INTRODUCTION TO GEOMETRIC MEASURE THEORY

NICHOLAS CHIN

ABSTRACT. Measure theory is a powerful tool in analysis used to assign a
notion of size to sets in a suitable manner. For example, the Lebesgue measure
assigns n-dimensional volume to subsets of R™ , such as area in R? or volume
in R3. The Hausdorff measure generalizes this by assigning s-dimensional
volume to subsets of any metric space, leading to the concept of the Hausdorff
dimension of a set. This paper will begin with an overview of abstract measure
theory, followed by an introduction to Hausdorff measure and dimension, its
applications to fractal geometry, and the Minkowski dimension.
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1. MEASURE THEORY

For certain simple subsets of R™, n-dimensional volume follows what we would
intuitively expect; a circle in R? will have area 7r2, an interval in R has length
equal to the starting point minus the ending point, and the volume of two disjoint
sets should be the sum of their volumes. However, for more complicated sets, there
may not be an intuitive answer for the volume, such as Q in R, an unbounded and
infinite set which actually has length (Lebesgue measure in this case) 0 in R. In
general, for sets in a metric space, measure theory is needed to assign a notion of
size to a set. For this section, we follow the approach of Folland [1].
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1.1. o-algebras. We begin by defining o-algebras, the type of collection of sets
which measures are defined on.

Definition 1.1. Let X be a nonempty set. An algebra A on X is a nonempty
collection of subsets of X containing () which has the following properties:

(1) A is closed under finite unions: for any finite sequence of sets Ey ... E, in
A, the union |J]_, E; is also in A.
(2) A is closed under complements: for any F € A, we have that E¢ € A.

Definition 1.2. Let X be a nonempty set. A o-algebra M on X is an algebra
which is closed under countable unions: for any sequence of sets {E;}2; in A, the
union J;°, E; is also in A.

Note that since (), E; = (U, £5)¢, algebras are closed under finite intersections
and o-algebras are closed under countable intersections.

If £ is any collection of subsets of X, the intersection of all o-algebras containing
& denoted by M(E) is still a o-algebra: for any E € M(E), E is in every o-
algebra containing &, hence E° is too, thus E¢ € M(E). Also, for any sequence of
sets {F;}2, in M(E), since each F; is in every o-algebra containing £, the union
U2, E; is as well. M(&) is thus the smallest o-algebra containing £, which we call
the o-algebra generated by &.

One important example of a g-algebra in a given metric space X is the Borel
o-algebra, which is the o-algebra generated by open sets in X denoted by Bx. This
contains all open sets in X, as well as all closed sets (since any closed set is the
complement of an open set) and countable intersections of open and closed sets,
etc.

1.2. Measures. We now define the properties of measures.

Definition 1.3. Let X be a set with a o-algebra M. A measure on (X, M) is a
set function p : M — [0, oo] such that:
(1) 0 € M and u(0) = 0.
(2) pis countably additive: for any sequence of disjoint sets {E;}$2, in M,
w(Uisy Bi) = 2272, u(E).

Note that countable additivity implies finite additvity since we can let all later
sets be empty after some point in the sequence. We call the sets in M measurable
sets and we call (X, M, 1) a measure space.

Theorem 1.4. Let (X, M, 1) be a measure space.

(1) w is monotonic: If E,F € M and E C F, then pu(E) < u(F).

(2) u is countably subadditive: If {E;}2, is a sequence of sets in M, then
U2y Bi) < 3575, n(E;).

(3) w is continuous from above: If {E;}32, is a sequence of sets in M and
By C EyC ..., then p(U;2, E;) = lim;_, 00 p(E;).

(4) p is continuous from below: If {E;}°, is a sequence of sets in M and
E1 D Ey D ... with p(Ey) < oo then p((Niey Ei) = im0 p(E;).

Proof. (1) w(F)=u(E)+pu(F\E) > u(E) for ECF
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(2) Let Fy = Eq, F, = E \ (U E;) for k > 1. The Fy’s are disjoint and
UL, F,=U; E;forallne N Thus

p(lJ B = F) =D uF) <> ulE)
i=1 i=1 i=1 i—
where the last inequality follows from (1).
(3) Setting Fy = 0,

u(_Lij1 E)= ; p(Ei\ Bi—1) = lim Z; p(Ei\ Eio1) = lim p(E,).
The first equality follows from countable additivity and for the last equality
note that Y | u(E; \ E;—1) = p(E,) from finite additivity.

