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Abstract

This expository paper studies phase transitions in Bernoulli bond percolation and the Fortuin—-Kasteleyn
random-cluster model on transitive graphs. Criteria for the existence of a supercritical phase are estab-
lished: we prove that p. < 1 if and only if the number of minimal cutsets from the origin grows at most
exponentially with their size, and in particular that p. < 1 for every uniformly transient infinite graph.
Next, we prove sharpness of the phase transition — namely, exponential decay of connection probabilities
for p < p. and linear growth of the infinite-cluster density for p > p. — by an OSSS-informed decision
tree approach. Finally, using a recent differential inequality for cluster volumes, we derive new inequalities
relating critical exponents and show that in the entire subcritical regime the cluster-size distribution has
an exponential tail.
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1 Introduction

This article provides an exposition of several recent advances in the study of phase transitions in Bernoulli
bond percolation and random-cluster models. We have two main goals: (i) to present rigorous criteria for the
existence of a nontrivial supercritical phase; and (ii) to provide proofs of the sharpness of the phase transition,

together with new inequalities relating the critical exponents. To this end, we combine geometric arguments

(Peierls’-type estimates), probabilistic inequalities (the OSSS decision-tree method), and analytic techniques
(differential inequalities for cluster volumes).

Classical results on percolation include Peierls’ 1936 argument establishing p. < 1 for Z? [Pei36], the
works of Menshikov [Men86] and Aizenman-Barsky proving sharpness of the transition on Z?. More
recently, Duminil-Copin, Raoufi, and Tassion introduced the decision-tree method (based on the
0OSSS inequality [OSSS05]), which can be extended to random-cluster models. On the geometric side, Babson
and Benjamini (1999) conjectured that p. < 1 if and only if the number of minimal cutsets grows at most
exponentially; this conjecture was finally confirmed by Easo, Severo, and Tassion [EST24]. On the analytic side,
Hutchcroft [Hut20] developed new volume-based differential inequalities, from which follow both exponential

subcritical decay of cluster volumes and new universal inequalities between critical exponents.

Organization of the paper. In Section 2 we recall the definitions and basic properties of Bernoulli bond
percolation and the random-cluster model. Section 3 is devoted to the existence of phase transitions: we review
Peierls” classical argument, state and explain the converse Peierls’ theorem of Easo-Severo-Tassion, and deduce
that all uniformly transient graphs satisfy p. < 1. Section 4 turns to the sharpness of the transition with
respect to radii of large open clusters: we present the decision-tree/OSSS approach, and indicate the extension
to random-cluster models with ¢ > 1. Section 5 discusses Hutchcroft’s volume-based differential inequality
and derives the critical exponent inequalities v < d — 1 and A < v+ 1, together with the exponential decay of

cluster volumes in the subcritical phase.

2 Background

In this section, we introduce Bernoulli bond percolation, random-cluster models, and related terminologies

and state a few well-known properties that will be important to us. An interested reader may look into



Grimmett’s books [Gri99][Gri06] for more details.
2.1 Bernoulli Percolation

Definition 2.1. Consider an infinite, connected, transitive graph G with maximal degree< d. Let E be its
edge set and V be its vertex set. For a given p € [0, 1], each edge e € E has a probability of p to be open and
a chance of 1 — p to be closed. Formally, there is a family of i.i.d. random variables {X?}.cp with X? ~ Ber,
for all e, so that X? = 1 implies edge e is open and X? = 0 implies edge e is closed. Define O as the collection

of all open edges. Such (G, O) is called a (bond) Bernoulli percolation model.

Notice that in this process of constructing O, there will be (random) open paths (for example, there may
be vertices  and y connected by a path consisting solely of open edges) and thus open clusters (sets of vertices
each pair of which is connected by an open path).

Denote z,y connected by an open path as z <+ y and open cluster containing = as C(x).

The rest of the section often assumes without loss of generality that G = Z? (the d-dimensional cubic

lattice).

Definition 2.2. (Percolation probability space). Call a state of percolation processes a configuration (which is
to assign a 0/1 (closed/open) value to each edge in E). Let Q =[], {0,1} be the space of all configurations.

Let F be the o—algebra generated by finite cylinder sets {[]..{0,1} : F C E,|F| < co}. The probability
measure on (€2, F) is the product measure P, characterized by P,(w : w(e) =1) = pand Pp(w : w(e) =0) = 1—p
for each edge e (independently). In other words, P, = @,y Bernoulli(p) on €. We will work with the
probability space (2, F, P,) for a fixed value of p.
Definition 2.3. Let A(z,n) denote the box (cube) of side length 2n centered at z in G (in particular, A(0, n)
is the box of radius n around the origin). We abbreviate A, := A(0,n) = [—n, n].

Define 6,,(p) = P,(0 <> 0A,),0(p) = P,(0 <+ 00). That is, 6(p) is the probability that 0 is in an infinite
open cluster.

Define ¢(p) = P[U,cz.{|C?(x)| = oo}]. That is, ¢)(p) is the probability that there exists an infinite open

cluster.

It is easy to see that 6(p) is a nondecreasing function of p, since increasing p (making each edge more likely
to be open) can only increase the chance of an infinite cluster.
With the help of Kolmogorov’s 0-1 Law, we can prove the following lemma which says that the positivity

of 6(p) is enough to determine the existence of an infinite open cluster.

0 (i 6(p) = 0)

Lemma 2.4. For any p € [0,1], (p) = {1 (if 6(p) > 0)

Since p + 6(p) is monotone increasing, ¥(p) stays 0 until p increases to some point such that 6(p) is

nonzero, and then ¥(p) stays 1. Therefore, it is natural to use infimum to define that threshold.



Definition 2.5. (Critical value). The critical value p.(d) for the percolation model in Z¢ is defined as
pe(d) == inf{p € [0,1] : 6(p) > 0} = inf{p € [0,1] : P(p) = 1}.

Theorem 2.6. (Ezistence of phase transitions in Bernoulli percolation models). Given G = Z with d > 2.
There exists a critical probability p. € (0,1) such that for all p > p., 8(p) = 1 (supercritical phase); for all

p < pe, 0(p) = 0 (subcritical phase). Thus, we say that the Bernoulli bond percolation has a unique phase

transition.

We will prove this theorem in a more general form in Section 3.1.

2.2 Random Cluster Model

We will first work on a finite graph G' = (V, E) and later pass to the limit G * Z.
For a configuration w € {0,1}¥ write o(w) = |{e € E : w. = 1}| and ¢(w) = |E| \ o(w) for the numbers
of open and closed edges. For a boundary condition # € {f,w} (free or wired), let ky(w) be the number

of connected components (“clusters”) of the open subgraph. In the wired case # = w, all vertices on the

boundary of the finite graph G are identified as a single “wire” vertex, which counts as one component if it is

occupied; In the free case # = f, the boundary condition is unconstrained.

Definition 2.7 (Random-cluster measure). Fix ¢ > 0 and p € [0,1]. The (finite-volume) random-cluster

measure with boundary condition # is the probability measure

1
3 pq(W) = =" (1 —p)* g+ we (0,1},
ZG,p,q

where ZZ{p’q is the normalizing constant. When ¢ = 1, the factor ¢*#(“) =1 and ¢§,p,1 is the Bernoulli bond

percolation measure with edge-parameter p (independent edges).

On Z% with d > 2 and ¢ > 1, the measures ¢f\’p’q and ¢} , . on boxes A C Z% have the FKG property
and are monotone in A. Hence the thermodynamic limits (zﬁgq and ¢y, exist. Define the (percolation) order

parameter
0% (p.q) = 0], (0 > 00), € {f,w}
Since the event {0 <+ co} is increasing, p — 67 (p, q) is nondecreasing for fixed ¢ > 1.
Definition 2.8 (Critical value). For ¢ > 1, set
pe(q) :=inf{p € [0,1] : 6¥(p, q) > 0}.

Theorem 2.9 (Existence of a phase transition for the Random-Cluster Model on Zd). Fizd>2and qg>1.

Then p.(q) € (0,1) and

0% (p,q) =0 for p < p.(q), 0" (p,q) > 0 for p > p.(q).

In particular, the RCM exhibits a (unique) phase transition at p.(q).



Proof. For ¢ = 1 (Bernoulli bond case) we know p.(1) € (0,1) on Z¢. A comparison inequality (Theorem 5.5

in [Gri06]) states that for 1 < ¢’ < g,

1 1 q/d  q
< < -2 41
pe(q) ~ peld’) T pela) ¢

Taking ¢’ = 1 gives 1/p.(q) < 1/pc(1), hence p.(q) > p.(1) > 0, and also p%(l) < p%(q) — g + 1, which implies

1o > 1 (since p.(1) < 1), so pe(q) < 1. Monotonicity of §#(p,q) in p and the definition of p.(q) yield the

pe(q)

subcritical and supercritical statements. O

Remark 2.10. The terminology “percolation probability” refers only to the connectivity event under the RCM
measure; the model itself is not Bernoulli unless ¢ = 1. The p(1 — p) parametrization is equivalent to the usual

L., (ePJev — 1)“sv form via the change of variables p,, = 1 — e~#/+» on unweighted graphs.

