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Abstract. Measure theory is a powerful tool in analysis used to assign a

notion of size to sets in a suitable manner. For example, the Lebesgue measure

assigns n-dimensional volume to subsets of Rn , such as area in R2 or volume
in R3. The Hausdorff measure generalizes this by assigning s-dimensional

volume to subsets of any metric space, leading to the concept of the Hausdorff

dimension of a set. This paper will begin with an overview of abstract measure
theory, followed by an introduction to Hausdorff measure and dimension, its

applications to fractal geometry, and the Minkowski dimension.
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1. Measure Theory

For certain simple subsets of Rn, n-dimensional volume follows what we would
intuitively expect; a circle in R2 will have area πr2, an interval in R has length
equal to the starting point minus the ending point, and the volume of two disjoint
sets should be the sum of their volumes. However, for more complicated sets, there
may not be an intuitive answer for the volume, such as Q in R, an unbounded and
infinite set which actually has length (Lebesgue measure in this case) 0 in R. In
general, for sets in a metric space, measure theory is needed to assign a notion of
size to a set. For this section, we follow the approach of Folland [1].

Date: August 2025.

1



2 NICHOLAS CHIN

1.1. σ-algebras. We begin by defining σ-algebras, the type of collection of sets
which measures are defined on.

Definition 1.1. Let X be a nonempty set. An algebra A on X is a nonempty
collection of subsets of X containing ∅ which has the following properties:

(1) A is closed under finite unions: for any finite sequence of sets E1 . . . En in
A, the union

⋃n
i=1Ei is also in A.

(2) A is closed under complements: for any E ∈ A, we have that Ec ∈ A.

Definition 1.2. Let X be a nonempty set. A σ-algebra M on X is an algebra
which is closed under countable unions: for any sequence of sets {Ei}∞i=1 in A, the
union

⋃∞
i=1Ei is also in A.

Note that since
⋂

iEi = (
⋃

iE
c
i )

c, algebras are closed under finite intersections
and σ-algebras are closed under countable intersections.

If E is any collection of subsets of X, the intersection of all σ-algebras containing
E denoted by M(E) is still a σ-algebra: for any E ∈ M(E), E is in every σ-
algebra containing E , hence Ec is too, thus Ec ∈ M(E). Also, for any sequence of
sets {Ei}∞i=1 in M(E), since each Ei is in every σ-algebra containing E , the union⋃∞

i=1Ei is as well. M(E) is thus the smallest σ-algebra containing E , which we call
the σ-algebra generated by E .

One important example of a σ-algebra in a given metric space X is the Borel
σ-algebra, which is the σ-algebra generated by open sets in X denoted by BX . This
contains all open sets in X, as well as all closed sets (since any closed set is the
complement of an open set) and countable intersections of open and closed sets,
etc.

1.2. Measures. We now define the properties of measures.

Definition 1.3. Let X be a set with a σ-algebra M. A measure on (X, M) is a
set function µ : M → [0,∞] such that:

(1) ∅ ∈ M and µ(∅) = 0.
(2) µ is countably additive: for any sequence of disjoint sets {Ei}∞i=1 in M,

µ(
⋃∞

i=1Ei) =
∑∞

i=1 µ(Ei).

Note that countable additivity implies finite additvity since we can let all later
sets be empty after some point in the sequence. We call the sets in M measurable
sets and we call (X, M, µ) a measure space.

Theorem 1.4. Let (X, M, µ) be a measure space.

(1) µ is monotonic: If E,F ∈ M and E ⊂ F , then µ(E) ≤ µ(F ).
(2) µ is countably subadditive: If {Ei}∞i=1 is a sequence of sets in M, then

µ(
⋃∞

i=1Ei) ≤
∑∞

i=1 µ(Ei).
(3) µ is continuous from above: If {Ei}∞i=1 is a sequence of sets in M and

E1 ⊂ E2 ⊂ . . . , then µ(
⋃∞

i=1Ei) = limi→∞ µ(Ei).
(4) µ is continuous from below: If {Ei}∞i=1 is a sequence of sets in M and

E1 ⊃ E2 ⊃ . . . with µ(E1) <∞ then µ(
⋂∞

i=1Ei) = limi→∞ µ(Ei).