(4) Let F; = By \ E;, so we have Fy C Fy C ..., p(Er) = u(F;) + u(E;), and
Uisi Fi = E1 \ (N2, Ei). Then

w(En) = () )+ lim p(F) = () o)+ i (u(E2) — p(E).

i— 00 i—00
=1 =1

The first equality is because pu(Jje; F;) = lim; oo u(E;) from (c). Sub-
tracting p(F) < oo from both sides yields the desired result.
([l

A set E € M is called a null set if u(E) = 0. As these sets have no size in the
sense of the measure being used, if a statement is true for all x € X except for some
z in a null set, we say that this statement is true almost everywhere.

For E such that u(FE) = 0, it follows by monotonicity that for F' C E, u(F) =0
if F'is measurable. However, subsets of null sets are not necessarily measurable. If
all subsets of null sets are measurable, we call the measure complete.

1.3. Outer Measures. Outer measures are a weaker notion of size defined on all
subsets of a set, not just on a o-algebra of measurable subsets. While useful on
their own, outer measures can also be used to construct a measure.

Definition 1.5. An outer measure p* on a nonempty set X is a set function
p e P(X) =10, oo] such that:

(1) p(0) =

(),u 1smonoton1c p*(A) <upu*(B)if ACBCX.

(3) p* is countably subadditive: p*(|J;o; Ai) < Yooy p*(4;) for any se-
quence {A4;}2, C X.

Note that unlike measures, these properties hold on all subsets of X, not just
measurable ones. Outer measures are typically constructed by starting with a
family of sets and a set function on that family of sets, then taking the infimum of
the set function over all covers of sets in the family.

Proposition 1.6. Let £ C P(X) and p: € — [0,00] such that D € £, X € €, and
p(0) =0. For any A C X, define

:inf{ip(Ei) B, €& and AC DEZ}
i=1

i=1
Then p* is an outer measure.
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Proof. pu*(0) = 0 since p(@) = 0. Monotonicity follows since any cover of A
is also a cover of B if A C B. To see countable subadditivity, consider any
{A;}32, € X and fix any € > 0. For each i, there exists a sequence {E; x} ., C €
such that A; C Upe, Eix and > poy p(Eix) < p*(A;) + €27 from how we de-
fine p*(A;). Since U=, 4; € U2, Urey Eik, by summing over each A;, we have
S > p(Eig) < 3oy pf(A;) 4+ €. As the sequence of E; s covers |-, A,
we have that p* (o, Ai) < > ooy #*(A;)+e€. Since € was arbitrary, p* is countably
subadditive. ]

Definition 1.7. Let p* be an outer measure on X and A C X. Ais p*-measurable
if u*(E)=p"(ENA)+p*(EnA°) forall E C X.

Intuitively, this means that for a well behaved set A, if E D A, the outer measure
w*(A) = p*(E N A) is equal to the inner size pu*(F) — p*(E N A°). For any A C X,
it follows immediately that p*(E) < p*(E N A) + p*(E N A°) for any E C X
by subadditivity, thus to prove A is measurable, it suffices to show the reverse
inequality. Using this definition of measurable sets, we can then construct a measure
from an outer measure with the following theorem.

Theorem 1.8. Carathéodory’s Theorem. If p* is an outer measure on X,
the collection of p*-measurable sets M forms a o-algebra. Moreover, the measure
formed by restricting p* to M is a complete measure.

Proof. We first prove that M is an algebra. M is closed under complements from
the definition of p*-measurable sets as the definition is the same for A and A¢. To
show M is an algebra, consider any A,B € M and E C X.

i (B) = 1" (BN A) + p*(E 0 A%
= (ENANB)+ " (ENANB)4+u* (ENA°NB) 4+ u*(EN A°N B°)

Since AUB = (AN B)U (AN B U (A°N B), by subadditivity,

P ((ENANB)+p (ENANBY) +p*(ENA°NB) > " (EN(AUB)),
thus
p(E) = p*(EN(AUB)) + p"(EN (AU B)),
hence AU B € M and M is an algebra.

