a standard or “intended” model, where the first-order
part is the standard model of first-order arithmetic, and S = P(N). As far as most areas of
mathematics are concerned, the axioms of full second-order arithmetic are simply True, and the
intended model reflects the numbers and sets as they actually are.

6Similarly, nth order logic treats nested chains of sets of length at most n. In the language of ZFC, in contrast,

chains of arbitrary (finite) depth are permitted, and they’re all considered the same type of object.
7If the superscript is omitted, assume that it is 0.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 13

Nevertheless, it is perfectly possible to develop the various branches of mathematics on more
limited arithmetical foundations. One can do this by weakening the comprehension and induction
axioms, restricting the formulas to which they apply, and thus reducing the range of sets which
S must recognize. For example, for each arithmetical class Γ ∈ {Σ0

n,Π
0
n}, we can consider the

Γ-comprehension scheme, which only applies to φ ∈ Γ. Or we can restrict attention to ∆0
n sets

via the ∆0
n-comprehension scheme, which applies to equivalent pairs φ,ψ ∈ Σ0

n,Π
0
n:(

(∀n) :
(
φ(n) ⇐⇒ ψ(n)

))
=⇒

(
(∃X)(∀n) :

(
n ∈ X ⇐⇒ φ(n) ⇐⇒ ψ(n)

))
.

Likewise, we can consider Γ-induction.

By varying the complexity of comprehensible sets and inductible formulas, the truth of state-
ments changes in response. Two formerly isomorphic fields would be separated if their underly-
ing isomorphism lost its status as a set. Statements claiming the existence of a particular real
number—the limit of a sequence or the zero of a polynomial, for instance—rely on the compre-
hension axiom to some extent. Every theorem of full second-order arithmetic has a precise level
of axiom-complexity upon which it depends.

Reverse mathematics is interested in this interplay between theories of second-order arithmetic
and the theorems they support. In this section, we will begin to define some of the most essential of
these principles. At the same time, we will develop a formal study of R in second-order arithmetic,
and compare various theories on what they are able and unable to prove about R.

2.1. The Baseline: RCA0. The most basic theory of second-order arithmetic is called RCA0, or
Recursive Comprehension Axiom. RCA0 consists of the axioms of PA− applied to its first-order
elements, and the second-order axiom schemes of ∆0

1-comprehension and Σ0
1-induction.

By Post’s Theorem, ∆0
1-comprehension is equivalent to the existence of all computable func-

tions. Thus, we can think of RCA0 as a theory in which computing a set is sufficient and necessary
to prove that it exists.

If A,B ∈ S, then RCA0 proves that the set A⊕B exists, via the computation

A⊕B =
{
n :

(
(n odd) ∧ ((n− 1)/2) ∈ A)

)
∨
(
(n even) ∧ ((n− 2)/2) ∈ B)

)}
(note that “∈ A” and “∈ B” are part of the language because A,B ∈ S). Similarly, S is closed
under the effective join of any finite number of sets. Moreover, ∆0

1-comprehension implies that S is
downward-closed by ≤T ; if A ≤T B by A(n) = ΦB(n) for some algorithm Φ, then A ∈ ∆B

1 = ∆0
1.

A collection of sets closed under ⊕ and ≤T is called a Turing ideal, thus we have just shown that
RCA0 proves S to be a Turing ideal. Equivalently, we can show that S is closed under composition,
primitive recursion, and unbounded search. This is perhaps a natural place to start, since there
isn’t much room below the computable sets to prove anything; ∆0

0-comprehension is too weak to
really get anywhere.

Why Σ0
1-induction, then? ∆0

1-comprehension does prove that if a set is computable then it is
in S, but it is not actually strong enough to prove that all the functions we think of as com-
putable actually are! In particular, it fails to show that even the primitive recursive functions are
computable.

Suppose we define an algorithm Φ using primitive recursion, so that Φ(0) is computable and
Φ(n+ 1) is computably determined from Φ(n) for each x. To show that such Φ are actually total
requires the axiom(

Φ(0) ↓
)
∧
(
(∀n) : Φ(n) ↓ ⇒ Φ(n+ 1) ↓

)
=⇒ (∀n) : Φ(n) ↓ ,

which is exactly φ-induction for φ(x) := Φ(x) ↓ . Since Φ(x) ↓ is Σ1 by Post’s Theorem, the axiom
scheme of Σ1-induction is sufficient to prove this fact. We can easily show (without the need for
Σ1-induction) that the collection of total functions is closed under composition, proving that all
primitive recursive functions are total. Moreover, we can also show that this collection is closed
under unbounded search (assuming that the goal of the search exists). Thus, Σ0

1-induction is just
the right level to allow for the use of all algorithms we might come up with.

14 JALEN CHRYSOS

As we’ve shown, every model of RCA0 has a Turing ideal for its universe of sets. Thus, the
minimal ω-model (i.e. model whose universe of numbers is {0, 1, 2, . . . }) of RCA0 is one in which
S = ∆0

1. Because it is possible to model RCA0 without any non-computable sets, without the
existence of Turing jumps, etc., we immediately see that RCA0 cannot prove the existence of any
non-computable set. But RCA0 doesn’t prove that any non-computable sets don’t exist, as any
individual set can generate a Turing ideal and thus exist in a model of RCA0.

RCA0 is strong enough to prove many basic mathematical facts about the finite numbers and
their arithmetical properties. When reasoning about objects containing infinite information, RCA0

is limited in that it can only talk about computable things. This can come up even in seemingly
tame settings—for example, each real number contains infinite information. The study of R pro-
vides a striking example of both the surprising strength and severe limitations of RCA0

8.

We define Q as Z× N+ endowed with the operations and relations +, ·,≤,= given by

(a, b) + (c, d) 7→ (ad+ bc, bd)

(a, b) · (c, d) 7→ (ac, bd)

(a, b) ≤ (c, d) ⇐⇒ a · d ≤ b · c
(a, b) = (c, d) ⇐⇒ a · d = b · c.

Note that +, ·,≤,= are all computable.
In defining R, the classical way is to identify real numbers with Cauchy sequences in Q, with

two sequences being equivalent if they have the same limit. In the interest of making this definition
more RCA0-friendly, we’d like a computable way to get a rational approximation of any accuracy,
which is not possible if we don’t know anything about the rate of convergence. Thus, we define R
as the set of “rapidly-converging” sequences in Q,

{(qj) ∈ QN : (∀i, j ∈ N) : i < j ⇒ |qi − qj | < 2−i}.
We can think of a real number as a sequence of rational approximations whose error is bounded in
a consistent way. Likewise, addition and multiplication are operations which take two sequences
of approximations and produce one which approximates the sum or product.

To add two real numbers (aj) and (bj), the sequence (aj+bj) will not work as their sum because
the error of each approximation potentially doubles, losing the property of rapid convergence.
Thus, we instead define addition by

(aj) + (bj) 7→ (aj+1 + bj+1)

which ensures that the sum is still a real number.
In defining multiplication, the issue becomes even worse, as the error of (aj · bj) can be as high

as (aj + bj)2
−j + 2−2j . This error is bounded for all j by some N · 2−j , as |aj − a0|, |bj − b0| ≤ 1

(specifically one can take N = |a0|+ |b0|+ 3). Thus, we can define multiplication by

(aj) · (bj) 7→ (aj+n · bj+n)

where n is chosen so that N · 2−j−n < 2−j .
The most important thing about these somewhat awkward definitions of + and · is that they

are computable. The relations ≤ and =, on the other hand, cannot be made computable. We
define them as follows:

(aj) ≤ (bj) ⇐⇒ (∀j) : aj − bj ≤ 2−j+1

(aj) = (bj) ⇐⇒ (∀j) : |aj − bj | ≤ 2−j+1.

The relations (aj) ≤ (bj) and (aj) = (bj) are co-c.e. though not computable. If two real numbers
really are equal, then one can never conclude this from only looking at finitely-many of their
approximations. However, if one knows that two real numbers are different, then their order is
computable.

One nice property of this definition of R is that from each irrational x ∈ R, it is possible to
compute the unique binary representation of x. The digits can be derived from comparisons with

8The formalization of R described here roughly follows [8].

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 15

finitely-many dyadic rationals, which we know to be computable. Moreover, if x is rational, then it
may have multiple binary representations (e.g. 0.0111 = 0.1000) but all of them are computable.
In either case, the real number corresponding to any binary string can always compute that string.

We can leverage this fact to show a key weakness of computable mathematics: that RCA0 fails
to prove the completeness of R.

Anti-Lemma 2.1 [over RCA0]: R is complete, i.e. every Cauchy sequence has a limit.

Anti-Proof. The limit is unique if it exists, so it suffices to exhibit a computable sequence whose
limit is a non-computable real number. RCA0 can never prove the existence of any non-computable
real number, therefore the statement must be unprovable in RCA0.

In particular, we can construct a computable sequence whose limit corresponds to the binary
expansion of ∅′, which is non-computable: let

cj :=

j∑
k=0

Φ(k)[j] ↓ · 2−k, and c := lim
j
cj .

cj is clearly Cauchy. But if c existed, then it could be used to compute its binary representation,
which is ∅′. This would imply that ∅′ exists. However, RCA0 does not prove this. Contradiction. □

We can conclude from this example that taking general limits an essentially non-computable
problem. The limit of a given sequence is definable, but not computable. In order to prove that
a limit exists, we need more sets.

