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Abstract. We prove the local reciprocity theorem, the central result of local

class field theory, using Neukirch’s approach. After introducing the necessary
cohomological tools, we set up an abstract formulation of field theory and

number theory. We then assume the Class Field Axiom, a minimal condition

on the base field, and prove the reciprocity theorem. Finally, we verify the
class field axiom in the case of local fields.
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1. Introduction

Class Field Theory is the study of abelian Galois extensions of fields, motivated
by the Kronecker Weber Theorems. The Global Kronecker Weber Theorem states
that every abelian extension of Q is contained in a cyclotomic extension of Q. Its
local analogue asserts that every abelian extension of Qp is contained in a cyclo-
tomic extension of Qp.

Beyond these special cases, the central result is the Artin Reciprocity Theorem,
which in the case of local fields is as follows:

Theorem 1.1 (Local Artin Reciprocity). If L/K is a finite Galois extension of
local fields, there is an isomorphism rL/K : Gal(L/K)ab → K×/NL/KL

×.

Indeed one may deduce the Kronecker Weber Theorems as corollaries of this
theorem.

Our goal in this paper is to prove the local reciprocity theorem using an abstract
approach due to Neukirch[1]. Earlier proofs had been given by Lubin-Tate, but
Neukirch showed that the theorem can be deduced from a minimal set of assump-
tions, which he called the Class Field Axiom. Proving the Class Field Axiom for
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local fields then yields local reciprocity theorem. Although Neukirch avoids coho-
mological language, we take a slightly broader viewpoint and set up the arguments
in terms of Tate cohomology. The paper proceeds by first developing this coho-
mological machinery, then setting up the abstract framework, proving the theorem
abstractly and finally specializing to the local case. We also include a section on
Kummer Theory as a toy model to illustrate the abstract method used. This also
gives us Hilbert’s Theorem 90 in passing.

2. Tate Cohomology

In this section, we set up some cohomological tools that we will use to state and
prove the Class Field Axiom. Tate cohomology connects cohomology and homol-
ogy groups into a single long exact sequence. Within this setting we introduce the
Herbrand quotient, which is key to verifying the class field axiom, and collect a few
miscellaneous results for later use.

Throughout this section, let G be a multiplicative abelian group and M be an
additive left G-module. We write MG to denote {m ∈ M : gm = m∀g ∈ G} and
MG = M/IGM where IGM denotes the subset of M generated by {gm −m : g ∈
G,m ∈M}.

When G acts on M , we are often interested in the invariants MG. However, the
functor M 7→MG is only left exact. Group cohomology salvages this by extending
the left exact sequence of invariants into a long exact sequence of so-called cohomol-
ogy groups. In what follows, we mostly encounter the first two cohomology groups
H0(G,M) =MG and H1(G,M) which is the collection of crossed homomorphisms
upto equivalence. For a full treatment of cohomology, see [5, Chapter 2]. Homology
groups are defined dual to cohomology groups.

Tate cohomology ties in cohomology and homology groups into a single long exact
sequence that extends infinitely on both sides. For finite G, it is based on the notion
of a norm

Definition 2.1. If M is a G-module where G is a finite abelian group, the norm
map NG : M →M is defined so that m 7→

∑
g∈G gm.

If g′ ∈ G, we have

g′NG(m) =
∑
g∈G

(gg′)m =
∑
h∈G

hm = NG(m)

This shows that NG(M) ⊂ MG. This further implies that whenever m ∈ IGM ,
NG(m) = 0, i.e. IGM ⊂ kerNG. Therefore, NG induces a well defined map

ÑG : M/IGM =MG →MG. The Tate groups are then defined as follows

Definition 2.2. For any n ∈ Z, we define:

Hn
T (G,M) :=


H−n−1(G,M) n ≤ −2

ker ÑG n = −1

coker ÑG n = 0

Hn(G,M) n ≥ 1

We may equivalently writeH−1
T (G,M) = kerNG/IGM andH0

T (G,M) =MG/NGM .
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Proposition 2.3. If 0 → A→ B → C → 0 is a short exact sequence of G-modules,
it extends to a long exact sequence of Tate cohomologies as follows:

· · · → Hn
T (A,M) → Hn

T (B,M) → Hn
T (C,M) → Hn+1

T (A,M) → · · ·
which extends over all integers n.

Proof. When n < −2, this is simply the long exact sequence of homology groups,
and when n > 1, it is the long exact sequence of cohomology groups. We need to
prove that the sequence remains exact for −2 ≤ n ≤ 1. To see this, consider the
following commutative diagram where we know the rows to be exact.