To show that M is a o-algebra, it suffices to show that it is closed under countable
disjoint unions since we can express any countable union of sets in M as a countable
disjoint union of sets in M. Consider any sequence of disjoint sets {A4;}2, in M
and let B,, = J;_; 4; and B =J;2; A;. For any E C X,

p(ENB,) =p"(ENB,NA,)+u (ENB,NAS)
=p (ENAp) + p*(EN Bp-1),
and induction shows p*(EN B,) = >, p*(E N A;). Thus

W (E) = i (B0 By) 1 i (BN BE) > S (B0 A + (B 0 BY)
and letting n — oo, we have -
p(ENA;)+p (ENB°) > u*([j(E NA)) + p*(EnNB°
OB+ (BN B 3 i (B),

M8

pwr(E) >

*
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hence all of the inequalities in the equation are equalities. We then obtain that
B=J;2, A; € M, and letting E = B, u*(B) = Y ., u*(A;), so M is a o-algebra
and p* is countably additive on M.

To see that the restriction of u* to M is complete, for any A such that p*(A4) =0
and for any £ C X,

pr(E) < pt(ENA)+p"(ENAS) = p*(ENA°) < p*(B),
so A e M. O

Although the construction of an outer measure in Proposition 1.6 does not im-
pose many requirements on p or £, we often want p*(A) to equal p(A) for A € &.
This is not always guaranteed; consider the case in R where £ is the family of
intervals in R and p((a,b)) = (b — a)? for any interval (a,b) without loss of gen-
erality. p((0,1)) =1 but *((0,1)) < 1 since (0,1/2] and [1/2,1) cover (0,1) but
p((0,1/2]) + p([1/2,1)) = 1/2. Hence to ensure that p and u* agree on sets A € &,
we want p to be a premeasure.

Definition 1.9. A set function po : A — [0,00] on an algebra A is called a
premeasure if:
(1) po(@) =0
(2) For any sequence of disjoint sets in A such that |J;2, 4; € A, po(U;2; Ai) =
>izy Ho(Aq)

The key difference between a measure and a premeasure is that measures are
defined on a o-algebra while premeasures are defined on an algebra. However, with
the following proposition, we see that premeasures can be extended to an outer
measure and thus a measure.

Proposition 1.10. Let po be a premeasure on A C P(X). po induces an outer
measure pu* on X defined as

w*(E) = inf {ZNO(Ai) A, e Aand E C U Ai}
i=1

i=1
Then for every A € A, A is measurable and p*(A) = po(A).

Proof. Tt follows from Proposition 1.6 that p* is an outer measure. To see that
every A € A is measurable, consider any £ C X and ¢ > 0. Then from the
definition of p*(E), there exists a sequence {A4;}2, C A such that E C |J;2, 4;
and Y o2 po(A;) < p*(E) + €. Since po is additive on A,

oo o0
PHE) +e> Y po(AinA) + > po(Ai N A°) > p*(E N A) + p*(E N A°).
i=1 i=1
The first inequality follows because A is an algebra and g is additive on A and
the second inequality follows from the definition of p*. Since € was arbitrary, A is
measurable.

To show that p*(A) = po(A), consider any A € A. A C |J;2, A; for some
sequence of sets {A4;}7°, C Aandlet B, = Aﬂ(An\U:.:ll A;). The B,,’s are disjoint
members of A such that (J;=; B, = A. Then p(A4) = > 52, po(Bi) < ey po(As),
hence po(A) < p*(A) and the reverse inequality follows because A € A is a cover
of itself, thus po(A) = pu*(A). O
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With this, we can construct a measure on X by starting with a premeasure pg
defined on an algebra A and using this to construct an outer measure p* as shown
in Proposition 1.10. Then applying Carathéodory’s Theorem, the collection of *-
measurable sets M is a o-algebra, giving a measure p on (X, M) where u = p* on
the sets in M and p = p on the sets in A, which are all measurable.