Proof. (1) µ(F ) = µ(E) + µ(F \ E) ≥ µ(E) for E ⊂ F
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(2) Let F1 = E1, Fk = Ek \ (
⋃k−1

i=1 Ei) for k > 1. The Fk’s are disjoint and⋃n
i=1 Fi =

⋃n
i=1Ei for all n ∈ N. Thus

µ(

∞⋃
i=1

Ei) = µ(

∞⋃
i=1

Fi) =

∞∑
i=1

µ(Fi) ≤
∞∑
i=1

µ(Ei)

where the last inequality follows from (1).
(3) Setting E0 = ∅,

µ(

∞⋃
i=1

Ei) =

∞∑
i=1

µ(Ei \ Ei−1) = lim
n→∞

n∑
i=1

µ(Ei \ Ei−1) = lim
n→∞

µ(En).

The first equality follows from countable additivity and for the last equality
note that

∑n
i=1 µ(Ei \ Ei−1) = µ(En) from finite additivity.

(4) Let Fi = E1 \ Ei, so we have F1 ⊂ F2 ⊂ . . . , µ(E1) = µ(Fi) + µ(Ei), and⋃∞
i=1 Fi = E1 \ (

⋂∞
i=1Ei). Then

µ(E1) = µ(

∞⋂
i=1

Ei) + lim
i→∞

µ(Fi) = µ(

∞⋂
i=1

Ei) + lim
i→∞

(µ(E1)− µ(Ei)).

The first equality is because µ(
⋃∞

i=1 Fi) = limi→∞ µ(Fi) from (c). Sub-
tracting µ(E1) <∞ from both sides yields the desired result.

□

A set E ∈ M is called a null set if µ(E) = 0. As these sets have no size in the
sense of the measure being used, if a statement is true for all x ∈ X except for some
x in a null set, we say that this statement is true almost everywhere.

For E such that µ(E) = 0, it follows by monotonicity that for F ⊂ E, µ(F ) = 0
if F is measurable. However, subsets of null sets are not necessarily measurable. If
all subsets of null sets are measurable, we call the measure complete.

1.3. Outer Measures. Outer measures are a weaker notion of size defined on all
subsets of a set, not just on a σ-algebra of measurable subsets. While useful on
their own, outer measures can also be used to construct a measure.

Definition 1.5. An outer measure µ∗ on a nonempty set X is a set function
µ∗ : P(X) → [0,∞] such that:

(1) µ∗(∅) = 0.
(2) µ∗ is monotonic: µ∗(A) ≤ µ∗(B) if A ⊂ B ⊂ X.
(3) µ∗ is countably subadditive: µ∗(

⋃∞
i=1Ai) ≤

∑∞
i=1 µ

∗(Ai) for any se-
quence {Ai}∞i=1 ⊂ X.

Note that unlike measures, these properties hold on all subsets of X, not just
measurable ones. Outer measures are typically constructed by starting with a
family of sets and a set function on that family of sets, then taking the infimum of
the set function over all covers of sets in the family.

Proposition 1.6. Let E ⊂ P(X) and ρ : E → [0,∞] such that ∅ ∈ E, X ∈ E, and
ρ(∅) = 0. For any A ⊂ X, define

µ∗(A) = inf

{ ∞∑
i=1

ρ(Ei) : Ei ∈ E and A ⊂
∞⋃
i=1

Ei

}
.

Then µ∗ is an outer measure.
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Proof. µ∗(∅) = 0 since ρ(∅) = 0. Monotonicity follows since any cover of A
is also a cover of B if A ⊂ B. To see countable subadditivity, consider any
{Ai}∞i=1 ⊂ X and fix any ϵ > 0. For each i, there exists a sequence {Ei,k}∞k=1 ⊂ E
such that Ai ⊂

⋃∞
k=1Ei,k and

∑∞
k=1 ρ(Ei,k) ≤ µ∗(Ai) + ϵ2−i from how we de-

fine µ∗(Ai). Since
⋃∞

i=1Ai ⊂
⋃∞

i=1

⋃∞
k=1Ei,k, by summing over each Ai, we have∑∞

i=1

∑∞
k=1 ρ(Ei,k) ≤

∑∞
i=1 µ

∗(Ai) + ϵ. As the sequence of Ei,k’s covers
⋃∞

i=1Ai,
we have that µ∗(

⋃∞
i=1Ai) ≤

∑∞
i=1 µ

∗(Ai)+ϵ. Since ϵ was arbitrary, µ
∗ is countably

subadditive. □

Definition 1.7. Let µ∗ be an outer measure onX andA ⊂ X. A is µ∗-measurable
if µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) for all E ⊂ X.