2.2. The Ceiling: ACA0. In extending RCA0, one natural choice is to expand the class of for-
mulas in the comprehension axiom scheme. But if comprehension is extended to even Σ0

1 or Π0
1,

then it automatically implies comprehension for all arithmetic formulas:

Lemma 2.2 [over RCA0]: Σ
0
1-comprehension is equivalent to full arithmetic comprehension.

Proof. We will induct on formula complexity. Assuming Σn and Πn comprehension, we’ll show
that Σn+1 and Πn+1 comprehension also hold.

Let φ(x) be a formula of arithmetic complexity Σn+1, so that

φ(x) = ∃y : ψ(x, y)

where ψ ∈ Πn. By the inductive hypothesis, there is a set

A := {(x, y) : ψ(x, y)}
and thus we can write φ(x) as the Σ1 formula

φ(x) = ∃y : (x, y) ∈ A.
Now φ-comprehension follows from Σ1-comprehension.

Likewise, if φ(x) is Πn+1, then its complement is Σn+1 and has a corresponding set, hence φ(x)
does as well, since the existence of complements follows from ∆0-comprehension. □

Thus, the natural choice for extending the arithmetic domain of comprehension gives us ACA0,
the Arithmetical Comprehension Axiom. Naturally, ACA0 has arithmetical induction as well. It is
still weaker than full second-order arithmetic, however, because it does not allow comprehension
and induction over Σ1

n or Π1
n formulas.

By Post’s Theorem, ACA0 is also equivalent (over RCA0) to the statement that for every set X,
there exists a set X ′ having the properties of the Turing jump of X. This implies, in particular,
that in ω-models of ACA0, S itself is closed under the Turing jump operation, in addition to ∆1-
comprehension. This characterization is convenient to work with, and we will use it often.

16 JALEN CHRYSOS

There are more powerful theories between ACA0 and full second-order arithmetic, but for our
purposes here, ACA0 will be the ceiling. It is strong enough to prove essentially all of the familiar
results about R. For example, we can now go beyond what was possible in RCA0 and prove the
completeness of R:

Lemma 2.3 [over ACA0]: R is complete, i.e. every Cauchy sequence has a limit.

Proof. Let x0, x1, x2, . . . be a Cauchy sequence of in R, with each xj denoting the sequence of
rational approximations (xj0, x

j
1, . . .). For each k, define jk such that

jk = (µj)(∀i > j) : |xjk − xi| ≤ 2−k.

Now define the real number L by

Lk = x
jk+1

k+2 .

First, to show that this is actually a real number, for m > k,

|Lk − Lm| ≤ |xjk+1

k+2 − xjk+1 |+ |xjk+1 − xjm+1 |+ |xjm+1 − xjm+1

m+2 |
≤ 2−k−2 + 2−k−1 + 2−m−2

≤ 2−k.

And moreover, L is the limit of xj , as

(∀j ≥ jk) : |Lk − xj | ≤ 2−k.

□

If this proof were attempted in RCA0, it would fail because RCA0 cannot prove the sequence
jk exists; it is definable, but not computable. The core issue is that if a sequence has unknown
convergence rate, then there is no way to compute its limit. In contrast, RCA0 can prove that
nested intervals with length approaching 0 will converge around a limit point, since the closeness
of the approximation is known at every stage.

More surprising is the fact that the converse is also true: the completeness of R implies ACA0!

Theorem 2.4 [over RCA0]: Completeness of R =⇒ ACA0.

Proof. It suffices to show that if R is complete then for any set A, the Turing jump A′ exists. Let

cj :=

j∑
k=0

ΦA(k)[j] ↓ · 2−k.

Each cj is A-computable, therefore the sequence (cj) exists. It’s also clearly Cauchy. By the
completeness of R, this cj has a limit c ∈ R. From c, one can compute all of the binary digits of
c, which correspond to values of A′. Thus, A′ exists. □

This is our first concrete example of a reverse mathematical result—we have established an
equivalence between an axiomatic theory and a result of that theory.

2.3. König’s Lemma and Weak König’s Lemma. Several of the set-existence principles dis-
cussed so far have been problems, by which we mean statements of the form

∀X : Θ(X) =⇒ ∃Y : Γ(X,Y).

Θ(X) means that X is an instance of the problem, and Γ(X,Y) means that Y is a solution to the
instance posed by X. For example,

“for every set X there exists a set Y so that Y is the Turing jump of X,”

and

“for every sequence (xj) there is a real number y such that y is the limit of (xj).”

These two problems each have the property that there can be at most one solution. But one
can also consider problems with potentially many different solutions. We study problems from a
reverse-mathematical perspective by treating them as axiomatic additions to RCA0.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 17

A tree is a set of finite sequences which is downward closed (i.e. if σ ∈ T then all of its initial
segments are in T). A path in T is an infinite sequence whose initial segments are all in T . We
use the notation [T] to mean the set of paths in T .

Definition (König’s Lemma or KL): König’s Lemma is the statement that for every infinite
tree T ⊆ NN in which each node has finite degree, there exists an infinite path in T .

Imagine standing at the root node of T and staring out at an infinite expanse of pathways in
front of you. Each step forward advances you down one sequence, and you cannot go back once a
step is taken. Can you manage to avoid hitting any dead ends?

The set of nodes in T which extend to paths is Π2 relative to T . Thus, with knowledge of ACA0

sets, it is possible to find such a path. With only computable sets, there seems no way forward;
indeed, ACA0 is sufficient and necessary to prove König’s Lemma:

Theorem 2.5 [over RCA0]: ACA0 ⇐⇒ KL.

Proof. (ACA0 =⇒ KL): Given T ⊆ NN, we can prove the existence of a path P ∈ [T] as follows:
first, ACA0 shows the existence of a set Ext(T) ⊆ T defined by

σ ∈ Ext(T) ⇐⇒ (∀n)(∃τ ∈ Nn) : τ ≻ σ ∧ τ ∈ T.
Now using Ext(T), we define a path ℓ := (σ0, σ1, . . .) recursively via

σj+1 = σ⌢
j xj where xj := (µx)

(
σ⌢
j xj ∈ Ext(T)

)
Every initial segment of ℓ is in Ext(T) and hence in T , so it suffices to show that ℓ is infinite.

We can inductively prove that ℓ contains a sequence of length ≥ n for each n: for n = 0 it is
vacuous. For the inductive step, suppose σn ∈ ℓ with |σn| = n. σn ∈ Ext(T), so it has children
τ1, τ2, . . . , τk ∈ T . If τj ̸∈ Ext(T) for all these τj , then each one has a largest depth dj of all
its descendants, but then σn’s descendants would be bounded in depth by max{τ1, τ2, . . . , τk}, a
contradiction of σn ∈ Ext(T), thus some τj ∈ Ext(T), hence σn+1 is well-defined.

(KL =⇒ ACA0): We will show via KL that for every set A, the Turing jump A′ exists. Define
a tree T as follows: a sequence σ belongs to T if for all e < |σ|, either σ(e) is the halting time
of ΦA

e (e), or σ(e) = 0 and ΦA
e (e) has not halted at time |σ|. This is indeed a tree because every

requirement of membership for σ is also required of its extensions.

5 0 3 · · ·

4 0 1

0

•

0 0 1

Figure 2. The tree T , in the case where the path begins 4, 0, 1, 5, 0, 3, . . .

Membership in T is computable (since checking a particular halting time can be done in finite
time) thus RCA0 proves that this tree T exists. For each e, there are exactly two possible values
that σ(e) could ever have for any σ ∈ T : either 0, or the halting time (if it exists). If ΦA

e (e) does
halt, then for sufficiently short sequences σ, it is possible that both values could appear in T .

Every ΦA
e (e) has either a correct halting time or never halts, thus there is an infinite path in T

consisting of these correct answers. No other infinite path can be contained in T because whether
or not ΦA

e (e) halts, there is a depth beyond which no node σ ∈ T can be wrong about e: if it halts,
this depth is the halting time, and if it diverges, then no σ can be wrong at any depth. Thus, the
set produced by KL is this path, from which A′ can easily be computed. Thus A′ exists. □

18 JALEN CHRYSOS

It might be somewhat surprising that a problem like KL can prove the comprehension axiom
for every arithmetic formula. In the T constructed for the previous proof, though σ ∈ T can be
computed, the questions of whether σ has any children and how many children σ has are both
non-computable. This is why non-computable information—the halting time of ΦA

e (e)—can be
coded in the paths of T .

We might also ask about the strength of a weakened version of KL; one which bears only on
trees where the nodes of a fixed depth can be explored computably:

Definition (Weak König’s Lemma or WKL): WKL states that for any infinite binary tree T
(considered as a subset of 2N), T contains an infinite path.

Note the distinction between binary and degree-at-most-2. The tree utilized in the proof that
KL ⇒ ACA0 has degree at most 2 at each node, but from the perspective of computability it is
not a binary tree, since there are more than 2 (indeed, infinitely many) potential children of each
node, all of which would need to be checked in order to compute the tree up to a fixed depth.

Weak König’s Lemma is equivalent to the strengthened statement for trees T ∈ NN whose nodes
are bounded by some computable function b, in the sense that

σ ∈ T =⇒ σ(n) < b(n) ∀n.
Like binary trees and unlike general trees in NN, these bounded trees can be computably explored
up to any finite depth. For any computably bounded tree T , define

f : T → 2N

by mapping each σ to the concatenation of the binary representations of σ(j) for each j, with
⌈log2(b(j))⌉ bits in each place.