The following alternate definition is often used in analytical contexts.

Definition 2.11. (Alternate definition for RCM). Given a finite subgraph G = (V, E) of a weighted lattice
(G, {Juy tayer). For a configuration w € {0,1}, let k¢ (w) be the number of connected components in the graph
induced by w, and k,,(w) be the number of connected components in the graph induced by w by considering
all vertices in G as one single vertex.

Fix ¢, > 0. Define the random-cluster measure on G with free boundary conditions as the probability

measure satisfying, for all w € {0,1}F,

f — qkf(W) ﬁme — Wy
b6 p.qw) = 7 H (e 1)

zyeE

where Z is a normalizing constant. Similarly, we define the random-cluster measure on G with wired boundary

conditions ¢ 5, by replacing ky(w) with &y, (w).
3 Existence of Phase Transitions

We first present the classical Peierls’ argument in Section 3.1, which is 0 < p. < 1 in certain graphs. We
then show the converse of the Peierls’ argument and a very general sufficient graph condition for p. < 1 in

Section 3.2.
3.1 Peierls’ Argument

Throughout this subsection let G = (V, E) be an infinite connected graph with degv < D < oo for all
v € V, and let C(x) be the open cluster of = in Bernoulli bond percolation with parameter p € [0, 1].

This subsection aims to provide a bound for the critical value in percolation.

Theorem 3.1 (Lower bound). Let G be an infinite connected graph with mazimal degree D. Then

1

PelG) > 5.




Proof. Fix a vertex x. For n > 1, let S,, be the set of self-avoiding paths of length n starting at =, and put
fn :=|Sn|. We have the crude bound p; < D and p, < D(D—1)""! for n > 1, hence p := limsup,,_, ., pl/m <
D—1.

Let B(z,n) be the ball of graph distance < n about z (not box A(x,n). If z <+ dB(z,n) occurs, then there

exists an open self-avoiding path of length exactly n from x, so by a union bound
Py(z <> 0B(z,n)) < pinp™.

Since {z <> oo} C {x <> B(xz,n)} for every n and the latter events decrease to {x < oo}, continuity from
above gives

Py(x > 00) = nh_)rr;o P,(z <> 0B(z,n)) < limsup p,,p".

n—oo

If p < p=! (in particular, if p < 1/(D — 1)), the right-hand side is 0. Hence P,(z +» o0) = 0 and so
pe(G) > 1/(D —1). -

Definition 3.2 (Cut-set and minimal cut-set). Fix z € V. A cut-set (for ) is a set of edges IT C E such that
every infinite self-avoiding path starting at = uses at least one edge of II. A cut-set II is minimal if no proper

subset of II is a cut-set.

Remark 3.3. Every finite cut-set contains a minimal cut-set (remove edges one by one while preserving the

cut-set property).
Lemma 3.4. For Bernoulli bond percolation on G and x € V,
T 400 < every finite minimal cut-set I contains at least one open edge.

Equivalently, C(x) is finite if and only if there exists a finite cut-set all of whose edges are closed.

Proof. Tt C(z) is finite, let II be the set of edges with exactly one endpoint in C(x):
MN={yzec E:yecC(z),z¢ C(x)}.

Then II is finite, all its edges are closed, and it is a cut-set for x. Conversely, if there exists a finite cut-set II all
of whose edges are closed, then no open path from z can cross II, so C(z) is contained in the finite component

of G\ I containing x, hence finite. Taking contrapositives yields the stated equivalence. O

Theorem 3.5 (Peierls’ upper bound via cut-set counting). Suppose there exist ng € N and M > 1 such that,

for all n > ng, the number C,, of minimal cut-sets for x of size n satisfies |C,,| < M™. Then

1
<1l1-——.



Proof. Fixp>1— ﬁ, so M(1 —p) < 1. For N > ng, let
Ay = {Eln > N,dII € C,, with all edges of 11 closed}.

By a union bound,

PAn) < DGl =p)m < Y (M(1-p)".

n>N n>N

Since M (1 — p) < 1, choose N so large that P,(An) < 3.
Let S = {Il € C, : n < N} and Es = Upcgll, a finite set of edges. Define the increasing event

B :={all edges in Eg are open}. Then P,(B) > 0, and by FKG (both B and A$; are increasing),
By(B N AR)y(B)Py(A%) = Pp(B)(1 — Py(An)) > 5 Po(B) > 0.

On BN A$ there is no finite minimal cut-set with all edges closed (sizes < N are ruled out by B, and sizes
> N by A%). By Lemma x <> 00 on BN AS. Hence Py(z <+ 00) > 0, so p > p.(G). This holds for every

p>1—ﬁ,givingpc(G)§l—ﬁ. O

Example 3.6 (Regular tree). Let Ty be the d-regular tree with d > 2. Then

1

pe(Ta) = 1-1

Proof. The lower bound p, > 1/(d—1) follows from Theoremm For the upper bound, explore C(0) away from
the root o. Off the edge to its parent, each vertex has d — 1 children, and the subtree edges are independent;
thus |C(0)| is dominated by a Galton—Watson process with offspring (dgl). The survival probability is positive
if and only if (d—1)p > 1, ie. p>1/(d—1). Hence p. < 1/(d — 1), and the two bounds match. O

3.2 Counting Minimal Cutsets and p. < 1

This section is based on the paper [EST24] by P. Easo, F. Severo, and V. Tassion, which develops a
connection between the geometry of cutsets and the existence of a nontrivial phase transition. Two main

contributions are made:

1. The classical Peierls’ argument shows that if the number of minimal cutsets grows at most exponentially
in their size, then p.(G) < 1. The authors prove the exact converse: whenever p.(G) < 1, the number

of minimal cutsets from the root to infinity grows at most exponentially.

2. The authors give a very general sufficient condition for the critical probability p. < 1. This condition is
phrased in terms of uniform transience of the underlying graph, and it applies to a broad family of

infinite connected locally finite graphs.

In what follows, we introduce the key definitions (minimal cutsets, exposed boundaries, and the growth
constant x(G)) and then present the main theorems together with the essential ideas of their proofs.

Let G = (V, E) be an infinite, connected, locally finite graph.



Definition 3.7. A set of edges E’ C E is called a cutset from a vertex o to infinity if removing E’ disconnects

o from infinity — equivalently, o lies in a finite connected component of G \ E’. Such a cutset E’ is minimal if
no proper subset of E’ is still a cutset from o to infinity.
We denote by @, (v) the set of all minimal cutsets from v to infinity of size n, and C,(v) = |Qn,(v)|. Let

qn = sup,cy Cn(v). The growth rate of the number of minimal cutsets is measured by the quantity

K(G) i=supg,/"
nz

which may be finite or +oco. In particular, k(G) < oo means that the number of minimal cutsets grows at

most exponentially in n.

Definition 3.8. Define the critical percolation threshold (for bond percolation) by

pe(G) = inf{p € [0,1] : Py(0 > c0) > 0}

where P,(0 <+ 00) is the probability (with edges open independently with probability p) that o lies in an
infinite open cluster. We say p.(G) < 1 if there exists some p < 1 for which an infinite open cluster occurs

with positive probability (a supercritical percolation phase on G).

Definition 3.9. For a finite set of vertices A C V, the exposed boundary 0., A is the set of all edges with one

endpoint in A and one endpoint in V' \ A.
3.2.1 Converse of Peierls’ Argument

Our first main result is that the exponential growth of cutsets provides a sharp criterion for the existence

of a supercritical percolation phase

Theorem 3.10 (Criterion for p. < 1 via Cutset Counting). For every infinite, locally finite graph G, the
critical probability p.(G) < 1 if and only if k(G) < co. In other words, G has a supercritical percolation phase

if and only if the number of minimal cutsets from o to infinity grows at most exponentially in n.

Remark 3.11 (Intuition behind Theorem [3.10). The equivalence p.(G) <1 <= £(G) < oo can be understood

as follows.

(1) The easy direction (Peierls’ argument). If the number of minimal cutsets grows at most exponentially
(k(G@) < 00), then a union bound shows that for p close to 1, the probability that the cluster of the origin o
is surrounded by a closed cutset is very small. Thus the origin percolates with positive probability, implying

pe(G) < 1.

