AN ABSTRACT APPROACH TO LOCAL CLASS FIELD
THEORY
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ABSTRACT. We prove the local reciprocity theorem, the central result of local
class field theory, using Neukirch’s approach. After introducing the necessary
cohomological tools, we set up an abstract formulation of field theory and
number theory. We then assume the Class Field Axiom, a minimal condition
on the base field, and prove the reciprocity theorem. Finally, we verify the
class field axiom in the case of local fields.
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1. INTRODUCTION

Class Field Theory is the study of abelian Galois extensions of fields, motivated
by the Kronecker Weber Theorems. The Global Kronecker Weber Theorem states
that every abelian extension of Q is contained in a cyclotomic extension of Q. Its
local analogue asserts that every abelian extension of Q, is contained in a cyclo-
tomic extension of Q,.

Beyond these special cases, the central result is the Artin Reciprocity Theorem,
which in the case of local fields is as follows:

Theorem 1.1 (Local Artin Reciprocity). If L/K is a finite Galois extension of
local fields, there is an isomorphism rp /K : Gal(L/K)® — K*/Np/gL*.

Indeed one may deduce the Kronecker Weber Theorems as corollaries of this
theorem.

Our goal in this paper is to prove the local reciprocity theorem using an abstract

approach due to Neukirch[1]. Earlier proofs had been given by Lubin-Tate, but

Neukirch showed that the theorem can be deduced from a minimal set of assump-

tions, which he called the Class Field Aziom. Proving the Class Field Axiom for
1



2 ACHYUT BHARADWAJ

local fields then yields local reciprocity theorem. Although Neukirch avoids coho-
mological language, we take a slightly broader viewpoint and set up the arguments
in terms of Tate cohomology. The paper proceeds by first developing this coho-
mological machinery, then setting up the abstract framework, proving the theorem
abstractly and finally specializing to the local case. We also include a section on
Kummer Theory as a toy model to illustrate the abstract method used. This also
gives us Hilbert’s Theorem 90 in passing.

2. TATE COHOMOLOGY

In this section, we set up some cohomological tools that we will use to state and
prove the Class Field Axiom. Tate cohomology connects cohomology and homol-
ogy groups into a single long exact sequence. Within this setting we introduce the
Herbrand quotient, which is key to verifying the class field axiom, and collect a few
miscellaneous results for later use.

Throughout this section, let G be a multiplicative abelian group and M be an
additive left G-module. We write MY to denote {m € M: gm = m¥g € G} and
Mg = M/IgM where I M denotes the subset of M generated by {gm —m: g €
G,m e M}.

When G acts on M, we are often interested in the invariants M. However, the
functor M +— M is only left exact. Group cohomology salvages this by extending
the left exact sequence of invariants into a long exact sequence of so-called cohomol-
ogy groups. In what follows, we mostly encounter the first two cohomology groups
HY(G, M) =M% and H*(G, M) which is the collection of crossed homomorphisms
upto equivalence. For a full treatment of cohomology, see [5, Chapter 2]. Homology
groups are defined dual to cohomology groups.

Tate cohomology ties in cohomology and homology groups into a single long exact
sequence that extends infinitely on both sides. For finite G, it is based on the notion
of a norm

Definition 2.1. If M is a G-module where G is a finite abelian group, the norm
map Ng: M — M is defined so that m — 3 s gm.

If ¢ € G, we have
g'Na(m) = (g9')m =Y _ hm = Ng(m)
g€eaq heG

This shows that Ng(M) C MY. This further implies that whenever m € IgM,
Ng(m) = 0, i.e. IgM C ker Ng. Therefore, Ng induces a well defined map
Ng: M/IgM = Mg — M. The Tate groups are then defined as follows

Definition 2.2. For any n € Z, we define:
H,nfl(G, M) n< -2

HI(G, M) = ker]\~fg n=-—1
e o coker]\NfG n=>0
H™(G,M) n>1

We may equivalently write H;.' (G, M) = ker Ng/IgM and H(G, M) = M% /NgM.
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Proposition 2.3. If0 - A — B — C — 0 is a short exact sequence of G-modules,
it extends to a long exact sequence of Tate cohomologies as follows:

o= HE(A, M) — HYB,M) — HE(C,M) — Hpt (A, M) — -
which extends over all integers n.
Proof. When n < —2, this is simply the long exact sequence of homology groups,
and when n > 1, it is the long exact sequence of cohomology groups. We need to

prove that the sequence remains exact for —2 < n < 1. To see this, consider the
following commutative diagram where we know the rows to be exact.

-+ — Hy(G,C) — Hy(G,A) — Hy(G,B) — Hy(G,C) —— 0
L¥e 1¥e 1¥e
0 —— H°G,A) — H°(G,B) — H°G,C) — HYG,A) — -
Thus a direct application of the snake lemma implies that the sequence
H:Y(G,A) — H:'(G,B) — H; ' (G,C) — H(G, A) — H}(G, B) — H}(G,C)

is exact since H ! is the kernel of ]VG and HY. is the cokernel. Now, the restriction of
the map Hy (G, C) — Hy(G, A) to ker N induces a map Hy (G, C) — HZY(G, A).
Since the map H;'(G,A) — Ho(G,A) is injective the two maps have the same
kernel. It therefore follows that the sequence --- — H;(G,C) — Hy'(G,A) —
-+ — HY(G,C) is exact. Similarly, there is a map H(G,C) — H'(G, A) whose
image equals that of H°(G,C) — H'(G, A). This gives us the desired long exact
sequence. U

We now turn to the periodicity of Tate cohomology in the case of cyclic groups.
Theorem 2.4. If G is finite and cyclic, H}:(G, M) = HX(G, M) for all n € Z.

Proof. For a full proof, see [5, Chapter II, Proposition 3.4.] We will give a sketch
here.

The proof relies on the following lemma: If 0 — A L% o™ pooisan
exact sequence with H}X(G, B) = H(G,C) = 0 for all n € Z, then H ?(G, A) =
HZ(G, D). The proof is as follows: The exact sequence 0 - A — B — C — D — 0
gives rise to two exact sequences 0 > A — B — B/Im f — 0 and 0 — B/ ker g —
C — D — 0. Converting the first into a long exact sequence of Tate groups we get

o= HEPY(A) — HEYY(B) — HpPY(B/Im f) — HEP2(A) — HE2(B) — -

However, H™(B) = 0 and H}™?(B) = 0 so that the map H7"'(B/Im f) —
H;EH (A) is an isomorphism. On repeating the process for the second sequence we
see that H"'(B/kerg) = H}X(D). However, B/kerg = B/Im f by exactness of
the original sequence. This shows that H"?(G, A) = H2(G, D).

In order to apply this lemma to the theorem, we construct an exact sequence
0—+M— X — X - M — 0 where X has the property that H}:(G, X) = 0 for all
n. In particular, the sequence used is

0> M—ZIG QM —ZG| @M —-M—0

To see why the middle term of the sequences has trivial tate cohomology and why
the sequence is exact, see [5]. O
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Thus, Tate cohomologies cycle back after two iterations. In particular, if 0 —
A — B — C — 0 is exact, we get the following exact hexagon:

H-1(G, A) — HZY(G, B)

H%(G7 B) T H%(GvA)

This allows us to define the Herbrant quotient that plays a key role in the verification
of the Class Field Axiom.

Definition 2.5. If G is cyclic and finite and M is a G-module, we define the
Herbrand quotient to be h(M) = |H(G,M)|/|H: (G, M)|.