One of the most important measures in R is the Lebesgue measure, which we
define as follows. Let A be the algebra of half open intervals in R of the form (a, b] or
(a,00) with —oo < a < b < oo and let v(A) = Y7 | (b;—a;) where A = " (a;, bi].
Then v is a premeasure on A [1], hence it induces an outer measure p* on X defined

as
e’}

o0
p*(E) = inf {ZV(Az) tAje Aand E C U AZ} ,
i=1 i=1
which we call the Lebesgue outer measure. From here, we apply Carathéodory’s
theorem which gives the Lebesgue measure L.

An interesting result of the Lebesgue measure is that £(Q) = 0, or that the
rationals have 0 length in R. The Lebesgue measure of any single point is 0 since
we can cover a point with arbitrarily small half open intervals, and since measures
are countably additive, £(Q) = 0 (as well as for any countable set).

We now introduce some important properties of measures.

Definition 1.11. Let p be an outer measure on a metric space X.

(1) p is locally finite if for every & € X there exists r > 0 such that u(B,(z)) <

00
(2) p is a Borel measure if all Borel sets are p measurable
(3) p is Borel regular if it is a Borel measure and if for every A C X there

exists a Borel set B C X such that A C B and u(A) = u(B)
(4) p is a Radon measure if it is a Borel measure and:

(a) p(K) < oo for compact sets K C X

(b) u(V)=sup{u(K): K CV is compact } for open sets V C X

(¢) w(A) =inf {u(V):V D> Ais open } for sets A C X

The Lebesgue measure defined earlier is one example of a Borel measure. To
see this, note that every half open interval is measurable, hence the o-algebra of
measurable sets includes all Borel sets since By is generated by the family of half
open intervals described in the construction of Lebesgue measure.

Theorem 1.12. Let p be an outer measure on a metric space X. Then u is a
Borel measure if and only if u(AU B) = p(A) + u(B) for all sets A, B C X with
d(A, B) > 0.

Proof. See Matilla [2]. O

2. HAUSDORFF MEASURE AND DIMENSION

We now begin our discussion of the Hausdorff measure which leads to the Haus-
dorff dimension, a way to define the dimension of subsets of a metric space. We
follow the approach of Matilla [2] for this section.

2.1. Construction. For this section, we let X be a metric space, F be a family of
subsets of X and ¢ be a non-negative function on F with the following properties:
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(1) For every & > 0, there exists a sequence of sets {E;}22, C F with d(E;) < ¢
for each E; such that X = J;°, E;
(2) For every ¢ > 0, there exists F € F such that ((E) < ¢ and d(E) < 4§

For every 0 < § < oo and A C X, we define

(o) oo
Y5 = inf {ZC(Ei) tAcC | JEi,d(E) <6,E; € ]-"}
i=1 i=1
From Proposition 1.6, ¥s is an outer measure. However, 15 is not always a Borel
measure [2]. Note that ts increases monotonically as § decreases, hence we can

define ¥ using ¢ on F by

6—0t

(2.1) P(A) = lim 9s(A) =supps(A) for AC X
>0

We define 1 this way as it has better measure-theoretic properties than )s.

Theorem 2.2. v is a Borel measure and if the members of F are Borel sets, then
1 is Borel reqular.

Proof. 1 is an outer measure as 15 is for every § > 0, thus taking limits all the
properties still hold. To see that i is a Borel measure, we use Theorem 1.12.
Consider any A, B C X with d(A, B) > 0 and pick ¢ such that 0 < § < d(A, B)/2.
For any sequence of sets {E;}$2, C F that covers AU B and satisfies d(E;) < § for
all 7, then no F; can intersect both A and B. Thus

DCE) = Y B+ D (B = Ys(A) + s(B),

ANE; #£0 BNE;#0

and by taking the infimum over all covers {E;}°, € F, it follows that ¢s(AUB) >
s(A) + 1s(B). Taking limits as § — 07, (AU B) = ¢(A) + ¢(B).