(2) The difficult direction (converse). Suppose p.(G) < 1. Then for some p < 1 one has P,(0 <> co) > 0.
If there were “too many” (super-exponentially many) minimal cutsets, then with high probability o would be

trapped inside one of them, contradicting survival. The heart of the proof is to quantify this heuristic.



e Lemmal3. 12 The exposed boundary of any finite connected set A 3 o is a minimal cutset. Thus minimal

cutsets can always be realized as exposed boundaries of clusters.

e Lemma 313 For a minimal cutset I, let A be the finite component of o in G \ II and let B be the set
of inner vertices of II. Then for any S with B C S C A one has J,,S = II. Hence minimal cutsets can

be detected through the set B of their inner vertices.

e Lemmal[3 14l In a finite graph with positive association, if each vertex connects to B with probability at
least 6, and each edge is open with probability at least p, then the origin simultaneously connects to all
vertices of B with probability at least c¢/P! for some c(p, §) > 0. The proof constructs a maximal chained
sequence of vertices, serving as a probabilistic bottleneck. This guarantees two facts: (P2) every vertex
connects to the sequence with probability > /2, and (P3) the sequence is not too long (< 2|B|/6).
Combining these yields a uniform exponential lower bound for the probability that o connects to all of

B.

(3) Conclusion. For a minimal cutset IT of size n with inner vertices B, the probability that 0,,C(0) =II is
at least ¢"(1 — p)™. Since these boundary events are disjoint, summing over all IT € C,, gives

1> > Py(0C(0) =1I) > |Cnl(c(1 - p))"

I1ecC,

Thus |C,| < (c¢(1 — p))~™, showing that the number of minimal cutsets grows at most exponentially, i.e.

k(G) < 0.

Lemma 3.12 (Exposed Boundary as a Minimal Cutset). If A C V is a finite connected set of vertices

containing o, then Ox A is a minimal cutset from o to infinity.

Proof. Any path from o to infinity must exit A, so it uses some edge of 0, A. Thus 0., A separates o from
infinity, i.e. it is a cutset. It is minimal because if any edge e € 0o, A were removed (opened), then since A
is connected there would be a path from o through A and then through e to the outside of A, allowing o to

reconnect to infinity. So no proper subset of 0., A can disconnect o from infinity. O

Lemma 3.13 (Inner/outer description of a minimal cutset). Let u € V and IT a minimal cutset from u to cc.
Let A be the connected component of u in (V, E\IL) and B = {eN A, e € I} be the set of inner vertices of II.
For all S CV, when B C S C A, we have 05,5 = 1I.

Proof. Since A C (V, E\II), we have 0,A C 0A CII. By Lemma because II separates u from oo and is
minimal, we have 0,,A = 0A =1I.

Fix S with B C S C A.

(i) IT C 05S. Let e = zy € II with o € A the inner endpoint and y ¢ A. Since x € B C S, we have z € §

whiley ¢ AD S, soy € V\S. In (V,E\ S) the vertex y still lies in the unbounded component (because every



path from y to oo avoids A, hence avoids S C A). Thus y <> co in V' \ S and therefore e € 0,5 by definition
of the exposed boundary. Hence IT C 04,.S.

(ii) 058 CII. Let e = 2y € 055 with x € S and y ¢ S and such that y <> coin V'\ S. If y € A, then
y would lie in the finite set A\ S and hence could not be connected to co in V' \ S—a contradiction. Thus
y ¢ A, which forces € A (since S C A). Therefore e € 0o A = II. This shows 9,5 C II.

Combining (i) and (ii) yields 0,5 = II. O

Lemma 3.14. Let G be a finite, connected graph. Let P be a positively associated percolation measure on G.

Let BCV and 6,p € (0,1], and suppose that
Plv+ B) >0 foralveV, P(e is open) > p foralle € E. (1)

Then for allo €V,
P(({o« b}) > !”!

beB
where ¢ = (%9)3/9
Proof. Say that a finite sequence of vertices x1,...,x is chained if z; = o and, for all 4 > 2,
0 0
%SP@%H@PMMADSE 2)

There exists at least one chained sequence (take k = 1), and since V is finite we can take a maximal chained

sequence zi,...,x, in the sense that for every zpy1 € V the sequence z1,...,x541 fails . Set X =

{z1,..., 2} and let n := |B|. We claim the following two properties:

(P1) For every v € V, P(v <> X) > g

2n

7

Proof of (P1). Let W:={v eV : P(v+ X) > 0/2}. Clearly W is nonempty (it contains X). If W # V,

(P2) One has k <

since G is connected there exists an edge uv with u € W and v ¢ W. By positive association,

P(v <+ X) > P(uv open)P(u <> X) > p- 0 = 1%0

Because v ¢ W, we also have P(v + X) < 6/2. Thus z1,...,z,v would satisfy , contradicting the

maximality of the chained sequence. Hence W =V and (P1) holds.

Proof of (P2). For i € {1,...,k} let N; be the number of (open) clusters that intersect both {z1,...,2;}
and B. Then Ny = 1y, py and, for i > 2,

Ni—Nio1 2 1,068y — Yooz}
Taking expectations and using the hypotheses together with 7

E[N;] — E[N;i_1] > 6 —



and E[N;] > 0/2. Summing gives E[N}] > 0k/2. Deterministically Ny < |B| = n, hence k < 2n/0, proving
(P2).
By FKG and ,

k PONF—1 _ rphy2n/0
P( ﬂ{o<—>u}) EHP(xiH{ml,...,xi_l}) > (?) > (;) .

ueX
By (P1) and FKG again,

g\
ul )2 ()
ﬂ {b+ X}) > 5
beB
Since the intersection of the two events implies [, z{0 <+ b}, we obtain

pg 2n/6 ;G\ n p92 3n/6 \B|
> (& =) = (%) =df.
HNeen)=(3)  (5) =(5) ¢
beB
(The last inequality uses (/2) > (82/2)'/? for 6 € (0, 1], which is elementary and recorded in the paper.) [

Remark 3.15. The “maximal chained sequence” is like probabilistically growing a fence until further growth
would violate the connection bounds. This ensures that X is a reliable bottleneck: every vertex must attach

to it with decent probability, but X itself is not too large, so probabilities do not collapse.

Proof of [Theorem 3.10, The Peierls’ argument states that if £(G) < oo, p.(G) < 1, so we will mainly focus on
the forward direction.

We will prove the form using K = M instead of k.

Fix 8,p € (0,1) s.t. Py(u <> 00) > 0 for allu € V. Fix o € V and n > 1. Writing C = C(0). We claim

that for all minimal cutset II from o to oo of size n satisfies
P,(0cC=1I)>K™"
where K = K(p,0) € (0,00) is a finite constant. Then we will have

12 Y B0xC=10) > [Qulo)l/K™
IIeQn (o)

Let A be the connected component of o in (V, E \ II) and B the set of inner vertices of II. Any infinite

open path from a vertex u € A must intersect B before exiting A, so
VueA:Pp(uéB)ZPp(uHoo)Zoo

Let E={VveB:v A o}, so by Lemma on the subgraph induced by A, we have P,(E) > ¢" where
c=(B2)3/% > 0. Let F = {all edges of II closed}, so

2
P(ENF) = By(E)B,(F) = (1 - p)"
If ENF occurs, B C C(o) C A, so by Lemma[3.13] 9.,,C' = II. Thus,

Py(0C =TI) = PJ(ENF) > (1 — p)"

11



3.2.2 p. <1 for All Uniformly Transient Graphs

The main result of this subsection is that on any infinite, connected, locally finite, and uniformly transient

graph, one has p.(G) < 1. In particular, we will use a Markov chain covering lemma to show that the number of
minimal cutsets grows at most exponentially, which is equivalent to the existence of a supercritical percolation

phase.

Definition 3.16 (Uniformly transient). There is an € > 0 such that a simple random walk started at every

vertex v has probability at least ﬁ@) of never returning to its start. Write deg(v) as d,. Alternatively, for
all v,

dyP,(Vt >1: Xy £v) > €
Theorem 3.17. If G is infinite, connected, locally finite, and uniformly transient graph, then k(G) < oo.

Lemma 3.18 (Markov Covering Lemma). Let n > 1 and let P = (p(4,7)); jein) be a substochastic Markov
transition matriz, i.e. > ;p(i,j) < 1 for all i. Let I be the set of finite sequences v = (Yo,...,7) with
Yo = vk = 1 that visit every state {2,...,n}. Set p(y) := Hlep(%,l,%). Assume that for some € > 0,

Z Z p(i,j7) > € for every nonempty proper I C [n].

el je[n)\I

Then

Zp(v) > ", where § :=

5
b= 16e

Proof. Sample i.i.d. edges eq,...,e2,—2 € ([n] X [n]) U {@} with distribution

Pler = (u,0) = 229 ple, =gy =1- %Zp(u,v) >0

Let H be the undirected multigraph on [n] obtained by keeping the non-@ samples (forgetting orientation).
Let H; be the spanning subgraph of H using eq,...,e,_1 and Hy the one using e, ..., €2, 3.

Step 1: connectivity of Hy. Expose e1,...,e,_1 sequentially. If C1, ..., C, are the components after k — 1

steps, the conditional probability that e joins two distinct components is

LD DD D TR ESaS

i=1xzeC; y¢C;

Multiplying over the successive merges from r = n down to 1 gives

mn

T TE en 1 € \"
P(H; connected) > — = n! > (—) .
S n nn—1 2¢

By independence, the same bound holds for Hs, so

2n
P(H, and Hy connected) > (i) .

