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Abstract

This expository paper studies phase transitions in Bernoulli bond percolation and the Fortuin–Kasteleyn
random-cluster model on transitive graphs. Criteria for the existence of a supercritical phase are estab-
lished: we prove that pc < 1 if and only if the number of minimal cutsets from the origin grows at most
exponentially with their size, and in particular that pc < 1 for every uniformly transient infinite graph.
Next, we prove sharpness of the phase transition – namely, exponential decay of connection probabilities
for p < pc and linear growth of the infinite-cluster density for p > pc – by an OSSS-informed decision
tree approach. Finally, using a recent differential inequality for cluster volumes, we derive new inequalities
relating critical exponents and show that in the entire subcritical regime the cluster-size distribution has
an exponential tail.
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1 Introduction

This article provides an exposition of several recent advances in the study of phase transitions in Bernoulli

bond percolation and random-cluster models. We have two main goals: (i) to present rigorous criteria for the

existence of a nontrivial supercritical phase; and (ii) to provide proofs of the sharpness of the phase transition,

together with new inequalities relating the critical exponents. To this end, we combine geometric arguments

(Peierls’-type estimates), probabilistic inequalities (the OSSS decision-tree method), and analytic techniques

(differential inequalities for cluster volumes).

Classical results on percolation include Peierls’ 1936 argument establishing pc < 1 for Z2 [Pei36], the

works of Menshikov [Men86] and Aizenman-Barsky [AB87] proving sharpness of the transition on Zd. More

recently, Duminil-Copin, Raoufi, and Tassion [DRT19] introduced the decision-tree method (based on the

OSSS inequality [OSSS05]), which can be extended to random-cluster models. On the geometric side, Babson

and Benjamini (1999) conjectured that pc < 1 if and only if the number of minimal cutsets grows at most

exponentially; this conjecture was finally confirmed by Easo, Severo, and Tassion [EST24]. On the analytic side,

Hutchcroft [Hut20] developed new volume-based differential inequalities, from which follow both exponential

subcritical decay of cluster volumes and new universal inequalities between critical exponents.

Organization of the paper. In Section 2 we recall the definitions and basic properties of Bernoulli bond

percolation and the random-cluster model. Section 3 is devoted to the existence of phase transitions: we review

Peierls” classical argument, state and explain the converse Peierls’ theorem of Easo-Severo-Tassion, and deduce

that all uniformly transient graphs satisfy pc < 1. Section 4 turns to the sharpness of the transition with

respect to radii of large open clusters: we present the decision-tree/OSSS approach, and indicate the extension

to random-cluster models with q ≥ 1. Section 5 discusses Hutchcroft’s volume-based differential inequality

and derives the critical exponent inequalities γ ≤ δ− 1 and ∆ ≤ γ +1, together with the exponential decay of

cluster volumes in the subcritical phase.

2 Background

In this section, we introduce Bernoulli bond percolation, random-cluster models, and related terminologies

and state a few well-known properties that will be important to us. An interested reader may look into
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Grimmett’s books [Gri99][Gri06] for more details.

2.1 Bernoulli Percolation

Definition 2.1. Consider an infinite, connected, transitive graph G with maximal degree≤ d. Let E be its

edge set and V be its vertex set. For a given p ∈ [0, 1], each edge e ∈ E has a probability of p to be open and

a chance of 1− p to be closed. Formally, there is a family of i.i.d. random variables {Xp
e }e∈E with Xp

e ∼ Berp

for all e, so that Xp
e = 1 implies edge e is open and Xp

e = 0 implies edge e is closed. Define O as the collection

of all open edges. Such (G,O) is called a (bond) Bernoulli percolation model.

Notice that in this process of constructing O, there will be (random) open paths (for example, there may

be vertices x and y connected by a path consisting solely of open edges) and thus open clusters (sets of vertices

each pair of which is connected by an open path).

Denote x, y connected by an open path as x↔ y and open cluster containing x as C(x).

The rest of the section often assumes without loss of generality that G = Zd (the d-dimensional cubic

lattice).

Definition 2.2. (Percolation probability space). Call a state of percolation processes a configuration (which is

to assign a 0/1 (closed/open) value to each edge in E). Let Ω =
∏

e∈E{0, 1} be the space of all configurations.

Let F be the σ−algebra generated by finite cylinder sets
{∏

e∈F {0, 1} : F ⊆ E, |F | <∞
}
. The probability

measure on (Ω,F) is the product measure Pp characterized by Pp(ω : ω(e) = 1) = p and Pp(ω : ω(e) = 0) = 1−p

for each edge e (independently). In other words, Pp =
⊗

e∈E Bernoulli(p) on Ω. We will work with the

probability space (Ω,F , Pp) for a fixed value of p.

Definition 2.3. Let Λ(x, n) denote the box (cube) of side length 2n centered at x in G (in particular, Λ(0, n)

is the box of radius n around the origin). We abbreviate Λn := Λ(0, n) = [−n, n]d.

Define θn(p) = Pp(0 ↔ ∂Λn), θ(p) = Pp(0 ↔ ∞). That is, θ(p) is the probability that 0 is in an infinite

open cluster.

Define ψ(p) = P [
⋃

x∈Zd{|Cp(x)| = ∞}]. That is, ψ(p) is the probability that there exists an infinite open

cluster.

It is easy to see that θ(p) is a nondecreasing function of p, since increasing p (making each edge more likely

to be open) can only increase the chance of an infinite cluster.

With the help of Kolmogorov’s 0-1 Law, we can prove the following lemma which says that the positivity

of θ(p) is enough to determine the existence of an infinite open cluster.

Lemma 2.4. For any p ∈ [0, 1], ψ(p) =

{
0 (if θ(p) = 0)

1 (if θ(p) > 0)

Since p 7→ θ(p) is monotone increasing, ψ(p) stays 0 until p increases to some point such that θ(p) is

nonzero, and then ψ(p) stays 1. Therefore, it is natural to use infimum to define that threshold.
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Definition 2.5. (Critical value). The critical value pc(d) for the percolation model in Zd is defined as

pc(d) := inf{p ∈ [0, 1] : θ(p) > 0} = inf{p ∈ [0, 1] : ψ(p) = 1}.

Theorem 2.6. (Existence of phase transitions in Bernoulli percolation models). Given G = Zd with d ≥ 2.

There exists a critical probability pc ∈ (0, 1) such that for all p > pc, θ(p) = 1 (supercritical phase); for all

p < pc, θ(p) = 0 (subcritical phase). Thus, we say that the Bernoulli bond percolation has a unique phase

transition.

We will prove this theorem in a more general form in Section 3.1.

2.2 Random Cluster Model

We will first work on a finite graph G = (V,E) and later pass to the limit G↗ Zd.

For a configuration ω ∈ {0, 1}E write o(ω) = |{e ∈ E : ωe = 1}| and c(ω) = |E| \ o(ω) for the numbers

of open and closed edges. For a boundary condition # ∈ {f,w} (free or wired), let k#(ω) be the number

of connected components (“clusters”) of the open subgraph. In the wired case # = w, all vertices on the

boundary of the finite graph G are identified as a single “wire” vertex, which counts as one component if it is

occupied; In the free case # = f, the boundary condition is unconstrained.

Definition 2.7 (Random-cluster measure). Fix q > 0 and p ∈ [0, 1]. The (finite-volume) random-cluster

measure with boundary condition # is the probability measure

ϕ#G,p,q(ω) =
1

Z#
G,p,q

po(ω)(1− p)c(ω)qk#(ω), ω ∈ {0, 1}E ,

where Z#
G,p,q is the normalizing constant. When q = 1, the factor qk#(ω) ≡ 1 and ϕ#G,p,1 is the Bernoulli bond

percolation measure with edge-parameter p (independent edges).

On Zd with d ≥ 2 and q ≥ 1, the measures ϕfΛ,p,q and ϕwΛ,p,q on boxes Λ ⊂ Zd have the FKG property

and are monotone in Λ. Hence the thermodynamic limits ϕfp,q and ϕwp,q exist. Define the (percolation) order

parameter

θ#(p, q) := ϕ#p,q(0↔∞), # ∈ {f,w}.

Since the event {0↔∞} is increasing, p 7→ θ#(p, q) is nondecreasing for fixed q ≥ 1.

Definition 2.8 (Critical value). For q ≥ 1, set

pc(q) := inf{p ∈ [0, 1] : θw(p, q) > 0}.

Theorem 2.9 (Existence of a phase transition for the Random-Cluster Model on Zd). Fix d ≥ 2 and q ≥ 1.

Then pc(q) ∈ (0, 1) and

θw(p, q) = 0 for p < pc(q), θw(p, q) > 0 for p > pc(q).

In particular, the RCM exhibits a (unique) phase transition at pc(q).
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Proof. For q = 1 (Bernoulli bond case) we know pc(1) ∈ (0, 1) on Zd. A comparison inequality (Theorem 5.5

in [Gri06]) states that for 1 ≤ q′ ≤ q,

1

pc(q)
≤ 1

pc(q′)
≤ q/q′

pc(q)
− q

q′
+ 1.

Taking q′ = 1 gives 1/pc(q) ≤ 1/pc(1), hence pc(q) ≥ pc(1) > 0, and also 1
pc(1)

≤ q
pc(q)

− q + 1, which implies

1
pc(q)

> 1 (since pc(1) < 1), so pc(q) < 1. Monotonicity of θ#(p, q) in p and the definition of pc(q) yield the

subcritical and supercritical statements.

Remark 2.10. The terminology “percolation probability” refers only to the connectivity event under the RCM

measure; the model itself is not Bernoulli unless q = 1. The p(1−p) parametrization is equivalent to the usual∏
xy(e

βJxy − 1)ωxy form via the change of variables pxy = 1− e−βJxy on unweighted graphs.

The following alternate definition is often used in analytical contexts.

Definition 2.11. (Alternate definition for RCM). Given a finite subgraph G = (V,E) of a weighted lattice

(G, {Jxy}xy∈E). For a configuration ω ∈ {0, 1}E , let kf (ω) be the number of connected components in the graph

induced by ω, and kw(ω) be the number of connected components in the graph induced by ω by considering

all vertices in ∂G as one single vertex.

Fix q, β > 0. Define the random-cluster measure on G with free boundary conditions as the probability

measure satisfying, for all ω ∈ {0, 1}E ,

ϕfG,β,q(ω) =
qkf (ω)

Z

∏
xy∈E

(eβJxy − 1)ωxy

where Z is a normalizing constant. Similarly, we define the random-cluster measure on G with wired boundary

conditions ϕwG,β,q by replacing kf (ω) with kw(ω).