5 , 3 , 19 , 4 , 11 , . . .w�
1, 0, 1 , 0, 0, 0, 0, 0, 0, 1, 1 , 1, 0, 0, 1, 1 , 0, 0, 1, 0, 0 , 1, 0, 1, 1 , . . .

Let S ⊆ 2N be defined by σ ∈ S iff σ is an initial segment in some f(τ). Since b(n) is computable,
this S is T -computable, and any path in S corresponds to a path in T . Thus, the computably-
bounded case of KL reduces to WKL.

We denote the theory RCA0 +WKL as WKL0. A priori, it’s not clear whether WKL0 is actually
weaker than ACA0, or even whether it’s stronger than RCA0. This question will be resolved in the
next section. For now, let’s get an idea of what WKL0 can do on its own.

From the perspective of real analysis, WKL0 is notable for its ability to prove compactness
results:

Theorem 2.6 (Heine-Borel) [over WKL0]: The closed interval [0, 1] ⊂ R is compact; that is,
every countable collection of open intervals (ci, di) covering [0, 1] has a finite subcover.

Proof. To each finite binary string σ ∈ 2N, we associate a closed interval [aσ, bσ] defined by

aσ :=
∑
k<|σ|

σ(k) · 2−k+1, bσ := aσ + 2−|σ|

So that each [aσ, bσ] is partitioned in half by the intervals [aσ,0, bσ,0] and [aσ,1, bσ,1].

The idea behind this proof is this: we would like to find a tree T such that

(1) σ ̸∈ T =⇒ (∃i ∈ N) : [aσ, bσ] ⊂ (ci, di),
(2) ℓ ∈ [T] =⇒ (∀σ ≺ ℓ)(∀i ∈ N) : [aσ, bσ] ̸⊂ (ci, di).

Suppose such a T exists. Every path ℓ ∈ [T] corresponds to a real number x = (aσ)σ≺ℓ ∈ [0, 1].
Because (ci, di) are an open cover, there is some i for which x ∈ (ci, di), and thus some σ for which

x ∈ [aσ, bσ] ⊂ (ci, di).

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 19

Thus, by (2), [T] = ∅. By WKL0, this implies that T is finite. Then there is a depth d at which
|σ| = d ⇒ σ ̸∈ T , which implies by (1) that each of the 2d intervals [aσ, bσ] is covered by some
(ci, di). These 2d covering intervals cover all of [0, 1].

Now we show that RCA0 proves the existence of such a tree. Let

φ(σ) := (∀i ∈ N) : [aσ, bσ] ̸⊂ (ci, di).

Note that
[aσ, bσ] ̸⊂ (ci, di) ⇐⇒ (aσ ≤ ci) ∨ (bσ ≥ di)

which is co-c.e., thus φ(σ) is also co-c.e. (Π1 is co-c.e. by Post’s theorem). Thus, let Φ be an
algorithm such that Φ(σ) ↑ ⇐⇒ φ(σ). We define T by

σ ∈ T ⇐⇒ (∀τ ≺ σ) : Φ(τ)[|σ|] ↑ .
This T is computable, and one can check that it satisfies (1) and (2). □

And conversely, WKL0 is exactly the necessary axiom to prove this:

Theorem 2.7 [over RCA0]: Heine-Borel =⇒ WKL0.

Proof. Let T ⊆ 2N be a binary tree with no infinite paths. We can map 2N bijectively to the
Cantor set via

f : σ 7→
∑
k

σ(k) · 2

3k+1
.

For σ ∈ 2N, define f(σ) similarly. Let aσ, bσ be the points

aσ := f(σ)− 3−|σ|−1, bσ := f(σ) + 4 · 3−|σ|−1

so that
f(τ) ∈ (aσ, bσ) ⇐⇒ τ ≻ σ.

Let U ⊆ 2N be the set of σ ̸∈ T for which the parent of σ is in T . We consider the collection of
open intervals

U := {(aσ, bσ)}σ∈U .

...
...

...
...

Figure 3. T embedded into the Cantor set. The blue intervals are U .

Because there are no infinite paths in T , every infinite binary sequence ℓ has a smallest initial
segment σ where it first exits T , for which the real number f(ℓ) is in (aσ, bσ). This shows that U
covers all of f(2N), i.e. the Cantor set.

Now, Heine-Borel implies that [0, 1] is compact, and the Cantor set is closed in [0, 1] hence it
is compact as well. Thus there must be a finite subcover of the Cantor set among U , represented
by some σ1, σ2, . . . , σj ∈ U . Every τ ∈ T must be an initial segment of one of these σi, so T is
bounded in depth by max{|σ1|, |σ2|, . . . , |σ|j}, and hence finite. □

These results suggest the idea that WKL0 is the “combinatorial core” of compactness, one of
the many insights to come out of reverse mathematics. But the question remains: is WKL actually
weaker than KL over RCA0?

20 JALEN CHRYSOS

3. Separation of Problems

The goal for this section is to prove that WKL0 does not prove KL, but we will approach the
question more generally: given two problems A and B, how can we prove that A ≠⇒ B? We do it
by building a model of A in which B does not hold. If there is such a model, then that immediately
precludes any proof of A =⇒ B.

We’ve already implicitly used this idea in a simple form when showing that RCA0 does not
prove the existence of any non-computable set. Similarly, by again working with the S = ∆1

model of RCA0, we can show that WKL0 is stronger than RCA0:

Theorem 3.1: RCA0 ≠⇒ WKL0.

Proof. In this model, we can construct a binary tree T in S for which there is no path in S. In
particular, we will ensure that the path is not computable by making the eth element of all paths
differ from Φe(e): define T by

σ ∈ T ⇐⇒ (∀e < |σ|) : ¬
(
Φe(e)[|σ|] ↓ ∧ σ(e) = Φe(e)

)
.

That is, T severs a path at the depth when it first detects that σ(e) = Φe(e) for any e where Φe(e)
halts, and it eventually detects all such discrepancies. Thus, any infinite path (there are many)
must disagree with all computable functions, and hence is non-computable. □

Note the difference in strength between KL and WKL here: from the perspective of ACA0, as
shown in the previous section, there exists a computable tree T ⊆ NN whose only path computes
∅′. In contrast, among binary trees T ⊆ 2N, we can force all paths to be non-computable but
cannot hit any particular complexity. We could say that KL avoids solutions below ∅′, whereas
WKL only avoids (as far as we know) solutions equivalent to ∅. These are examples of strength
properties. To separate WKL from KL, we will show that WKL holds some weakness property.

Showing that a problem is not provable in RCA0 is a convenient case because RCA0 has a
standard model that we already understand well. But what does a model of WKL0 look like?
Here, there is not a simple choice for S we can just use—we have to make one ourselves. This
section will be about the process of model construction and the many tools one can use during
that process.

3.1. Methods of Model-building. Suppose that we want to construct a model of B∧¬A, where
A,B are two principles between RCA0 and ACA0.

To construct a model of B is fairly simple: you just keep adding solutions to B instances until
(after N-many steps) everything has a solution. Define sets Z0 ≤T Z1 ≤T . . . inductively as
follows: first, let Z0 = ∅. To define Zj for j ≥ 1, let

X := the ejth set computed by Znj

where j 7→ (ej , nj) is an ordering of N×N such that nj < j (so that Zj is not defined referencing
itself). If this X is a B-instance without a Zj−1-computable solution, choose a solution Y and let

Zj := Zj−1 ⊕ Y.
Otherwise we let Zj = Zj−1. Finally, define S to be the Turing ideal generated by the sets Zj .

For every B-instance X ∈ S, there is a finite stage n in which X is first computable from Zn,
and X is the eth set computable from Zn for some e, so there must be a stage j > n for which
(ej , nj) = (e, n) and so a solution to X is added (or already exists).

The difficulty is not in modeling B, but in not modeling A. It suffices to pick a particular
A-instance and deliberately avoid adding any of its solutions to S at any stage. In the case of
A = KL, for example, we might avoid adding ∅′. But moreover, one also has to avoid adding sets
which compute ∅′, and instances whose only solutions compute ∅′, and so on. Thus, we look for a
sharp dividing line between sets we must add (e.g. ∅) and sets we don’t want to add (e.g. ∅′) for
which we can keep the construction on the right side of the line.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 21

Definition (Preservation and Avoidance): Let Q be some collection of sets that is downward-
closed under ≤T (but not necessarily a Turing ideal). We say that B preserves Q if for every Z ∈ Q
and every B-instance X ≤T Z, there is a solution Y such that Y ⊕ Z ∈ Q.

If Q is upward-closed under ≤T and B preserves Q, then we say B avoids Q.

Z

X

Y

Z⊕Y

∅

Q

∅′

Figure 4. Q-preservation inside the order ≤T . Here, Q separates ∅ from ∅′.

Clearly, if we find a suitable Q and prove that B preserves Q, then a model can be constructed
as above while keeping Z0, Z1, Z2, · · · ∈ Q, and hence S ⊂ Q, since by construction every set in S
is computable from some Zj .

Now the question becomes choosing a suitable class as Q. Below are some key examples of Q
commonly used in preservation and avoidance arguments:

• Cone Avoidance: Let Q be the “cone above” some non-computable set C, i.e.

Q := {A : C ≤T A}.

In this case, if B avoids Q for all C, we say that B admits cone avoidance.