An important property of Herbrand quotients is that if 0 -+ A - B — C — 0 is
exact, h(B) = h(A)h(C). To see why, let n’ denote the cardinality of H%(G, X)
where X is one of A, B or C. We then have

0 0 0 0 —1 —1
%_M.%.<%.m.%>
-1 = —1 —1 0 0 —1

TLB nA nc nA nc TLB

Now, we have H%(G, A)/ker fo = Im fo so that n% = |ker fo| [Im fo|. Doing the
same for all terms, the term in the parentheses becomes

[ker fi[ [Tm fi| = |ker go| [Tmgo| ~[kerga| [Tmga| _
[ker fo| |Im fo| |ker fa| [Im fo| |ker g1| |Im g1 |

which we get by applying exactness of the hexagon. This shows that h(B) =
h(A)h(C).

Below are a few other results that we will use later. The first two have appli-
cations in verifying the Class Field Axiom while the third is used in proving the
Reciprocity Theorem from the axiom.

Proposition 2.6. Shapiro’s Lemma extends to the Tate cohomology HY., i.e. if H
is a subgroup of G, N is a H-module and M is a G-module, we have HY.(G, Ind$ N) =
HY(H,N).

Proof. See [1, Chapter IV, Proposition 7.4.] O

Proposition 2.7. If M is a finite G-module where G is cyclic then h(M) = 1.

Proof. Let g be a generator of G and let f: M — M take m — gm —m. Then, the
sequence 0 — MY — M ER Vg Mg — 0 is exact. Now |M| = |ker f||Im f| and
also [M| = [Im f| [M¢|. This shows that [M¢| = |ker f| = [M|. Next, we use the
exact sequence 0 — Hy (M) — Mg Moy pe HY.(M) — 0. Since |M€| = | M|
we may repeat the above procedure to get |H7?1(M)| Im N¢| = [Im Ng| |H3(M)|
which gives the desired result. O
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Proposition 2.8. If G is a finite group with normal subgroup H and M is a
G-module with H'(G, M) =0 for all i = 1,2,...,n — 1, then the sequence

0— H™(G/H, M7y 2% gra, ) B 5 (|, M)

is exact. We also deduce from this that

0 — HAUG/H, M7y 25 go (G, M) B mY.(H, M)
s exact.
Proof. See [3, Lemma 15.6 and Proposition 13.7.] O

3. ABSTRACT SETUP

We now reformulate the standard language of Galois theory and Number Theory
in a purely group-theoretic framework, following Neukirch. This allows us to speak
of fields, extensions, norms, and modules using only subgroups of a fixed profinite
group.

3.1. Galois Groups and Fixed Fields. Galois groups and fields are central to
class field theory, for which we now provide an abstract framework.

If k is a field and k its separable closure, the abstract notion corresponding to
Gal(k/k) is a profinite group, which is the projective limit of finite groups under
the discrete topology. In particular Gal(k/k) is the projective limit of Gal(K/k)
where K is a finite extension of k. For more on profinite groups, see [6]. All our
work moving forward will be in relation to a fixed profinite group G.

Since G is equipped with a topology, we index the closed subgroups of G as {Gk}.
The index K of the closed subgroup G is called a fixed field. We will denote the
index corresponding to a subgroup H as §(H). In the case when G = Gal(k/k),
closed subgroups correspond to intermediate fields and hence this definition of a
fixed field makes intuitive sense.

We denote k = §(G) and k = F({1}). If K and L are fields, we say K < L
or K C Lif G C Gk and L will be called an extension of K (also denoted L/K).
We write Gal(L/K) to denote the quotient Gx /G and we will call L a Galois
extension of K if Gal(L/K) is a normal subgroup of Gk.

Another important notion is restrictions of field automorphisms, which we now
abstractly define. Let K € L C M with each extension normal and let o €
Gal(M/K) = Gk /Gn. We map o to its equivalence class in (Gx/Gpr)/(GL/Gum)
and use the identification (Gx /G ) /(G /Gy ) =2 Gk /G to obtain o, € Gal(L/K).
Once again, observe that all these definitions correspond to the usual definitions
when G is a Galois group.

3.2. Modules and the Norm Map. Class Field Theory also often studies mul-
tiplicative groups such as L* as G-modules and hence incorporating modules into
our formulation is important. In general, we fix a right multiplicative G-module A
for which the action of G on A is continuous with respect to the topology on G. If
L is an intermediate field, we write A7, to denote AL = {a € A: a9 = aVg € G }.

In particular, if we choose A = EX, L* =Ayp.
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Notice the symbol Ny, g in the statement of Theorem 1.1. This is called the
norm map from Ay, to Ax and it ties in to the cohomological definition of a norm.
Given a finite extension L/K, we define the norm map N,k : AL — Ag so that
Ny k(a) =]],cqa” where S is a collection of representatives of Gk /G.

Proposition 3.1. The norm map Np, /i is well defined.

Proof. We first show that the product is independent of the choice of S. Suppose
o, T are in the same equivalence class, i.e. o7~ € G. For any a € Ay, we then have
a®™ " = a. Applying the right action 7 on both sides, (a°™ ') = a® = o which
shows the desired result. The preceding proof essentially shows that Gal(L/K)
acts on Ay, via a well defined group action. Next, we will show that the norm of a

indeed lies in Ag. Suppose 7 € G, we have
NL/K(a)T — H a’T = H a’
oces oceSs’
where S’ is the set 7.5, which is also a system of representatives. Since we showed

that the product is independent of the system chosen, it follows that Ny, x(a)” =
Np/k(a) and we are done. O

Therefore, we may write Ny /i (a) = [[,cq a” where G = Gal(L/K) acts on Af.
This corresponds exactly to the norm map N¢g acting on Ay,.

We may therefore define Tate cohomologies of Gal(L/K). We have
Hz'(Gal(L/K),AL) = ker Ng/IgAL =ker Ny i /Q

where QQ = Igai(/Kx)AL is the set of all elements of Ap, of the form a“ - a~! for
some a € Ay, and o € Gal(L/K). Similarly,

HY(Gal(L/K), A) = AS JNgA = AT ) N Ap = Ak INL A
The above two definitions are central to understanding the Class Field Axiom.

3.3. Number Theory. Proving Number Theoretic results involving extensions of
fields often relies on simplifying the theorem statement to cases such as when the
extension is unramified. We therefore need corresponding abstract notions.

Recall from Number Theory that an extension L/K is unramified if and only if
L is contained in K , which denotes the maximal unramified extension of K. In
the abstract setting, we may take this as the definition of an unramified extension.
However, we still need to define the maximal unramified extension of a field. Fur-
ther recall that if L/K is an extension and ‘P is a prime ideal in L, the maximal
extension of K for which p = P N K remains unramified is the fixed field of the
inertia group Iy (see [7, Chapter 4, Theorem 28]).

We therefore first define the inertia group, from which other definitions naturally
follow. In addition to the profinite group G, we assume the existence of a fixed

surjection d: G — 7 which is the projective limit of Z/nZ. The inertia group Ij of
the base field k is then defined as ker d.

Now, for a field K, let fx = (Z : d(Gk)) so that the map dx = f%d from G to Z
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is a surjection. We then define the inertia group of K, I by ker dx. Equivalently,
I = kerd|g, = kerd N Gx. With this, we may define the maximal unramified
extension:

Definition 3.2. For a field K, the maximal unramified extension of K is given by
K :=§(Ix). This is denoted as K"™ in many sources.

We equivalently have Gz = I and hence Ix = G N G which we will denote
as G . Thus, the definition of an unramified extension now makes sense.