Intuitively, this means that for a well behaved set A, if E ⊃ A, the outer measure
µ∗(A) = µ∗(E ∩A) is equal to the inner size µ∗(E)− µ∗(E ∩Ac). For any A ⊂ X,
it follows immediately that µ∗(E) ≤ µ∗(E ∩ A) + µ∗(E ∩ Ac) for any E ⊂ X
by subadditivity, thus to prove A is measurable, it suffices to show the reverse
inequality. Using this definition of measurable sets, we can then construct a measure
from an outer measure with the following theorem.

Theorem 1.8. Carathéodory’s Theorem. If µ∗ is an outer measure on X,
the collection of µ∗-measurable sets M forms a σ-algebra. Moreover, the measure
formed by restricting µ∗ to M is a complete measure.

Proof. We first prove that M is an algebra. M is closed under complements from
the definition of µ∗-measurable sets as the definition is the same for A and Ac. To
show M is an algebra, consider any A,B ∈ M and E ⊂ X.

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)

= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)+µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc)

Since A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), by subadditivity,

µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B) ≥ µ∗(E ∩ (A ∪B)),

thus
µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c),

hence A ∪B ∈ M and M is an algebra.
To show thatM is a σ-algebra, it suffices to show that it is closed under countable

disjoint unions since we can express any countable union of sets in M as a countable
disjoint union of sets in M. Consider any sequence of disjoint sets {Ai}∞i=1 in M
and let Bn =

⋃n
i=1Ai and B =

⋃∞
i=1Ai. For any E ⊂ X,

µ∗(E ∩Bn) =µ
∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Ac

n)

=µ∗(E ∩An) + µ∗(E ∩Bn−1),

and induction shows µ∗(E ∩Bn) =
∑n

i=1 µ
∗(E ∩Ai). Thus

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bc
n) ≥

n∑
i=1

µ∗(E ∩Ai) + µ∗(E ∩Bc)

and letting n→ ∞, we have

µ∗(E) ≥
∞∑
i=1

µ∗(E ∩Ai) + µ∗(E ∩Bc) ≥ µ∗(

∞⋃
i=1

(E ∩Ai)) + µ∗(E ∩Bc)

= µ∗(E ∩B) + µ∗(E ∩Bc) ≥ µ∗(E),
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hence all of the inequalities in the equation are equalities. We then obtain that
B =

⋃∞
i=1Ai ∈ M, and letting E = B, µ∗(B) =

∑∞
i=1 µ

∗(Ai), so M is a σ-algebra
and µ∗ is countably additive on M.

To see that the restriction of µ∗ to M is complete, for any A such that µ∗(A) = 0
and for any E ⊂ X,

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E ∩Ac) ≤ µ∗(E),

so A ∈ M. □

Although the construction of an outer measure in Proposition 1.6 does not im-
pose many requirements on ρ or E , we often want µ∗(A) to equal ρ(A) for A ∈ E .
This is not always guaranteed; consider the case in R where E is the family of
intervals in R and ρ((a, b)) = (b − a)2 for any interval (a, b) without loss of gen-
erality. ρ((0, 1)) = 1 but µ∗((0, 1)) < 1 since (0, 1/2] and [1/2, 1) cover (0, 1) but
ρ((0, 1/2]) + ρ([1/2, 1)) = 1/2. Hence to ensure that ρ and µ∗ agree on sets A ∈ E ,
we want ρ to be a premeasure.

Definition 1.9. A set function µ0 : A → [0,∞] on an algebra A is called a
premeasure if:

(1) µ0(∅) = 0
(2) For any sequence of disjoint sets in A such that

⋃∞
i=1Ai ∈ A, µ0(

⋃∞
i=1Ai) =∑∞

i=1 µ0(Ai)

The key difference between a measure and a premeasure is that measures are
defined on a σ-algebra while premeasures are defined on an algebra. However, with
the following proposition, we see that premeasures can be extended to an outer
measure and thus a measure.

Proposition 1.10. Let µ0 be a premeasure on A ⊂ P(X). µ0 induces an outer
measure µ∗ on X defined as

µ∗(E) = inf

{ ∞∑
i=1

µ0(Ai) : Ai ∈ A and E ⊂
∞⋃
i=1

Ai

}
Then for every A ∈ A, A is measurable and µ∗(A) = µ0(A).