• Low Degree: Let Q be the collection of low sets, i.e.

Q := {A : A′ ≡T ∅′}.

If B preserves Q, we say that B admits low solutions.
There is a similar notion of lown for each n ∈ N, where Q is defined

Q := {A : A(n) ≡T ∅(n)}.

• Hyperimmune-free: A function f is said to be hyperimmune if it is not dominated (i.e.
bounded above except at finitely-many values) by any computable function.

A set is hyperimmune-free if it does not compute any hyperimmune function. Being
hyperimmune-free is clearly downward-closed under ≤T . If B preserves

Q := {A : A is hyperimmune-free},

we say that B admits hyperimmune-free solutions.

22 JALEN CHRYSOS

• PA Degree: A is of PA degree if every computable tree T ⊆ 2N has an A-computable
path9. From our discussions of KL and WKL so far, it follows that ∅ does not have PA
degree, but ∅′ does. If B avoids

Q := {A : A has PA degree},
we say that B admits PA avoidance.

Note that all four of these classes Q separate ∅ from ∅′ (choosing C = ∅′ in the case of cone
avoidance). In general, one can relativize each one to separate other pairs of sets.

To make a model of WKL0 and not KL, it will suffice to show that WKL has any of the above
four properties. In fact, we will show all of them except PA avoidance, which WKL does not admit.

3.2. Forcing and its Uses. To show any Q-preservation for WKL entails constructing a path Y
through each Z-computable binary tree such that Y ⊕Z ∈ Q. To make this and similar construc-
tions easier to follow, we’ll use a system of bookkeeping called forcing.

Forcing is a method of specifying an object (typically a subset of N), which we call G, through a
series of approximations. The construction follows a descending path through a partially-ordered
collection of conditions, denoted P . In each stage, the condition p is extended to some p∗ ≤ p (the
extension is considered lower in the order because it allows a smaller space for possible sets G).

To instantiate a notion of forcing, then, requires a partially-ordered set (P,≤), and an order-
preserving interpretation of each p ∈ P as a formula. We also require that P enjoy the “saturation”
property that every descending chain of conditions is satisfied by some G.

Before explaining how to use forcing to construct sets with specific desirable properties, let’s
see a couple of examples of different notions of forcing, each with its own interpretation of P :

Cohen Forcing:

• P = 2N, ordered by p∗ ≤ p := p∗ ⪰ p.
• The condition p is interpreted as p ≺ G.

Jockusch-Soare Forcing:

• P is the set of infinite computable sub-trees of 2N, ordered by p∗ ≤ p := p∗ ⊆ p.
• The condition p is interpreted as G ∈ [p], i.e. G is a path in p.
• Unlike the other two forcing notions here, it is not immediately clear that a descending
sequence of Jockusch-Soare conditions is satisfied (i.e. a descending sequence of trees has
a common path). But this actually follows from the compactness of [2N]: each [p] is
a closed (and thus compact) subset of [2N], and a descending sequence of compact sets
always has a nonempty intersection.

Mathias Forcing:

• P is the set of pairs (E,R), where E is a finite set and R is an infinite set, with E < R.
The order is (E∗, R∗) ≤ (E,R) if E∗ ⊇ E ∪ R and R∗ ⊆ R. We think of R as the
“reservoir” of elements that are available to be added to E.

• (E,R) is interpreted as E ⊆ G ⊆ E ∪R.
Notice that each of these three forcing notions has a different range of formulas that its condi-

tions can articulate. For example, consider the two statements

“G is infinite” and “G is infinite.”

In Cohen forcing, there is no condition which could decide either of these for G, since at any
point the undecided elements could all be put in G or G.

In Jockusch-Soare forcing, there are conditions deciding both—in fact, a condition can specify
any computable G entirely by being a tree with only one path.

In Mathias forcing, there is an asymmetry: no condition can decide whether G is infinite because
at condition (E,R), G could be all of E ∪ R (infinite) or only E (finite) or anything in between.
However, (E,R) can decide that G is infinite, when R is infinite.

9The name “PA degree” comes from the fact that a set A has PA degree if and only if it can compute a complete,

consistent extension of Peano Arithmetic. Another equivalent condition is that A can compute a function which
can accurately tell which of two algorithms halts, given that at least one does.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 23

Cohen forcing with p = (0, 1, 0):

Jockusch-Soare forcing with
p = the black-outlined tree:

Mathias forcing with E = {1}, R = {3, 4, 6, . . .}:

Figure 5. The space of sets (visualized as paths in 2N) obeying each of three conditions.

Though they differ in precision, all three types of conditions are considerably less precise than
second-order arithmetic in general. This is what P gives up in exchange for its saturation property.
Conditions in P cannot usually enforce the properties that we want in G, but we can try to get
at these properties through infinite descending sequences in P , and get a corresponding G using
saturation.

For example, suppose we are working in the setting of Cohen forcing and we want to produce
a G which is infinite. As we know, there is no individual condition in P that can guarantee this.
However, for each n ∈ N there are p ∈ P which imply |G| > n. In fact, the property |G| > n is
equivalent to obeying at least one condition p ∈ P which has more than n 1’s. If the set of such
p is denoted En ⊂ P , then we say

|G| > n ⇐⇒ G “meets” En.

To meet a condition-set means to obey at least one of its conditions. We can express |G| = N by

|G| = N ⇐⇒ (∀n) : G meets En.

So if we have a descending sequence of conditions

p0 ≥ p1 ≥ p2 ≥ . . .
for which pn ∈ En for each n, then the G approximated by these conditions will meet each En and
hence be infinite. And it is easy to construct such a sequence, since any condition at all can be
extended to one in En, which is to say that En is dense in P .

Of course, this is a very roundabout way of proving that an infinite set exists when one can much
more easily name a particular infinite set. But when the desired properties are more complicated,
forcing becomes increasingly helpful as a way of organizing the construction of G.

24 JALEN CHRYSOS

In general, when we want a set G with some particular property F (G), we express F as a
countable list of dense condition-sets De ⊂ P ,

(D0, D1, D2, . . .)

such that if G meets each De then F (G) holds. In all of the cases in this paper, meeting De will
be equivalent to some definable property of G, but this is not always the case in general. Using
density, we produce a descending sequence of conditions

p0 ≥ p1 ≥ p2 ≥ · · ·
where pe ∈ De for each e.

Expressing F as a countable conjunction of dense condition-sets—and proving that they are
dense—is the essential piece of any forcing argument.

A descending sequence p0 ≥ p1 ≥ . . . which meets every dense condition-set in some collection
is called generic, and a set G obeying it is called a generic set. The name “generic” is quite fitting,
since it seems much more unusual to not meet a dense set at N-many opportunities than to meet
it once. If there exists any sequence of dense condition-sets implying F , as described above, then
we say that F (G) holds for any sufficiently generic G. In such a situation, we say that F is forced.
It may also be that given a certain condition p, any sufficiently generic G obeying p is forced to
hold F (G), in which case we say p forces F .

Note that if F1, F2 are both forced, with the two corresponding sequences of dense condition-sets
(D1

e) and (D2
e), then F1 ∧ F2 is also forced, with the sequence

(D1
0, D

2
0, D

1
1, D

2
1, . . .).

And naturally the same is true for any countable collection of forced formulas. Thus, conveniently,
we may treat every desired property separately.

When aiming to construct a set by forcing, the choice of which forcing notion to use is critical.
As we’ve seen, the strengths of each system differ. Cohen forcing is strictly coarser than both
Jockusch-Soare and Mathias forcing, and the latter two each have their own areas of high and
low precision. If we plan to achieve some property φ(G) at the eth stage of the construction, i.e.
to correspond to a dense subset De ⊂ P , then P must be coarse enough that no p ∈ P can ever
imply ¬(φ(G)), yet fine enough that there are p ∈ P (and densely-many!) implying φ(G). This is
analogous to the choice of a suitable inductive hypothesis: it must be strong enough to prove the
inductive step, but weak enough that it can be maintained in each step.

In order to tweak the coarseness of P , we will often start with one of the three main forcing
notions as a base and then add further restrictions onto P . We may even add on new objects to
be tracked. For example, we will later see an instance of Mathias forcing which builds two sets at
once, each with its own reservoir.

3.3. The Weakness of WKL. With the structure of forcing as a guide, we can approach the
question of whether WKL0 is genuinely weaker than ACA0 or not. To do this, it will suffice to
show that WKL0 admits preservation of some Q which separates it from ∅′, which will allow for
the construction of a model of WKL0 without ∅′ in it. We can actually show that WKL preserves
several of the classes Q that we introduced.

In all of these preservation results, we will use a version of Jockusch-Soare forcing, as it is a
natural way to constrain objects that we are thinking of as paths in the first place. In each one,
note how the fact that T is computably bounded plays an essential role. This is to be expected,
given that KL does not admit any of these weaknesses.

Theorem 3.2 (WKL Admits Hyperimmune-Free Solutions): If Z is hyperimmune-free and
T is a Z-computable binary tree, there is an infinite path ℓ ∈ [T] such that ℓ⊕Z is hyperimmune-
free; that is, every function computed by ℓ⊕ Z is dominated by some computable function.

Proof. We’ll use Jockusch-Soare forcing with subtrees of T .
We want to construct G ∈ [T] such that

(∀e) : ΦG⊕Z
e is computably bounded

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 25

for which it suffices to meet the condition sets

De := {p : ℓ ∈ [p]⇒ Φℓ⊕Z
e is computably-bounded}

for each e. We will show that De is dense.