We will often want to make references to the inertia degree fr, and ramifica-
tion index ey k. We thus define ey /i := (I : Ir) and fr i = (d(Gk) : d(GL)).
Indeed, fx = fk/r and when L C I?, Ix C Gp sothat I, = Ix. Hence, ef, /g =1
if L/K is unramified, which agrees with standard Number Theoretic notions. The
corresponding notion of total ramification now follows simply:

Definition 3.3. We say L/K is totally ramified if f7/x = 1.

Abstract Class Field Theory also relies heavily on the Frobenius automorphism
that generates unramified Galois groups. We define it as follows:

Definition 3.4. If K is some field, we define ¢ to be the element of Gal(K /K)
such that dx (¢x) = 1. We call ¢ the Frobenius element over K. This is well de-
fined because G i is the kernel of dy, which makes the map di: G /G 7 injective.

If L/K is an unramified extension of K, then there is a surjective homomor-
phism ¥: Gal(K/K) — Gal(L/K) since L C K. We then define the Frobenius
automorphism ¢,/ i to be ¥(¢x).

With all Number Theoretic notions now set in place, we explore a few basic re-
sults:

Proposition 3.5. Some basic results are:

(1) If K C L C M, then fyyx = fayofr/x and enyx = enjrer)/ k-
(2) If L/K is Galois, then the sequence

1= Ig/I; — Gal(L/K) — d(Gk)/d(GL) — 1
1§ exact
(5) [L: K] = Jr/xer x
(4) If fr and fx are finite, then fr,;x = fr/fK-
(5) With the same assumptions as in the previous proposition, the following

diagram commutes

GLLZ

j lfL/K

Gx —25 7
where fr/x denotes multiplication by fr /K-

(6) With the same assumptions as above, (;SL|I~< = LL/K'

Proof. Below are the proofs of the above propositions:

(1) Follows directly from Lagrange’s theorem
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(2) Clearly, the sequence 1 — Ix — G — d(Gg) — 1 is an exact sequence
as is the sequence 1 — I, —» G — d(Gr) — 1. If L/K is Galois, G,
is a normal subgroup of Gk . Therefore, Gk /G|, is well defined and there
is a canonical injection i : Ix /I, < Gk /G. Next, define d: Gk/Gp —
d(Gk)/d(GL) by d([z]) = [d(x)]. This map is clearly surjective. Moreover,
dlz] = 0 if and only if d(z) € d(Gr). Now, d(x) € d(Gy) if and only if
[*] € Im34. This is because if [y] € Im¢, there is some © € Ik such that
y € [x] = 2GL or y = zz for z € Gr. Hence, d(y) = d(z) + d(z) = d(z) €
d(G1) and the converse is obvious. This shows that d[z] = 0 iff [z] € Im,
or kerd = Imi and completes the proof of exactness.

(3) If L/K is Galois, part (2) directly gives the desired result. If L/K is not
Galois, let M be the smallest Galois extension containing L and use part
(1) along with the fact that M/L is Galois.

(4) This follows from (Z/d(G1))/(Z/d(Gk)) = d(Gk)/d(GL).
5) Since fr/x = fr/fx, we have fr/frdr(z) =1/ frd(z) = dK ().
(6) We have dp(¢r) = 1 so that dx(¢1) = fr/x = fr/xdx(dx) = di( f(L/K)
Thus, ¢; " f(” ® e kerdg = Ix = G which proves the desired result.
[l

We now fix some field K and some Galois extension L of K. Suppose that fx
is finite. Consider the map di: Gx — 7. As we have seen before, this induces a
bijection dx: Gx/Ix — 7. Now, since L D K, I;, C Ik and therefore di acts on
Gk/IL =Gk /G; = Gal(L/K). We may therefore define:

Definition 3.6. The frobenius semigroup of L over K ,
Frob(L/K) := {0 € Gal(L/K): dg (o) € N}

The Frobenius semigroup is important since we construct the reciprocity map
by first defining it on the Frobenius semigroup and using this to induce a map on
Gal(L/K).

Proposition 3.7. If L/K is finite, the canonical map ¥ : Frob(L/K) — Gal(L/K),
o~ o|r is a surjection.

Proof. Fix o € Gal(L/K). We will find 5 € Frob(L/K) such that 6|, = 0. Fix
some ¢ € Gal(L/K) such that dg(¢) = 1. Therefore, ¢|z = ¢x which implies
that ¢|, ‘g = ¢kl g = ¢me</K' So, the restriction of ¢ to L N K is the frobe-
nius automorphism of L N K /K, which shows that it generates Gal(L/K). Hence,

ol = ¢|me< for some positive integer n. If n = 0, then ¢ is 1 and is mapped

onto trivially.

Next, we make use of the isomorphism from Gal(L/K) — Gal(L/(L N K)) that
takes 7 € Gal(L/K) and maps it to 7|,. Now, we know that o¢, "z is 1 and
that c¢~"|;, € Gal(L/K). Therefore, ¢~ € Gal(L/L N K). Thus, there ex-
ists some 7 € Gal(L/K) such that 7|, = 0¢"|,. Now, let & = 7¢™. We have
7€ Gal(L/K) C Gal(L/K) and ¢ € Gal(L/K) so that & € Gal(L/K). Clearly,

Gl =7¢"|L =T|Lo|L = 0™ " |Ld" L =0olL =0
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We are left to show that & € Frob(L/K), i.e. that dg(5) € N. We know that
di(5) = dx(5|g). But 6|z = ¢f%. This is because 7 fixes K which implies that
T¢"| 7 = ¢"| which is exactly ¢%. Since n is positive, it follows that dx(6) € N
and we are done. (]

Proposition 3.8. Ifo € Frob(Z/K) and M is the fized field of o (defined to be
the fized field of the subgroup generated by o), then: fy/x = di(0); [M : K] is
finite; M = f; and o = ¢pr.

Proof. See [1, Chapter IV, Proposition 4.5.] O

3.4. Abstract Valuation Theory. When working with local fields, valutions are
central. If K is a local field, a valuation v maps K to R U {co} with 0 — co. We
restrict valuations to K* to avoid carrying the infinity case. This is a G-module
and hence we define the valuation as a map on G-modules.

Fix a continuous G-module A as before and let v: AY = A;, — Z satisfying:
e Let Z =Imwv. Then, Z C Z and Z/nZ = Z/nZ, i.e. the inverse limit of
Z/nZ equals that of Z/nZ.
e v(Ng/pAk) = [k Z whenever K is finite over k (as before, k is the fixed
field of G).

Such a map is called a Henselian valuation. Given the map v, we may define
VK = fiKvoNK/k : Ag — Z. The following proposition allows us to easily navigate

between valuations on different fields:

Proposition 3.9. If L/K is a finite extension and a € Ar, we have v (N /i (a)) =
fr/xvr(a).

Proof. We have by definition

ok (Np i () = fiKv<NK/k<NL/K<a>>> - fiKv<NL/k<a>>

Jo 1
=— . —u(N a)) = vr(a
T (Nzsx(a)) = fr/xve(a)
which proves the desired result. O

The following definitions prove important in defining the reciprocity map:

Definition 3.10. We say u € Ak is a unit of Ax if vg(u) =0. We say m € Ak is
a uniformizer or prime if vk (7) = 1. We denote the group of units by Uk.

Now consider any a € Ax and let v(a) = n. Let 7 be a uniformizer of Ax and
let w = 7~ "a so that v(u) = 0. Thus, we have a = 7™ where 7 is a uniformizer
and u is a unit. In other words, every element of Ak can be expressed as a product
of a unit and the power of a uniformizer.