Proof. It follows from Proposition 1.6 that µ∗ is an outer measure. To see that
every A ∈ A is measurable, consider any E ⊂ X and ϵ > 0. Then from the
definition of µ∗(E), there exists a sequence {Ai}∞i=1 ⊂ A such that E ⊂

⋃∞
i=1Ai

and
∑∞

i=1 µ0(Ai) ≤ µ∗(E) + ϵ. Since µ0 is additive on A,

µ∗(E) + ϵ ≥
∞∑
i=1

µ0(Ai ∩A) +
∞∑
i=1

µ0(Ai ∩Ac) ≥ µ∗(E ∩A) + µ∗(E ∩Ac).

The first inequality follows because A is an algebra and µ0 is additive on A and
the second inequality follows from the definition of µ∗. Since ϵ was arbitrary, A is
measurable.

To show that µ∗(A) = µ0(A), consider any A ∈ A. A ⊂
⋃∞

i=1Ai for some

sequence of sets {Ai}∞i=1 ⊂ A and let Bn = A∩(An\
⋃n−1

i=1 Ai). The Bn’s are disjoint
members of A such that

⋃∞
i=1Bn = A. Then µ0(A) =

∑∞
i=1 µ0(Bi) ≤

∑∞
i=1 µ0(Ai),

hence µ0(A) ≤ µ∗(A) and the reverse inequality follows because A ∈ A is a cover
of itself, thus µ0(A) = µ∗(A). □
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With this, we can construct a measure on X by starting with a premeasure µ0

defined on an algebra A and using this to construct an outer measure µ∗ as shown
in Proposition 1.10. Then applying Carathéodory’s Theorem, the collection of µ∗-
measurable sets M is a σ-algebra, giving a measure µ on (X,M) where µ = µ∗ on
the sets in M and µ = ρ on the sets in A, which are all measurable.

One of the most important measures in R is the Lebesgue measure, which we
define as follows. Let A be the algebra of half open intervals in R of the form (a, b] or
(a,∞) with −∞ ≤ a ≤ b <∞ and let ν(A) =

∑n
i=1(bi−ai) where A =

⋃n
i=1(ai, bi].

Then ν is a premeasure on A [1], hence it induces an outer measure µ∗ on X defined
as

µ∗(E) = inf

{ ∞∑
i=1

ν(Ai) : Ai ∈ A and E ⊂
∞⋃
i=1

Ai

}
,

which we call the Lebesgue outer measure. From here, we apply Carathéodory’s
theorem which gives the Lebesgue measure L.

An interesting result of the Lebesgue measure is that L(Q) = 0, or that the
rationals have 0 length in R. The Lebesgue measure of any single point is 0 since
we can cover a point with arbitrarily small half open intervals, and since measures
are countably additive, L(Q) = 0 (as well as for any countable set).

We now introduce some important properties of measures.

Definition 1.11. Let µ be an outer measure on a metric space X.

(1) µ is locally finite if for every x ∈ X there exists r > 0 such that µ(Br(x)) <
∞

(2) µ is a Borel measure if all Borel sets are µ measurable
(3) µ is Borel regular if it is a Borel measure and if for every A ⊂ X there

exists a Borel set B ⊂ X such that A ⊂ B and µ(A) = µ(B)
(4) µ is a Radon measure if it is a Borel measure and:

(a) µ(K) <∞ for compact sets K ⊂ X
(b) µ(V ) = sup {µ(K) : K ⊂ V is compact } for open sets V ⊂ X
(c) µ(A) = inf {µ(V ) : V ⊃ A is open } for sets A ⊂ X

The Lebesgue measure defined earlier is one example of a Borel measure. To
see this, note that every half open interval is measurable, hence the σ-algebra of
measurable sets includes all Borel sets since BR is generated by the family of half
open intervals described in the construction of Lebesgue measure.

Theorem 1.12. Let µ be an outer measure on a metric space X. Then µ is a
Borel measure if and only if µ(A ∪ B) = µ(A) + µ(B) for all sets A,B ⊂ X with
d(A,B) > 0.