Assume otherwise, i.e. that for some tree p there is no extension p∗ meeting De. This implies
that there is some depth dx such that Φσ⊕Z

e (x)[dx] ↓ for |σ| ≥ dx; otherwise,
p∗ := {σ ∈ p : Φσ⊕Z

e (x)[|σ|] ↑}
would be an infinite Z-computable tree whose paths ℓ all have Φℓ⊕Z

e (x) ↑, and thus meet De.
Moreover, dx is Z-computable as a function of x, since p is binary and thus one can explore all

depths d until finding one for which Φσ⊕Z
e (x)[d] ↓ for all |σ| = d. Using this fact, for any given

ℓ ∈ [p] we can construct a Z-computable function g(x) that dominates Φℓ⊕Z
e :

g(x) := max{Φσ⊕Z
e (x) : |σ| = dx}.

And because Z itself is hyperimmune-free, there is also a computable function dominating g(x).
Thus, in this case, p already meets De. □

Theorem 3.3 (WKL Admits Cone Avoidance): Given a Z-computable binary tree T ⊂ 2N

and a set C ≰T Z, there is a path ℓ ∈ [T] for which ℓ⊕ Z does not compute C.

Proof. We use Jockusch-Soare forcing, with the modification that all trees in P are subsets of T
and are Z-computable. The desired condition, not computing C, can be expressed as

(∀e) : ΦG⊕Z
e ̸= C,

and ΦG⊕Z
e ̸= C is equivalent to meeting the condition set

De := {p : ℓ ∈ [p]⇒ Φℓ⊕Z
e ̸= C}.

Thus, it suffices to show that De is dense in P , i.e. that for any tree p ∈ P , there is an extension
p∗ ≤ p (i.e. a subtree) for which ℓ ∈ [p∗]⇒ Φℓ⊕Z

e ̸= C.

Assume for the sake of contradiction that all extensions p∗ ≤ p in P contain a path ℓ with
Φℓ⊕Z

e = C. We will use this fact to compute C from Z, showing a contradiction. The key is that
this assumption greatly limits the extent to which the computable functions Φσ⊕Z

e can differ from
C, in two ways:

(a) No σ ∈ p that extends to a path in p has Φσ⊕Z⊥C; otherwise,
p∗ = {τ ∈ p : τ ⪰ σ}

would be infinite and meet De.
(b) For every x, there is some depth dx such that Φσ⊕Z(x) ↓ for all σ ∈ p with |σ| ≥ dx;

otherwise,
p∗ = {τ ∈ p : Φτ⊕Z(x)[|τ |] ↑}

would be infinite and also all ℓ ∈ [p∗] have Φℓ⊕Z
e (x) ↑, thus p∗ would meet De.

Given dx, we can calculate C(x) as follows: let

D = {σ ∈ p : |σ| = dx}.
Because p is a binary tree, D is Z-computable. We know by (b) that every σ ∈ D has Φσ⊕Z(x) ↓,
so we can Z-computably split D into

D = A ∪B = {a1, a2, . . . , am} ∪ {b1, b2, . . . , bn}
where Φaj⊕Z(x) = 0 and Φbj⊕Z(x) = 1. By (a), either A or B (whichever disagrees with C) is
entirely non-extendable, and hence the depth of its descendants is bounded. Then for each d′ > d,
we can compute from Z the set of nodes of depth d′ (again relying on the fact that p is binary)
and check which are descended from A versus B. For sufficiently large d′, only one of the two
groups will remain, whence we will have computed C(x) from Z. □

From cone avoidance, it also follows as a corollary that WKL0 has no minimal model; any non-
computable C can be avoided. In other words, like RCA0, WKL0 does not imply the existence of

26 JALEN CHRYSOS

any particular non-computable set, though it does imply the existence of some non-computable set.

Next, we’ll show that WKL also admits low solutions. This argument will be a little bit different
from the previous two. It is an example of effective forcing, in which a constructed object is made
to be A-computable (for some A) by deciding each of its values at a particular finite stage, and
choosing each extension p∗ in an A-computable way.

Theorem 3.4 (WKL Admits Low Solutions): If Z ⊆ N is low, then for any Z-computable
infinite binary tree T ⊂ 2N, there is an infinite path ℓ ∈ [T] such that ℓ⊕Z is low, i.e. (ℓ⊕Z)′ ≤T ∅′.

Proof. We’ll construct a path G ∈ [T] and a ∅′-computable function f which computes (G⊕ Z)′.
We employ a variant of Jockusch-Soare forcing as follows:

• p ∈ P are of the form p = (U, σ), where
– U is an infinite, Z-computable subtree of T ,
– σ is a finite binary sequence,
– g′ ≻ σ for all g ∈ [U].

• (U∗, σ∗) ≤ (U, σ) if U∗ ⊆ U and σ∗ ⪰ σ.
• (U, σ) is interpreted as G ∈ [U] and σ ≺ f .

The properties of P already guarantee that f = ℓ′, so the only thing to be forced is that f is total:

(∀e) : f(e) ↓,

and f(e) ↓ is equivalent to meeting the condition set

De := {(U, σ) : |σ| ≥ e}.

To ensure that f is ∅′-computable, we will explicitly construct an extension for (U, σ) computably
relative to ∅′, and thus every place of f will be ∅′-computable.

We want an extension (U∗, σ∗) such that all G ∈ [U∗] have the same halting behavior on e, i.e.

ΦG⊕Z
e (e) ↓ ⇐⇒ σ∗(e),

and we need to decide σ∗(e) in a ∅′-computable way. It might be that U already has this property,
so we first check if this is the case. We can do this Z ′-computably (and hence ∅′-computably, since
Z is low): it is equivalent to checking

Ψ(U) := (∃ d)(∀ τ ∈ U) : (|τ | = d)⇒ Φτ⊕Z
e (e)[|τ |] ↓

Note that the ∀ is bounded because U is a binary tree, so Ψ(U) is ΣZ
1 and hence Z ′-computable.

If Ψ(U) is true, then ΦG⊕Z
e (e) ↓ for all G ∈ [U], so we can extend (U, σ) to U∗ := U and σ∗(e) = 1.

On the other hand, if Ψ(U) is false, the subtree

E := {τ ∈ U : Φτ⊕Z
e (e)[|τ |] ↑}

is infinite and Z-computable, so we can take U∗ := U ∩ E with σ∗(e) = 0.

In summary, we can extend (U, σ) in a way depending only on the ∅′-computable function Ψ(U):

(U∗, σ∗) :=

{
(U, σ⌢1) if Ψ(U),

(U ∩ E, σ⌢0) if ¬Ψ(U).

In either case, ΦG⊕Z
e (e) has the same halting behavior for all G ∈ [U∗], and it is matched by σ∗(e).

Since every extension is found ∅′-computably, f = (G⊕Z)′ is ∅′-computable, thus G⊕Z is low, as
desired. □

With WKL shown to admit solutions in several complexity classes not containing ∅′, we can
handily reach this section’s goal:

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 27

Theorem 3.5: WKL0 ≠⇒ ACA0.

Proof. This follows from any of the preservation results shown for WKL, which allow us to build
a model of WKL0 consisting entirely of ∅′-cone-avoiding or low or hyperimmune-free sets. The
resulting model does not contain ∅′ as a set, therefore it is not a model of KL (or ACA0). □

ACA0

WKL0

RCA0

Historically, the hierarchy of these three theories has been a focus of reverse mathematics. They
are the bottom three of the “big five” hierarchy, which also includes the stronger theories ATR0

and Π1
1CA0.

10 The big five are notable because of how many theorems from other areas have been
shown equivalent in strength to one of them.

We have seen already that the completeness of R is equivalent to ACA0 and the compactness
of [0, 1] is equivalent to WKL0. One can actually show that a wide range of results in algebra,
analysis, logic, and combinatorics are equivalent to one of these levels. A few key examples are
listed below.11

Note that the language of second-order arithmetic is limited in what it can express; all results
below referring to algebraic structures and metric spaces apply only to countable structures and
separable metric spaces, as general uncountable sets are third-order objects and thus cannot be
discussed directly in second-order arithmetic. Continuous functions on separable metric spaces
are determined by their values on a countable dense set, and thus they can be described as second-
order objects.

• RCA0

– Intermediate Value Theorem
– Nested Interval Completeness
– Baire Category Theorem
– Existence of algebraic closures

• WKL0
– Heine-Borel Theorem (compactness of [0, 1])
– The Hahn-Banach Theorem
– Riemann integrability of continuous functions
– Uniqueness of algebraic closures
– Existence of prime ideals in commutative rings
– Gödel’s Completeness and Compactness Theorems

• ACA0

– Completeness of R
– Bolzano-Weierstrass Theorem (sequential compactness of [0, 1])
– Existence of maximal ideals in commutative rings
– Existence of bases for Q-vector spaces
– König’s Lemma

In the next section, we will set our reverse-mathematical techniques onto Ramsey’s Theorem,
a problem from infinitary combinatorics, and investigate its relationship to this hierarchy.

10ATR0 stands for Arithmetic Transfinite Recursion. Roughly speaking, it extends ACA0 to allow induction and
comprehension along any well-order, rather than just N. Π1

1CA0 extends comprehension to Π1
1 formulas. It is

strictly weaker than full second-order arithmetic but stronger than ATR0.
11Proofs of all of these equivalences can be found in [8].