We see that v is Borel regular as for any A C X, for every ¢ € N, we can pick
a sequence of sets {Eu};il C F such that A € U2, Eij, d(E;;) < 1/i, and
Y1 (Eij) < 41/i(A) +1/i. Then B = (2, U;2, Ei; is a Borel set with A C B
and ¥(A) = ¥(B) by taking limits. O

2.2. Hausdorff Measure. Let X be a separable metric space, 0 < s < 0o, and let
F =P(X) and ((F) = d(F)®. Using the construction in (2.1), we get the measure
H; defined as

(2.3) H3(A) = inf {Z d(E;)*: Ac | Eid(E;) <6,E; C X}
i=1 i=1
This gives the measure H® defined by H®(A) = lims_o+ H3(A), which we call
the s-dimensional Hausdorff measure. For integer values of s, the Hausdorff
measure gives a notion of s-dimensional volume. For example, for s = 0, H%(A)
gives the cardinality of A and H' is a length measure. In particular, in R”, we have
that H™ = L™ up to a constant [2].

Theorem 2.4. Let 0 < s < n and define ((E) = d(E)® for E C X. If F =
{U C X : U is open}, then ¥(F,() = H*.
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Proof. For any E C X and € > 0, the set U = {x:d(z,E) < ¢} is open and
d(U) < d(E) + 2e. Since any cover of E can be turned into an open cover using
only slightly larger open sets, it follows that ¢ = H*. O

Theorem 2.5. For0<s<t< oo and A C X,
(1) H*(A) < oo implies H'(A) =0
(2) H'(A) > 0 implies H*(A) = oo
Proof. To prove (1), fix any 6 > 0 and consider {E;}$2, with d(E;) < ¢ such that

AcC U2, E; and Y 7 d(E;)* < H3(A)+ 1. Note that we can pick such {E;}$2,
from the definition of Hj(A). Then

HL(A) < id(Ei)t = id(Ei)s s d(E;)1™ < 6t id(Ei)s < SR (HE(A) +1).
=1 =1 =1

Since this holds for any § > 0, taking limits, we see that as § — 07, H'(A) =0
if H*(A) is finite. (2) follows as it is the contrapositive of (1), though it has been
restated as it leads to the concept of the Hausdorff dimension. O

2.3. Hausdorff Dimension.

Definition 2.6. The Hausdorff dimension of a set A C X is defined as
dim A =sup{s: H*(A4) > 0} =sup{s: H*(A) = oo}

(2.7) =inf {¢t: H'(A) < 0o} =inf {t: H'(4) =0}

In other words, dim A is the unique number such that s < dim A implies H*(A) =
oo and t > dim A implies H!(A) = 0. Such a number exists and is equivalent to
the definition above as a consequence of Theorem 2.5.

Proposition 2.8. Let X be a metric space.

(1) Hausdorff dimension is monotonic: dim A < dim B for AC B C X
(2) Hausdorff dimension is countably stable: dim|J7® A; = supdim 4; for
any sequence of sets A; C X

Proof. To see (1), note that H*(A) < H*(B) for any s since H* is an outer measure,
thus dim A < dim B.

It follows that sup dim A; < dim |J;~ A4;. For the reverse inequality, H* (]~ 4;) <
Yoo H5(A;), hence if s > supdim A; then H*(UJ™ A;) = 0, thus supdim 4; >

When s = dim A, this does not necessarily imply that H*(A) is nonzero or finite.
For example, dimR"™ = n but H"(R™) = oco. However, if there exists s such that
H?(A) is nonzero and finite, then s must equal dim A.

2.4. Cantor Set. Let 0 < A < 1/2 and Ip; = [0,1]. We form the intervals
I1 =1[0,A] and I 2 = [1 — A, 1] by removing the middle from the previous interval.
Continue this way by removing the open middle A sized portion from each previous
intervals, so that for any k, we have Iy 1 ... I} o» intervals of size AE.

We define the Cantor set by

oo 2k

c\) = m U I j-

k=0j=1
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The Cantor set is an uncountable compact set without any interior points and
has zero Lebesgue measure, typically constructed with A = 1/3.

FIGURE 1. The first 7 interations of the Cantor set [4]

We now calculate the Hausdorff dimension of the Cantor set. For any k € N,
k
C(\) C U?Zl Iy ;, hence
2k
3 (CO)) <D d(I )" = 2800 = (2A%)*.
j=1
To make this a useful upper bound, we want it to be bounded as k£ — oo, and
the smallest s where this holds is when 2A®* = 1, i.e when s = log 2/log(1/\). This
gives H*(C(N)) = limg 00 H3 (C(A)) < 1, thus dim C(X) < s.
Now we show
(2.9) HA(CO) > 1/4,
which means s is the unique value such that H*(C())) is finite, hence that dim C'(\) =

s. To prove (2.9), from Theorem 2.4, it suffices to show that for any sequence of
open intervals Iy, Iz ... that covers C'(\), we have

(2.10) > d(I;)* > 1/4.