Proof. See Matilla [2]. □

2. Hausdorff Measure and Dimension

We now begin our discussion of the Hausdorff measure which leads to the Haus-
dorff dimension, a way to define the dimension of subsets of a metric space. We
follow the approach of Matilla [2] for this section.

2.1. Construction. For this section, we let X be a metric space, F be a family of
subsets of X and ζ be a non-negative function on F with the following properties:
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(1) For every δ > 0, there exists a sequence of sets {Ei}∞i=1 ⊂ F with d(Ei) < δ
for each Ei such that X =

⋃∞
i=1Ei

(2) For every δ > 0, there exists E ∈ F such that ζ(E) ≤ δ and d(E) ≤ δ

For every 0 < δ ≤ ∞ and A ⊂ X, we define

ψδ = inf

{ ∞∑
i=1

ζ(Ei) : A ⊂
∞⋃
i=1

Ei, d(Ei) ≤ δ, Ei ∈ F

}
From Proposition 1.6, ψδ is an outer measure. However, ψδ is not always a Borel

measure [2]. Note that ψδ increases monotonically as δ decreases, hence we can
define ψ using ζ on F by

(2.1) ψ(A) = lim
δ→0+

ψδ(A) = sup
δ>0

ψδ(A) for A ⊂ X

We define ψ this way as it has better measure-theoretic properties than ψδ.

Theorem 2.2. ψ is a Borel measure and if the members of F are Borel sets, then
ψ is Borel regular.

Proof. ψ is an outer measure as ψδ is for every δ > 0, thus taking limits all the
properties still hold. To see that ψ is a Borel measure, we use Theorem 1.12.
Consider any A,B ⊂ X with d(A,B) > 0 and pick δ such that 0 < δ < d(A,B)/2.
For any sequence of sets {Ei}∞i=1 ⊂ F that covers A∪B and satisfies d(Ei) ≤ δ for
all i, then no Ei can intersect both A and B. Thus

∞∑
i=1

ζ(Ei) ≥
∞∑

A∩Ei ̸=∅

ζ(Ei) +

∞∑
B∩Ei ̸=∅

ζ(Ei) ≥ ψδ(A) + ψδ(B),

and by taking the infimum over all covers {Ei}∞i=1 ∈ F , it follows that ψδ(A∪B) ≥
ψδ(A) + ψδ(B). Taking limits as δ → 0+, ψ(A ∪B) = ψ(A) + ψ(B).

We see that ψ is Borel regular as for any A ⊂ X, for every i ∈ N, we can pick
a sequence of sets {Ei,j}∞j=1 ⊂ F such that A ⊂

⋃∞
j=1Ei,j , d(Ei,j) ≤ 1/i, and∑∞

j=1(Ei,j) ≤ ψ1/i(A) + 1/i. Then B =
⋂∞

i=1

⋃∞
j=1Ei,j is a Borel set with A ⊂ B

and ψ(A) = ψ(B) by taking limits. □

2.2. Hausdorff Measure. Let X be a separable metric space, 0 ≤ s <∞, and let
F = P(X) and ζ(E) = d(E)s. Using the construction in (2.1), we get the measure
Hs

δ defined as

(2.3) Hs
δ(A) = inf

{ ∞∑
i=1

d(Ei)
s : A ⊂

∞⋃
i=1

Ei, d(Ei) ≤ δ, Ei ⊂ X

}
This gives the measure Hs defined by Hs(A) = limδ→0+ Hs

δ(A), which we call
the s-dimensional Hausdorff measure. For integer values of s, the Hausdorff
measure gives a notion of s-dimensional volume. For example, for s = 0, H0(A)
gives the cardinality of A and H1 is a length measure. In particular, in Rn, we have
that Hn = Ln up to a constant [2].

Theorem 2.4. Let 0 ≤ s < n and define ζ(E) = d(E)s for E ⊂ X. If F =
{U ⊂ X : U is open}, then ψ(F , ζ) = Hs.
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Proof. For any E ⊂ X and ϵ > 0, the set U = {x : d(x,E) < ϵ} is open and
d(U) ≤ d(E) + 2ϵ. Since any cover of E can be turned into an open cover using
only slightly larger open sets, it follows that ψ = Hs. □

Theorem 2.5. For 0 ≤ s < t <∞ and A ⊂ X,

(1) Hs(A) <∞ implies Ht(A) = 0
(2) Ht(A) > 0 implies Hs(A) = ∞

Proof. To prove (1), fix any δ > 0 and consider {Ei}∞i=1 with d(Ei) ≤ δ such that
A ⊂

⋃∞
i=1Ei and

∑∞
i d(Ei)

s ≤ Hs
δ(A) + 1. Note that we can pick such {Ei}∞i=1

from the definition of Hs
δ(A). Then

Ht
δ(A) ≤

∞∑
i=1

d(Ei)
t =

∞∑
i=1

d(Ei)
s ∗ d(Ei)

t−s ≤ δt−s
∞∑
i=1

d(Ei)
s ≤ δt−s(Hs

δ(A) + 1).