28 JALEN CHRYSOS

4. Ramsey Theory

So far, we’ve developed a nice hierarchy of three naturally-arising theories. We’ve seen that
many statements in second-order arithmetic can be located in one of these three levels. To com-
plicate this picture, we now consider Ramsey’s Theorem:

Definition (Ramsey’s Theorem in degree n for k colors, or RTn
k): Given a k-coloring of

[N]n (the size-n subsets of N), i.e. a function c : [N]n → {1, 2, . . . , k}, there exists an infinite set
X that is c-homogeneous, i.e. c is constant on [X]n.

In this section, we’ll use the methods developed in previous sections—forcing in particular—to
determine the precise strength of RTn

k relative to the Big Five. This was not known for general
n, k ∈ N until Liu closed the last remaining case in 2011.

4.1. RT over RCA0. First, we’ll see what can be proven about RTn
k over RCA0. RCA0 does prove

some relationships between RTn
k for different n and k, but we will see that it does not actually

prove any RTn
k for n > 1.

Lemma 4.1 (Ramsey Theory over RCA0):

(a) For k ≥ 2, RCA0 ⊢ RT1
k.

(b) For k ≥ 2, RCA0 ⊢ RTn
k ⇐⇒ RTn

k+1.

(c) For n ≥ 1, RCA0 ⊢ RTn+1
k =⇒ RTn

k .

Proof. (a): This is essentially the infinitary pigeonhole principle for a fixed number of colors.
Given a coloring c : N→ {1, 2, . . . , k}, the homogeneous sets

c−1(j) := {x : c(x) = j}
are all computable from c, thus exist in RCA0. One of these sets must be unbounded; if there
exist upper bounds aj on each of these sets so that c−1(j) < aj , then the union of all of them is
bounded above by max{a1, a2, . . . , ak}, but their union is N, which is unbounded.

(b): Given a (k + 1)-coloring c : [N]n → {1, 2, . . . , k + 1}, we can produce a slightly reduced
k-coloring by identifying 1 and 2:

c∗ : A 7→
{
1 c(A) = 1

c(A)− 1 c(A) > 1

This c∗ clearly c-computable, thus it is a function in RCA0. Assuming RTn
k , there exists an infinite

c∗-homogeneous set X. If X is any color other than 1, then X is also c-homogeneous. Otherwise,
c∗(A) ∈ {1, 2} for A ∈ [X]n, so c∗ is a 2-coloring of X. Thus, we can apply RTn

2 (which clearly
follows from RTn

k) to c on X to get an infinite c-homogeneous set. Either case implies RTn
k+1.

(c): Given a k-coloring c : [N]n → {1, 2, . . . , k}, we have a k-coloring

c∗ : [N]n+1 → {1, 2, . . . , k} given by c∗(A) = c(A \min(A)).

c∗ is clearly c-computable, thus it is also a function in RCA0. Assuming RTn+1
k , there exists a

c∗-homogeneous set X (say with color j). For any size-n subset B ⊂ (X \min(X)), we have

c(B) = c∗(B ∪ {min(X)}) = j,

thus X \min(X) is an infinite c-homogeneous set of color j, implying that RTn
k also holds. □

Thus, RCA0 proves that the strength of RTn
k (for k ≥ 2) depends only on n, and that it is

non-decreasing in n. As a corollary, RCA0 proves that the weakest case of RT is RT2
2. The natural

question is whether RCA0 can actually prove this simplest case, and the answer is: no. To show
this, we will give a computable 2-coloring of [N]2 with no computable infinite homogeneous set.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 29

Theorem 4.2: RCA0 ≠⇒ RT2
2.

Proof. We’ll describe a coloring algorithm that systematically makes every infinite computable set
non-homogeneous. In fact, we can do even better and avoid all infinite c.e. sets. Let

Ae = {n : Φe(n) ↓}
and denote by Ae[s] the approximation of Ae up to input s and for s steps:

Ae[s] := {n < s : Φe(n)[s] ↓}.
Note that Ae[s] is computable and that limsAe[s] = Ae. We will ensure that if Ae[s] gets suffi-
ciently large, then we eventually color two of its edges oppositely.

The construction will proceed in N-many stages: in stage s, we decide the colors of edges

Es := {(0, s), (1, s), . . . , (s− 1, s)}.
During stage s, for each e < s we compute the set of x ∈ Ae[s] such that (x, s) is still uncolored.
If this set has at least two elements a, b, we color their edges oppositely:

c((a, s)) = 0, c((b, s)) = 1.

Otherwise we do nothing and move on. Note that at most 2 edges of Es can be colored for each
e < s. At the end of stage s, some of Es may remain uncolored—their colors don’t matter.

Now to show that the coloring works: if Ae is infinite, then for sufficiently large s,

|Ae[s]| ≥ 2e.

For such s, our coloring is guaranteed to find a, b ∈ Ae[s] with (a, s) and (b, s) uncolored, since at
most 2(e− 1) edges of Es can be colored up to this point in stage s. And because Ae is infinite,
there will be some sufficiently large s which is also in Ae, so that (a, s), (b, s) are both edges in Ae,
and thus Ae is not homogeneous. Thus, we’ve colored all infinite c.e. sets non-homogeneously. □

This argument focuses on the c.e. sets, but in fact it can be extended to all limit-computable
sets, i.e. sets A such that

A(n) = lim
m
g(n,m)

for some computable g(n,m). This requires only a minor change: define Ae[s] as

Ae[s] := {n < s : ge(n, s)[s] ↓= 1}
where (ge) enumerates the algorithms on two inputs. Define c in the same way relative to Ae[s],
and c will color every limit-computable A non-homogeneously by the same argument.

So RT2
2 implies the existence of non-limit-computable sets, but WKL0 does not. Because WKL

admits low solutions, one can build an entirely low model of WKL0. Low sets are ∅′-computable,
and hence limit-computable as well,12 so we have a model of WKL0 whose sets are all limit-
computable. Thus, WKL0 is not strong enough to prove RT2

2 (or any other RTn
k) either!

4.2. RT over ACA0. First, ACA0 is strong enough to prove RTn
k for all n and k:

Theorem 4.3: ACA0 =⇒ RTn
k .

Proof. Given a coloring c : [N]n → {1, 2, . . . , k}, we say that a set X is pre-homogeneous if the
coloring of n-edges in X does not depend on their largest element, in the sense that

∀s ∈ [X]n−1 and a, b ∈ X with a, b > max(s), c(s ∪ {a}) = c(s ∪ {b}).
Such c and X give rise to a derived coloring

c∗ : [X]n−1 → {1, 2, . . . , k} c∗(s) = c(s ∪ {a}) where a ∈ X, a > max(s).

Any c∗-homogeneous set is also c-homogeneous, so if such an X exists for any coloring c, then
RTn−1

k ⇒ RTn
k . We’ve shown that RT1

k is provable in RCA0, so to prove RTn
k for every n, it suffices

to show that an infinite, pre-homogeneous set exists for every coloring.

12In fact, ∅′-computable and limit-computable are equivalent properties. This is Shoenfield’s Limit Lemma.

30 JALEN CHRYSOS

Now given c we’ll construct an infinite pre-homogeneous set G via a variation of Mathias forcing:

• p ∈ P are of the form (E,R) where E is finite, R is infinite, and E < R.
– Additionally, E must be pre-homogeneous with respect to c.
– All elements of R must be able to be added to E while maintaining pre-homogeneity.

• (E∗, R∗) ≤ (E,R) if E ⊆ E∗ ⊆ E ∪R and R∗ ⊆ R.
• (E,R) is interpreted as E ⊆ G ⊆ E ∪R.

We’d like to construct a G that is infinite, for which it suffices to meet

De := {(E,R) : maxE > e}
for all e. Any such G will automatically be pre-homogeneous because of the additional constraints
on P . We’ll show that De is dense.

Let (E,R) ∈ P and fix e. For each σ : [E]n−1 → {0, 1} (of which there are finitely many) let

Rσ := {x ∈ R : (∀A ∈ [E]n−1) : c(A ∪ {x}) = σ(A)},
so that every element of Rσ has the same coloring behavior with respect to E, and

R =
⋃
σ

Rσ.

R is infinite, so by the pigeonhole principle, at least one of these Rσ is infinite. Selecting such an
Rσ, let x ∈ Rσ be its least element above e, and choose the extension

(E∗, R∗) := (E ∪ {x}, Rσ ∩ (x,∞))

which indeed meets De, and one can check that (E∗, R∗) ∈ P . Thus, De is dense, as desired. □

A note on the complexity of this construction: Rσ is c-computable, and testing whether Rσ

is infinite is c′′-computable, as being infinite is a Π2 property. This shows that one can find an
infinite pre-homogeneous set that is c′′-computable. Thus, one can reduce an instance c of RTn

k

to a c′′-computable instance of RTn−1
k . To prove RTn

k , this reduction must be done n − 1 times,

after which RT1
k can be computably solved, giving a c(2n−2)-computable solution to c.

We can also show a partial reversal of this result: RT3
2 (and thus all RTn

k for n ≥ 3) implies
ACA0. To prove this requires an A-computable coloring of triples whose infinite homogeneous sets
all compute A′:

Theorem 4.4 (Jockusch): RT3
2 =⇒ ACA0.