To show (2.10), it suffices to show that for any open interval I and any fixed [,

(2.11) > d(I,)° < 4d(D)”.

Ilﬂ',CI

It suffices to show this because for any sequence of open intervals I; that covers

C);

2k
AN dI) =D Y dIe)* =Y d(Ies) =1
J J In:Clj i=1
The first inequality is by assumption since for each open interval I; we assumed
that 4d(lj)s Z ZII\;J',CI]’ d(IkJ)s
The second inequality comes from the fact that each Iy ; is contained in some
I;. To see this, note that since C'(\) is compact, there exists a finite subcover of
I;, which we can make an arbitrarily small amount larger so that the endpoints of
each interval are outside C'(A) since the Cantor set has no interior points. Then
there exists § > 0 such that the distance from the endpoints of each interval to
C(N) is at least 6, hence for sufficiently large k such that § > \*, every interval Iy ;
is contained in some /;. Finally, the last equality follows by construction.
To show (2.11), suppose there is at least one interval I;; in I (otherwise the
statement holds since [;; C I is empty) and let n be the smallest integer such



10 NICHOLAS CHIN

that I contains some I, ;, hence n <. Let I, 1 ..., , be all the n-th generation
intervals which intersect I. We have that p < 4 because otherwise there would be
some previous generation interval I,,_; ; contained in I. Hence

(1) >3 dLym) = > 30 d(l) > Y d(h).

m=11; ;Clnm I;CI

2.5. Self-similar Sets. We can also calculate the Hausdorff dimension of the Can-
tor set with a method that works for any self-similar set. In R"™, a set is self-similar
if it can be split into parts that are geometrically similar to the entire set. For
example, the Cantor set previously can be split into two halves, each geometrically
similar to the whole set.

Definition 2.12. A mapping S : R™ — R"™ is called a similitude if for some
0<r<1,|S() =Sy =rlz—y|forz,ycR"

In other words, a similitude is a map that can be expressed as S(z) = rg(z) + 2
for x € R™ for some orthogonal transformation g, z € R™ and 0 < r < 1. The
Cantor set can be expressed in terms of similitudes as C'(\) = S1(C'(A))US2(C(N)),
where 51,5 : R = R, Sy(z) = Az, Sa(z) = Az +1— A

Definition 2.13. Let S = {S1,...Sn} for N > 2 be a finite sequence of similitudes
with contraction ratios r; ...ry. We say a non-empty compact set K is invariant
under S if K = Ufil S K

The Cantor set is an example of an invariant set under the sequence of similitudes
described previously. Another example of an invariant set under a sequence of
similitudes is the Koch snowflake, where at each iteration one replaces the shape
with four of the same shapes scaled down by 1/3. The Koch snowflake can be
described as K = S1K U Sy K U S3K U Sy K, where S1, 55,53, 5, are similitudes
that rotate and translate the set with contraction ratios 1/3.

FIGURE 2. The first 3 iterations of the Koch snowflake [5]

For any finite sequence of similitudes, there exists a unique invariant compact
set. One way to see this is to note that the set of all non-empty compact subsets
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of R™ forms a complete metric space with the Hausdorff metric
p(E, F) =max{d(z,F),d(y,F):x € E,y € F}.

A finite sequence of similitudes S is a contraction mapping with the Hausdorff
metric [2], hence it has a unique fixed point by the Banach fixed point theorem,
which is the unique invariant set by definition. Furthermore, applying the Banach
fixed point theorem again, for any compact set F© C R™ we start with, repeatedly
applying S to F' will make the resulting set S™(F’) converge to K in the Hausdorff
metric.