12



Step 2: presence of a covering walk. Say that a sequence v € T' is present if each directed edge (yi—1,7:)

(or its reverse) appears among ey, .. ., €a,—o. If H; and Hy are connected, the union contains two edge-disjoint
spanning trees, hence an Eulerian spanning subgraph; thus some v € I' is present.

For fixed v of length m, the probability it is present is at most
m 2 m . m n
(20— 2" (2)" T pe1,7) < 47"p(3) < 42"p().
[ —

Hence

(i)% < Z P(~y present) < 42" ZP(’Y),

2e
yel yel’

which gives the claim. O

Proof of Theorem[3.17. Replace each undirected edge e = uv € E by a path u—m(e)—v by inserting a new
vertex m(e) (the “midpoint”). Denote the expanded graph by G' = (V. Um(E), E').

Let (X¢)i>0 be the simple random walk on G’. For any state z, let
T=7(2):=sup{t >0: X, =z}

be the last return time to z. We write P, for the law of (X;) started at z.

Set €1 := 4242 € (0,1). One checks two cases:

(i) Forv eV, P)(r=0) > 1P, (T} =00) > 535 > &

v

(ii) For z = m(uv) € m(E),

ﬁ =" Pl(r > 0)" =E,[N.]

n>0
1 1 1 1
=) P(Xy=2)=1 P/(X; 1 =u)—+P(X;_1 =v)—] <1+ E.[N,]— +E.[N,]—
D P/(Xi=2) =143 [PUXpt = )+ PUXpy = ) ] S T+ ELN - + BN,
>0 t>1
! 1 / 1
du dy
=1+ L + L
B d,P!(r=0) d,P(tr=0)
2
and P(t =0) > ¢ = ﬁ (Here N, is the number of visits to z and we use uniform transience on G
€
together with the coupling of the walk on G’ with a lazy walk on G.) In particular,
/ €1
Pyr=0)>% 3)

for any midpoint o' = m({o,w}) adjacent to a fixed root 0 € V (the extra factor 1/2 is a slack we keep for
later SMP factorization).
Now fix a minimal cutset II from o to 0o of size n. Let A be the finite connected component of o in (V, E\1I).

Define the interior and the boundary midpoints by

I:=AUm(E[A]),U :=m(l) U {d},

13



where E[A] denotes the set of edges with both endpoints in A, and o' is a fixed midpoint incident to o.
We consider the walk on G’ started at o' and killed when first hitting a vertex in (V. Um(E))\ (IUU)
(i.e., when exiting I UU). Let P be the induced sub-stochastic transition matrix on the finite state space U

obtained by recording successive visits to U before the killing time.

As proved in Lemma (Markov Covering Lemma), there exists a constant ea = ea(e) > 0 such that for

every nonempty proper J C U,

>N Plij) > e (4)

i€J jeU\J
(Informally: by uniform transience, once the walk leaves a point in J, with probability bounded below it

reaches U \ J before either returning or being killed; summing gives )

Let T be the set of closed walks on U that start and end at o’ and visit every state of U. By Lemma |3.18
applied to P and the expansion constant €5, we have
2

Ul - _ _©
P, (&) > 6V with 6 := T

where £ is the event that the walk visits every vertex in U and returns to o’ before exiting I U U. Since
|U| =n + 1, we have
P (E) > 6" = 2! with e3 := 6 € (0,1) (5)

On &, the walk never touches the exterior (V Um(E)) \ (I UU) and visits every midpoint in m(II) from the

interior side (because it visits all of U). Let
C:={X;:0<t<7()}
where 7(0) is the last return time to o’. Then the exposed boundary of C' in G’ is exactly m(II):
EN{r(d") =0} C {0xC = m(II)} (6)

By the strong Markov property at the (random) time of the last visit to o,

Py (0C = m(ID) = Py (€) inf PL(r=0) = Py(€) - 5, (7)

using in the last step.

Combining and , for every minimal cutset II of size n we have

 (00oC = m(I0)) > %eg“.

The events {0-cC = m(II)} are disjoint as IT ranges over @, (0) (the family of minimal cutsets of size n), hence

€ n
1> ) Pl (0xC =m(ID)) > |Qn(o)|5163+1.
I1€Qn (o)

14



Therefore

Quo)l < (1) < K@" (=),

€1€3 \€3

with K (€) := max{e; ', 2/(e1e3)} < oo depending only on e. This shows
. 1
k(G) = limsup — log |Qn (0)| < log K (€) < 0.
n—oo T
O

4 Sharp Phase Transitions for Percolation and the Random-Cluster
Models

This section aims to present a new proof of the sharp phase transitions with respect to radii of large open
clusters. The proof uses a generalized OSSS inequality due to H. Duminil-Copin, A. Raoufi, and V. Tassion
(2019) [DRT19]. The result imposes very few conditions on the graph, and the strategy is valid for random-
cluster models with cluster weight ¢ > 1 (whose sharp phase transition problem had not been solved for long)
on locally finite vertex-transitive graphs. The main tool called OSSS inequality will be applied in Section

too.

4.1 Decision Tree and OSSS Inequality

In computer science, a decision tree is a flowchart-like tree structure where each internal node represents a
feature, each edge represents the outcome of a query, and each leaf node represents a class label.
Now, let’s develop a mathematical description of the algorithm encoded by a decision tree. Consider a set

E with |E| = n. Write e = (e1,...,e).

Definition 4.1. A decision tree is defined by (e, {¢+}2<t<n), where e; € E is the fixed “root” for the tree,
and ¢; are “decision rules” that deterministically map (ej_1j,we,_,;) to an element in E'\ {er,...,e;—1}.
The input for the algorithm is w € {0,1}¥. The algorithm first queries the value of w.,. For all t > 2, set
et = Pe(e—1), We,_y;)» and we query the value of we,. In this way, we will obtain an ordering on E, (e1, ..., ey,),

from the input w.

We associate decision tree T = (eq, {¢;}) with a (boolean) function f : {0,1}¥ — R, which corresponds to,

in the computer science sense, what the decision tree is computing. Define stopping time
7(w) = 74r(w) :=min{t > 1: Vo' € {0, 1}E,w’e[t] =wey = flw) = f(W')}

That is, once we reach the depth of 7(w), the outcome is determined.

The class of measures we will mainly consider throughout this section is monotonic measures.

15



Definition 4.2. A measure g on {0,1}¥ is monotonic if for all e € E and F C E and any ¢,¢ € {0,1},

& <, plwe =&, Ve € F| >0 and plwe = (., Ve € F] > 0 imply
plwe = lwe = &, Ve € F| < plwe = l|we = (e, Ve € F|

A strictly positive probability measure is monotonic if and only if it satisfies the FKG lattice property

(Theorem 2.27 in [Gri06]).
Definition 4.3. The revealment of f is defined by 0.(f,T) := p{e is revealed} = p{3t < 7(w) : e; = e}.

The OSSS inequality was originally introduced for product measure by R. O’Donnell, M. Saks, O. Schramm,
and R. Servedio [OSSS05]. It bounds the variance of boolean functions using revealments and “influence”
(corresponding to I.[f] := p(f|lwe = 1) — p(f|lwe = 0)). Duminil-Copin, Raoufi, and Tassion generalize it to
monotonic measures by an appropriate coupling.

Denote E the set of lists (e1,...,en) where each element of E occurs exactly once. For {U;} a sequence of

i.i.d. uniform random variables on [0,1] and e a E—valued random variable, define X = F.(U) by

X, = 1 (Ut 2 lu(wet, = 0|w€[t71] = Xe[tfu))
° 0 (else)

It can be proved that X has law g (See Lemma 2.1 in [DRT19] for details).

Theorem 4.4. (Generalized 0SSS). Fiz an increasing function f : {0,1}¥ — [0,1] on a finite set E. For any
monotonic measure p and any decision tree T,
Var, (f) <Y 6.(f, T)Covy(f,we) (8)
eck
Proof. Let {U;},{V;} be two independent sequences of i.i.d. uniform [0, 1] random variables. Write EVV" for

the expectation of the coupling between U, V. Construct (e, X,7) as follows: for ¢ > 1,

€ = “ (t=1) , o X, = 1 (Ui 2 plwe, = Olwey,_y) = Xep,_y))
pr(e—1), Xe, ) (t>1) 0 (else)

and 7 :=min{t > 1: Vx € {0, l}E,xe[t] = X, = f(z) = f(X)}. Then, X has law p.
Define Wt .= (V1,...,V;,Upq,..., U, Voyq,...,V, and set Y := F ,(W?). Notice that Wt = V if
t > 7,0 Y" is independent of U and also has law p. Since f is valued in [0,1], p[|f — pu(f)] > 3] < %, SO
1 1 .
Var,(f) <gullf —ulflll = §EU’VUEU’VU(X)|U] —EVV[f(Y™)|U]]
1 1
S*EU’VHf(X) - fY")= *EU’VHf(YO) - fYm)]]

<

PV - Y ZEUVIf — F(Y'" )L

DN | =

mM ‘TM:

Z EPV [EDY [[F(Y") = F(Y )| Upqy] lisrei=c]

l\’)\»—t
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where the equality on the third line is by f(Y?) = f(X) (the entries for ¢ > 7 in Y will not affect f); the
equality on the fourth line is by Y = Y*~! for all t > 7.