Proof. Let A be a set. We will describe a ∆A
1 coloring c : [N]3 → {0, 1} whose only infinite

homogeneous sets compute A′, and thus show that A′ exists for all A.
Specifically, consider the following coloring: given a triple (a, s, t) with a < s < t, let

c : (a, s, t) 7→
{
0 ∃(e < a) : ΦA

e (e)[s] ↑ ∧ ΦA
e (e)[t] ↓

1 otherwise

There are no infinite c-homogeneous sets of color 0; if such a set {a1, a2, . . . } existed, then there
would be Turing machines of index at most a1 which halt in time-windows (a2, a3], (a3, a4], . . .
but this is impossible because there are only finitely many of these.

Thus, the infinite set X guaranteed by RT3
2 must have color 1. Let X = {a1, a2, . . . }. Given X,

we can compute A′: to test whether e ∈ A′, take some ap > e (one exists because X is infinite)
and check ΦA

e (e)[ap+1]. If this doesn’t halt then it never will, since c((ap, aq, aq+1)) = 1 for q > p,
hence ΦA

e (e) does not halt in (aq, aq+1] for any q > p, and these intervals cover the rest of N. □

This proves that RT3
2 is equivalent to ACA0, and likewise for RTn

k with n ≥ 3, so now RT2
2 is

the only outstanding case. It is unclear how one could encode the halting problem with only a
coloring of pairs. Indeed, there turns out to be a genuine difference in strength between RT2

2 and
RT3

2. To prove this, we will use a forcing argument to show that RT2
2 admits cone avoidance.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 31

Theorem 4.5 (Seetapun): RT2
2 ≠⇒ ACA0.

Proof. We will prove this by establishing cone avoidance for RT2
2. That is, we’ll show that for any

Z, if c : [N]2 → {0, 1} is Z-computable and C ≰T Z, then there is an infinite c-homogeneous set
G for which Z ⊕ C ≰T G. We’ll assume Z = ∅ wlog, as it does not affect the argument.

We can’t simply choose a color and begin the construction, since it’s possible that there is only
an infinite homogeneous set of one color, and it’s not apparent which color will work. Instead, we
can start constructing two homogeneous sets at once, one in each color, and show that at least
one will have the desired properties.

Proceeding by contradiction, we’ll assume that no such G exists. This assumption is necessary
to force both sets to be infinite.

We construct G0 and G1 with a variation of 2-fold Mathias forcing defined as follows:

• p ∈ P are of the form (E0, E1, R), where E0, E1 are finite, R is infinite, and E0, E1 < R.
– Additionally, E0 and E1 must be c-homogeneous of colors 0 and 1 respectively.
– All elements of R can be added to E0 or E1 while maintaining homogeneity.
– R must not compute C.

• (E∗
0 , E

∗
1 , R

∗) ≤ (E0, E1, R) if Ei ⊆ E∗
i ⊆ Ei ∪R for i ∈ {0, 1} and R∗ ⊆ R.

• (E0, E1, R) is interpreted as Ei ⊆ Gi ⊆ Ei ∪R for i ∈ {0, 1}.
Now we seek to force three properties:

(1) G0 is infinite.
(2) G1 is infinite.
(3) At least one of G0 and G1 does not compute C.

We’ll show separately that each one is forced.

First, some notation: for any set A and color i ∈ {0, 1}, define the i-neighborhood of A as

Ni(A) := {x : (∀a ∈ A) : c((a, x)) = i}.
Note that the conditions on P imply that R ⊆ N0(E0) ∩N1(E1) for (E0, E1, R) ∈ P .

(1): It suffices to meet the condition-sets

De := {(E0, E1, R) : (max{E0} ≥ e)}
for e ∈ N. If a given (E0, E1, R) has no extension meeting De, then for every x ≥ e in R,

(E∗
0 , E

∗
1 , R

∗) := (E0 ∪ {x}, E1, R ∩N0(x))

must not be a valid extension, otherwise it would meet De. This can only be because R ∩N0(x)
is finite for all x ≥ e in R. But if this is true, then R ∩N1(x) is infinite for all x ≥ e in R, which
makes it R-computable to find an infinite c-homogeneous set of color 1: the extension

(E∗
0 , E

∗
1 , R

∗) := (E0, E1 ∪ {x}, R ∩N1(x))

(where x = min{R≥e}) is guaranteed to be valid, so one can repeatedly choose such extensions,
resulting in a G1 that is R-computable and infinite, and hence witnesses cone avoidance. We had
assumed that such G1 did not exist, so we must now assume that De is dense.

(2): This follows similarly.

(3): This property is the most substantive. The only case we must avoid is both G0 and G1
compute C, i.e. for some e0, e1 ∈ N, ΦG0

e0 = ΦG1
e1 = C. Thus, it suffices to meet the condition-sets

D(e0,e1) := {(E0, E1, R) : (Φ
G0
e0 ̸= C) ∨ (ΦG1

e1 ̸= C)}
for (e0, e1) ∈ N2. We aim to show that D(e0,e1) is dense. Assume otherwise, and that (E0, E1, R)
is a condition in P with no extensions meeting D(e0,e1).

We define an i-fork to be a pair of finite i-homogeneous sets (X,Y) for which

∃w < max(X ∪ Y) : ΦEi∪X
ei (w)[max(X ∪ Y)] ↓ ≠ ΦEi∪Y

ei (w)[max(X ∪ Y)].

32 JALEN CHRYSOS

Whereas the property of differing from C is non-computable, the two extensions in an i-fork differ
from one another in a bounded way, which can be verified R-computably. Say an i-fork is valid if

(Ei ∪X,E1−i, R
∗) and (Ei ∪ Y,E1−i, R

∗)

are both in P , for some R∗. If (X,Y) is valid, then one of these two extensions (the one that
differs from C) must meet D(e0,e1), thus it suffices to show that a valid i-fork exists. We’ll first
show the existence of many i-forks, and then show there is a valid one among them.

Lemma (∗): Every infinite set R∗ ⊆ R which does not compute C must contain an i-fork.

Proof. Suppose otherwise. We have assumed that no extension meets D(e0,e1). This implies that
for every w there is some finite X ⊂ R∗ with

ΦEi∪X
ei (w)[max(X)] ↓= C(w).

Otherwise, the extension (E0, E1, R
∗) would meet D(e0,e1), as it implies ΦGi

ei(w) is either undefined
or disagrees with C(w). If, in addition, there are no i-forks in R∗, then

ΦEi∪X
ei (w)[max(X)] ∈ {↑, C(w)}

for all finite X ⊂ R∗, since no two X can contradict one another. Now we can check all such X
until halting, thus computing C(w) from R∗, which contradicts the assumption that C ≰T R∗. □

As an immediate corollary, there are infinitely many i-forks (one can take R∗ = R ∩ {x > M}
to get an i-fork of arbitrarily high minimum). So let (Xj , Yj) be a computable sequence of 0-forks
(one can compute it by repeatedly taking the next largest 0-fork in some computable ordering):

X0 < Y0 < X1 < Y1 < X2 < Y2 < . . .

By assumption, all of these 0-forks are invalid. This is actually a rather strong condition, because
it tells us that for any potential reservoir R∗, each Xj ∪Yj contains some zj for which N1(zj)∩R∗

is infinite; otherwise, R∗ ∩z∈Xj∪Yj N0(z) would be a valid reservoir for the fork (Xj , Yj).
The goal now is to leverage the invalidity of the 0-forks to produce a valid 1-fork within (zj).

We’ll first show that such a sequence zj of sufficient depth d will eventually include a 1-fork. Then,
we’ll find a reservoir R∗ with respect to which all z ∈ {Xj ∪ Yj}j≤d have edges of only one color.
This R∗ will serve as reservoir to the 1-fork included in (zj), hence the 1-fork will be valid.

Construct a computable tree T ⊆ NN from all sequences σ with

σ(e) ∈ Xe ∪ Ye
such that the immediate parent of σ does not contain any 1-forks. T is computably bounded
(since Xe ∪ Ye is finite), so if T is infinite then it contains a C-cone avoiding path by WKL cone
avoidance. But by (∗), any infinite non-C-computing set necessarily contains 1-forks, so there can
be no such path, and thus T must be finite. Let its depth be d.

z0

zd

X0 ∪ Y0 · · · Xd ∪ Yd

Figure 6. The elements of Xj ∪ Yj for j ≤ d colored by τ (blue = 0, red = 1).
The sequence (zj) must contain a valid 1-fork with reservoir R∗.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 33

Finally, for each function

τ :

d⋃
j=0

Xj ∪ Yj → {0, 1}

let

Rτ := {r ∈ R : (∀z ∈ Dom(τ)) : c((z, r)) = τ(z)}.
There are finitely many such τ since T is finite, and Rτ finitely partitions R into R-computable
parts. For some τ , Rτ will be infinite: call this R∗. Since the 0-forks (Xj , Yj) are all invalid,
there is a sequence zj ∈ Xj ∪ Yj which all have τ(zj) = c(zj , R

∗) = 1. By the definition of T ,
there is a 1-fork among this sequence. This 1-fork is valid, with R∗ as its corresponding reservoir. □

This shows that RT2
2 is strictly weaker than RT3

2, casting RT2
2 out of the RCA0−WKL0−ACA0

hierarchy, though we haven’t yet ruled out the possibility that RT2
2 lies between WKL0 and ACA0.