3 Existence of Phase Transitions

We first present the classical Peierls’ argument in Section 3.1, which is 0 < pc < 1 in certain graphs. We

then show the converse of the Peierls’ argument and a very general sufficient graph condition for pc < 1 in

Section 3.2.

3.1 Peierls’ Argument

Throughout this subsection let G = (V,E) be an infinite connected graph with deg v ≤ D < ∞ for all

v ∈ V , and let C(x) be the open cluster of x in Bernoulli bond percolation with parameter p ∈ [0, 1].

This subsection aims to provide a bound for the critical value in percolation.

Theorem 3.1 (Lower bound). Let G be an infinite connected graph with maximal degree D. Then

pc(G) ≥
1

D − 1
.
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Proof. Fix a vertex x. For n ≥ 1, let Sn be the set of self-avoiding paths of length n starting at x, and put

µn := |Sn|. We have the crude bound µ1 ≤ D and µn ≤ D(D−1)n−1 for n ≥ 1, hence µ := lim supn→∞ µ
1/n
n ≤

D − 1.

Let B(x, n) be the ball of graph distance ≤ n about x (not box Λ(x, n). If x↔ ∂B(x, n) occurs, then there

exists an open self-avoiding path of length exactly n from x, so by a union bound

Pp

(
x↔ ∂B(x, n)

)
≤ µnp

n.

Since {x ↔ ∞} ⊆ {x ↔ ∂B(x, n)} for every n and the latter events decrease to {x ↔ ∞}, continuity from

above gives

Pp(x↔∞) = lim
n→∞

Pp

(
x↔ ∂B(x, n)

)
≤ lim sup

n→∞
µnp

n.

If p < µ−1 (in particular, if p < 1/(D − 1)), the right-hand side is 0. Hence Pp(x ↔ ∞) = 0 and so

pc(G) ≥ 1/(D − 1).

Definition 3.2 (Cut-set and minimal cut-set). Fix x ∈ V . A cut-set (for x) is a set of edges Π ⊂ E such that

every infinite self-avoiding path starting at x uses at least one edge of Π. A cut-set Π is minimal if no proper

subset of Π is a cut-set.

Remark 3.3. Every finite cut-set contains a minimal cut-set (remove edges one by one while preserving the

cut-set property).

Lemma 3.4. For Bernoulli bond percolation on G and x ∈ V ,

x↔∞ ⇐⇒ every finite minimal cut-set Π contains at least one open edge.

Equivalently, C(x) is finite if and only if there exists a finite cut-set all of whose edges are closed.

Proof. If C(x) is finite, let Π be the set of edges with exactly one endpoint in C(x):

Π = {yz ∈ E : y ∈ C(x), z /∈ C(x)}.

Then Π is finite, all its edges are closed, and it is a cut-set for x. Conversely, if there exists a finite cut-set Π all

of whose edges are closed, then no open path from x can cross Π, so C(x) is contained in the finite component

of G \Π containing x, hence finite. Taking contrapositives yields the stated equivalence.

Theorem 3.5 (Peierls’ upper bound via cut-set counting). Suppose there exist n0 ∈ N and M ≥ 1 such that,

for all n ≥ n0, the number Cn of minimal cut-sets for x of size n satisfies |Cn| ≤Mn. Then

pc(G) ≤ 1− 1

M
.
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Proof. Fix p > 1− 1
M , so M(1− p) < 1. For N ≥ n0, let

AN :=
{
∃n > N, ∃Π ∈ Cn with all edges of Π closed

}
.

By a union bound,

Pp(AN ) ≤
∑
n>N

|Cn|(1− p)n ≤
∑
n>N

(
M(1− p)

)n
.

Since M(1− p) < 1, choose N so large that Pp(AN ) ≤ 1
2 .

Let S = {Π ∈ Cn : n ≤ N} and ES =
⋃

Π∈S Π, a finite set of edges. Define the increasing event

B := {all edges in ES are open}. Then Pp(B) > 0, and by FKG (both B and Ac
N are increasing),

Pp(B ∩Ac
N )p(B)Pp(A

c
N ) = Pp(B)(1− Pp(AN )) ≥ 1

2Pp(B) > 0.

On B ∩ Ac
N there is no finite minimal cut-set with all edges closed (sizes ≤ N are ruled out by B, and sizes

> N by Ac
N ). By Lemma 3.4, x↔∞ on B ∩Ac

N . Hence Pp(x↔∞) > 0, so p > pc(G). This holds for every

p > 1− 1
M , giving pc(G) ≤ 1− 1

M .

Example 3.6 (Regular tree). Let Td be the d-regular tree with d ≥ 2. Then

pc(Td) =
1

d− 1
.

Proof. The lower bound pc ≥ 1/(d−1) follows from Theorem 3.1. For the upper bound, explore C(o) away from

the root o. Off the edge to its parent, each vertex has d− 1 children, and the subtree edges are independent;

thus |C(o)| is dominated by a Galton–Watson process with offspring
(
d−1
p

)
. The survival probability is positive

if and only if (d− 1)p > 1, i.e. p > 1/(d− 1). Hence pc ≤ 1/(d− 1), and the two bounds match.

3.2 Counting Minimal Cutsets and pc < 1

This section is based on the paper [EST24] by P. Easo, F. Severo, and V. Tassion, which develops a

connection between the geometry of cutsets and the existence of a nontrivial phase transition. Two main

contributions are made:

1. The classical Peierls’ argument shows that if the number of minimal cutsets grows at most exponentially

in their size, then pc(G) < 1. The authors prove the exact converse: whenever pc(G) < 1, the number

of minimal cutsets from the root to infinity grows at most exponentially.

2. The authors give a very general sufficient condition for the critical probability pc < 1. This condition is

phrased in terms of uniform transience of the underlying graph, and it applies to a broad family of

infinite connected locally finite graphs.

In what follows, we introduce the key definitions (minimal cutsets, exposed boundaries, and the growth

constant κ(G)) and then present the main theorems together with the essential ideas of their proofs.

Let G = (V,E) be an infinite, connected, locally finite graph.
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Definition 3.7. A set of edges E′ ⊆ E is called a cutset from a vertex o to infinity if removing E′ disconnects

o from infinity – equivalently, o lies in a finite connected component of G \E′. Such a cutset E′ is minimal if

no proper subset of E′ is still a cutset from o to infinity.

We denote by Qn(v) the set of all minimal cutsets from v to infinity of size n, and Cn(v) = |Qn(v)|. Let

qn = supv∈V Cn(v). The growth rate of the number of minimal cutsets is measured by the quantity

κ(G) := sup
n≥1

q1/nn

which may be finite or +∞. In particular, κ(G) < ∞ means that the number of minimal cutsets grows at

most exponentially in n.

Definition 3.8. Define the critical percolation threshold (for bond percolation) by

pc(G) = inf{p ∈ [0, 1] : Pp(o↔∞) > 0}

where Pp(o ↔ ∞) is the probability (with edges open independently with probability p) that o lies in an

infinite open cluster. We say pc(G) < 1 if there exists some p < 1 for which an infinite open cluster occurs

with positive probability (a supercritical percolation phase on G).

Definition 3.9. For a finite set of vertices A ⊂ V , the exposed boundary ∂∞A is the set of all edges with one

endpoint in A and one endpoint in V \A.

3.2.1 Converse of Peierls’ Argument

Our first main result is that the exponential growth of cutsets provides a sharp criterion for the existence

of a supercritical percolation phase

Theorem 3.10 (Criterion for pc < 1 via Cutset Counting). For every infinite, locally finite graph G, the

critical probability pc(G) < 1 if and only if κ(G) <∞. In other words, G has a supercritical percolation phase

if and only if the number of minimal cutsets from o to infinity grows at most exponentially in n.

Remark 3.11 (Intuition behind Theorem 3.10). The equivalence pc(G) < 1 ⇐⇒ κ(G) <∞ can be understood

as follows.

(1) The easy direction (Peierls’ argument). If the number of minimal cutsets grows at most exponentially

(κ(G) < ∞), then a union bound shows that for p close to 1, the probability that the cluster of the origin o

is surrounded by a closed cutset is very small. Thus the origin percolates with positive probability, implying

pc(G) < 1.

(2) The difficult direction (converse). Suppose pc(G) < 1. Then for some p < 1 one has Pp(o↔∞) > 0.

If there were “too many” (super-exponentially many) minimal cutsets, then with high probability o would be

trapped inside one of them, contradicting survival. The heart of the proof is to quantify this heuristic.
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• Lemma 3.12. The exposed boundary of any finite connected set A ∋ o is a minimal cutset. Thus minimal

cutsets can always be realized as exposed boundaries of clusters.

• Lemma 3.13. For a minimal cutset Π, let A be the finite component of o in G \ Π and let B be the set

of inner vertices of Π. Then for any S with B ⊂ S ⊂ A one has ∂∞S = Π. Hence minimal cutsets can

be detected through the set B of their inner vertices.

• Lemma 3.14. In a finite graph with positive association, if each vertex connects to B with probability at

least θ, and each edge is open with probability at least p, then the origin simultaneously connects to all

vertices of B with probability at least c|B| for some c(p, θ) > 0. The proof constructs a maximal chained

sequence of vertices, serving as a probabilistic bottleneck. This guarantees two facts: (P2) every vertex

connects to the sequence with probability ≥ θ/2, and (P3) the sequence is not too long (≤ 2|B|/θ).

Combining these yields a uniform exponential lower bound for the probability that o connects to all of

B.

(3) Conclusion. For a minimal cutset Π of size n with inner vertices B, the probability that ∂∞C(o) = Π is

at least cn(1− p)n. Since these boundary events are disjoint, summing over all Π ∈ Cn gives

1 ≥
∑
Π∈Cn

Pp(∂∞C(o) = Π) ≥ |Cn|(c(1− p))n.

Thus |Cn| ≤ (c(1 − p))−n, showing that the number of minimal cutsets grows at most exponentially, i.e.

κ(G) <∞.

Lemma 3.12 (Exposed Boundary as a Minimal Cutset). If A ⊂ V is a finite connected set of vertices

containing o, then ∂∞A is a minimal cutset from o to infinity.

Proof. Any path from o to infinity must exit A, so it uses some edge of ∂∞A. Thus ∂∞A separates o from

infinity, i.e. it is a cutset. It is minimal because if any edge e ∈ ∂∞A were removed (opened), then since A

is connected there would be a path from o through A and then through e to the outside of A, allowing o to

reconnect to infinity. So no proper subset of ∂∞A can disconnect o from infinity.

Lemma 3.13 (Inner/outer description of a minimal cutset). Let u ∈ V and Π a minimal cutset from u to ∞.