· · · H1(G,C) H0(G,A) H0(G,B) H0(G,C) 0

0 H0(G,A) H0(G,B) H0(G,C) H1(G,A) · · ·
ÑG ÑG ÑG

Thus a direct application of the snake lemma implies that the sequence

H−1
T (G,A) → H−1

T (G,B) → H−1
T (G,C) → H0

T (G,A) → H0
T (G,B) → H0

T (G,C)

is exact sinceH−1
T is the kernel of ÑG andH0

T is the cokernel. Now, the restriction of

the map H1(G,C) → H0(G,A) to ker ÑG induces a map H1(G,C) → H−1
T (G,A).

Since the map H−1
T (G,A) → H0(G,A) is injective the two maps have the same

kernel. It therefore follows that the sequence · · · → H1(G,C) → H−1
T (G,A) →

· · · → H0
T (G,C) is exact. Similarly, there is a map H0

T (G,C) → H1(G,A) whose
image equals that of H0(G,C) → H1(G,A). This gives us the desired long exact
sequence. □

We now turn to the periodicity of Tate cohomology in the case of cyclic groups.

Theorem 2.4. If G is finite and cyclic, Hn
T (G,M) = Hn+2

T (G,M) for all n ∈ Z.
Proof. For a full proof, see [5, Chapter II, Proposition 3.4.] We will give a sketch
here.

The proof relies on the following lemma: If 0 → A
f−→ B

g−→ C
h−→ D → 0 is an

exact sequence with Hn
T (G,B) = Hn

T (G,C) = 0 for all n ∈ Z, then Hn+2
T (G,A) ∼=

H2
T (G,D). The proof is as follows: The exact sequence 0 → A→ B → C → D → 0

gives rise to two exact sequences 0 → A→ B → B/ Im f → 0 and 0 → B/ ker g →
C → D → 0. Converting the first into a long exact sequence of Tate groups we get

· · · → Hn+1
T (A) → Hn+1

T (B) → Hn+1
T (B/ Im f) → Hn+2

T (A) → Hn+2
T (B) → · · ·

However, Hn+1
T (B) = 0 and Hn+2

T (B) = 0 so that the map Hn+1
T (B/ Im f) →

Hn+2
T (A) is an isomorphism. On repeating the process for the second sequence we

see that Hn+1
T (B/ ker g) ∼= Hn

T (D). However, B/ ker g = B/ Im f by exactness of

the original sequence. This shows that Hn+2
T (G,A) ∼= Hn

T (G,D).

In order to apply this lemma to the theorem, we construct an exact sequence
0 →M → X → X →M → 0 where X has the property that Hn

T (G,X) = 0 for all
n. In particular, the sequence used is

0 →M → Z[G]⊗Z M → Z[G]⊗Z M →M → 0

To see why the middle term of the sequences has trivial tate cohomology and why
the sequence is exact, see [5]. □
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Thus, Tate cohomologies cycle back after two iterations. In particular, if 0 →
A→ B → C → 0 is exact, we get the following exact hexagon:

H−1
T (G,A) H−1

T (G,B)

H0
T (G,C) H−1

T (G,C)

H0
T (G,B) H0

T (G,A)

f3

f4f2

f6f1

f0

This allows us to define the Herbrant quotient that plays a key role in the verification
of the Class Field Axiom.

Definition 2.5. If G is cyclic and finite and M is a G-module, we define the
Herbrand quotient to be h(M) =

∣∣H0
T (G,M)

∣∣ / ∣∣H−1
T (G,M)

∣∣.
An important property of Herbrand quotients is that if 0 → A→ B → C → 0 is

exact, h(B) = h(A)h(C). To see why, let niX denote the cardinality of Hi
T (G,X)

where X is one of A,B or C. We then have

n0B
n−1
B

=
n0A
n−1
A

· n
0
C

n−1
C

·
(
n0B
n0A

·
n−1
A

n0C
·
n−1
C

n−1
B

)
Now, we have H0

T (G,A)/ ker f0
∼= Im f0 so that n0

A = |ker f0| |Im f0|. Doing the
same for all terms, the term in the parentheses becomes

|ker f1| |Im f1|
|ker f0| |Im f0|

· |ker g0| |Im g0|
|ker f2| |Im f2|

· |ker g2| |Im g2|
|ker g1| |Im g1|

= 1

which we get by applying exactness of the hexagon. This shows that h(B) =
h(A)h(C).

Below are a few other results that we will use later. The first two have appli-
cations in verifying the Class Field Axiom while the third is used in proving the
Reciprocity Theorem from the axiom.

Proposition 2.6. Shapiro’s Lemma extends to the Tate cohomology H0
T , i.e. if H

is a subgroup of G, N is a H-module andM is a G-module, we have H0
T (G, Ind

G
H N) ∼=

H0
T (H,N).

Proof. See [1, Chapter IV, Proposition 7.4.] □

Proposition 2.7. If M is a finite G-module where G is cyclic then h(M) = 1.