It is left to show that EVV [|f(Y") — f(Y'™1)||Up_y] < 2Cov,(f,w.) on the event {t < 7,e; = e},
because Y 1 EVV [li<; e,=c] = 0.(f, T).

Now restrict ourselves to {t < 7,e; = e}. Since Y = Y'~! whenever Y! = Y/~

FOY) = f(YTH = (FOY) = fOYO)Y =Y = FYOHY T+ f(YY - f(YTHY - f(Y YT
(9)

It can be proved that EVY [g(Y")|Uj] = plg(w)] for all measurable g and t < n, so
ECV (Y HYI U] = plf ()we] = VY [F (Y)Y Uj—1] (10)

where for the second equality, we first condition on U}, and apply the tower law.
For fixed U, and s, since u is monotonic, Y'* = Fe(W?) is an increasing function of V. Since f, W are

also increasing functions of V', so are f(Y*~1),Y,!. Apply Harris-FKG to i.i.d. random variables V:
EWV (Y YU > VY[ (Y U | EYY (Y U]

Average over Uj;_qj and apply EVV [g(Y*™1)|U},_q)] = plg(w)]:

ECV (Y)Y U—n] > EVV[F(Y ) U] EYY Y U] = plf (w)]plwe] (11)

Similarly,
EXV[F(Y)Y! U] 2 plf (w)]ulwe] (12)
Substituting , 7 into @ concludes the proof. O

For a subgraph G = (V, E), define its boundary 0G as the collection of vertices x such that there exists
y € G with xy an edge. Set A,, as the graph induced by {z € V : d(z,0) < n}, where d(-,-) is the graphical
distance.

Similar to the proof in [DCT15], we are also going to deduce a “differential inequality” (which will be

’ > ﬁ frn) to obtain information of {0 <» JA,}. To do that, we will view the indicator function of

connectedness, lowaa,, as a boolean function on the edge space, where 0 means an edge is closed, and 1
means an edge is open. A boolean function on the edge space is a function map from {0,1}¥ to R.

We are going to bound the probability of {0 <+ dA,,} by constructing a random decision tree to “compute”
lowan,,, and a crucial tool is the “OSSS inequality”.

This section is organized as follows: defines decision trees and proves the generalized OSSS
inequality for monotonic measures ; proves the sharp phase transition in nearest-neighbor

Bernoulli bond percolation (Theorem 4.8)); [subsection 4.3| discusses a few modifications of percolation’s proof

to make it also adapt to random-cluster models (Theorem 4.9).
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4.2 Sharp Phase Transitions of Bernoulli Percolation

We first prove this (non-probabilistic) lemma. Our goal is to match 8; with the critical value of our model.

Lemma 4.5. Consider a sequence of increasing differentiable functions fp : [0, 80] — [0, M] such that f =
lim, 500 fr is a real function, and f, > $-f, for all n > 1, where ¥, = > Ofk Then, there exists

b1 € [0, Bo] such that

(A) For any 8 < 1, there exists cg > 0 such that for any n large enough, f,(8) < exp(—cgn)

(B) For any B > 1, f(B) > B — b1

Proof. Claim the following choice of ; suffices:

B1 := inf {5 : limsupM > 1}.

n—oo  log(n)

For part (A), take 8 < (1. Set 6 = 61 ,and set 8/ =B+ 4,8" = 5+ 26.

Integrate f), > $- f, on [, 3"],

n —C+5

~log(/a(8)) > log(/a(3")) ~log(7a(8)) = O+ (8" ~ &)z w")

so fn(B") < Mexp (—5%)

By definition of 31, there exists N € N and o > 0 such that %,,(3) < n'=® for all n > N, so f.(8") <
e~ exp(—dn®), so Y po, fa(B') < co. That is, there exists $(8') € R such that 3,(8") < S(8) for all n.
Integrate f > EL,)fn on [8, 8], we get fn(8) < M exp (—6%).

For part (B), take 8 > /3. Define T, log st Y oreq k Since for all & > 1,

Eit1 (g
Pi} > / + = 10g(Zx+1) — log(Zk)

3k
we obtain
1 1 kfr log(Xn+1) — log(21)
T = ko> —= log(%2 —log(Xy) = . 13
" log(n) 1; kE ~ log(n ) < kX, g(n) Z 08(B1) — log () log(n) (13)
Take arbitrary 5’ € (51, 0). Integrate on [#', 4],
log (2, (")) — log(M)
T (8) — T (8)) > (B — 8 . 14
If we can show that T}, () ——= f(f), taking limsup on both sides of yields
. log (2, (8))
— f(B) > (B-p) |lims >p-p. 15
fB)—=f(B)>B-p) lgo%p log(n) >p-p (15)
Then taking 8’ \, 81 suffices.
To see the convergence of T,,(3), notice that for any sequence {a,} € RY with a := lim,_00 an € R,
lim an/n = lim S lim an -4 a
n—oo log(n) — log(n — 1) T oo nlog(-"5) T nSoo log(1 + nil)n - In(e) = a.
By Stoltz-Cesaro theorem, s 370 G5 — a as n — co. O
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Lemma 4.6. Consider a finite graph G = (V, E) containing 0. For any monotonic measure yu on {0,1}¥, and
anyn > 1,

n

> Covu(loson,we) > (0 < OA,) (1 — (0 <> OA,,))

vy T dmaxgen, Yop_y (x> A (2))
Remark 4.7. This lemma is where we apply the OSSS inequality. To do that, we must choose an appropriate
decision tree to compute f := losoa,,-
If we let the algorithm naively check every edge in A,,, the revealment d.(f) will be 1 for each edge e. We
then obtain Var,(f) < > .y Cov,(f,w.), which is known as the Poincaré inequality. If we substitute this
into , we will get

0,(p) > ———0,(p)(1 — 0, (1))

~p(l-p)
This is not strong enough to invoke Lemma to prove the sharp phase transition.
To fix that, we will define a list of decision trees 717, ...,T, such that each T} computes lowaa, and only

explores the connected components of dA;. As a result, the average of the revealment of each edge will be

small.

Proof. For each k, we define the algorithm associated with the decision tree as follows. Let V' be the collection
of edges that have been found by the decision tree to be connected to JA,,, but the edges themselves have not
been revealed. Let F' be the collection of revealed edges. Initialize V to {ay € E: 2 € 0A;, Vy € OA,} and F

to emptyset. Fix an ordering of the edges.

while V is nonempty:

e = the smallest unrevealed edge in the ordering
Reveal the state of e
V<—V — {e}

F < F + {e}
V <— V + {all unrevealed edges that are connected to the k—box boundary
using edges in F}
if 0 can be connected to the k—box boundary using edges in F
return 1
return 0

where the “k-box” is Ay.
Such a decision tree T}, successfully computes 1o 94, by only discovering the connected components of

OAj. Hence, if e = wv is revealed by T}, either u <> OAy or v <> dAg, so
0e(T) < plu <> OAg) + p(v > OA)
Also, the event {u <> dAy} is contained in {u <> OA|_g(u,0)(u)}, so
p(u <> OAg) < p(u <> OAp_aeu,0y)(w) < 2u(u <> OAg(u))
Set M := maxgen,, ZZ;S (< OAg(z)), s0 Y71 0e(T) < Sopy plu > ONg) + >0 plv <> OAy) < AM.
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Apply the generalized OSSS inequality to Ty, and f = lpwon, and sum on k:

n

D (0 5 OA,) (1 = p(0 <> 0A,,)) < Z > " 6e(Ti)Cov(loean, we) < Y 4MCov(loean, , we)
k=1 k=1 e e
LHS is nu(0 <> OA,)(1 — (0 <+ 0A,,)), so we're done. O
Theorem 4.8. For Bernoulli bond percolation with critical value p.,

(i) There exists ¢ > 0 such that 8(p) > c(p — pc) for all p > p. close enough to p.