Since this holds for any δ > 0, taking limits, we see that as δ → 0+, Ht(A) = 0
if Hs(A) is finite. (2) follows as it is the contrapositive of (1), though it has been
restated as it leads to the concept of the Hausdorff dimension. □

2.3. Hausdorff Dimension.

Definition 2.6. The Hausdorff dimension of a set A ⊂ X is defined as

dimA = sup {s : Hs(A) > 0} = sup {s : Hs(A) = ∞}
= inf

{
t : Ht(A) <∞

}
= inf

{
t : Ht(A) = 0

}(2.7)

In other words, dimA is the unique number such that s < dimA impliesHs(A) =
∞ and t > dimA implies Ht(A) = 0. Such a number exists and is equivalent to
the definition above as a consequence of Theorem 2.5.

Proposition 2.8. Let X be a metric space.

(1) Hausdorff dimension is monotonic: dimA ≤ dimB for A ⊂ B ⊂ X
(2) Hausdorff dimension is countably stable: dim

⋃∞
1 Ai = supdimAi for

any sequence of sets Ai ⊂ X

Proof. To see (1), note that Hs(A) ≤ Hs(B) for any s since Hs is an outer measure,
thus dimA ≤ dimB.

It follows that sup dimAi ≤ dim
⋃∞

1 Ai. For the reverse inequality,Hs(
⋃∞

1 Ai) ≤∑∞
i=1 Hs(Ai), hence if s > sup dimAi then Hs(

⋃∞
1 Ai) = 0, thus sup dimAi ≥

dim
⋃∞

1 Ai. □

When s = dimA, this does not necessarily imply that Hs(A) is nonzero or finite.
For example, dimRn = n but Hn(Rn) = ∞. However, if there exists s such that
Hs(A) is nonzero and finite, then s must equal dimA.

2.4. Cantor Set. Let 0 < λ < 1/2 and I0,1 = [0, 1]. We form the intervals
I1,1 = [0, λ] and I1,2 = [1−λ, 1] by removing the middle from the previous interval.
Continue this way by removing the open middle λ sized portion from each previous
intervals, so that for any k, we have Ik,1 . . . Ik,2k intervals of size λk.

We define the Cantor set by

C(λ) =

∞⋂
k=0

2k⋃
j=1

Ik,j .
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The Cantor set is an uncountable compact set without any interior points and
has zero Lebesgue measure, typically constructed with λ = 1/3.

Figure 1. The first 7 interations of the Cantor set [4]

We now calculate the Hausdorff dimension of the Cantor set. For any k ∈ N,
C(λ) ⊂

⋃2k

j=1 Ik,j , hence

Hs
λk(C(λ)) ≤

2k∑
j=1

d(Ik,j)
s = 2kλks = (2λs)k.

To make this a useful upper bound, we want it to be bounded as k → ∞, and
the smallest s where this holds is when 2λs = 1, i.e when s = log 2/ log(1/λ). This
gives Hs(C(λ)) = limk→∞ Hs

λk(C(λ)) ≤ 1, thus dimC(λ) ≤ s.
Now we show

(2.9) Hs(C(λ)) ≥ 1/4,

which means s is the unique value such thatHs(C(λ)) is finite, hence that dimC(λ) =
s. To prove (2.9), from Theorem 2.4, it suffices to show that for any sequence of
open intervals I1, I2 . . . that covers C(λ), we have

(2.10)
∑
j

d(Ij)
s ≥ 1/4.

To show (2.10), it suffices to show that for any open interval I and any fixed l,

(2.11)
∑

Il,i⊂I

d(Il,i)
s ≤ 4d(I)s.