4. ABSTRACT CLASS FIELD THEORY

In this section, we dive right into stating the Class Field Axiom and proving the
local reciprocity theorem assuming it. For a concrete toy model illustrating these
ideas, the reader may consult the Appendix on Kummer Theory, where one sees
how a statement similar to the Class Field Axiom arises naturally in that setting.
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Fix a profinite group G and a G-module A. A Class Field Theory is a pair of maps
(d,v) where d: G — Z is a continuous surjection and v is a Henselian valuation[1,
p. 300]. The class field axiom states[1]:

Axiom 4.1. For every cyclic extension L/K,
|H2(Gal(L/K),AL)| = [L: K] and |Hz'(Gal(L/K),AL)| =1

Our goal in this section is to use this axiom to prove the reciprocity theorem.
Once we have done so, local class field theory reduces to proving the axiom for
the case when k is a local field and A = k. We show the reciprocity theorem
by explicitly constructing the map. We first construct a map r’ on the Frobenius
semigroup Frob(L/K) and then use the surjection Frob(L/K) — Gal(L/K) to
define r(o) = r/(6) where 6 — o under the surjection. We will show that ' is
multiplicative so that r is a homomorphism. We then proceed to prove that r is a
bijection thus proving Theorem 1.1.

Proposition 4.2. If L/K is an unramified extension where L and K are both finite
over k, then Hi.(Gal(L/K),UL) =1 for i = 0,—1. Moreover, H-(Gal(L/K), AL)
is cyclic and generated by any uniformizer L.

Proof. Let G = Gal(L/K). Suppose u € Uz. We want to show that H,'(G,Ur)
is trivial, i.e. whenever Ny x(u) = 1 u = v’u~l = 077! for some v € Ug.
Since H;'(G, Ap) is trivial, we already have u = a”~! for some ¢ € G and a €
Ap. But since L/K is unramified, ¢k generates G which implies that I =
(c—-1:0€@G)= <¢L/K — 1>. Therefore, we have u = a®2/5 !, Pick a uniformizer
7 of Axg. We claim that 7 is also a uniformizer of Ar. To see this, we have
v (N (7)) = vge (7o)

since ¢ = ¢,k generates G and moreover m € Ax implies that ¢ acts trivially
on 7 and therefore the above product becomes nvg(m) where n = |G|. But we
have vi (Np k(7)) = fr/kvr(m) = nvp(m) since er g = 1 which shows that
vr,(m) = v (w) = 1. Thus, 7 is a uniformizer of Aj,. Let v = ar~"™ where m = v(a)
so that v is a unit with @ = 7™v. We then have a®~! = (7™v)?(7™v)~! but ¢ acts
trivially on 7 € Af so that u = a®~! = v¢~!. This shows that H;'(G,Ur) = 1.

Next, we show that if u € Uk, then v € Ny xUr. Suppose that u = Ny x(a)
for some a € Ar. We then have vk (u) = vk (N k(a)) = nvp(a) since L/K is
unramified. But vg (u) = 0 which implies that vz, (a) = 0 so a € Ur. Therefore, we
only need to show that u € Ny /xAr. To see this, we observe that vy : Ax — Z
induces a homomorphism ok : Ax/Np/xAr — Z/nZ (this is well defined because
whenever © = Ny, /i (y) for some y we have vk (x) = nvr(y) € nZ). This homo-
morphism is surjective since Uk ([7rx]) = [1] if 7k is a uniformizer and 1 generates
Z/nZ = Z/nZ. Moreover, by the Class Field Axiom, we have |Ax /Ny /ALl =n
and since Z/nZ = Z/nZ, the image has cardinality n. This implies that v is
an isomorphism. Now, if u € Uk, Ux(u) = 0 which implies that [u] = 0, i.e.
u € Np g Ar and we are done. O

As a consequence, if L/K is unramified, then Ny ,xUr = Uk.
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Definition 4.3. Let K C L. We define the reciprocity map ’: Frob(L/K) —
Ak [Ni i Ap to be such that r'(0) = [Nas/ i ()] where M is the fixed field of o
and 7 is a uniformizer of M.

Proposition 4.4. The map r’ is well defined

Proof. We need to show that the value of Nj;/x(7) is independent of the choice of
7. Suppose m and 7’ are both uniformizers of M. We need to show that Ny, x (7) =
Nyi (') (mod NZ/KAE) or equivalently,

NM/K(W)/NM/K(W/) = NM/K(’]T/’TFI) S NE/KAE

Clearly, u = n/n’ € Upy. We know that M = L so that L/M is unramified.
Therefore, Uy = NZ/MUZ so that u € NZ/MUZ' Hence, there is some x € U such

that uw = Ny ,,(x) which implies Ny (u) = Nagyi (Ng 5, (7)) = Ni e () which
shows the desired result. O

Next, we focus on showing that 7’ is multiplicative. Here, we deviate from
Neukirch and follow the approach used in [3]. The following two lemmas will prove
useful:

Lemma 4.5. Let 0,¢ € Frob(L/K) such that dx(¢) = 1 and let n = dg (o). Let
M be the fived field of o and let a € Apr. Then, Nyyi(a) = Nf/f{(w) where

v=a-a® --a®" ",

Proof. Let M’ = M N K so that M’ is unramified. Therefore, v/ = furyg =n
and eyp /g = 1 so that [M’ : K] = n. Now, since Gal(M'/K) is generated

n—1

by éar /i, we get that Ny g(x) = - R Syl Now, by definition,
dnr k= G| Moreover, di(¢) = 1 implies ¢|z = ¢r. Thus, drrx = ¢lmr
because M’ C K. So, whenever x € Ay, we have Ny g () = @ - a oz

For any a € Ay, we therefore have

Nty (a) = Napy i (Nagar (@) = Nagyag (@) - Nagyar (a)? -+ Nagjare ()"

This looks similar to the desired result except that we want Ny IR instead of Naz/ps-

However,
Niilaw = Nyagmni = Naymr
since M C L. Thus,
n—1 n—1
Nuyx(a) = Np g(a) - Np g(a)?- - Nz (a)” = N gla---a® )
which shows the desired result [l

Lemma 4.6. Let M/L and L/K be finite with M/K Galois and L/K unramified.
If u € Uns such that Ny (u) € Uge, then Nygyp(u) € NagygUn-

Proof. We use the inflation restriction exact sequence. The following sequence is

exact:

0 — HUG/H, M™)y ™5 go(G, M) 2 mY.(H, M)

Letting G = Gal(M/K) and H = Gal(M/L), we get the sequence

0 — HY(Gal(L/K),Up) 25 HY(Gal(M/K),Ups) =5 HY(Gal(M/L), Uny)
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Since HX(G, M) = M%/NgM, the sequence then becomes

nf es
0— Uk/Np/kUL LN Uk /Ny xUn Bes, UL/NuaytUm
Now, if v = Ny (u) € Uk, it defines an element [v] € Ux /Ny xUnr. Moreover,
Res(v) = 0 since v € Npy/,Ups. Therefore v € ker(Res) = Im(Inf). But since L/K
is unramified, Ny ,xUr = Uk, which shows that Uy /Ny ,xUy is trivial. So, the
image of Inf is trivial, which shows that v € Ny, gUp and we are done. [l

Proposition 4.7. The map r' is multiplicative

Proof. Let 01,09,03 € Frob(Z/K) such that o3 = o109. Let M; be their respective
fixed fields and m; € M; be uniformizers so that r'(0;) = [N, /x (m:)] = [pi] where
pi = Nag,yx (mi). We need to show that r'(03) = r'(01)7’(02). This can be achieved
by showing that ps = p1p2 (mod N3 / 1 (A7)). Equivalently, we need to show that

p=p1p2/ps € Ni  Af.

Further we observe that vk (p) = 0: We have
Vi (N, ik (T0)) = far, yxon (T6) = fu, i
since 7; is a uniformizer. Since M; is the fixed field of o;, we have dk (0;) = fu, /K>

which shows that v (p;) = di(0;). Hence, vk (p) = dx(0102/03) = dx(1) = 0 so
that p € Uk.