(i1) For p < p., there exists ¢, > 0 such that

Vn > 0: P[0 <> OA,] < exp(—cpn)
Proof. Fix pg € [0,1]. For p < po and n > 1, define

n—1
pn =Py, On(p) = [0 <> OA],  Sni=) bk (16)
k=0

By Russo’s formula,

d 1
—bn(p) = n | fn(w (W) = —Cov(1 s We 17
50 =2 (f(w) # falw®)) > =gy Covliueon, ) (a7)
Since for all x € A,,
Zun[x < O (2)] = S, (18)
k=1
by Lemma [4.6] (note that 4, is monotonic),
d 1 1 n 1—461(po) n
—0,(p) = ———Cov(1 nyWe) 2 5 O0n(1—-0,) > ——= 0, 19
dp () Z p(1—p) (locson ) p(1—p)4S, ( ) p(1—p) 48, (19)

ecE

because 0, < 6; and p < py. Set ¢ := 14;?11(71’;)) > 0. Since §,, — 6, we can apply Lemma to fn = 0./c,

which yields a p; such that (A) and (B) occur.

Then, for all n > 1 and p < p1, Pp(0 > 0A,,) = 0,(p) < exp(—cpn), which also implies p1 < p.. By ,
for all p > p1, 8(p) > 0(p) — O(p1) > p — p1 > 0, which implies p; > p.. Thus, p; = p., which concludes both
(i) and (ii) of the theorem. O

4.3 Sharp Phase Transitions of Random-Cluster Models

Theorem 4.9. For ¢ > 1 and a random cluster model on a weighted lattice (G, J) (suppose Jy, are finite-

range),
(i) There exists ¢ > 0 such that 0(8) > ¢(8 — B.) for all B > B. close enough to S,

(i1) For all B < B., there exists cg > 0 such that
Vn > 0: 8% 5,00« O] < exp(—csn)
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Proof. The proofs of Lemma [4.5] and Lemma [4.6] do not depend on specific models, so we can keep them.

Fix ¢ > 1 and Sy > 0. Take 8 < Bo.

In , we replace fi, = ¢}, 5 ., which is still a monotonic measure by Theorem 3.8 and Theorem 2.27 in
[Gri06].

In (I7), we do not have Russo’s formula anymore, but Theorem 3.12 in [Gri06] offers a similar differential
equality:

/ I . Ty
Qn(ﬁ) = Z mCOV(lOH[)A ) 2 min m Z COV 10(—)(91\717(“]6)
ryel zyelR
In , we do not necessarily have equality, but by the comparison between boundary conditions (Lemma

4.14(b) in [Gri06]) and transitivity of G, for all z € A,

n—1
> iz < OAR(2)] <2 ) pnlw > OAg () Z 1[0 ¢ OAR] < 28,
k=1 k<n/2 k<n

Still, apply Lemma [£.6] we obtain

d
s

0,,(8) > min {(Wy—l} @Qn(l —0n) = C?an (20)

n

where ¢ := min{e Ty } 1=6:050) Applying Lemma to fn = 0n/c and repeating the rest of the

BoJzy _q1 8

proof in will give what we want. O

5 Hutchcroft’s New Critical Exponent Inequalities for Percolation
and the Random-Cluster Models

Similar to the previous section, this section presents a differential inequality based on the OSSS inequality
from Hutchcroft’s paper [Hut20], but instead of radius, we focus on volumes. The differential inequality leads

to two main results:
1. Scaling relation inequalities: v <60 —1 and A <~y 41

2. A sharpness theorem: the distribution of cluster size has an exponential tail. In addition to [DRT19],

the theorem also works for long-range/infinite-range interactions.
5.1 Standard Critical Exponents and Volume-Scaling Relations

In percolation theory (and more generally in the FK random-cluster model), critical exponents are used to

characterize the behavior of cluster observables near the phase transition.
Let G = (V, E) be an infinite, connected, transitive graph, and consider either Bernoulli bond percolation
or the random-cluster model on G with edge parameter p € [0,1] (and cluster weight ¢ > 1 for the random-

cluster model). We write P, and E, for probabilities and expectations with respect to the percolation/RCM
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measure at edge parameter p. Let K denote the cluster of an arbitrary fixed vertex (say the origin o € V).

The critical probability p. is the threshold at which an infinite cluster appears (p. := infp : P,(|K| = 00) > 0).

Near p,., the following power-law behaviors are conjectured (and in some cases proven) to hold. They serve to

define the critical exponents 3,7, d, and A (if they exist):
L. For p > pe, Py(|K| =00) = (p—pc)” as p | pe
2. For p <p., E,[|K|]= (pc—p) " asp T pe
3. Pp(|K| >n)~n"%asn — oo

4. For each k > 1, E,[|K|*] ~ (p. — p)~[(F=D2+ as p 4 p,.

log f
log g

Here the notation f(p) ~ g(p) means — 1 in the given limit. Rigorously establishing existence and
exact values of these exponents in general dimensions remains an open problem in mathematical physics.

Two scaling relations of these exponents are conjectured:
v=p000-1),56=A4 (21)

These relations are believed to hold universally for continuous (second-order) phase transitions, including
percolation on Z? for each d > 2. is consistent with the heuristic that the various ways of measuring

cluster “size” should not be independent of one another. For example, if P, (|K| > n) ~ n~1/°

, one can
integrate this tail to recover the divergence of E,[| K] as p T p., yielding v = § — 1 in a heuristic sense (indeed,
we will rigorously prove an inequality in this direction shortly). Likewise, one expects A = 36 because E,[| K |?]
can be related to the product P,(|K| = c0) - P, (|K| > n) in a scaling argument, etc.

These scaling relations have been rigorously proved only in special cases. For percolation in two dimensions,
Kesten proved holds [Kes87] as a consequence of conformal invariance techniques. In high dimensions
(d > 6) and on certain tree-like or mean-field graphs, it is known that percolation exhibits mean-field critical
behavior, meaning 5 =1,y = 1,5 = 2, A = 2 (and other exponents v, 7, a take their mean-field values as well).
In those cases one can check that is indeed satisfied (e.g. 1-2 =2 for 86 = A, etc.). Aside from these
special situations, the full set of scaling relations remains unproven in 3 < d < 6 and for most non-Euclidean
transitive graphs.

Instead, progress in general settings has come in the form of inequalities between critical exponents, often
derived via clever differential inequalities or other rigorous techniques. In subsections and we will

present three new exponent inequalities, providing upper bounds on 7 and A in terms of the others. Specifically,

we will show that under very general conditions:

Y<O-1L,A<y+1 (22)
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These inequalities were not known previously even for classical Bernoulli percolation on Z¢. They are consistent
with the conjectural scaling laws — in fact saturates to equality in the mean-field regime. Our

derivation of will follow from a powerful new Russo-type differential inequality that we introduce below.

5.2 Differential inequality

Definition 5.1 (Lower right Dini derivative). For f :[0,00) — R, the lower-right Dini derivative at § is

f(B+h) = £(8)

(D+f)(8) = limint >

We will write $+ when taking Dini derivatives.

In the following lemma, we use the alternate RCM definition (Definition [2.11)): on a transitive weighted
graph (G, J) with edge weights J = {J.}ccr, cluster weight ¢ > 1, and boundary condition # € {f,w}, the
random-cluster measure at inverse temperature § > 0 is denoted by qﬁ? g Fora fixed vertex v, let K, be its

open cluster.

Lemma 5.2. (A Russo-type formula). For an increasing function F : {0,1}¥ — R and boundary condition

# € {f,W}, fOT’ all ﬁ > 0;

d J.
(dﬂ> N ¢h JF(w)] > ; 57— Covyz [F(w),w(e)] (23)

Proof. We give the details for # = f (free boundary); the wired case is similar.

For any finite weighted subgraph G,, = (V,,, E,) of G and any two parameters a, 8 > 0 we define the
measure ¢q, g.a.q.4 in which edges in a finite set A C E,, are assigned weight 8 while edges in E, \ A are
assigned «. Because the state space is finite, the map B8 — ¢q, g.a.q4[F] is differentiable and the usual
finite—volume Russo formula (Thm 3.12 in [Gri06]) gives

d Je
@QZ)Gn,ﬂ,a,q,A[F] = ;4 WCOVWH,B,Q,Q’A[F(LU),w(e)].

Let G,, be an increasing sequence of finite subgraphs of G that exhausts the infinite graph, and let E, be
the edge set of G,,. For a fixed finite edge set A and 8 > «, the measures ¢g,, g .a,q,4 cCOnverge monoton-
ically to a limiting measure gbf; g A obtained by standard FKG arguments, as n — oo. The covariance
CoVes, paaalF(w),w(e)] also converges, and therefore when 8 > a

d J.

%qbﬁ’a’q}A[F] = ;} mCOV%,Q,Q,A[F(w)’ w(e)] (24)

Because F' is increasing and d)é, o Stochastically dominates qzﬁf;a’ 4. forevery 8 >« (only edges in A have the

larger weight (), we have
$5.alF) = SLIF) 500,41 = 92,5,4lF)
B—a - 8-« '
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Letting o 1 3 turns the left-hand side into the Dini derivative (d/d3) +¢£’ 4[F], whereas the right-hand side
tends (by (24)) to ZeeAﬁCov

association ensures that enlarging A only increases each covariance term, and then the supremum equals the

o [F,w(e)]. Finally, take the supremum over all finite A C E. Positive
B,a,q,A

full infinite sum over E. O

To convert into a logarithmic derivative for the tail event F(w) = 1(|K,| > n), we need a uniform
positive lower bound on the total covariance ), Cov(F,w(e)). This is provided by an OSSS/ghost-field argu-

ment.