Let A be the connected component of u in (V,E \Π) and B = {e ∩A, e ∈ Π} be the set of inner vertices of Π.

For all S ⊂ V , when B ⊂ S ⊂ A, we have ∂∞S = Π.

Proof. Since A ⊆ (V,E \Π), we have ∂∞A ⊆ ∂A ⊆ Π. By Lemma 3.12, because Π separates u from ∞ and is

minimal, we have ∂∞A = ∂A = Π.

Fix S with B ⊂ S ⊂ A.

(i) Π ⊂ ∂∞S. Let e = xy ∈ Π with x ∈ A the inner endpoint and y /∈ A. Since x ∈ B ⊂ S, we have x ∈ S

while y /∈ A ⊃ S, so y ∈ V \S. In (V,E \S) the vertex y still lies in the unbounded component (because every

9



path from y to ∞ avoids A, hence avoids S ⊂ A). Thus y ↔∞ in V \ S and therefore e ∈ ∂∞S by definition

of the exposed boundary. Hence Π ⊂ ∂∞S.

(ii) ∂∞S ⊂ Π. Let e = xy ∈ ∂∞S with x ∈ S and y /∈ S and such that y ↔ ∞ in V \ S. If y ∈ A, then

y would lie in the finite set A \ S and hence could not be connected to ∞ in V \ S—a contradiction. Thus

y /∈ A, which forces x ∈ A (since S ⊂ A). Therefore e ∈ ∂∞A = Π. This shows ∂∞S ⊂ Π.

Combining (i) and (ii) yields ∂∞S = Π.

Lemma 3.14. Let G be a finite, connected graph. Let P be a positively associated percolation measure on G.

Let B ⊂ V and θ, p ∈ (0, 1], and suppose that

P (v ↔ B) ≥ θ for all v ∈ V, P (e is open) ≥ p for all e ∈ E. (1)

Then for all o ∈ V ,

P (
⋂
b∈B

{o↔ b}) ≥ c|B|

where c = (pθ2 )3/θ

Proof. Say that a finite sequence of vertices x1, . . . , xk is chained if x1 = o and, for all i ≥ 2,

pθ

2
≤ P

(
xi ↔ {x1, . . . , xi−1}

)
≤ θ

2
. (2)

There exists at least one chained sequence (take k = 1), and since V is finite we can take a maximal chained

sequence x1, . . . , xk in the sense that for every xk+1 ∈ V the sequence x1, . . . , xk+1 fails (2). Set X :=

{x1, . . . , xk} and let n := |B|. We claim the following two properties:

(P1) For every v ∈ V , P (v ↔ X) ≥ θ
2

(P2) One has k ≤ 2n

θ
.

Proof of (P1). Let W := {v ∈ V : P (v ↔ X) ≥ θ/2}. Clearly W is nonempty (it contains X). If W ̸= V ,

since G is connected there exists an edge uv with u ∈W and v /∈W . By positive association,

P (v ↔ X) ≥ P (uv open)P (u↔ X) ≥ p · θ
2
=
pθ

2
.

Because v /∈ W , we also have P (v ↔ X) < θ/2. Thus x1, . . . , xk, v would satisfy (2), contradicting the

maximality of the chained sequence. Hence W = V and (P1) holds.

Proof of (P2). For i ∈ {1, . . . , k} let Ni be the number of (open) clusters that intersect both {x1, . . . , xi}

and B. Then N1 = 1{x1↔B} and, for i ≥ 2,

Ni −Ni−1 ≥ 1{xi↔B} − 1{xi↔{x1,...,xi−1}}.

Taking expectations and using the hypotheses together with (2),

E[Ni]− E[Ni−1] ≥ θ −
θ

2
=
θ

2
(i ≥ 2),
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and E[N1] ≥ θ/2. Summing gives E[Nk] ≥ θk/2. Deterministically Nk ≤ |B| = n, hence k ≤ 2n/θ, proving

(P2).

By FKG and (2),

P
( ⋂

u∈X

{o↔ u}
)
≥

k∏
i=2

P
(
xi ↔ {x1, . . . , xi−1}

)
≥

(pθ
2

)k−1

≥
(pθ
2

)2n/θ

.

By (P1) and FKG again,

P
( ⋂

b∈B

{b↔ X}
)
≥

(θ
2

)n

.

Since the intersection of the two events implies
⋂

b∈B{o↔ b}, we obtain

P
( ⋂

b∈B

{o↔ b}
)
≥

(pθ
2

)2n/θ(θ
2

)n

≥
(pθ2

2

)3n/θ

= c|B|.

(The last inequality uses (θ/2) ≥ (θ2/2)1/θ for θ ∈ (0, 1], which is elementary and recorded in the paper.)

Remark 3.15. The “maximal chained sequence” is like probabilistically growing a fence until further growth

would violate the connection bounds. This ensures that X is a reliable bottleneck: every vertex must attach

to it with decent probability, but X itself is not too large, so probabilities do not collapse.

Proof of Theorem 3.10. The Peierls’ argument states that if κ(G) <∞, pc(G) < 1, so we will mainly focus on

the forward direction.

We will prove the form using K =M instead of κ.

Fix θ, p ∈ (0, 1) s.t. Pp(u ↔ ∞) ≥ θ for all u ∈ V . Fix o ∈ V and n ≥ 1. Writing C = C(o). We claim

that for all minimal cutset Π from o to ∞ of size n satisfies

Pp(∂∞C = Π) ≥ K−n

where K = K(p, θ) ∈ (0,∞) is a finite constant. Then we will have

1 ≥
∑

Π∈Qn(o)

Pp(∂∞C = Π) ≥ |Qn(o)|/Kn.

Let A be the connected component of o in (V,E \ Π) and B the set of inner vertices of Π. Any infinite

open path from a vertex u ∈ A must intersect B before exiting A, so

∀u ∈ A : Pp(u
A←→ B) ≥ Pp(u↔∞) ≥ ∞

Let E = {∀v ∈ B : v
A←→ o}, so by Lemma 3.14 on the subgraph induced by A, we have Pp(E) ≥ cn where

c = (pθ2 )3/θ > 0. Let F = {all edges of Π closed}, so

Pp(E ∩ F ) = Pp(E)Pp(F ) ≥ cn(1− p)n

If E ∩ F occurs, B ⊂ C(o) ⊂ A, so by Lemma 3.13, ∂∞C = Π. Thus,

Pp(∂∞C = Π) = Pp(E ∩ F ) ≥ cn(1− p)n

11



3.2.2 pc < 1 for All Uniformly Transient Graphs

The main result of this subsection is that on any infinite, connected, locally finite, and uniformly transient

graph, one has pc(G) < 1. In particular, we will use a Markov chain covering lemma to show that the number of

minimal cutsets grows at most exponentially, which is equivalent to the existence of a supercritical percolation

phase.

Definition 3.16 (Uniformly transient). There is an ϵ > 0 such that a simple random walk started at every

vertex v has probability at least ϵ
deg(v) of never returning to its start. Write deg(v) as dv. Alternatively, for

all v,

dvPv(∀t ≥ 1 : Xt ̸= v) ≥ ϵ

Theorem 3.17. If G is infinite, connected, locally finite, and uniformly transient graph, then κ(G) <∞.

Lemma 3.18 (Markov Covering Lemma). Let n ≥ 1 and let P = (p(i, j))i,j∈[n] be a substochastic Markov

transition matrix, i.e.
∑

j p(i, j) ≤ 1 for all i. Let Γ be the set of finite sequences γ = (γ0, . . . , γk) with

γ0 = γk = 1 that visit every state {2, . . . , n}. Set p(γ) :=
∏k

t=1 p(γt−1, γt). Assume that for some ϵ > 0,

∑
i∈I

∑
j∈[n]\I

p(i, j) ≥ ϵ for every nonempty proper I ⊂ [n].

Then ∑
γ∈Γ

p(γ) ≥ δn, where δ :=
ϵ2

16e2
.

Proof. Sample i.i.d. edges e1, . . . , e2n−2 ∈ ([n]× [n]) ∪ {∅} with distribution

P (et = (u, v)) =
p(u, v)

n
, P (et = ∅) = 1− 1

n

∑
u,v

p(u, v) ≥ 0

Let H be the undirected multigraph on [n] obtained by keeping the non-∅ samples (forgetting orientation).

Let H1 be the spanning subgraph of H using e1, . . . , en−1 and H2 the one using en, . . . , e2n−2.

Step 1: connectivity of H1. Expose e1, . . . , en−1 sequentially. If C1, . . . , Cr are the components after k − 1

steps, the conditional probability that ek joins two distinct components is

1

n

r∑
i=1

∑
x∈Ci

∑
y/∈Ci

p(x, y) ≥ rϵ

n
.

Multiplying over the successive merges from r = n down to 1 gives

P (H1 connected) ≥
n∏

r=2

rϵ

n
=
ϵn−1

nn−1
n! ≥

( ϵ

2e

)n
.

By independence, the same bound holds for H2, so

P (H1 and H2 connected) ≥
( ϵ

2e

)2n
.
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Step 2: presence of a covering walk. Say that a sequence γ ∈ Γ is present if each directed edge (γt−1, γt)

(or its reverse) appears among e1, . . . , e2n−2. If H1 and H2 are connected, the union contains two edge-disjoint

spanning trees, hence an Eulerian spanning subgraph; thus some γ ∈ Γ is present.

For fixed γ of length m, the probability it is present is at most

(2n− 2)m
( 2

n

)m m∏
t=1

p(γt−1, γt) ≤ 4mp(γ) ≤ 42np(γ).

Hence ( ϵ

2e

)2n
≤

∑
γ∈Γ

P (γ present) ≤ 42n
∑
γ∈Γ

p(γ),

which gives the claim.

Proof of Theorem 3.17. Replace each undirected edge e = uv ∈ E by a path u−m(e)−v by inserting a new

vertex m(e) (the “midpoint”). Denote the expanded graph by G′ = (V ∪m(E), E′).

Let (Xt)t≥0 be the simple random walk on G′. For any state z, let

τ = τ(z) := sup{t ≥ 0 : Xt = z}

be the last return time to z. We write P ′
z for the law of (Xt) started at z.