Now, each p; is obtained by applying a different norm map, which makes it diffi-

cult to use the multiplicativity of the norm. Thus, we transfer to a common field

as follows: Let ¢ € Gal(L/K) such that dx(¢) = 1 and let d; = dg(0;). Let
d;—1

Y = 7ri7rf’ s so that Lemma 4.5 implies that p; = Ny, /x (m;) = Nz/f((wi).

2
For the sake of brevity, we will write IV without subscript to denote N7 IR There-

fore, p = N(¢1)N(v2)/N(¢3) = N(¢1tp2/1)3) = N(u) where u = 12 /1h3. There-
fore, it suffices to show that N(u) € Ny i (Af). In particular, we will show the

stronger statement that N(u) = Nj /Ui This looks like we could apply Lemma

4.6. However, we need to set up M, L and K appropriately so that all extensions
are finite, M/K is Galois and L/K is unramified.

We know that u € U; since p = N(u) € Ux. Now, L is the union of finite
unramified extensions of L. Therefore, there is some finite unramified extension M
of L such that uw € Up;. Let L' = M N K. Thus, upon restricting the norm map
to M, we get N(u) = NM/(Mmk)(u) = Nyyp(u). Here, M/L" and L'/K are both

finite with M/K Galois and L//K unramified over K, since L' C K. Moreover,
Ngyp(w) = N(uw) = Nag i (1) Nty i (72) /Ny / 5 ()

which is in Uk, since each component of the product lies in Ax and v(N(u)) = 0.
It follows by Lemma 4.6 that N(u) = Nag/r(w) € NyyxUn C Ni Uz, which
shows the desired result. O

Note that 7 also acts as a map Frob(L/K) — Ak /Np/k AL since NZ/KAZ C
NL/KAL-



AN ABSTRACT APPROACH TO LOCAL CLASS FIELD THEORY 13

We now use the map 7’ to construct a map r: Gal(L/K) — Ag/Np/xAx. To
do so, we use the surjection Frob(L/K) — Gal(L/K). Given ¢ € Gal(L/K), let
& € Frob(L/K) that maps to 0. We then define 7(c) = [Nayk (m)] where M is
the fixed field of ¢ and 7 is a uniformizer of M. That is, r(o0) = /(&) where
': Frob(L/K) — Ar/Np/kAr. This is called the reciprocity map and is often
denoted rp, /.

Proposition 4.8. The reciprocity map r: Gal(L/K) — Ag /Ny kAL is well de-
fined.

Proof. We need to show that if & and &' are two elements of Frob(L/K) that map
to o, then /(5) = /(5'). Let 6’ = 67 where 7 € Gal(L/K). If dx(5") < dk(5),
7 € Frob(L/K). In this case, we will be done if we can prove that /(7) = 1 because
r'(¢’) =r'(67) =7 (o)r'(7) = 1.

Let N be the fixed field of 7 and let 7w be a uniformizer in Ay. Further, since &
and &' have the same restriction to L, 7|, = 1. Thus, N contains L which implies
that Ay, C Ay. SO, 7“/(7~') = NN/K('/TN) = NL/K(NN/L(WN)) S NL/KAL~ Hence,
r'(7) = 1 which shows the desired result.

The only case we are now left to consider is the case when dx (5) = dx(6'). In this
case, T € kerdg = G, i.e. 7|z = 1. We also know that 7|, = 1. Since L = LK,
it follows that ¥ = 1 and hence ¢ = ¢’ and we are done. O

Until now, we have showed that r exists and is a homomorphism because 7/ is
multiplicative. In order to show that r induces an isomorphism Gal(L/K)® —
Ak /Np/kAr, we will need to simplify to specific cases and show that each case
implies the next. In particular, we will need to show that if the theorem holds for
the unramified and abelian, cyclic, totally ramified cases, then it also holds for the
abelian cyclic case. The following proposition is useful for transitioning between
these cases:

Proposition 4.9. If L/K and L' /K’ are extensions with K C K’ and L C L/,
then the diagrams

Gal(L'/K') 25 Ayt /Np e Ars Gal(L/K)™ —“% Ag/Np kAL
! e | J
Gal(L//K") 25 Ager /Npyyier Ar Gal(L/K")™ 2% At /Ny AL
both commute.
Proof. See [1, Chapter IV, Proposition 5.8 and 5.9.] ([l

We now move on to showing the reciprocity theorem. Recall that it states that
rr i Gal(L/K)*® — Ak /[Np, Ay is an isomorphism when L/K is a finite Galois
extension. Our approach will be as follows: We first show the result when L/K is
unramified. Combining this with the case when L/K is cyclic and totally ramified
will show the result for L/K abelian and cyclic. We then drop the cyclic assump-
tion before we finally drop the abelian assumption to complete the proof.
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We start by showing that 7,k is an isomorphism when L/K is unramified. Moving
forward, we will assume that L/K is finite, Galois.

Proposition 4.10. If L/K is an unramified extension, r is an isomorphism that
takes the frobenius automorphism ¢ = ¢k to a uniformizer = of K.

Proof. Tt will suffice to show that ¢ maps to a uniformizer of K, say . Once this is
known, the map is obviously bijective. This is because Gal(L/K) and Ax /N /x AL
have equal order by the class field axiom and a generator ¢ of Gal(L/K) maps to
a generator 7 of Ag /Ny kA = H)(Gal(L/K),AL).

Let ¢x € Gal(K/K) such that ¢x|, = ¢. Since L C K, it follows that L = K
so that ¢ € Gal(L/K) with ¢x|y = ¢. Therefore, by definition, r(¢) = r'(¢x).
Moreover, the fixed field of ¢ is K itself since it is the Frobenius element. Thus,
7(¢) = [Nk k(m)] = [r] where 7 is some uniformizer of K. O

Now, we assume that L/K is abelian, cyclic and totally ramified. We prove the
theorem for this case.

Proposition 4.11. The reciprocity theorem holds when L/K is abelian, cyclic and
totally ramified

Proof. We will show that the map is injective. Bijectivity will then follow naturally
since the domain and range have equal group order. Since Gal(L/K) is cyclic, let o
be a generator. If Gal(L/K) has order n, then we only need to show that whenever
r(o*) =1 for 0 < k < n, we have k = 0. The most natural way to show this would
be to show that n | k£ and this would force k = 0 if 0 < k < n. We need some setup
before moving to this step. To start off, suppose that o is a generator and k is such
that r(o%) = 1.

Recall the definition of (o). We choose some & € Frob(L/K) that lifts . Since
L/K is totally ramified, we can choose ¢ such that its fixed field M is totally ram-
ified over K. We will prove this later. However, the reason this choice of M is
important is as follows: Let F' be a finite subextension of E/ K that contains both
M and L and let F' = FN K. Then, it is easy to see that Np/p/|a,, = Ny
and also that Np/p/|a, = N,k since L is totally ramified. The former is because

MNF=Mand MNF' = MNFNK = MNK which equals K since M is totally
ramified.

Moreover, F'/F" is cyclic with degree n because it is isomorphic to Gal(L/K). To see
why, note that d(Gp/)/d(Gp) = 1 since F//F’ is totally ramified. Therefore, the se-
quence 1 — Ip/ /Ip — Gp//Gr — 1 is exact, which shows that I/ /Ip =2 Gp/ /Gp.
So, Gp//Gp = G;://];/Gﬁ =Gr/G; =Gk /GL.