Lemma 5.3. (0SSS for decision forests). Let p be a monotonic measure on {0,1}¥. For measurable,
u—integrable f,g : {0,1}¥ — R with f increasing and every decision forest F = {Ty,...} computing g,
we have

51C0v, £ 01l < 3 6., m)Cov,lf,w(e)]

eck
Proof. By , we only need to construct a decision tree T' that computes the same functions as F' and has

de(T, 1) = 8o (F, ) for all e € E. Indeed, A possible construction is to
1. At time pg (p; is the ith prime), execute the jth step of T*
2. At non-prime-power time, re-query the first input queried by T
O

The following lemma is where we apply the OSSS inequality, and we need to choose an appropriate decision

forest.

Lemma 5.4. Let G = (V,E) be a countable graph and p be a monotonic measure on {0,1}¥ (in particular,

M:Qj)?,q with ¢ > 1). Then for allve V,n>1,A>0

—e X — p[1— e AEl/m
Z Cov,[1(|Ky| > n),w(e)] > (1 w1 ]

> n([ 5| > n)
c€E 2supy ey p [1 — e MEl/m]

Proof. Let the ghost field n € {0,1}" be a random subset of V where each vertex is included independently
with probability h =1 —e=»/™ < \/n.
Let P and E denote probability and expectation with respect to the joint law of (w,n). Fix v € V, and

define the increasing indicator functions
flw,n) :=1{|K,| > n}, g(w,n) := 1{K, contains at least one green vertex of n}

For each u € V, define a decision tree T as follows:
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1. Query n(u).
2. If n(u) = 0 then stop and output u forever.
3. If n(u) = 1, then explore the cluster of u in w in some predetermined ordering.

Formally, fix an enumeration of E and let u € V. Set T{*(w,n) = u. If n(u) =0, set T* = u for all n > 2.

Otherwise, at step n:
1. Maintain sets U (revealed vertices), OF (revealed open edges), and C¥ (revealed closed edges).
2. Initialize U{* = {u}, O} = C¥ = 0.

3. If every edge adjacent to U has been revealed, stop. Otherwise, reveal all such edges and update T},

with the smallest among them in the enumeration.
4. Update Cy, 1,05, based on w(T}}, )

Such decision tree T" satisfies

=0
{reVUE :T¥(w,n) =z for somen > 1} = {u} (n(w) =0) (25)
{u} UE(Ku(w)) (n(u) =1)
In particular, F' = {T" : u € v} computes g.
By the two-function OSSS inequality,
Covuanlf,g) < 3 0e(F, 1) Covylf, w(e)],
ecl
where v denotes the ghost law. Moreover,
Covlf,g] = 2Cov[f,glu = 2u(f = Lg=1) = 2u(f = Dp(g = 1).
Since E[g||K,| = m] =1 — e~ *™/™ we obtain
Covyu(f,9) = p(|Ko| = n)(1 =€) = p[l — e M/,
An edge e is revealed by F' if and only if the cluster containing e contains a green vertex. Thus
Se(F,p) < 2sup p(n(u) =1 and u € K.) < 2sup p[l — e_/\lK“V”].
ueV ueV
Combining with OSSS gives the claim. O
We are now ready to prove the differential inequality.
Theorem 5.5 (Differential inequality for percolation). For eachn > 1, A >0, and 0 < p < 1, we have
d 1 (1—eM)n
Zlog P, (K| = n) > 1 (26)

dp 20(1=p) | A A By(1K] 2 m)
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Proof of the differential inequality. Lemma gives

d 1
—P,(|K|>n) > ——— Cov, (1 n,w(e)).

By Lemma [5.4]

(1—e) = Py[1 — e AKI/n]

> >
Z Covp(l{lKIZn}vw(e)) = ZSupu Pp[l — B*A\Ku|/n} PP(|K| = n) (27)
ecE
1 1—e?
=) [A (nfm e) — 1| P(|K| = n) (28)
& 2me1 Pp(IK| =2 m)
Apply Lemma [5.2]to F = 1(|K| > n), we have
d ) 1 1 (1—e?)
— | P(|K|>n)> ——Cov[F,w(e)] > — 1| P,(|K| = n).
(dp + (1K ;3 p(1=p) | ) 2p(1—p) [ 2T p (K| > m) a
(29)
It is known that (log f)’ = % f’, and this rule also applies to Dini’s derivatives. Thus,
1 1—e?
P/ p(L=p) [ 2500 Py(|K| > m)
O

Corollary 5.6 (Differential inequality for RCM). Given that (G, J) is an infinite transitive weighted graph,
g>1and # € {f,w}. Then for > 0,A>0,n>1,

efle —1.( d 1 (1—e)n
max[———] () log ¢ ,(IK| > n) > - [ n -1
cer g, '\dp), ®%a 2 Aok (K| > m)

5.3 Results
5.3.1 Critical Exponents Inequalities v <6 —1,A <§

The inequalities v < d — 1, A < ¢ are direct consequences of Theorem [5.8

Lemma 5.7 (Integrated differential inequality). Let (G,J) be an infinite transitive weighted graph, ¢ > 1,

# € {f,w}, and write Yg(n) = ¢§q(\K| > n) and C(B) = maxeep eB‘z_l. For everyn > 1, A > 0, and

1 } (30)

(1—e)n 1” 31
ApT K] By

0 < B < By, we have
(1—eM)n

A g (m)

B8
2C(Bo)

Yp(n) < g, (n) eXP{
and, since ZL:Q‘] g, (m) < ¢§)7q[|KH7

_Bo— P
2C(Bo)

¥p(n) < ¥p(n) exp{
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Proof. By Corollary for all 8 > 0,
d 1 (1—eMn
() vesin = ]
45 2 AR ws(m)
Both ¢3(m) and C(8) are nondecreasing in 5. Hence for 8 < ¢ < S,
[n/X] [n/X]

> bi(m) <Y 9, (m),C(t) < C(Bo).
m=1 m=1

so for f <t < fo,

ot ( dt) log i (n) > 1[ Z“Wj )”(m) 1].

Integrate from ¢ = 5 to ¢ = By and use the identity log g, (n) — log ¥ s(n) = B a0 4 Jog 1y (n)dt to deduce

_ _ 67)\ n
C(Bo) (log 3, (n) —log v (n)) = ﬂ02 : Lz(lrnm )(m) - 1] .

Exponentiating gives (30). Since [/ 5 (m) < Y1 Yse(m) = qﬁo’qﬁ K|, follows immediately. [J

Theorem 5.8 (Exponential bound for Bernoulli percolation). Let G be an infinite, connected, locally finite

transitive graph, and suppose that there exist constants C > 0 and § > 1 such that for alln > 1
Py (|K| 2 n) < Cnt/°
Then the following hold:
1. There exist constants ¢,C’" > 0 such that for all0 < p < pe,n > 1

Py(|K| = n) < C'n™ " exp[—c(pe —p)°n]

2. There exists a constant C"” > 0 such that for all k > 1,0 < p < p,

o (6-1)+(k—1)8

De — P

E,[| K] < k!

Theorem 5.9 (Exponential bound for RCM). Let (G, J) be an infinite transitive weighted graph. Let By > 0,

qg>1, and # € {f,w}. Suppose there exist constants C > 0 and § > 1 such that for all n > 1
0B,q(IK] 2 n) < Cn71/°
Then the following hold:

1. There exist constants c1,C1 > 0 such that for all0 < B < Bg,n >1

¢’qu(|K\ >n) < Cin~ Y% exp [—c1(Bo — B)én] (32)
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2. There exists a constant ca > 0 such that for all k > 1,0 < 8 < B,

o (K1Y < B [ea(Bo — B)] T (33)

Remark 5.10. Clearly, Theorem [5.9] follows as a corollary of Theorem [5.8] by specializing to the case ¢ = 1 and

uniform weights J. = 1. Therefore, in what follows we only prove Theorem [5.9]

Proof of Theorem[5.9 Fix By > 0, and suppose there exist constants C > 0 and § > 1 such that
Qﬁo JIK[=n) < Cn=1/3, for every n > 1.

Denote inequalities that hold up to positive multiplicative constants depending only on (G, J),d,C, 5y by <
or 2.
Summing over m < n gives

> ok (K| =m) SnlTle,
m=1

By Lemma [5.7} for every 0 < 1 < By and n > 1,
d)?l’q('K‘ >n) Sn % exp [*01(50 - 51)711/‘1 .