Set ϵ1 := 2ϵ
4+ϵ ∈ (0, 1). One checks two cases:

(i) For v ∈ V , P ′
v(τ = 0) ≥ 1

2Pv(T
+
v =∞) ≥ ϵ

2dv
≥ ϵ1

2

(ii) For z = m(uv) ∈ m(E),

1

P ′
z(τ = 0)

=
∑
n≥0

P ′
z(τ > 0)n = E′

z[Nz]

=
∑
t≥0

P ′(Xt = z) = 1 +
∑
t≥1

[P ′
z(Xt−1 = u)

1

du
+ P ′

z(Xt−1 = v)
1

dv
] ≤ 1 + E′

z[Nu]
1

du
+ E′

z[Nv]
1

dv

≤1 + E′
u[Nu]

1

du
+ E′

v[Nv]
1

dv

=1 +
1

duP ′
u(τ = 0)

+
1

dvP ′
v(τ = 0)

and P ′
z(τ = 0) ≥ ϵ1 =

2ϵ

4 + ϵ
. (Here Nz is the number of visits to z and we use uniform transience on G

together with the coupling of the walk on G′ with a lazy walk on G.) In particular,

P ′
o′(τ = 0) ≥ ϵ1

2
(3)

for any midpoint o′ = m({o, w}) adjacent to a fixed root o ∈ V (the extra factor 1/2 is a slack we keep for

later SMP factorization).

Now fix a minimal cutset Π from o to ∞ of size n. Let A be the finite connected component of o in (V,E \Π).

Define the interior and the boundary midpoints by

I := A ∪m
(
E[A]

)
, U := m(Π) ∪ {o′},
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where E[A] denotes the set of edges with both endpoints in A, and o′ is a fixed midpoint incident to o.

We consider the walk on G′ started at o′ and killed when first hitting a vertex in (V ∪m(E)) \ (I ∪ U)

(i.e., when exiting I ∪ U). Let P be the induced sub-stochastic transition matrix on the finite state space U

obtained by recording successive visits to U before the killing time.

As proved in Lemma 3.18 (Markov Covering Lemma), there exists a constant ϵ2 = ϵ2(ϵ) > 0 such that for

every nonempty proper J ⊂ U , ∑
i∈J

∑
j∈U\J

P (i, j) ≥ ϵ2. (4)

(Informally: by uniform transience, once the walk leaves a point in J , with probability bounded below it

reaches U \ J before either returning or being killed; summing gives (4).)

Let Γ be the set of closed walks on U that start and end at o′ and visit every state of U . By Lemma 3.18

applied to P and the expansion constant ϵ2, we have

P ′
o′(E) ≥ δ|U | with δ :=

ϵ22
16e2

where E is the event that the walk visits every vertex in U and returns to o′ before exiting I ∪ U . Since

|U | = n+ 1, we have

P ′
o′(E) ≥ δn+1 =: ϵn+1

3 with ϵ3 := δ ∈ (0, 1) (5)

On E , the walk never touches the exterior (V ∪m(E)) \ (I ∪ U) and visits every midpoint in m(Π) from the

interior side (because it visits all of U). Let

C := {Xt : 0 ≤ t ≤ τ(o′)}

where τ(o′) is the last return time to o′. Then the exposed boundary of C in G′ is exactly m(Π):

E ∩ {τ(o′) = 0} ⊆ {∂∞C = m(Π)} (6)

By the strong Markov property at the (random) time of the last visit to o′,

P ′
o′
(
∂∞C = m(Π)

)
≥ P ′

o′(E) inf
z∈U

P ′
z(τ = 0) ≥ P ′

o′(E) ·
ϵ1
2
, (7)

using (3) in the last step.

Combining (5) and (7), for every minimal cutset Π of size n we have

P ′
o′
(
∂∞C = m(Π)

)
≥ ϵ1

2
ϵn+1
3 .

The events {∂∞C = m(Π)} are disjoint as Π ranges over Qn(o) (the family of minimal cutsets of size n), hence

1 ≥
∑

Π∈Qn(o)

P ′
o′
(
∂∞C = m(Π)

)
≥ |Qn(o)|

ϵ1
2
ϵn+1
3 .
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Therefore

|Qn(o)| ≤
2

ϵ1ϵ3

( 1

ϵ3

)n

≤ K(ϵ)n (n ≥ 1),

with K(ϵ) := max
{
ϵ−1
3 , 2/(ϵ1ϵ3)

}
<∞ depending only on ϵ. This shows

κ(G) = lim sup
n→∞

1

n
log |Qn(o)| ≤ logK(ϵ) <∞.

4 Sharp Phase Transitions for Percolation and the Random-Cluster
Models

This section aims to present a new proof of the sharp phase transitions with respect to radii of large open

clusters. The proof uses a generalized OSSS inequality due to H. Duminil-Copin, A. Raoufi, and V. Tassion

(2019) [DRT19]. The result imposes very few conditions on the graph, and the strategy is valid for random-

cluster models with cluster weight q ≥ 1 (whose sharp phase transition problem had not been solved for long)

on locally finite vertex-transitive graphs. The main tool called OSSS inequality will be applied in Section 5

too.

4.1 Decision Tree and OSSS Inequality

In computer science, a decision tree is a flowchart-like tree structure where each internal node represents a

feature, each edge represents the outcome of a query, and each leaf node represents a class label.

Now, let’s develop a mathematical description of the algorithm encoded by a decision tree. Consider a set

E with |E| = n. Write e[t] = (e1, . . . , et).

Definition 4.1. A decision tree is defined by (e1, {ϕt}2≤t≤n), where e1 ∈ E is the fixed “root” for the tree,

and ϕt are “decision rules” that deterministically map (e[t−1], ωe[t−1]
) to an element in E \ {e1, . . . , et−1}.

The input for the algorithm is ω ∈ {0, 1}E . The algorithm first queries the value of ωe1 . For all t ≥ 2, set

et = ϕt(e[t−1], ωe[t−1]
), and we query the value of ωet . In this way, we will obtain an ordering on E, (e1, . . . , en),

from the input ω.

We associate decision tree T = (e1, {ϕt}) with a (boolean) function f : {0, 1}E → R, which corresponds to,

in the computer science sense, what the decision tree is computing. Define stopping time

τ(ω) = τf,T (ω) := min{t ≥ 1 : ∀ω′ ∈ {0, 1}E , ω′
e[t] = ωe[t] ⇒ f(ω) = f(ω′)}

That is, once we reach the depth of τ(ω), the outcome is determined.

The class of measures we will mainly consider throughout this section is monotonic measures.
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Definition 4.2. A measure µ on {0, 1}E is monotonic if for all e ∈ E and F ⊂ E and any ξ, ζ ∈ {0, 1}E ,

ξ ≤ ζ, µ[ωe = ξe,∀e ∈ F ] > 0 and µ[ωe = ζe,∀e ∈ F ] > 0 imply

µ[ωe = 1|ωe = ξe,∀e ∈ F ] ≤ µ[ωe = 1|ωe = ζe,∀e ∈ F ]

A strictly positive probability measure is monotonic if and only if it satisfies the FKG lattice property

(Theorem 2.27 in [Gri06]).

Definition 4.3. The revealment of f is defined by δe(f, T ) := µ{e is revealed} = µ{∃t ≤ τ(ω) : et = e}.

The OSSS inequality was originally introduced for product measure by R. O’Donnell, M. Saks, O. Schramm,

and R. Servedio [OSSS05]. It bounds the variance of boolean functions using revealments and “influence”

(corresponding to Ie[f ] := µ(f |ωe = 1) − µ(f |ωe = 0)). Duminil-Copin, Raoufi, and Tassion generalize it to

monotonic measures by an appropriate coupling.

Denote E⃗ the set of lists (e1, . . . , en) where each element of E occurs exactly once. For {Ut} a sequence of

i.i.d. uniform random variables on [0, 1] and e a E⃗−valued random variable, define X = Fe(U) by

Xet :=

{
1 (Ut ≥ µ(ωet = 0|ωe[t−1]

= Xe[t−1]
))

0 (else)

It can be proved that X has law µ (See Lemma 2.1 in [DRT19] for details).

Theorem 4.4. (Generalized OSSS). Fix an increasing function f : {0, 1}E → [0, 1] on a finite set E. For any

monotonic measure µ and any decision tree T ,

Varµ(f) ≤
∑
e∈E

δe(f, T )Covµ(f, ωe) (8)

Proof. Let {Ut}, {Vt} be two independent sequences of i.i.d. uniform [0, 1] random variables. Write EU,V for

the expectation of the coupling between U, V . Construct (e,X, τ) as follows: for t ≥ 1,

et :=

{
e1 (t = 1)

ϕt(e[t−1],Xe[t−1]
) (t > 1)

, Xet :=

{
1 (Ut ≥ µ(ωet = 0|ωe[t−1]

= Xe[t−1]
))

0 (else)

and τ := min{t ≥ 1 : ∀x ∈ {0, 1}E , xe[t] = Xe[t] ⇒ f(x) = f(X)}. Then, X has law µ.

Define W t := (V1, . . . ,Vt,Ut+1, . . . ,Uτ ,Vτ+1, . . . ,Vn and set Y t := Fe(W
t). Notice that W t = V if

t ≥ τ , so Y n is independent of U and also has law µ. Since f is valued in [0, 1], µ[|f − µ(f)| > 1
2 ] ≤

1
2 , so

Varµ(f) ≤
1

2
µ[|f − µ[f ]|] = 1

2
EU,V [|EU,V [f(X)|U ]− EU,V [f(Y n)|U ]|]

≤1

2
EU,V [|f(X)− f(Y n)|] = 1

2
EU,V [|f(Y 0)− f(Y n)|]

≤1

2

n∑
t=1

EU,V [|f(Y t)− f(Y t−1)|] = 1

2

n∑
t=1

EU,V [|f(Y t)− f(Y t−1)|1t≤τ ]

=
1

2

∑
e∈E

n∑
t=1

EU,V
[
EU,V

[∣∣f(Y t)− f(Y t−1)|
∣∣U[t−1]

]
1t≤τ,et=e

]
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where the equality on the third line is by f(Y 0) = f(X) (the entries for t > τ in Y 0 will not affect f); the

equality on the fourth line is by Y t = Y t−1 for all t > τ .

It is left to show that EU,V
[∣∣f(Y t)− f(Y t−1)|

∣∣U[t−1]

]
≤ 2Covµ(f, ωe) on the event {t ≤ τ, et = e},

because
∑n

t=1 EU,V [1t≤τ,et=e] = δe(f, T ).

Now restrict ourselves to {t ≤ τ, et = e}. Since Y t = Y t−1 whenever Y t
e = Y t−1

e ,

|f(Y t)− f(Y t−1)| = (f(Y t)− f(Y t−1))(Y t
e −Y t−1

e ) = f(Y t−1)Y t−1
e + f(Y t)Y t

e − f(Y t−1)Y t
e − f(Y t)Y t−1

e

(9)

It can be proved that EU,V [g(Y t)|U[t]] = µ[g(ω)] for all measurable g and t ≤ n, so

EU,V [f(Y t−1)Y t−1
e |U[t−1]] = µ[f(ω)ωe] = EU,V [f(Y t)Y t

e |U[t−1]] (10)

where for the second equality, we first condition on U[t] and apply the tower law.