Let 7p; and 7y be uniformizers of M and L respectively so that they are both
uniformizers of F' (since it contains both M and L). So, there is some u € U such
that wy; = urf. Now, by definition r(c%) = [Nar k(7)) = [Np/p (7h)] since

war € Apy which can then further be expanded as

r(o®) = [Np)p (ur})] = [NF/F/(U)][NF/Ff(WL)]k
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However, 7, € Ap implies Np/p/ (7)) = Np/x(nr) € NpjgAr and therefore
[Ng g (m)]* = [1]. Hence, r(0*) = [Np/p: (u)]. Since we are assuming r(c*) =1,
it follows that Np/p/(u) € Np/gAr. In particular, since u is a unit, Np,p €
Np/kUp so that Np/pi(u) = Nk (v) for some v € Ur. But if v € Ur, we have
NL/K(’U) = NF/F/(’U) Hence, NF/F/(Uil’U) =1.

Since F/F’ is a finite, cyclic extension generated by the same generator o, we
have Hy'(Gal(F/F"),Ar) = 1. In other words, every element of ker Np/p may
be written as a”a~! for some a € Ap and T € Gal(F/F’), which is in turn a power
of 0. Therefore, every element of the kernel may be written as a®a~' for some
a € Ap. Since Np,p/(u~'v) = 1, it follows that u~'v = a®a™" for some a € Ap.

So, we have mhv = mhu~lv = 7ka”~1. Now, since G|, = o, we have

k )071:( k )&71

(mpv v )7t

= (nfar
Since 7 € Ar and ¢ € Gg we have 77‘1’; = 7w so that

(rhv)o=t = (a7 1)L = (a7 1)o7t

Let x = vaal_&. Then, 2% = x and hence x € Ap/. Now, we have

n—1
fF/F”UF(x) = ’UF’(NF/F’($)) = 'UF/(.’E S .. .(EU"7 ) = Z’UF’(iEUI)
=0

However, 2° = z and so z° = z which shows that Jr/pvr(x) = nup(z). But
F/F’ is totally ramified, which implies that vp(x) = nvg: ().

Now, vp(z) = vp(rhval=%) = k + vp(v) + vp(al=?). Clearly v is a unit and
a'~? =y~ v is also a unit. Therefore, both terms cancel out and we get vr(x) = k.
Therefore, nvps () = k which shows that n | k and we are done.

We are left to show that there exists some & € Gal(L/K) with fixed field to-
tally ramified over K. We make use of the isomorphism Gal(L/K) — Gal(L/K).
One can see this by plugging in d(Gk)/d(Gr) = 1 in the exact sequence 1 —
Ix /I, — Gal(L/K) — d(Gk)/d(GL) — 1. Wehave o € Gal(L/K) = Gal(L/K) C
Gal(L/K) and also ¢, € Gal(L/L) C Gal(L/K). Therefore, & = o¢;, € Gal(L/K)
and we clearly have (0¢r)|r = o1, = 0. Therefore, & lifts 0. We will show that the
fixed field M of & satisfies the desired property. Note that di () = dg(o¢r) =
di(¢r) since di (o) = 0 because 0 € G = Ix. But dx(¢r) = fr/x = 1. If M is
the fixed field of &, then fy;/x = dx(5) = 1. Therefore, M/K is unramified and
we are done. d

Next, we drop the totally ramified assumption and prove the theorem when L/K
is abelian and cyclic.

Proposition 4.12. The reciprocity theorem holds when L/K is abelian and cyclic.

Proof. As before, we are done if L/K is unramified. Otherwise, let M be the
maximal unramified subextension of K. We then have the following commutative
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diagram:
Gal(L/M) — Ay /Ny ArL

I [

Gal(L/K) BEZEN Ar/Np kAL

We know 7y is an isomorphism since M is unramified. Now, by the class field
axiom, since L/K is finite and cyclic, AK/NL/KAL| = [L : K] and similarly
’AM/NL/MAL| = [L: M] < [L: K]. Therefore, Nj;/x must be injective and since
the diagram commutes 77,/ must be injective. The fact that }(AK/NL/KAL)| =
|Gal(L/K)| then shows that 7k is a bijection.

Next, we drop the cyclic assumption
Proposition 4.13. The reciprocity theorem holds when L/K is abelian.

Proof. Suppose M is a cyclic subextension of L. Since the map rys,x is an isomor-
phism, the commutative diagram shows that kerry g is a subset of the kernel of
the map Gal(L/K) — Gal(M/K). This holds for every cyclic subextension M, i.e.
kerrp /i lies in the intersection of all cyclic normal subgroups of Gal(L/K) (the
kernel of the map from G — H corresponds to the coset of 0 which is H itself). If
L/K is abelian, the trivial group is cyclic and normal which shows that kerry, 5 is
trivial. We are left to show surjectivity.

To show surjectivity, we use induction on n = [L : K|. The base case is obvi-
ous. If n is prime, then L/K is cyclic and we are done. Otherwise, there exists
some cyclic subextension M C L with degree less than n. Hence, by our induc-
tive hypothesis, rz,/ys is an isomorphism as is rys . Since 7,/ is injective so is
Nk Av/NpjmAr — Ag/Np g Ar. We therefore obtain the following commu-
tative diagram:

1 — Gal(L/M) — Gal(L/K) —» Gal(M/K) —— 1

i”‘L/]\/] \[TL/K lTM/K

Ay /NpjmAr —— Ag/NpkAr — Ax /Ny Ay —— 1

where the rows are exact. Since rr ) and 7k are known to be isomorphisms,
we may redraw the diagram as

Gal(L/K)

X \ 7>L/I> v
Ak /Nr/kAL

where X is isomorphic to Gal(L/M) and Y isomorphic to Gal(M/K). Suppose
v € Ag/Np/kAr. We aim to show that » € Imry k. Let y = sa(x) and let
z € Gal(L/K) such that s1(2) = y. Let 2’ = rp/k(2) € Imrg/x. Then clearly
so(x) = so(2’) and therefore sy(2'z71) = 1, i.e 2’271 € kersy. Since the bottom
sequence is exact, it follows that 2’z ~! € Im iy which implies that 2’2~ € Im TL/K
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because the left triangle commutes. Thus 2’ € Im7y /g then implies that x €
Imrp k. This shows that rp/x is surjective and completes the proof. [l

Proposition 4.14. If L/ K is finite and Galois, the reciprocity map v, g : Gal(L/K) —
Ak /Np/k AL induces an injective map rp ) : Gal(L/K)® — A /Nr/kAL.

Proof. Let G = Gal(L/K) and let H = Ay /Np/xAr. Since 7,k is a homomor-
phism, the commutator subgroup [G, G| gets mapped to [H, H]. However, since H
is abelian, its commutator subgroup is trivial, which implies that [G, G] C kerrp, k.
This shows that the induced map 7,k : Gal(L/K)® — Ak [Nk Ar is well de-
fined. To show injectivity, let M be the maximal abelian subextension of L/K.
Then, Gal(M/K) = Gal(L/K)®. We use the following commutative diagram:

Gal(L/K)® 5% Ay /Ny, kAL

| |

T™M/K

Gal(M/K) — Ak /Ny Am

Since Gal(L/K)%® =~ Gal(M/K) and Gal(M/K) = Ar /Ny Ay (since M is
abelian), it follows that rz,,x must be injective. [

Finally, we show that 7, : Gal(L/K) — Ag /Ny, kAL is surjective to complete
the proof of the theorem. Note that showing this will automatically show that the
induced map Gal(L/K)% — Ak /Np/k AL is also surjective. We restate Theorem
1.1 for reference:

Theorem 4.15. Assume the class field axiom. If L/ K is a finite Galois extension,
there is an isomorphism v, 5 : Gal(L/K)* — Ak /[Ny AL.