It suffices to show this because for any sequence of open intervals Ij that covers
C(λ),

4
∑
j

d(Ij)
s ≥

∑
j

∑
Ik,i⊂Ij

d(Ik,i)
s ≥

2k∑
i=1

d(Ik,i)
s = 1.

The first inequality is by assumption since for each open interval Ij we assumed
that 4d(Ij)

s ≥
∑

Ik,i⊂Ij
d(Ik,i)

s.

The second inequality comes from the fact that each Ik,i is contained in some
Ij . To see this, note that since C(λ) is compact, there exists a finite subcover of
Ij , which we can make an arbitrarily small amount larger so that the endpoints of
each interval are outside C(λ) since the Cantor set has no interior points. Then
there exists δ > 0 such that the distance from the endpoints of each interval to
C(λ) is at least δ, hence for sufficiently large k such that δ > λk, every interval Ik,i
is contained in some Ij . Finally, the last equality follows by construction.

To show (2.11), suppose there is at least one interval Il,i in I (otherwise the
statement holds since Il,i ⊂ I is empty) and let n be the smallest integer such
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that I contains some In,i, hence n ≤ l. Let In,1 . . . In,p be all the n-th generation
intervals which intersect I. We have that p ≤ 4 because otherwise there would be
some previous generation interval In−1,i contained in I. Hence

4d(I)s ≥
p∑

m=1

d(In,m)s =

p∑
m=1

∑
Il,i⊂In,m

d(Il,i)
s ≥

∑
Il,i⊂I

d(Il,i)
s.

2.5. Self-similar Sets. We can also calculate the Hausdorff dimension of the Can-
tor set with a method that works for any self-similar set. In Rn, a set is self-similar
if it can be split into parts that are geometrically similar to the entire set. For
example, the Cantor set previously can be split into two halves, each geometrically
similar to the whole set.

Definition 2.12. A mapping S : Rn → Rn is called a similitude if for some
0 < r < 1, |S(x)− S(y)| = r|x− y| for x, y ∈ Rn.

In other words, a similitude is a map that can be expressed as S(x) = rg(x) + z
for x ∈ Rn for some orthogonal transformation g, z ∈ Rn and 0 < r < 1. The
Cantor set can be expressed in terms of similitudes as C(λ) = S1(C(λ))∪S2(C(λ)),
where S1, S2 : R → R, S1(x) = λx, S2(x) = λx+ 1− λ.

Definition 2.13. Let S = {S1, . . . SN} for N ≥ 2 be a finite sequence of similitudes
with contraction ratios r1 . . . rN . We say a non-empty compact set K is invariant

under S if K =
⋃N

i=1 SiK

The Cantor set is an example of an invariant set under the sequence of similitudes
described previously. Another example of an invariant set under a sequence of
similitudes is the Koch snowflake, where at each iteration one replaces the shape
with four of the same shapes scaled down by 1/3. The Koch snowflake can be
described as K = S1K ∪ S2K ∪ S3K ∪ S4K, where S1, S2, S3, S4 are similitudes
that rotate and translate the set with contraction ratios 1/3.

Figure 2. The first 3 iterations of the Koch snowflake [5]

For any finite sequence of similitudes, there exists a unique invariant compact
set. One way to see this is to note that the set of all non-empty compact subsets
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of Rn forms a complete metric space with the Hausdorff metric

ρ(E,F ) = max {d(x, F ), d(y,E) : x ∈ E, y ∈ F} .
A finite sequence of similitudes S is a contraction mapping with the Hausdorff
metric [2], hence it has a unique fixed point by the Banach fixed point theorem,
which is the unique invariant set by definition. Furthermore, applying the Banach
fixed point theorem again, for any compact set F ⊂ Rn we start with, repeatedly
applying S to F will make the resulting set Sn(F ) converge to K in the Hausdorff
metric.

Figure 3. The letter A converging to the Koch snowflake [5]

An invariant set K under S is called self-similar if for s = dimK, we have
Hs(Si(K) ∩ Sj(K)) = 0 for i ̸= j, which roughly speaking means that K doesn’t
overlap under the different similitudes in S. However, a stronger separation condi-
tion is typically used to define self-similarity called the open set condition.

Definition 2.14. A finite sequence of similitudes S is said to satisfy the open set

condition if there exists a non-empty open set O such that
⋃N

i=1 Si(O) ⊂ O and
Si(O) ∩ Sj(O) = ∅ for i ̸= j.