Now summing over n > 1 yields
-5
o5 KNS (Bo—B) ™t
In particular, for every 0 < 8 < By and n > 1, we obtain

(Bo — B)n

of (K| >n) Sn™Yoexp {02(50_5)5—1

| <n ol ).

which proves (32]).
For , note that for any x > 0,

of JIK| > 2] S a7 exp[—ca(Bo — B)°x] .
Let e = c2(Bo — B)° and a = k — 1 — 1/6, we get
o K" =k xkflqﬁ# K| >x)de <k x%e *dx.
B.q o B,q 0

By change of variable y = ex, we obtain
¢§,q”K|k] Ske (a4 1) < Klea(Bo — ﬁ)]f§k+1.

which proves . O
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5.3.2 Critical Exponents Inequalities A <y +1
The inequality A < v+ 1 is a direct consequence of Theorem [5.11]

Theorem 5.11 (Bernoulli Percolation Version). Let G be an infinite, connected, locally finite transitive graph,

and suppose there exist constants C' > 0 and v > 1 such that for all 0 < p < p.
x(p) == Ep[|K]] < C(pe —p)~7

Then there exists C' > 0 such that, for every k > 1 and 0 < p < p,,

o THEDOTD

E, [IK|F] < k!
K] <k

Theorem 5.12 (RCM Version). Let (G,J) be an infinite transitive weighted graph. Fiz By > 0, ¢ > 1, and

# € {f,w}. Suppose there exist constants C > 0 and v > 1 such that for all 0 < 8 < By
Xpg = OB 4IK1 < C(Bo— )7 (34)
Then there exists ¢ > 0 such that, for every k> 1 and 0 < 3 < By,

¢z&,q[|K\k} < K!e(Bo — 6)]—(k—1)(7+1)_7.

Remark 5.13. Still, Theorem follows as a corollary of Theorem by specializing to the case ¢ = 1 and

uniform weights J, = 1.

Proof of Theorem[5.12 Fix 0 < B8 < fp and let B < (1 < By be arbitrary (to be optimized later). By

the integrated differential inequality with A = 1 (Lemma 7 for some constant a > 0 depending only on

(G, J),q,#,
of (K| > n) < oF (K| > n) exp{—aﬂ;g: a n} exp{O(: - B)}. (35)

Use Markov’s inequality at level 51 and absorb the harmless factor exp{O(8; — )} into the constants:

X7
h, oK 2n) < =1L,

Substituting into yields

#
5y IK| > ) < Xf;’qexp{—aﬁl# ﬂn}. (36)
XB1.q

By B4), x4 , < C(Bo— B1)77, s0

!

G K2 m) < S (8 — 61) 7 exp{—er(Br — ) B — B1) ).
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Choose the balancing midpoint 8; = (5 + £o)/2. Then (81 — 8) < (Bo — $1) < (8o — ) and hence

1"

C
08 o([K| > n) < ——(Bo = B) ™" exp{—ca(Bo — #)""'n}.
Finally, for £ > 1,

oF K| =k / A (K| > 2)de < KC"(Bo— ) / 22 eaBo=B) e gy
0 0

SO

d)?,qHKVc] < k![c(ﬂo 76)]7(k71)(7+1)777

5.3.3 Sharp Phase Transitions via Volumes

Theorem 5.14 (Sharpness of Phase Transitions). Let (G, J) be an infinite transitive weighted graph, let ¢ > 1
and # € {f,w}, and let B¥ =inf{3 >0 ¢§q(|K| =o00) > 0}. Then:

1. For every 0 < B < B¥ there exist constants Cjg,cg > 0 such that for alln > 1

o (K| =n) < Cgeeom (37)

2. For every B > B¥,
8- B¥

BJe
2maXeer 6(]7?1 +8-pF

of (K| =00) >

Proof. Define the volume-sharpness threshold

- log ¢% (IK|>n
ﬁf ::sup{ﬁZO: E|C7C>0With¢g (|K|Zn)§Cn_°foralln2l}zinf{ﬁzo:limsup g(bﬁ’q(' = )20}
4 n—o0o logn

Obviously Ef < B¥. We need Ef > 7 and deduce and (38).

First, fix 0 < 8 < f#. By definition of 5# there exists 8 € (8, 3#) and § > 1 such that ¢§)7q(|K| >n) Sn~l9,

Applying Theorem [5.9] with this By gives that for all n > 1

O (IK| 2 n) < Cgemo" (39)
Hence holds for every £ < Bf .
Write ) .
- 1 p,
Pu(B):=¢f (K| =n),  Su(8):= Y Pu(B),  Ti(B):= log k > ,(Lﬁ)
m=0 n=1

Then Ty (8) — gbg q(|K | = 00) as k — oo (standard renewal-type argument). Applying Corollary with

A =1 and summing over n < k gives

k

d 1 (1 7 eil)Pn(B) Pn(ﬂ) . eBJC -1
(clﬁ)+Tk(’B)Z2C(B)logan_:l[ S 8)  n } CB) = max —7—
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Using u > log(1 + u) for u > 0 we obtain

E
P,(
> )

k
> Z log %, 11 (8 logzn(ﬂ)) = log Xx11(f),
n=1

so that
d (1—e ") log Bey1(B) Tk (B)
(%LT’M )2 ek @ k2P (40)
Fix Ef& < 1 < B2. By the definition of Bf, Yig1(B1) > k' 7°M | whence
lim w -1

k—o0 log k
Taking infge(g, g, of the left-hand side of ([40), SUPgeg,,5,] inside C(B), and then limsupy,_, o, yields
1—et _ ¢?2,q(‘K| = 00)
2C(62) 2C(B2)
Integrating this differential inequality over 5 € [31, 82] and letting k — oo gives

1—¢ ! o
% (K| =o00) > <20(;2))+(ﬁ;2_5ﬁ11) .

As p1 Ef and (3, > (1 are arbitrary, this shows ¢§q(\K| = 00) > 0 for every 8 > Ef, hence Bf > B#. Since

limsup  inf (%)+Tk(ﬁ) >

k—oo B1<B<B2

Ejf < B#, we conclude Bf = % and holds for all 3 < B#, proving .

Apply Corollary [5.6] with general A > 0 to obtain, for k > 2,

Similarly, we get that for every 51 < (s,

1—e? B ¢Z:7q(|K| = 00)
2C(B32) 20(2)

Let A — oo so that 1 — e~ 1 1, and integrate over 3 € [37, 8]. Since T} (37) — 0 (by sharpness just proved),

limsup inf <%)+Tk(6) >

k—ooo B1<B<p2

we obtain
# (Kl=o0) > — D88
¢,6’,q(‘ | OO) = 20(6)+ﬂ—50 s

which proves . O

6 Future Work and Open Problems

While recent works have broadened the range of models where inputs like the existence of critical exponents

are available, several questions remain open. We collect a few directions below.

Existence (and values) of critical exponents on Z?, 3 < d < 6. For Bernoulli percolation in high
dimensions (d > 6), the lace expansion proves mean-field critical behavior and the triangle condition, yielding
B =7 =1and 0 = 2, among other exponents [HS93, [HHI17]. In contrast, for 3 < d < 6, the existence and
values of most exponents remain open (even for ¢ = 1). Rigorous identification of exponents in this range, and

verification of scaling/hyperscaling, is a central challenge.
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Planar FK model: nature of the phase transition. On Z2, the critical point is at the self-dual value
psa(q) = g (14 /q)~* for all ¢ > 1 [BDCI2]. The transition is continuous for 1 < ¢ < 4 (uniqueness
of the infinite-volume Gibbs state at criticality and polynomial decay) [DST17], while it is discontinuous for

g > 4 [DCI17]. A mature critical exponent theory is available for ¢ = 1 (critical site percolation on the triangular

lattice via SLE) and much is known for ¢ = 2 (Ising), but for 1 < ¢ < 2 a complete rigorous determination
of exponents (and full conformal invariance statements) remains open. Progress here includes parafermionic-
observable and RSW-type inputs [DSTI1T7]; turning these into full exponent identities for 1 < ¢ < 2 is a

promising avenue.

Higher dimensions for FK with ¢ > 3. In sufficiently high dimensions (or for sufficiently strong mean-field
signatures), first-order transitions in Potts/FK with ¢ > 3 are rigorously established via reflection positivity
and mean-field bounds [BC03]. Sharpening these results—lowering the required dimension, quantifying the
discontinuity, and mapping the d—q phase diagram—remains an active direction. In particular, the case ¢ = 3

on intermediate dimensions (e.g., d = 3,4) is a natural target for new techniques.

Random-cluster model for 1 < ¢ < 2 in d > 3. For nonplanar lattices, very little is known about the
precise nature of the transition when 1 < ¢ < 2. Determining whether the transition is always continuous,
identifying the near-critical scaling window, and proving the existence/values of critical exponents are major
open problems. Extending lace-expansion or decision-tree/OSSS methods to this regime (possibly with new

multi-scale inputs) is a concrete research path.
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