Proof. First, we assume Gal(L/K) is solvable and use induction on n = [L : K].
Once again, the base case is obvious. Now, since G = Gal(L/K) is solvable, the
commutator subgroup H = [G, G] is a strict subset of G. Therefore, M = F(H)NL
cannot be K, which implies that either M = L or M is a proper intermediate
extension in which case we have [L : M| < [L : K] which shows that /s is surjec-
tive and hence an isomorphism. This leads to the commutative diagram resembling
that in proposition 4.14 and by following the same steps, we may prove that r/x
is surjective. If M = L, L/ K is abelian and we are done. Thus, the theorem is true
in the solvable case.

Next, the general case. We use induction again with the result being obvious
for the base case. Suppose it holds whenever [L : K] < n for some n. We aim to
show that r,/k is surjective for [L : K| = n. We do so by showing that for every
prime p | |AK/NL/KAL|, Sp is contained in the image of rp/x where S, denotes
the p-Sylow subgroup and p is a prime. Fix a prime p and let M be the fixed
field of the p-Sylow subgroup of Gal(L/K). Now, since S, is a proper subgroup
of Gal(L/K), which implies that M properly contains K and hence [L : M] < n.
Therefore rp/p; is surjective. Therefore, if we show that S, is contained in the
image of Ny /x we will be done since the diagram as in Proposition 4.9 commutes.
To this end, let i: A /Ny kAL — An/Np/mAr be the canonical injection so that
Nk (i(z)) = 271 -+ goier) = MK gince i(z) € Ag is fixed by o;. Now, by
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definition of the p-Sylow subgroup, [M : K] is coprime with p. Thus, Ny;/x oi is a
surjection from S, to itself. This shows that S, C Im Nj;, x and we are done. [

This completes the proof of Theorem 1.1 assuming the Class Field Axiom.

5. LocAL CrLAss FIELD THEORY

Now that we have completed the proof of Theorem 1.1 assuming the Class Field
Axiom, we verify the axiom in the local case. We begin by reviewing local fields.
See [8, Chapter 7] for a full treatment.

Definition 5.1. A discrete valuation on a field K is a map v: K — Z U {o0}
satisfying v(zy) = v(z) + v(y), v(z) = oo iff = 0 and v(z + y) > min{v(z),v(y)}.

We say that K is a discrete valuation field if it has a non-trivial discrete valuation.
We define ring Ok := {x € K: v(x) > 0}. This ring is a discrete valuation ring,
which means it is a principal ideal domain that has exactly one nonzero prime
ideal. We denote this ideal by px. We define the residue class field of K as
k = Ok/pr. The discrete valuation induces a metric on K via an absolute value
given by |z|, = ¢ ") where ¢ > 1 is some fixed real number.

Definition 5.2. A local field is a discrete valuation field that is complete with
respect to the metric induced by its valuation and has finite residue class field.

Example 5.3. Fix a prime p and let v, be the function which takes n to the highest
power of p in the prime factorization of n when n is an integer. We can extend
this definition to Q by letting v,(1/n) = —v,(n). Thus, v, defines a valuation on
Q called the p-adic valuation. This induces a metric given by |[z||, = p~v»(®) The
p-adic number field Q, is then defined as the completion of Q with respect to this
metric. We can then extend the definition of v, to Q, so that we get a metric on
Q, given by the same formula. It turns out that @, is complete with respect to this
metric and is therefore a local field. The p-adic valuation also has the property that
vp(x +y) = min{v,(x), v,(y)} when x # y. This is called the ultrametric property.

In fact, every local field is either p-adic for some prime p or the field Fy((T)) of
formal Laurent series in 7" over the finite field ;. Moving forward, we will assume
that the field we are working with is Q, for some prime p, though everything done
can be easily generalized to all local fields.

The main goal of this section is to prove the reciprocity theorem for local fields. To
this end, we first set up the local Class Field Theory by fixing a profinite group G,
fixing a G-module A and defining maps d and a Henselian valuation v.

Let k be a local field. Fix G = Gal(k/k) where k denotes the separable closure of k.
Let A be the G-module £*. If k is a local field, then Gal(%/x) is isomorphic to Z so
that there is a surjection d: G — Z (See [1] Ch II Proposition 9.9). Next, since v is
a homomorphism on k%, v(k*) = mZ for some m. So, we can define vi: k™ — Z
to take z — v(z)/m so that vy is surjective onto Z. If Z = Imvy we clearly have
Z C Z and Z/nZ = Z/nZ for all n. Moreover, by [1] Ch II Proposition 4.8, v
satisfies vx (Ng k™) = fxZ for any K is finite over K. Thus, vy is a Henselian
valuation. We may therefore apply the results of Abstract Class Field Theory. We
now prove the class field axiom using the approach in [4].
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Theorem 5.4. If k = Q,, is a local field with v, d and A as above, then for any
finite cyclic extension L/ K, we have |Hz'(G,L*)| =1 and |[H}%(G,L*)| = [L : K],
where G = Gal(L/K) (not to be confused with Gal(k/k)).

Proof. The fact that Hy'(G,L*) = 1 follows from Hilbert’s Theorem 90 (see ap-
pendix) along with the fact that H} = Hrp ! for cyclic groups. We are left to
show that |H9(G,L*)| = [L : K]. The method we will use to show this will be
to show that the Herbrand quotient h(L*) = [L : K], which along with the fact
that H . Y@, L*) yields the desired result. We further simplify by noting that the
sequence 1 — Uy, — L* % 7 — 0 is exact so that h(L*) = h(Uz)h(Z). Since we
are considering Z as a G-module with trivial action, H%(G,Z) = Z/|L : K|Z and
H7:'(G,7) = 0 since a9 —a =0 for all g € G,a € Z. Thus, h(Z) = [L : K] and it
now suffices to show that h(Ur) = 1. We will further reduce the problem by finding
W C Up, with finite index such that h(W) = 1. Then, h(Ur) = h(Ur/W)h(W) =
h(W) =1 by Proposition 2.7. We find W as follows.

First, consider Ok as an additive G-module. By the normal basis theorem, there
is a basis of L as a vector space over K of the form {a“: ¢ € G} where a € Ok
(we can scale « so that it lies in O ). We then let V =3 _~a°Ok C Or. Note
that we can choose a with valuation as large as we want by simply multiplying
by the required power of p. Since p € K, ¢ fixes p and the sum is unchanged.
Moreover, V = Ind{ O via the isomorphism that takes f: G — Ox to 3. a” f(0).
This tells us by Shapiro’s Lemma and its extension to HY (Proposition 2.6) that
HL(G,V) = 0 so that h(V) = 0, where V is viewed as an additive G-module.
However, we need W C Uy, to be multiplicative. We therefore try to convert V to
a multiplicative module via an isomorphism that preserves HZ.. This will give us
our desired module W.

The most natural way to convert addition to multiplication is using exponentia-
tion exp(x) = > x*/k!. This is a formal power series which has radius of con-
vergence R = p~!/(P=1 je. the series converges whenever v,(z) > 1/(p — 1).
Since we can choose « to have arbitrarily large valuation, we can choose it so that
vp(a) > 1/(p — 1), which will ensure that V' C Bg(0) (this denotes the ball of
radius R centered at 0). Now, let W = exp(V). It is easy to see that exp: V — W
is injective since when x # 0 we have v,(z) < oo which implies that v,(z*) is
a strictly decreasing sequence and hence by the ultrametric property, we have
vp(exp(z) — 1) = vp(x) < 00. So, if z # 0, exp(x) # 1. Since exp takes addi-
tion to multiplication, W is now a multiplicative G-module with h(W) = 1 since it
is isomorphic to V.. Moreover, v,(exp(x) — 1) = v,(z) > 1/(p — 1) > 0 implies that
p | exp(z) — 1, i.e. exp(z) =1+ pB C Op where 5 € Op. Since 1 is a unit in k, it
therefore follows that exp(z) is also a unit so that W C Uy,.