For fixed U[n] and s, since µ is monotonic, Y s = Fe(W
s) is an increasing function of V . Since f,We are

also increasing functions of V , so are f(Y t−1),Y t
e . Apply Harris-FKG to i.i.d. random variables V :

EU,V [f(Y t−1)Y t
e |U[n]] ≥ EU,V [f(Y t−1)|U[n]]EU,V [Y t

e |U[n]]

Average over U[t−1] and apply EU,V [g(Y t−1)|U[t−1]] = µ[g(ω)]:

EU,V [f(Y t−1)Y t
e |U[t−1]] ≥ EU,V [f(Y t−1)|U[t−1]]EU,V [Y t

e |U[t−1]] = µ[f(ω)]µ[ωe] (11)

Similarly,

EU,V [f(Y t)Y t−1
e |U[t−1]] ≥ µ[f(ω)]µ[ωe] (12)

Substituting (10), (11), (12) into (9) concludes the proof.

For a subgraph G = (V,E), define its boundary ∂G as the collection of vertices x such that there exists

y ̸∈ G with xy an edge. Set Λn as the graph induced by {x ∈ V : d(x, 0) ≤ n}, where d(·, ·) is the graphical

distance.

Similar to the proof in [DCT15], we are also going to deduce a “differential inequality” (which will be

f ′n ≥ n∑n
k=1 fn

fn) to obtain information of {0 ↔ ∂Λn}. To do that, we will view the indicator function of

connectedness, 10↔∂Λn , as a boolean function on the edge space, where 0 means an edge is closed, and 1

means an edge is open. A boolean function on the edge space is a function map from {0, 1}E to R.

We are going to bound the probability of {0↔ ∂Λn} by constructing a random decision tree to “compute”

10↔∂Λn , and a crucial tool is the “OSSS inequality”.

This section is organized as follows: subsection 4.1 defines decision trees and proves the generalized OSSS

inequality for monotonic measures (8); subsection 4.2 proves the sharp phase transition in nearest-neighbor

Bernoulli bond percolation (Theorem 4.8); subsection 4.3 discusses a few modifications of percolation’s proof

to make it also adapt to random-cluster models (Theorem 4.9).
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4.2 Sharp Phase Transitions of Bernoulli Percolation

We first prove this (non-probabilistic) lemma. Our goal is to match β1 with the critical value of our model.

Lemma 4.5. Consider a sequence of increasing differentiable functions fn : [0, β0] → [0,M ] such that f =

limn→∞ fn is a real function, and f ′n ≥ n
Σn
fn for all n ≥ 1, where Σn =

∑n−1
k=0 fk. Then, there exists

β1 ∈ [0, β0] such that

(A) For any β < β1, there exists cβ > 0 such that for any n large enough, fn(β) ≤ exp(−cβn)

(B) For any β > β1, f(β) ≥ β − β1

Proof. Claim the following choice of β1 suffices:

β1 := inf

{
β : lim sup

n→∞

log Σn(β)

log(n)
≥ 1

}
.

For part (A), take β < β1. Set δ =
β1−β

3 , and set β′ = β + δ, β′′ = β + 2δ.

Integrate f ′n ≥ n
Σn
fn on [β′, β′′],

− log(fn(β
′)) ≥ log(fn(β

′′))− log(fn(β
′)) ≥ C + (β′′ − β′)

n

Σn(β′′)
= C + δ

n

Σn(β′′)

so fn(β
′) ≤M exp

(
−δ n

Σn(β′′)

)
.

By definition of β1, there exists N ∈ N and α > 0 such that Σn(β) ≤ n1−α for all n ≥ N , so fn(β
′) ≤

e−C exp(−δnα), so
∑∞

k=0 fn(β
′) < ∞. That is, there exists Σ(β′) ∈ R such that Σn(β

′) ≤ Σ(β′) for all n.

Integrate f ′n ≥ n
Σ(β′)fn on [β, β′], we get fn(β) ≤M exp

(
−δ n

Σ(β′)

)
.

For part (B), take β > β1. Define Tn = 1
log(n)

∑n
k=1

fk
k . Since for all k ≥ 1,

fk
Σk
≥

∫ Σk+1

Σk

dt

t
= log(Σk+1)− log(Σk)

we obtain

T ′
n =

1

log(n)

n∑
k=1

f ′k
k
≥ 1

log(n)

n∑
k=1

kfk
kΣk

≥ 1

log(n)

n∑
k=1

log(Σk+1)− log(Σk) =
log(Σn+1)− log(Σ1)

log(n)
. (13)

Take arbitrary β′ ∈ (β1, β). Integrate (13) on [β′, β],

Tn(β)− Tn(β′) ≥ (β − β′)
log(Σn(β

′))− log(M)

log(n)
. (14)

If we can show that Tn(β)
n→∞−−−−→ f(β), taking limsup on both sides of (14) yields

f(β)− f(β′) ≥ (β − β′)

[
lim sup
n→∞

log(Σn(β
′))

log(n)

]
≥ β − β′. (15)

Then taking β′ ↘ β1 suffices.

To see the convergence of Tn(β), notice that for any sequence {an} ∈ RN with a := limn→∞ an ∈ R,

lim
n→∞

an/n

log(n)− log(n− 1)
= lim

n→∞

an
n log( n

n−1 )
= lim

n→∞

an

log(1 + 1
n−1 )

n
=

a

ln(e)
= a.

By Stoltz-Cesaro theorem, 1
log(n)

∑n
k=1

ak

k → a as n→∞.
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Lemma 4.6. Consider a finite graph G = (V,E) containing 0. For any monotonic measure µ on {0, 1}E, and

any n ≥ 1,

∑
xy∈E

Covµ(10↔∂Λn , ωe) ≥
n

4maxx∈Λn

∑n−1
k=0 µ(x↔ ∂Λk(x))

µ(0↔ ∂Λn)(1− µ(0↔ ∂Λn))

Remark 4.7. This lemma is where we apply the OSSS inequality. To do that, we must choose an appropriate

decision tree to compute f := 10↔∂Λn .

If we let the algorithm naively check every edge in Λn, the revealment δe(f) will be 1 for each edge e. We

then obtain Varµ(f) ≤
∑

e∈E Covµ(f, ωe), which is known as the Poincaré inequality. If we substitute this

into (17), we will get

θ′n(p) ≥
1

p(1− p)
θn(p)(1− θn(p))

This is not strong enough to invoke Lemma 4.5 to prove the sharp phase transition.

To fix that, we will define a list of decision trees T1, . . . , Tn such that each Tk computes 10↔∂Λn and only

explores the connected components of ∂Λk. As a result, the average of the revealment of each edge will be

small.

Proof. For each k, we define the algorithm associated with the decision tree as follows. Let V be the collection

of edges that have been found by the decision tree to be connected to ∂Λn, but the edges themselves have not

been revealed. Let F be the collection of revealed edges. Initialize V to {xy ∈ E : x ∈ ∂Λk ∨ y ∈ ∂Λk} and F

to emptyset. Fix an ordering of the edges.

while V i s nonempty :
e = the sma l l e s t unrevea led edge in the o rde r ing
Reveal the s t a t e o f e
V <− V − {e}
F <− F + {e}
V <− V + { a l l unrevea led edges that are connected to the k−box boundary

us ing edges in F}
i f 0 can be connected to the k−box boundary us ing edges in F

return 1
return 0

where the “k-box” is Λk.

Such a decision tree Tk successfully computes 10↔∂Λn by only discovering the connected components of

∂Λk. Hence, if e = uv is revealed by Tk, either u↔ ∂Λk or v ↔ ∂Λk, so

δe(T ) ≤ µ(u↔ ∂Λk) + µ(v ↔ ∂Λk)

Also, the event {u↔ ∂Λk} is contained in {u↔ ∂Λ|k−d(u,0)|(u)}, so

µ(u↔ ∂Λk) ≤ µ(u↔ ∂Λ|k−d(u,0)|(u)) ≤ 2µ(u↔ ∂Λk(u))

Set M := maxx∈Λn

∑n−1
k=0 µ(x↔ ∂Λk(x)), so

∑n
k=1 δe(T ) ≤

∑n
k=1 µ(u↔ ∂Λk) +

∑n
k=1 µ(v ↔ ∂Λk) ≤ 4M .
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Apply the generalized OSSS inequality (8) to Tk and f = 10↔∂Λn
and sum on k:

n∑
k=1

µ(0↔ ∂Λn)(1− µ(0↔ ∂Λn)) ≤
n∑

k=1

∑
e

δe(Tk)Cov(10↔∂Λn
, ωe) ≤

∑
e

4MCov(10↔∂Λn
, ωe)

LHS is nµ(0↔ ∂Λn)(1− µ(0↔ ∂Λn)), so we’re done.

Theorem 4.8. For Bernoulli bond percolation with critical value pc,

(i) There exists c > 0 such that θ(p) ≥ c(p− pc) for all p ≥ pc close enough to pc

(ii) For p < pc, there exists cp > 0 such that

∀n ≥ 0 : Pp[0↔ ∂Λn] ≤ exp(−cpn)

Proof. Fix p0 ∈ [0, 1]. For p ≤ p0 and n ≥ 1, define

µn ≡ Pp, θn(p) = µn[0↔ ∂Λn], Sn :=

n−1∑
k=0

θk (16)

By Russo’s formula,

d

dp
θn(p) =

∑
e∈E

1

p(1− p)
µn

(
fn(ω) ̸= fn(ω

(e))
)
=

∑
e∈E

1

p(1− p)
Cov(10↔∂Λn , ωe) (17)

Since for all x ∈ Λn
n∑

k=1

µn[x↔ ∂Λk(x)] = Sn (18)

by Lemma 4.6 (note that µn is monotonic),

d

dp
θn(p) =

∑
e∈E

1

p(1− p)
Cov(10↔∂Λn

, ωe) ≥
1

p(1− p)
n

4Sn
θn(1− θn) ≥

1− θ1(p0)
p(1− p)

n

4Sn
θn (19)

because θn ≤ θ1 and p ≤ p0. Set c := 1−θ1(p0)
4p(1−p) > 0. Since θn → θ, we can apply Lemma 4.5 to fn = θn/c,

which yields a p1 such that (A) and (B) occur.

Then, for all n ≥ 1 and p < p1, Pp(0 ↔ ∂Λn) = θn(p) ≤ exp(−cpn), which also implies p1 ≤ pc. By (15),

for all p > p1, θ(p) ≥ θ(p)− θ(p1) ≥ p− p1 > 0, which implies p1 ≥ pc. Thus, p1 = pc, which concludes both

(i) and (ii) of the theorem.