The sequence of similitudes for the Koch snowflake is an example that satisfies
the open set condition; the open triangle formed by the leftmost, top, and rightmost
points satisfies this condition. The Cantor set can also be seen to satisfy the open
set condition by considering the interval (0, 1). This condition is useful as for a
finite sequence of similitudes S that satisfies the open set condition, the dimension
of K is uniquely determined by the contraction ratios of S.

Theorem 2.15. Let S be a finite sequence of similitudes satisfying the open set
condition. Then the invariant set K is self-similar and 0 < Hs(K) < ∞ where

s = dimK. Furthermore, s is the unique number such that
∑N

i=1 r
s
i = 1.

Proof. See Matilla [2]. □

This gives a much simpler method of calculating the Hausdorff dimension of a
self-similar set. For S such that r1 . . . rN = r, we have that dimK = logN/ log(1/r),
which matches with what was previously proved about the Cantor set. For the Koch
snowflake, this gives dimK = log 4/ log 3.
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3. Minkowski Dimension

Another common way to define the dimension of a set is the Minkowski di-
mension, which is defined using coverings with open balls instead of coverings of
arbitrarily small sets. While the Minkowski dimension can be applied to subsets of
any metric space, for this section we restrict our discussion to subsets of Rn.

Definition 3.1. Let A be a non-empty bounded subset of Rn and for 0 < ϵ <∞,
define N(A, ϵ) to be the smallest number of ϵ-balls needed to cover A, or

N(A, ϵ) = min

{
k : A ⊂

k⋃
i=1

Bϵ(xi)

}
.

The upper and lower Minkowski dimensions of A are defined as

dimMA = inf

{
s : lim sup

ϵ→0+
N(A, ϵ)ϵs = 0

}
and

dimMA = inf

{
s : lim inf

ϵ→0+
N(A, ϵ)ϵs = 0

}
Equivalently, we have that

dimMA = inf

{
s : lim sup

ϵ→0+
N(A, ϵ)ϵs <∞

}
= sup

{
s : lim sup

ϵ→0+
N(A, ϵ)ϵs = ∞

}
= sup

{
s : lim sup

ϵ→0+
N(A, ϵ)ϵs > 0

}
,

and similarly for dimMA.
Minkowski dimension can also equivalently be formulated as

dimMA = lim sup
ϵ→0+

logN(A, ϵ)

log(1/ϵ)
,

dimMA = lim inf
ϵ→0+

logN(A, ϵ)

log(1/ϵ)
.

Intuitively, Minkowski dimension is defined this way because one would expect
the number of ϵ-balls required to cover A to grow proportionally to the dimension
of A; for some constant c, a line would require c/ϵ ϵ-balls, a sphere would require
c/ϵ2, etc.

It follows that

dimA ≤ dimMA ≤ dimMA.

To see the first inequality, note that for any s such that lim infϵ→0N(A, ϵ)ϵs = 0,
we also have that Hs(A) = 0 since any covering that works for the Minkowski
dimension also works for the Hausdorff dimension.

Interestingly, these inequalities can be strict even for rather uncomplicated sets.
Consider A = {0} ∪ {1/k : k ∈ N}, a countable compact set. dimA = 0 since A is
countable but dimMA = 1/2. To see this, fix any 0 < ϵ < 1/2 and consider n ∈ N



INTRODUCTION TO GEOMETRIC MEASURE THEORY 13

such that 1/(n+1)2 < 2ϵ < 1/n2. The points in {0}∪{1/k : k > n} can be covered
in n+ 1 ϵ-balls and the remaining n points can be covered in n ϵ-balls. Then

N(A, ϵ) ≤ 2n+ 1 ≤ 2n+ 1

n
(1/ϵ)1/2,

hence N(A, ϵ)ϵs ≤ 2n+1
n ϵs−1/2, so dimMA ≤ 1/2.

To see the reverse inequality, note that the distance between neighboring points
is

1

k
− 1

k + 1
=

1

k(k + 1)
≥ 1

(k + 1)2
,

so at least n− 1 ϵ-balls are required to cover A because the first n points must be
covered individually. Since

N(A, ϵ) ≥ n− 1 ≥ n− 1

n+ 1
(1/ϵ1/2),

we have dimMA ≥ 1/2. One can then observe that Minkowski dimension is not
countably stable like Hausdorff dimension as described in Proposition 2.8.
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