We are still left to show that Ur /W is finite. This can be seen with some topol-
ogy. First, note that V is open as follows. Let r = v,(a) and let z € L with
vp(x) = R > r. We then have z = pfu where u is a unit. Since u is a unit, u € V
and since R > r, p®* € V and hence = € V. Therefore, B,-r(0) C V. We can do
this at any point and not just 0 so V is open. This shows that W is open since
exp is a homeomorphism (its inverse is the logarithm which is again continuous).
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Moreover, Uy, is compact since it a closed subset of a compact set Q. An open
subgroup of a compact group has finite index. Therefore, W has finite index in Up,.
This shows the desired result. O

APPENDIX: KUMMER THEORY

We turn to Kummer Theory, which serves as a model case for the abstract ap-
proach to Theorem 1.1. Our aim is to prove Theorem 5.5. We give two proofs:
first via cohomology, then via an abstract reformulation that isolates the minimal
assumptions needed. Following [1, IV.3], we call this the Kummer Theory Axiom.
Verifying this axiom recovers Theorem 5.5, analogous to how Neukirch derives the
main reciprocity law. This prepares the ground for abstract class field theory. We
begin by explaining the theorem of interest.

In most standard treatments, the main goal of Kummer Theory is to prove that
there is a correspondence between cyclic Galois extensions of a field K and cyclic
subgroups of the multiplicative group K* /(K *)™ where (K*)™ denotes the image
power map that takes z +— z™. The set of nth roots of unity, denoted p,,, is the ker-
nel of this map. Note that n is any integer that is not divisible by the characteristic
of K. This is proved as a corollary of the following theorem

Theorem 5.5. Let L/K be a finite cyclic Galois extension of fields where K is a
field that contains the nth roots of unity p, where n is some integer not divisible
by the characteristic of K. Then, the group (K* N (L*)™)/(K*)™ is isomorphic to
Hom(G, ), the set of homomorphisms from G to p,, where G = Gal(L/K).

By taking the projective limit, the above theorem can be extended to infinite

field extensions L/K. Then, letting L = K, we see that K> N (FX )» = K*. This
is because the power map is surjective by virtue of K being algebraically closed.
Hence, K*/(K*)™ =2 Hom(G, uy,). With a little more work this can be shown to
imply the correspondence between cyclic extensions and cyclic subgroups. The rest
of the section will focus on proving Theorem 5.5.

We begin with the cohomological approach by viewing L* and K* as multiplica-
tive, right G-modules. The following lemma is by Emmy Noether:

Theorem 5.6 (Hilbert’s Theorem 90). If L/K is a finite Galois extension, then
HY(Gal(L/K),L*) is trivial.

The proof relies on the following lemma

Lemma 5.7. View L as a vector space over K. Consider the space V' of all K-
linear maps from L to itself. The space of K-linear maps on L is a vector space
over L. The K-fixing automorphisms on L are linearly independent over L in V.

Proof. Let o1,...,0, denote the K-fixing automorphisms over L. Suppose that
they are not linearly independent. Then, there exists a smallest natural number
m such that a101 + - -+ + a0 = 0 where a; are all nonzero. Then, suppose that
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2o € L such that o1(z0) # o2(xo). Let b; = (01(x0) — 04(x0))a; so that

Zbioi(x) = Z(O’l(l'()) —oi(x0))aioi(x Z%Ul (x0)oi(xo) Za,al (zo)oi(x

=2
::OA—E:cuadxox)::O
i=1

for any x € L, since Y a;0;(x) = 0 for every x € L. However, this gives us only
m — 1 distinct non-zero coefficients since by = 0, contradicting the minimality of m.
Thus, o; must be linearly independent. O

Proof of Theorem 5.6. Upon explicitly computing H'(Gal(L/K), L*), we see that
this is equal to Z/B where Z the set of maps f: G — M satisfying f(gh) =
f(h)9f(g) and B is the set of maps of the form f(g) = m9m=1. Let f € Z. We
know that G = Gal(L/K) is the set of automorphisms on L fixing K and therefore
G as a set of vectors in V is linearly independent. Thus there exists some x € L*

such that
1= f(0) o) = 3 flo)e
ceG ceG
If r € G,
r(t) = Y r(f@)rlo(@) = 3 flo) =T
oceG ceG

Since f € kerd', f(o)” = f(r)"f(oT) so that

=Y F@) o) = f(r) Y flom)aTT = f(r) M

oceqG ceG

Therefore, we get f(7) = t7(t)~* = (t7'¢7)~" and hence f € B, which shows the
desired result. O

Proof of Theorem 5.5. We first start with the short exact sequence
1— pp — L Pn (L™ =1
where P,, denotes the power map. Applying group cohomology to this short exact
sequence, we get a long exact sequence
1— HG, pun) — H(G,L*) — H°(G,(L*)") = H G, i) — H*(G,L*) —

Here, G = Gal(L/K). However, by Hilbert’s Theorem 90, H'(G, LX) = 1 so that
the sequence terminates at H'(G, L*). We now compute the rest of the terms. We
have H(G, M) = M and p, C K so that it is fixed by G. Hence, u& = u,.
Similarly, H°(G,L*) = (L*)¢ which can be written as LE \ 0 = K*. Similarly,
HO(G,(L*)") = K* N (L*)". We are now left to compute H*(G, ).

Write H'(G, 1) = Z/B. Since pu, is fixed by G, B is trivial. Moreover if f € Z,
f(o) is fixed by G so that f(o7) = f(0)f(7)? = f(o)f(r) which shows that f is
a homomorphism. Hence, H(G, 1,,) = Hom(G, j1,,). We therefore get the exact
sequence

1= g — K 2% KX 0 (D)™ — Hom(G, pn) — 1
which shows that Hom(G, py,) = (K* N (L*)™)/(K*)™ and we are done. O
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To prove the result abstractly, we use the formulation developed in Section 3.
We fix a profinite group G and a continuous G-module A, which in the concrete
case gives rise to L™ and K*.

In addition, the two most important facts in our proof of Theorem 1.1 were p,, C K
and H'(G,L*) = 1. Therefore, our abstract formulation must encompass these
facts. To this end, fix a surjective homomorphism P: A — A with finite cyclic
kernel up and fix some field K so that up C Agx. This corresponds to the power
map that takes a to a™. The axiom is as follows:

Axiom 5.8. For all finite cyclic extensions L/K, H'(Gal(L/K), Ar) is trivial.!

Now, to prove Theorem 5.5, we fix a field k and let G = Gal(k/k). We choose

A=%". Fix some integer n and let up: a — a™. Choose a field K D k that con-
tains up. For any finite cyclic extension L of K we then have H!(Gal(L/K), A) =
H'(Gal(L/K),L*) = 1. This gives us everything we need to continue the proof
the same way as before. In essence, rather than directly using Hilbert’s Theorem
90, we are given the same result as an axiom. For any system in which this axiom
is true, Theorem 5.5 holds.

The latter approach illustrates how Neukirch proved Theorem 1.1. If we were
to do it from scratch, we would: first set up an abstract formulation and assume
the Kummer Theory Axiom. Then, prove Theorem 5.5 assuming this and finally
prove the Kummer Theory Axiom itself. The last step is the proof of Theorem 5.6
and the previous step is exactly the same as our concrete proof of Theorem 5.5.
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