4.3 Sharp Phase Transitions of Random-Cluster Models

Theorem 4.9. For q ≥ 1 and a random cluster model on a weighted lattice (G, J) (suppose Jxy are finite-

range),

(i) There exists c > 0 such that θ(β) ≥ c(β − βc) for all β ≥ βc close enough to βc

(ii) For all β < βc, there exists cβ > 0 such that

∀n ≥ 0 : ϕwΛn,β,q[0↔ ∂Λn] ≤ exp(−cβn)
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Proof. The proofs of Lemma 4.5 and Lemma 4.6 do not depend on specific models, so we can keep them.

Fix q ≥ 1 and β0 > 0. Take β ≤ β0.

In (16), we replace µn = ϕwΛ2n,β,q
, which is still a monotonic measure by Theorem 3.8 and Theorem 2.27 in

[Gri06].

In (17), we do not have Russo’s formula anymore, but Theorem 3.12 in [Gri06] offers a similar differential

equality:

θ′n(β) =
∑
xy∈E

Jxy
eβJxy − 1

Cov(10↔∂Λn
, ωe) ≥ min

{
Jxy

eβ0Jxy − 1

} ∑
xy∈E

Cov(10↔∂Λn
, ωe)

In (18), we do not necessarily have equality, but by the comparison between boundary conditions (Lemma

4.14(b) in [Gri06]) and transitivity of G, for all x ∈ Λn,

n−1∑
k=1

µn[x↔ ∂Λk(x)] ≤ 2
∑

k≤n/2

µn[x↔ ∂Λk(x)] ≤ 2
∑

k≤n/2

µk[0↔ ∂Λk] ≤ 2Sn

Still, apply Lemma 4.6, we obtain

d

dβ
θn(β) ≥ min

{
Jxy

eβ0Jxy − 1

}
n

8Sn
θn(1− θn) = c

n

Sn
θn (20)

where c := min
{

Jxy

eβ0Jxy−1

}
1−θ1(β0)

8 > 0. Applying Lemma 4.5 to fn = θn/c and repeating the rest of the

proof in Theorem 4.8 will give what we want.

5 Hutchcroft’s New Critical Exponent Inequalities for Percolation
and the Random-Cluster Models

Similar to the previous section, this section presents a differential inequality based on the OSSS inequality

from Hutchcroft’s paper [Hut20], but instead of radius, we focus on volumes. The differential inequality leads

to two main results:

1. Scaling relation inequalities: γ ≤ δ − 1 and ∆ ≤ γ + 1

2. A sharpness theorem: the distribution of cluster size has an exponential tail. In addition to [DRT19],

the theorem also works for long-range/infinite-range interactions.

5.1 Standard Critical Exponents and Volume-Scaling Relations

In percolation theory (and more generally in the FK random-cluster model), critical exponents are used to

characterize the behavior of cluster observables near the phase transition.

Let G = (V,E) be an infinite, connected, transitive graph, and consider either Bernoulli bond percolation

or the random-cluster model on G with edge parameter p ∈ [0, 1] (and cluster weight q ≥ 1 for the random-

cluster model). We write Pp and Ep for probabilities and expectations with respect to the percolation/RCM
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measure at edge parameter p. Let K denote the cluster of an arbitrary fixed vertex (say the origin o ∈ V ).

The critical probability pc is the threshold at which an infinite cluster appears (pc := inf p : Pp(|K| =∞) > 0).

Near pc, the following power-law behaviors are conjectured (and in some cases proven) to hold. They serve to

define the critical exponents β, γ, δ, and ∆ (if they exist):

1. For p > pc, Pp(|K| =∞) ≈ (p− pc)β as p ↓ pc

2. For p < pc, Ep[|K|] ≈ (pc − p)−γ as p ↑ pc

3. Ppc
(|K| ≥ n) ≈ n−1/δ as n→∞

4. For each k ≥ 1, Ep[|K|k] ≈ (pc − p)−[(k−1)∆+γ] as p ↑ pc

Here the notation f(p) ≈ g(p) means log f
log g → 1 in the given limit. Rigorously establishing existence and

exact values of these exponents in general dimensions remains an open problem in mathematical physics.

Two scaling relations of these exponents are conjectured:

γ = β(δ − 1), βδ = ∆ (21)

These relations are believed to hold universally for continuous (second-order) phase transitions, including

percolation on Zd for each d ≥ 2. (21) is consistent with the heuristic that the various ways of measuring

cluster “size” should not be independent of one another. For example, if Ppc(|K| ≥ n) ∼ n−1/δ, one can

integrate this tail to recover the divergence of Ep[|K|] as p ↑ pc, yielding γ = δ− 1 in a heuristic sense (indeed,

we will rigorously prove an inequality in this direction shortly). Likewise, one expects ∆ = βδ because Ep[|K|2]

can be related to the product Pp(|K| =∞) · Ppc(|K| ≥ n) in a scaling argument, etc.

These scaling relations have been rigorously proved only in special cases. For percolation in two dimensions,

Kesten proved (21) holds [Kes87] as a consequence of conformal invariance techniques. In high dimensions

(d > 6) and on certain tree-like or mean-field graphs, it is known that percolation exhibits mean-field critical

behavior, meaning β = 1, γ = 1, δ = 2,∆ = 2 (and other exponents ν, η, α take their mean-field values as well).

In those cases one can check that (21) is indeed satisfied (e.g. 1 · 2 = 2 for βδ = ∆, etc.). Aside from these

special situations, the full set of scaling relations remains unproven in 3 ≤ d ≤ 6 and for most non-Euclidean

transitive graphs.

Instead, progress in general settings has come in the form of inequalities between critical exponents, often

derived via clever differential inequalities or other rigorous techniques. In subsections 5.3.1 and 5.3.2, we will

present three new exponent inequalities, providing upper bounds on γ and ∆ in terms of the others. Specifically,

we will show that under very general conditions:

γ ≤ δ − 1,∆ ≤ γ + 1 (22)
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These inequalities were not known previously even for classical Bernoulli percolation on Zd. They are consistent

with the conjectural scaling laws (21) – in fact (22) saturates to equality in the mean-field regime. Our

derivation of (22) will follow from a powerful new Russo-type differential inequality that we introduce below.

5.2 Differential inequality

Definition 5.1 (Lower right Dini derivative). For f : [0,∞)→ R, the lower-right Dini derivative at β is

(D+f)(β) := lim inf
h↓0

f(β + h)− f(β)
h

.

We will write d
dβ+

when taking Dini derivatives.

In the following lemma, we use the alternate RCM definition (Definition 2.11): on a transitive weighted

graph (G, J) with edge weights J = {Je}e∈E , cluster weight q ≥ 1, and boundary condition # ∈ {f, w}, the

random-cluster measure at inverse temperature β ≥ 0 is denoted by ϕ#β,q. For a fixed vertex v, let Kv be its

open cluster.

Lemma 5.2. (A Russo-type formula). For an increasing function F : {0, 1}E → R and boundary condition

# ∈ {f,w}, for all β ≥ 0, (
d

dβ

)
+

ϕ#β,q[F (ω)] ≥
∑
e∈E

Je
eβJe − 1

Covϕ#
β,q

[F (ω), ω(e)]] (23)

Proof. We give the details for # = f (free boundary); the wired case is similar.

For any finite weighted subgraph Gn = (Vn, En) of G and any two parameters α, β ≥ 0 we define the

measure ϕGn,β,α,q,A in which edges in a finite set A ⊆ En are assigned weight β while edges in En \A are

assigned α. Because the state space is finite, the map β 7→ ϕGn,β,α,q,A[F ] is differentiable and the usual

finite–volume Russo formula (Thm 3.12 in [Gri06]) gives

d

dβ
ϕGn,β,α,q,A[F ] =

∑
e∈A

Je
eβJe − 1

CovϕGn,β,α,q,A

[
F (ω), ω(e)

]
.

Let Gn be an increasing sequence of finite subgraphs of G that exhausts the infinite graph, and let En be

the edge set of Gn. For a fixed finite edge set A and β ≥ α, the measures ϕGn,β,α,q,A converge monoton-

ically to a limiting measure ϕfβ,α,q,A obtained by standard FKG arguments, as n → ∞. The covariance

CovϕGn,β,α,q,A

[
F (ω), ω(e)

]
also converges, and therefore when β > α

d

dβ
ϕfβ,α,q,A[F ] =

∑
e∈A

Je
eβJe − 1

Covϕf
β,α,q,A

[
F (ω), ω(e)

]
(24)

Because F is increasing and ϕfβ,q stochastically dominates ϕfβ,α,q,A for every β ≥ α (only edges in A have the

larger weight β), we have

ϕfβ,q[F ]− ϕfα,q[F ]
β − α

≥
ϕfβ,α,q,A[F ]− ϕ

f
α,q,A[F ]

β − α
.
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Letting α ↑ β turns the left-hand side into the Dini derivative
(
d/dβ

)
+
ϕfβ,q[F ], whereas the right-hand side

tends (by (24)) to
∑

e∈A
Je

eβJe−1
Covϕf

β,α,q,A
[F, ω(e)]. Finally, take the supremum over all finite A ⊆ E. Positive

association ensures that enlarging A only increases each covariance term, and then the supremum equals the

full infinite sum over E.

To convert (23) into a logarithmic derivative for the tail event F (ω) = 1(|Kv| ≥ n), we need a uniform

positive lower bound on the total covariance
∑

e Cov(F, ω(e)). This is provided by an OSSS/ghost-field argu-

ment.

Lemma 5.3. (OSSS for decision forests). Let µ be a monotonic measure on {0, 1}E. For measurable,

µ−integrable f, g : {0, 1}E → R with f increasing and every decision forest F = {T1, . . . } computing g,

we have

1

2
|Covµ[f, g]| ≤

∑
e∈E

δe(F, µ)Covµ[f, ω(e)]

Proof. By (8), we only need to construct a decision tree T that computes the same functions as F and has

δe(T, µ) = δe(F, µ) for all e ∈ E. Indeed, A possible construction is to

1. At time pji (pi is the ith prime), execute the jth step of T i

2. At non-prime-power time, re-query the first input queried by T 1

The following lemma is where we apply the OSSS inequality, and we need to choose an appropriate decision

forest.