Proof. Let g be a generator of G and let f : M →M take m 7→ gm−m. Then, the

sequence 0 → MG → M
f−→ M → MG → 0 is exact. Now |M | = |ker f | |Im f | and

also |M | = |Im f | |MG|. This shows that |MG| = |ker f | =
∣∣MG

∣∣. Next, we use the

exact sequence 0 → H−1
T (M) →MG

NG−−→MG → H0
T (M) → 0. Since

∣∣MG
∣∣ = |MG|

we may repeat the above procedure to get
∣∣H−1

T (M)
∣∣ |ImNG| = |ImNG|

∣∣H0
T (M)

∣∣
which gives the desired result. □
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Proposition 2.8. If G is a finite group with normal subgroup H and M is a
G-module with Hi(G,M) = 0 for all i = 1, 2, . . . , n− 1, then the sequence

0 → Hn(G/H,MH)
Inf−−→ Hn(G,M)

Res−−→ Hn(H,M)

is exact. We also deduce from this that

0 → H0
T (G/H,M

H)
Inf−−→ H0

T (G,M)
Res−−→ H0

T (H,M)

is exact.

Proof. See [3, Lemma 15.6 and Proposition 13.7.] □

3. Abstract Setup

We now reformulate the standard language of Galois theory and Number Theory
in a purely group-theoretic framework, following Neukirch. This allows us to speak
of fields, extensions, norms, and modules using only subgroups of a fixed profinite
group.

3.1. Galois Groups and Fixed Fields. Galois groups and fields are central to
class field theory, for which we now provide an abstract framework.

If k is a field and k its separable closure, the abstract notion corresponding to
Gal(k/k) is a profinite group, which is the projective limit of finite groups under
the discrete topology. In particular Gal(k/k) is the projective limit of Gal(K/k)
where K is a finite extension of k. For more on profinite groups, see [6]. All our
work moving forward will be in relation to a fixed profinite group G.

Since G is equipped with a topology, we index the closed subgroups of G as {GK}.
The index K of the closed subgroup GK is called a fixed field. We will denote the
index corresponding to a subgroup H as F(H). In the case when G = Gal(k/k),
closed subgroups correspond to intermediate fields and hence this definition of a
fixed field makes intuitive sense.

We denote k = F(G) and k = F({1}). If K and L are fields, we say K ≤ L
or K ⊂ L if GL ⊂ GK and L will be called an extension of K (also denoted L/K).
We write Gal(L/K) to denote the quotient GK/GL and we will call L a Galois
extension of K if Gal(L/K) is a normal subgroup of GK .

Another important notion is restrictions of field automorphisms, which we now
abstractly define. Let K ⊂ L ⊂ M with each extension normal and let σ ∈
Gal(M/K) = GK/GM . We map σ to its equivalence class in (GK/GM )/(GL/GM )
and use the identification (GK/GM )/(GL/GM ) ∼= GK/GL to obtain σL ∈ Gal(L/K).
Once again, observe that all these definitions correspond to the usual definitions
when G is a Galois group.

3.2. Modules and the Norm Map. Class Field Theory also often studies mul-
tiplicative groups such as L× as G-modules and hence incorporating modules into
our formulation is important. In general, we fix a right multiplicative G-module A
for which the action of G on A is continuous with respect to the topology on G. If
L is an intermediate field, we write AL to denote AGL = {a ∈ A : ag = a∀g ∈ GL}.
In particular, if we choose A = k

×
, L× = AL.
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Notice the symbol NL/K in the statement of Theorem 1.1. This is called the
norm map from AL to AK and it ties in to the cohomological definition of a norm.
Given a finite extension L/K, we define the norm map NL/K : AL → AK so that
NL/K(a) =

∏
σ∈S a

σ where S is a collection of representatives of GK/GL.

Proposition 3.1. The norm map NL/K is well defined.

Proof. We first show that the product is independent of the choice of S. Suppose
σ, τ are in the same equivalence class, i.e. στ−1 ∈ GL. For any a ∈ AL, we then have

aστ
−1

= a. Applying the right action τ on both sides, (aστ
−1

)τ = aσ = aτ which
shows the desired result. The preceding proof essentially shows that Gal(L/K)
acts on AL via a well defined group action. Next, we will show that the norm of a
indeed lies in AK . Suppose τ ∈ GK , we have

NL/K(a)τ =
∏
σ∈S

aστ =
∏
σ∈S′

aσ

where S′ is the set τS, which is also a system of representatives. Since we showed
that the product is independent of the system chosen, it follows that NL/K(a)τ =
NL/K(a) and we are done. □

Therefore, we may write NL/K(a) =
∏

σ∈G a
σ where G = Gal(L/K) acts on AL.

This corresponds exactly to the norm map NG acting on AL.