Seetapun’s proof was published in 1995, but the relationship between RT2
2 and WKL0 was left

open until 2011, when Jiayi Liu proved that RT2
2 ≠⇒ WKL. Liu showed that RT2

2 admits PA
avoidance by using a Mathias forcing argument.

Theorem 4.6 (Liu): RT2
2 ≠⇒ WKL.

Proof. Omitted. See [2] or [6] for full proofs of Liu’s Theorem. □

With Liu’s proof, RT2
2 could be placed firmly outside of the Big Five hierarchy:

KL ACA0 RT≥3
k

WKL RT2
k

RCA0

Figure 7. The full dependency chart between RT and KL. WKL0 and RT2
k are independent.

But unlike WKL, which we find embedded within proofs of all sorts of major theorems through-
out mathematics, RT2

2 is mysteriously not equivalent to any other major theorems. RT2
2 is its own

principle, with its own set of consequences. Much of the work in reverse mathematics in recent
decades has been dedicated to studying it.

4.3. Study of RT2
2. In this final section, we’ll take a look at the world of RT2

2 and several
related coloring principles, and see some longstanding open problems. First, we introduce two
new properties a coloring c : [N]2 → {0, 1} can have on a domain X:

• Stable: For x ∈ X, c takes a single value on all but finitely-many edges containing x.
• Transitive For x < y < z ∈ X, c((x, y)) = c((y, z)) = q =⇒ c((x, z)) = q.

Stability and Transitivity turn out to be quite significant classes of colorings. In a sense, they
are the only two classes that must be considered; as we will see, if RT2

2 holds on all stable colorings
and all transitive colorings, then it holds in general.

RTn
k says any coloring has an infinite subset on which it is homogeneous. This principle can be

weakened in several ways. If C and D are two classes of colorings, let

C ↣ D denote “∀c ∈ C, ∃ an infinite subset X ⊆ N such that c ∈ D on X.”

34 JALEN CHRYSOS

Note that ↣ is transitive. Using this notation,

RT2
2 := Any ↣ Homogeneous.

RT2
2 can be split into several interesting coloring principles based on the coloring classes of stable

and transitive, many of which are collected in Figure 8.

Homogeneous

Transitive+ Stable

Transitive Stable

Any

SADS

ADS

CADS

SRT2
2

SEM

EM CRT2
2

Figure 8. A decomposition of the coloring principles below RT2
2.

The abbreviations are:

• RT: Ramsey’s Theorem.
– SRT = Stable Ramsey’s Theorem.
– CRT = Cohesive Ramsey’s Theorem.

• ADS: The Ascending/Descending Sequence Principle.
– For every linear order on N, there is an infinite increasing or decreasing sequence. A

linear order can be expressed as a transitive coloring of [N]2.
– SADS = Stable Ascending/Descending Sequence.
– CADS = Cohesive Ascending/Descending Sequence.

• EM: The Erdős-Moser Principle.
– This is sometimes called the “Tournament Principle,” because it can be interpreted

as the statement “for every infinite set of teams, there is an infinite subset on which
teams can be linearly ordered by their strength.”

– SEM = Stable Erdős-Moser.

It is known that all of these principles lay in the expanse strictly between RCA0 and RT2
2, though

in many cases this is very nontrivial. In terms of their relative strengths, some equivalences can
be found by identifying paths in the diagram: for instance,

ADS+EM ⇐⇒ SRT2
2 +CRT2

2 ⇐⇒ RT2
2 .

But there are also some unexpected implications—for example, we will show that ADS⇒ CRT2
2.

In fact, ADS proves the Cohesive Set Principle (COH), which is a stronger result.
COH states that for any sequence of functions fi : N→ {0, 1}, there is a set A for which all of

the fi are stable (i.e. converge to 0 or 1) on A—we say that A is a cohesive set for (fi). CRT2
2

follows from a special case of COH where

fi(x) := c((i, x))

and, say, fi(i) := 0 (the diagonal values do not matter to the cohesiveness of A). The essential dif-
ference is that fi(x) must be stable on A for all i, whereas c((i, x)) only needs to be stable for i ∈ A.

THE REVERSE MATHEMATICS OF TWO COMBINATORIAL PROBLEMS 35

Lemma 4.7: ADS =⇒ COH.

Proof. Given a sequence of functions fi : N→ {0, 1}, let f(x) denote the binary sequence

f(x) := (f1(x), f2(x), f3(x), . . .).

We may assume that f is injective13. Between two binary sequences there is a lexicographic order;
e.g. (1, 0, 0, 1, 1, . . .) > (1, 0, 0, 1, 0, . . .). Let c : [N]2 → {0, 1} color pairs based on this ordering:

for x < y, c : (x, y) 7→
{
0 f(x) < f(y)

1 f(x) > f(y)

Given that f(x) ̸= f(y), the sequences differ at some finite index, so c is computable relative to
the functions fi. Then, by ADS there must exist an infinite ascending (wlog) subsequence

A = {a1, a2, . . . },
so that

f(a1) < f(a2) < f(a3) < . . .

Now we can show (in RCA0) that A is a cohesive set for the functions fi: for any n, the n-tuple

(f1(aj), f2(aj), . . . , fn(aj))

is non-decreasing in j, and takes at most 2n values, so it changes at most 2n times. In particular,
this implies {fn(aj)}j changes between 0 and 1 at most 2n times, and thus is eventually constant.
As this is true of all n, A is cohesive for the functions fi. □

Thus, as promised, RT2
2 can be reduced to the two cases of transitive and stable colorings, as

SRT2
2 +ADS =⇒ SRT2

2 +CRT2
2 ⇐⇒ RT2

2 .

This decomposition is unique to n = 2, as the property of transitivity does not make sense for
colorings with n ≥ 3. The decomposition can be used to more easily prove weakness principles
for RT2

2 by proving them for SRT2
2 and ADS (or COH), which are often simpler. Both Seetapun’s

Theorem and Liu’s Theorem have “modernized” proofs along these lines.

RT2
2

ADS SRT2
2

CRT2
2 SADS EM

CADS SEM

RCA0

Figure 9. Known dependencies between principles below RT2
2.

13In general, we can interleave the sequence fi with a characteristic functions χi for each i, which makes f injective.

Proceeding with the proof will yield a set A that is cohesive for both fi and χi, which also serves as a cohesive set
for just the fi.

36 JALEN CHRYSOS

The presently-known implications among the coloring principles discussed in this section are
listed above in Figure 9.

The single arrows denote implications that are not proven to be strict (i.e. may be equivalences).

Two open questions are whether SEM is weaker than EM and whether CADS is weaker than CRT2
2.

Between CRT2
2, SADS, and EM, five of six non-implications have been proven; the only unproven

one is whether EM⇒ CRT2
2, or more generally whether EM⇒ COH. The precise strength of EM

remains uncertain.
The full state of progress on these and many other questions in reverse mathematics is cata-

loged and displayed in the Reverse Mathematics Zoo, though the diagrams there are not up to date.

Acknowledgments

I would like to thank Professors Maryanthe Malliaris and Denis Hirschfeldt for giving helpful
advice and direction during this project. I am especially grateful to my REU mentor Miles
Kretschmer for teaching me all that I know about reverse mathematics and providing excellent
feedback on dozens of drafts of this paper.

References

[1] Jeremy Avigad. Mathematical Logic and Computation. Cambridge University Press, 2023.
isbn: 978-1-108-47875-5.

[2] Damir D. Dzhafarov and Carl Mummert. Reverse Mathematics. Theory and Applications of
Computability. Springer, 2022. isbn: 978-3-031-11366-6.

[3] Harvey M. Friedman. “The Emergence of (Strict) Reverse Mathematics”. In: (2021). url:
https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts/.

[4] John P. Burgess George S. Boolos and Richard C. Jeffrey. Computability and Logic. Cambridge
University Press, 2007. isbn: 978-0-521-87752-7.

[5] Ivor Grattan-Guinness. The Search For Mathematical Roots, 1870-1940. Princeton University
Press, 2001. isbn: 978-0-691-05858-0.

[6] Denis R. Hirschfeldt. Slicing the Truth. Lecture Notes Series, Institute for Mathematical
Sciences, National University of Singapore. World Scientific, 2014. isbn: 978-981-4612-62-3.

[7] Ludovic Patey. Lowness and Avoidance. Unpublished, 2024-ongoing. url: https://ludovicpatey.
com/lowness-avoidance/.

[8] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic. Cam-
bridge University Press, 2009. isbn: 978-0-521-88439-6.

[9] Robert I. Soare. Turing Computability. Theory and Applications of Computability. Springer,
2016. isbn: 978-3-642-31932-7.

https://rmzoo.math.uconn.edu/diagrams/
https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts/
https://ludovicpatey.com/lowness-avoidance/
https://ludovicpatey.com/lowness-avoidance/

	Introduction
	1. Measures of Set Complexity
	1.1. Algorithms and Computability
	1.2. The Arithmetical Hierarchy
	1.3. Mixing Arithmetic with Algorithmic

	2. Theories of Second Order Arithmetic
	2.1. The Baseline: RCA
	2.2. The Ceiling: ACA
	2.3. König's Lemma and Weak König's Lemma

	3. Separation of Problems
	3.1. Methods of Model-building
	3.2. Forcing and its Uses
	3.3. The Weakness of WKL

	4. Ramsey Theory
	4.1. RT over RCA
	4.2. RT over ACA
	4.3. Study of RT22

	Acknowledgments
	References