Lemma 5.4. Let G = (V,E) be a countable graph and µ be a monotonic measure on {0, 1}E (in particular,

µ = ϕ#β,q with q ≥ 1). Then for all v ∈ V, n ≥ 1, λ > 0

∑
e∈E

Covµ[1(|Kv| ≥ n), ω(e)] ≥

[
(1− e−λ − µ

[
1− e−λ|Kv|/n

]
2 supu∈V µ

[
1− e−λ|Ku|/n

] ]
µ(|Kv| ≥ n)

Proof. Let the ghost field η ∈ {0, 1}V be a random subset of V where each vertex is included independently

with probability h = 1− e−λ/n ≤ λ/n.

Let P and E denote probability and expectation with respect to the joint law of (ω, η). Fix v ∈ V , and

define the increasing indicator functions

f(ω, η) := 1{|Kv| ≥ n}, g(ω, η) := 1{Kv contains at least one green vertex of η}

For each u ∈ V , define a decision tree Tu as follows:
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1. Query η(u).

2. If η(u) = 0 then stop and output u forever.

3. If η(u) = 1, then explore the cluster of u in ω in some predetermined ordering.

Formally, fix an enumeration of E and let u ∈ V . Set Tu
1 (ω, η) = u. If η(u) = 0, set Tu

n = u for all n ≥ 2.

Otherwise, at step n:

1. Maintain sets Uu
n (revealed vertices), Ou

n (revealed open edges), and Cu
n (revealed closed edges).

2. Initialize Uu
1 = {u}, Ou

1 = Cu
1 = ∅.

3. If every edge adjacent to Uu
n has been revealed, stop. Otherwise, reveal all such edges and update Tu

n+1

with the smallest among them in the enumeration.

4. Update Cn
n+1, O

n
n+1 based on ω(Tn

n+1)

Such decision tree Tu satisfies

{x ∈ V ∪ E : Tu
n (ω, η) = x for some n ≥ 1} =

{
{u} (η(u) = 0)

{u} ∪ E(Ku(ω)) (η(u) = 1)
(25)

In particular, F = {Tu : u ∈ v} computes g.

By the two-function OSSS inequality,

Covµ⊗ν [f, g] ≤
∑
e∈E

δe(F, µ)Covµ[f, ω(e)],

where ν denotes the ghost law. Moreover,

Cov[f, g] = 2Cov[f, g]µ = 2µ(f = 1, g = 1)− 2µ(f = 1)µ(g = 1).

Since E[g||Kv| = m] = 1− e−λm/n, we obtain

Covµ(f, g) = µ(|Kv| ≥ n)(1− e−λ)− µ[1− e−λ|Kv|/n].

An edge e is revealed by F if and only if the cluster containing e contains a green vertex. Thus

δe(F, µ) ≤ 2 sup
u∈V

µ(η(u) = 1 and u ∈ Ke) ≤ 2 sup
u∈V

µ
[
1− e−λ|Ku|/n

]
.

Combining with OSSS gives the claim.

We are now ready to prove the differential inequality.

Theorem 5.5 (Differential inequality for percolation). For each n ≥ 1, λ > 0, and 0 < p < 1, we have

d

dp
logPp(|K| ≥ n) ≥

1

2p(1− p)

[
(1− e−λ)n

λ
∑⌈n/λ⌉

m=1 Pp(|K| ≥ m)
− 1

]
(26)
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Proof of the differential inequality. Lemma 5.2 gives

d

dp
Pp(|K| ≥ n) ≥

1

2p(1− p)
∑
e∈E

Covp(1{|K|≥n}, ω(e)).

By Lemma 5.4,

∑
e∈E

Covp(1{|K|≥n}, ω(e)) ≥
(1− e−λ)− Pp

[
1− e−λ|K|/n]

2 supu Pp

[
1− e−λ|Ku|/n

] Pp(|K| ≥ n) (27)

≥1

2

[
(1− e−λ)

λ
n

∑⌈n/λ⌉
m=1 Pp(|K| ≥ m)

− 1

]
Pp(|K| ≥ n) (28)

Apply Lemma 5.2 to F = 1(|K| ≥ n), we have(
d

dp

)
+

Pp(|K| ≥ n) ≥
∑
e∈E

1

p(1− p)
Cov[F, ω(e)] ≥ 1

2p(1− p)

[
(1− e−λ)

λ
n

∑⌈n/λ⌉
m=1 Pp(|K| ≥ m)

− 1

]
Pp(|K| ≥ n).

(29)

It is known that (log f)′ = 1
f f

′, and this rule also applies to Dini’s derivatives. Thus,

(
d

dp

)
+

logPp(|K| ≥ n) ≥
1

2p(1− p)

[
(1− e−λ)

λ
n

∑⌈n/λ⌉
m=1 Pp(|K| ≥ m)

− 1

]

Corollary 5.6 (Differential inequality for RCM). Given that (G, J) is an infinite transitive weighted graph,

q ≥ 1 and # ∈ {f, w}. Then for β ≥ 0, λ > 0, n ≥ 1,

max
e∈E

[
eβJe − 1

Je
]

(
d

dβ

)
+

log ϕ#β,q(|K| ≥ n) ≥
1

2

[
(1− e−λ)n

λ
∑⌈n/λ⌉

m=1 ϕ#β,q(|K| ≥ m)
− 1

]

5.3 Results

5.3.1 Critical Exponents Inequalities γ ≤ δ − 1,∆ ≤ δ

The inequalities γ ≤ δ − 1,∆ ≤ δ are direct consequences of Theorem 5.8.

Lemma 5.7 (Integrated differential inequality). Let (G, J) be an infinite transitive weighted graph, q ≥ 1,

# ∈ {f, w}, and write ψβ(n) := ϕ#β,q(|K| ≥ n) and C(β) := maxe∈E
eβJe−1

Je
. For every n ≥ 1, λ > 0, and

0 ≤ β ≤ β0, we have

ψβ(n) ≤ ψβ0
(n) exp

{
− β0 − β
2C(β0)

[
(1− e−λ)n

λ
∑⌈n/λ⌉

m=1 ψβ0
(m)
− 1

]}
(30)

and, since
∑⌈n/λ⌉

m=1 ψβ0(m) ≤ ϕ#β0,q
[|K|],

ψβ(n) ≤ ψβ0(n) exp

{
− β0 − β
2C(β0)

[
(1− e−λ)n

λϕ#β0,q
[|K|]

− 1

]}
. (31)
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Proof. By Corollary 5.6, for all β ≥ 0,

C(β)

(
d

dβ

)
+

logψβ(n) ≥
1

2

[
(1− e−λ)n

λ
∑⌈n/λ⌉

m=1 ψβ(m)
− 1

]
.

Both ψβ(m) and C(β) are nondecreasing in β. Hence for β ≤ t ≤ β0,

⌈n/λ⌉∑
m=1

ψt(m) ≤
⌈n/λ⌉∑
m=1

ψβ0
(m), C(t) ≤ C(β0).

so for β ≤ t ≤ β0,

C(β0)

(
d

dt

)
+

logψt(n) ≥
1

2

[
(1− e−λ)n

λ
∑⌈n/λ⌉

m=1 ψβ0
(m)
− 1

]
.

Integrate from t = β to t = β0 and use the identity logψβ0
(n)− logψβ(n) =

∫ β0

β
d
dt logψt(n)dt to deduce

C(β0)
(
logψβ0

(n)− logψβ(n)
)
≥ β0 − β

2

[
(1− e−λ)n

λ
∑⌈n/λ⌉

m=1 ψβ0
(m)
− 1

]
.

Exponentiating gives (30). Since
∑⌈n/λ⌉

m=1 ψβ0
(m) ≤

∑
m≥1 ψβ0

(m) = ϕ#β0,q
[|K|], (31) follows immediately.

Theorem 5.8 (Exponential bound for Bernoulli percolation). Let G be an infinite, connected, locally finite

transitive graph, and suppose that there exist constants C > 0 and δ > 1 such that for all n ≥ 1

Ppc
(|K| ≥ n) ≤ Cn−1/δ.

Then the following hold:

1. There exist constants c, C ′ > 0 such that for all 0 ≤ p < pc, n ≥ 1

Pp(|K| ≥ n) ≤ C ′n−1/δ exp
[
−c(pc − p)δn

]
2. There exists a constant C ′′ > 0 such that for all k ≥ 1, 0 ≤ p < pc,

Ep[|K|k] ≤ k!

[
C ′′

pc − p

](δ−1)+(k−1)δ

Theorem 5.9 (Exponential bound for RCM). Let (G, J) be an infinite transitive weighted graph. Let β0 > 0,

q ≥ 1, and # ∈ {f, w}. Suppose there exist constants C > 0 and δ > 1 such that for all n ≥ 1

ϕ#β0,q
(|K| ≥ n) ≤ Cn−1/δ

Then the following hold:

1. There exist constants c1, C1 > 0 such that for all 0 ≤ β < β0, n ≥ 1

ϕ#β,q(|K| ≥ n) ≤ C1n
−1/δ exp

[
−c1(β0 − β)δn

]
(32)
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2. There exists a constant c2 > 0 such that for all k ≥ 1, 0 ≤ β < β0,

ϕ#β,q[|K|
k] ≤ k!

[
c2(β0 − β)

]−δk+1
(33)

Remark 5.10. Clearly, Theorem 5.9 follows as a corollary of Theorem 5.8 by specializing to the case q = 1 and

uniform weights Je ≡ 1. Therefore, in what follows we only prove Theorem 5.9.

Proof of Theorem 5.9. Fix β0 > 0, and suppose there exist constants C > 0 and δ > 1 such that

ϕ#β0,q
(|K| ≥ n) ≤ Cn−1/δ, for every n ≥ 1.

Denote inequalities that hold up to positive multiplicative constants depending only on (G, J), δ, C, β0 by ≲

or ≳.

Summing over m ≤ n gives
n∑

m=1

ϕ#β0,q
(|K| ≥ m) ≲ n1−1/δ.

By Lemma 5.7, for every 0 ≤ β1 < β0 and n ≥ 1,

ϕ#β1,q
(|K| ≥ n) ≲ n−1/δ exp

[
−c1(β0 − β1)n1/δ

]
.

Now summing over n ≥ 1 yields

ϕ#β1,q
[|K|] ≲ (β0 − β1)−δ+1.

In particular, for every 0 ≤ β < β0 and n ≥ 1, we obtain

ϕ#β,q(|K| ≥ n) ≲ n−1/δ exp

[
−c2

(β0 − β)n
(β0 − β)δ−1

]
≲ n−1/δ exp

[
−c2(β0 − β)δn

]
.

which proves (32).

For (33), note that for any x > 0,

ϕ#β,q[|K| ≥ x] ≲ x−1/δ exp
[
−c2(β0 − β)δx

]
.