AXT A

-
AW A .
A K
N A
ANTZAY  TaARTp A Sl S
Py 5
O by ,fw; v‘me
£, 3 £ d
ol e e PN s

FIGURE 3. The letter A converging to the Koch snowflake [5]

An invariant set K under S is called self-similar if for s = dim K, we have
Mo (S;(K) N Sj(K)) =0 for ¢ # j, which roughly speaking means that K doesn’t
overlap under the different similitudes in S. However, a stronger separation condi-
tion is typically used to define self-similarity called the open set condition.

Definition 2.14. A finite sequence of similitudes S is said to satisfy the open set
condition if there exists a non-empty open set O such that | J)_, S;(0) € O and

The sequence of similitudes for the Koch snowflake is an example that satisfies
the open set condition; the open triangle formed by the leftmost, top, and rightmost
points satisfies this condition. The Cantor set can also be seen to satisfy the open
set condition by considering the interval (0,1). This condition is useful as for a
finite sequence of similitudes S that satisfies the open set condition, the dimension
of K is uniquely determined by the contraction ratios of S.

Theorem 2.15. Let S be a finite sequence of similitudes satisfying the open set
condition. Then the invariant set K is self-similar and 0 < H*(K) < oo where

N s _
e =1

Proof. See Matilla [2]. O

s =dim K. Furthermore, s is the unique number such that >

This gives a much simpler method of calculating the Hausdorff dimension of a
self-similar set. For S such that vy ...7rx = r, we have that dim K = log N/log(1/r),
which matches with what was previously proved about the Cantor set. For the Koch
snowflake, this gives dim K = log4/log 3.
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3. MINKOWSKI DIMENSION

Another common way to define the dimension of a set is the Minkowski di-
mension, which is defined using coverings with open balls instead of coverings of
arbitrarily small sets. While the Minkowski dimension can be applied to subsets of
any metric space, for this section we restrict our discussion to subsets of R".

Definition 3.1. Let A be a non-empty bounded subset of R and for 0 < € < oo,
define N (A, ¢) to be the smallest number of e-balls needed to cover A, or

k
N(A,€) = min {k Ac Be(xi)} :

i=1

The upper and lower Minkowski dimensions of A are defined as

dimps A = inf {8 :limsup N(4, )€’ = 0}

e—0t
and

dim,, A = inf {3 :liminf N(A,€)e’ = 0}

e—0t

Equivalently, we have that

dimps A = inf {s :limsup N (4, €)e® < oo}

e—0t

= sup {s :limsup N (4, e)e® = oo}
e—0t

= sup {s :limsup N(A4,¢)e’ > 0} ,
e—0t

and similarly for dim,,A.
Minkowski dimension can also equivalently be formulated as

— ) log N(A,¢)
dimp A = limsup ——————=,
M T Tlog(1/6)

I log N(A
dimp; A = lim inf M.
=0+ log(1l/e)

Intuitively, Minkowski dimension is defined this way because one would expect
the number of e-balls required to cover A to grow proportionally to the dimension
of A; for some constant ¢, a line would require ¢/e e-balls, a sphere would require
c/€?, etc.

It follows that

dim A < dim;,A < dimp/A.

To see the first inequality, note that for any s such that liminf. o N(A,€)e® = 0,
we also have that H®(A) = 0 since any covering that works for the Minkowski
dimension also works for the Hausdorff dimension.

Interestingly, these inequalities can be strict even for rather uncomplicated sets.
Consider A = {0} U {1/k: k € N}, a countable compact set. dim A = 0 since A is
countable but dim,;A = 1/2. To see this, fix any 0 < € < 1/2 and consider n € N
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such that 1/(n+1)? < 2¢ < 1/n?%. The points in {0} U{1/k : k > n} can be covered
in n + 1 e-balls and the remaining n points can be covered in n e-balls. Then

2 1
N <2m+1< 2T 012,
n
hence N (4, e)e® < 22t es=1/2 50 dimpy A < 1/2.
To see the reverse inequality, note that the distance between neighboring points
is
1 - 1 S 1
ko k+1 k(k+1) = (k+1)?%
so at least n — 1 e-balls are required to cover A because the first n points must be
covered individually. Since

—1
N(A e >n—1> 27“(1/61/2),

we have dim,;A > 1/2. One can then observe that Minkowski dimension is not
countably stable like Hausdorff dimension as described in Proposition 2.8.
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