Let ε = c2(β0 − β)δ and α = k − 1− 1/δ, we get

ϕ#β,q[|K|
k] = k

∫ ∞

0

xk−1ϕ#β,q(|K| ≥ x)dx ≲ k

∫ ∞

0

xαe−εxdx.

By change of variable y = εx, we obtain

ϕ#β,q[|K|
k] ≲ kε−α−1Γ(α+ 1) ≲ k![c2(β0 − β)]−δk+1.

which proves (33).

28



5.3.2 Critical Exponents Inequalities ∆ ≤ γ + 1

The inequality ∆ ≤ γ + 1 is a direct consequence of Theorem 5.11.

Theorem 5.11 (Bernoulli Percolation Version). Let G be an infinite, connected, locally finite transitive graph,

and suppose there exist constants C > 0 and γ ≥ 1 such that for all 0 ≤ p < pc

χ(p) := Ep[|K|] ≤ C(pc − p)−γ

Then there exists C ′ > 0 such that, for every k ≥ 1 and 0 ≤ p < pc,

Ep[|K|k] ≤ k!

[
C ′

pc − p

]γ+(k−1)(γ+1)

.

Theorem 5.12 (RCM Version). Let (G, J) be an infinite transitive weighted graph. Fix β0 > 0, q ≥ 1, and

# ∈ {f, w}. Suppose there exist constants C > 0 and γ ≥ 1 such that for all 0 ≤ β < β0

χ#
β,q := ϕ#β,q[|K|] ≤ C(β0 − β)

−γ . (34)

Then there exists c > 0 such that, for every k ≥ 1 and 0 ≤ β < β0,

ϕ#β,q[|K|
k] ≤ k!

[
c(β0 − β)

]−(k−1)(γ+1)−γ
.

Remark 5.13. Still, Theorem 5.12 follows as a corollary of Theorem 5.11 by specializing to the case q = 1 and

uniform weights Je ≡ 1.

Proof of Theorem 5.12. Fix 0 ≤ β < β0 and let β < β1 < β0 be arbitrary (to be optimized later). By

the integrated differential inequality with λ = 1 (Lemma 5.7), for some constant a > 0 depending only on

(G, J), q,#,

ϕ#β,q(|K| ≥ n) ≤ ϕ
#
β1,q

(|K| ≥ n) exp

{
−aβ1 − β

χ#
β1,q

n

}
exp

{
O(β1 − β)

}
. (35)

Use Markov’s inequality at level β1 and absorb the harmless factor exp{O(β1 − β)} into the constants:

ϕ#β1,q
(|K| ≥ n) ≤

χ#
β1,q

n
.

Substituting into (35) yields

ϕ#β,q(|K| ≥ n) ≤
χ#
β1,q

n
exp

{
−aβ1 − β

χ#
β1,q

n

}
. (36)

By (34), χ#
β1,q
≤ C(β0 − β1)−γ , so

ϕ#β,q(|K| ≥ n) ≤
C ′

n
(β0 − β1)−γ exp{−c1(β1 − β)(β0 − β1)γn} .
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Choose the balancing midpoint β1 = (β + β0)/2. Then (β1 − β) ≍ (β0 − β1) ≍ (β0 − β) and hence

ϕ#β,q(|K| ≥ n) ≤
C ′′

n
(β0 − β)−γ exp

{
−c2(β0 − β)γ+1n

}
.

Finally, for k ≥ 1,

ϕ#β,q[|K|
k] = k

∫ ∞

0

xk−1ϕ#β,q(|K| ≥ x)dx ≤ kC ′′(β0 − β)−γ

∫ ∞

0

xk−2e−c2(β0−β)γ+1xdx.

so

ϕ#β,q[|K|
k] ≤ k!

[
c(β0 − β)

]−(k−1)(γ+1)−γ
,

5.3.3 Sharp Phase Transitions via Volumes

Theorem 5.14 (Sharpness of Phase Transitions). Let (G, J) be an infinite transitive weighted graph, let q ≥ 1

and # ∈ {f, w}, and let β#
c = inf{β ≥ 0 : ϕ#β,q(|K| =∞) > 0}. Then:

1. For every 0 ≤ β < β#
c there exist constants Cβ , cβ > 0 such that for all n ≥ 1

ϕ#β,q
(
|K| ≥ n

)
≤ Cβe

−cβn (37)

2. For every β > β#
c ,

ϕ#β,q(|K| =∞) ≥ β − β#
c

2maxe∈E
eβJe−1

Je
+ β − β#

c

(38)

Proof. Define the volume–sharpness threshold

β̃#
c := sup

{
β ≥ 0 : ∃ c, C > 0 with ϕ#β,q(|K| ≥ n) ≤ Cn

−c for all n ≥ 1
}
= inf

{
β ≥ 0 : lim sup

n→∞

log ϕ#β,q(|K| ≥ n)
log n

≥ 0
}

Obviously β̃#
c ≤ β#

c . We need β̃#
c ≥ β#

c and deduce (37) and (38).

First, fix 0 ≤ β < β̃#
c . By definition of β̃#

c there exists β0 ∈ (β, β̃#
c ) and δ > 1 such that ϕ#β0,q

(|K| ≥ n) ≲ n−1/δ.

Applying Theorem 5.9 with this β0 gives that for all n ≥ 1

ϕ#β,q(|K| ≥ n) ≤ Cβe
−cβn (39)

Hence (37) holds for every β < β̃#
c .

Write

Pn(β) := ϕ#β,q(|K| ≥ n), Σn(β) :=

n−1∑
m=0

Pm(β), Tk(β) :=
1

log k

k∑
n=1

Pn(β)

n

Then Tk(β) → ϕ#β,q(|K| = ∞) as k → ∞ (standard renewal–type argument). Applying Corollary 5.6 with

λ = 1 and summing over n ≤ k gives

( d

dβ

)
+
Tk(β) ≥

1

2C(β) log k

k∑
n=1

[
(1− e−1)Pn(β)

Σn(β)
− Pn(β)

n

]
, C(β) := max

e∈E

eβJe − 1

Je
.
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Using u ≥ log(1 + u) for u ≥ 0 we obtain

k∑
n=1

Pn(β)

Σn(β)
≥

k∑
n=1

(
log Σn+1(β)− log Σn(β)

)
= logΣk+1(β),

so that ( d

dβ

)
+
Tk(β) ≥

(1− e−1) log Σk+1(β)

2C(β) log k
− Tk(β)

2C(β)
(k ≥ 2). (40)

Fix β̃#
c < β1 < β2. By the definition of β̃#

c , Σk+1(β1) ≥ k1−o(1), whence

lim
k→∞

log Σk+1(β1)

log k
= 1.

Taking infβ∈[β1,β2] of the left-hand side of (40), supβ∈[β1,β2] inside C(β), and then lim supk→∞ yields

lim sup
k→∞

inf
β1≤β≤β2

( d

dβ

)
+
Tk(β) ≥

1− e−1

2C(β2)
−

ϕ#β2,q
(|K| =∞)

2C(β2)
.

Integrating this differential inequality over β ∈ [β1, β2] and letting k →∞ gives

ϕ#β2,q
(|K| =∞) ≥ (1− e−1)(β2 − β1)

2C(β2) + β2 − β1
> 0.

As β1 ↓ β̃#
c and β2 > β1 are arbitrary, this shows ϕ#β,q(|K| =∞) > 0 for every β > β̃#

c , hence β̃#
c ≥ β#

c . Since

β̃#
c ≤ β#

c , we conclude β̃#
c = β#

c and (39) holds for all β < β#
c , proving (37).

Apply Corollary 5.6 with general λ > 0 to obtain, for k ≥ 2,( d

dβ

)
+
Tk(β) ≥

1

2C(β) log k

k∑
n=1

[
(1− e−λ)Pn(β)

λ
∑⌊n/λ⌋

m=1 Pm(β)
− Pn(β)

n

]
.

Similarly, we get that for every β1 < β2,

lim sup
k→∞

inf
β1≤β≤β2

( d

dβ

)
+
Tk(β) ≥

1− e−λ

2C(β2)
−

ϕ#β2,q
(|K| =∞)

2C(β2)
.

Let λ→∞ so that 1− e−λ ↑ 1, and integrate over β ∈ [β#
c , β]. Since Tk(β

#
c )→ 0 (by sharpness just proved),

we obtain

ϕ#β,q(|K| =∞) ≥ β − β#
c

2C(β) + β − β#
c

,

which proves (38).

6 Future Work and Open Problems

While recent works have broadened the range of models where inputs like the existence of critical exponents

are available, several questions remain open. We collect a few directions below.

Existence (and values) of critical exponents on Zd, 3 ≤ d ≤ 6. For Bernoulli percolation in high

dimensions (d > 6), the lace expansion proves mean-field critical behavior and the triangle condition, yielding

β = γ = 1 and δ = 2, among other exponents [HS93, HH17]. In contrast, for 3 ≤ d ≤ 6, the existence and

values of most exponents remain open (even for q = 1). Rigorous identification of exponents in this range, and

verification of scaling/hyperscaling, is a central challenge.
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Planar FK model: nature of the phase transition. On Z2, the critical point is at the self-dual value

psd(q) =
√
q (1 +

√
q)−1 for all q ≥ 1 [BDC12]. The transition is continuous for 1 ≤ q ≤ 4 (uniqueness

of the infinite-volume Gibbs state at criticality and polynomial decay) [DST17], while it is discontinuous for

q > 4 [DC17]. A mature critical exponent theory is available for q = 1 (critical site percolation on the triangular

lattice via SLE) and much is known for q = 2 (Ising), but for 1 < q < 2 a complete rigorous determination

of exponents (and full conformal invariance statements) remains open. Progress here includes parafermionic-

observable and RSW-type inputs [DST17]; turning these into full exponent identities for 1 < q < 2 is a

promising avenue.

Higher dimensions for FK with q ≥ 3. In sufficiently high dimensions (or for sufficiently strong mean-field

signatures), first-order transitions in Potts/FK with q ≥ 3 are rigorously established via reflection positivity

and mean-field bounds [BC03]. Sharpening these results—lowering the required dimension, quantifying the

discontinuity, and mapping the d–q phase diagram—remains an active direction. In particular, the case q = 3

on intermediate dimensions (e.g., d = 3, 4) is a natural target for new techniques.

Random-cluster model for 1 < q < 2 in d ≥ 3. For nonplanar lattices, very little is known about the

precise nature of the transition when 1 < q < 2. Determining whether the transition is always continuous,

identifying the near-critical scaling window, and proving the existence/values of critical exponents are major

open problems. Extending lace-expansion or decision-tree/OSSS methods to this regime (possibly with new

multi-scale inputs) is a concrete research path.
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