We may therefore define Tate cohomologies of Gal(L/K). We have

H−1
T (Gal(L/K), AL) = kerNG/IGAL = kerNL/K/Q

where Q = IGal(L/K)AL is the set of all elements of AL of the form aσ · a−1 for
some a ∈ AL and σ ∈ Gal(L/K). Similarly,

H0
T (Gal(L/K), AL) = AG/NGA = A

Gal(L/K)
L /NL/KAL = AK/NL/KAL

The above two definitions are central to understanding the Class Field Axiom.

3.3. Number Theory. Proving Number Theoretic results involving extensions of
fields often relies on simplifying the theorem statement to cases such as when the
extension is unramified. We therefore need corresponding abstract notions.

Recall from Number Theory that an extension L/K is unramified if and only if

L is contained in K̃, which denotes the maximal unramified extension of K. In
the abstract setting, we may take this as the definition of an unramified extension.
However, we still need to define the maximal unramified extension of a field. Fur-
ther recall that if L/K is an extension and P is a prime ideal in L, the maximal
extension of K for which p = P ∩ K remains unramified is the fixed field of the
inertia group IP (see [7, Chapter 4, Theorem 28]).

We therefore first define the inertia group, from which other definitions naturally
follow. In addition to the profinite group G, we assume the existence of a fixed

surjection d : G→ Ẑ which is the projective limit of Z/nZ. The inertia group Ik of
the base field k is then defined as ker d.

Now, for a field K, let fK = (Ẑ : d(GK)) so that the map dK = 1
fK
d from GK to Ẑ
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is a surjection. We then define the inertia group of K, IK by ker dK . Equivalently,
IK = ker d|GK

= ker d ∩ GK . With this, we may define the maximal unramified
extension:

Definition 3.2. For a field K, the maximal unramified extension of K is given by

K̃ := F(IK). This is denoted as Kunr in many sources.

We equivalently have GK̃ = IK and hence IK = GK ∩Gk̃ which we will denote
as GKk̃. Thus, the definition of an unramified extension now makes sense.

We will often want to make references to the inertia degree fL/K and ramifica-
tion index eL/K . We thus define eL/K := (IK : IL) and fL/K := (d(GK) : d(GL)).

Indeed, fK = fK/k and when L ⊂ K̃, IK ⊂ GL so that IL = IK . Hence, eL/K = 1
if L/K is unramified, which agrees with standard Number Theoretic notions. The
corresponding notion of total ramification now follows simply:

Definition 3.3. We say L/K is totally ramified if fL/K = 1.

Abstract Class Field Theory also relies heavily on the Frobenius automorphism
that generates unramified Galois groups. We define it as follows:

Definition 3.4. If K is some field, we define ϕK to be the element of Gal(K̃/K)
such that dK(ϕK) = 1. We call ϕK the Frobenius element over K. This is well de-
fined because GK̃ is the kernel of dK , which makes the map dK : GK/GK̃ injective.

If L/K is an unramified extension of K, then there is a surjective homomor-

phism Ψ: Gal(K̃/K) → Gal(L/K) since L ⊂ K. We then define the Frobenius
automorphism ϕL/K to be Ψ(ϕK).

With all Number Theoretic notions now set in place, we explore a few basic re-
sults:

Proposition 3.5. Some basic results are:

(1) If K ⊂ L ⊂M , then fM/K = fM/LfL/K and eM/K = eM/LeL/K .
(2) If L/K is Galois, then the sequence

1 → IK/IL → Gal(L/K) → d(GK)/d(GL) → 1

is exact
(3) [L : K] = fL/KeL/K

(4) If fL and fK are finite, then fL/K = fL/fK .
(5) With the same assumptions as in the previous proposition, the following

diagram commutes

GL Ẑ

GK Ẑ

dL

fL/K

dK

where fL/K denotes multiplication by fL/K .

(6) With the same assumptions as above, ϕL|K̃ = ϕ
fL/K

K .

Proof. Below are the proofs of the above propositions:

(1) Follows directly from Lagrange’s theorem



8 ACHYUT BHARADWAJ

(2) Clearly, the sequence 1 → IK → GK → d(GK) → 1 is an exact sequence
as is the sequence 1 → IL → GL → d(GL) → 1. If L/K is Galois, GL

is a normal subgroup of GK . Therefore, GK/GL is well defined and there

is a canonical injection i : IK/IL ↪→ GK/GL. Next, define d̃ : GK/GL →
d(GK)/d(GL) by d̃([x]) = [d(x)]. This map is clearly surjective. Moreover,

d̃[x] = 0 if and only if d(x) ∈ d(GL). Now, d(x) ∈ d(GL) if and only if
[x] ∈ Im i. This is because if [y] ∈ Im i, there is some x ∈ IK such that
y ∈ [x] = xGL or y = xz for z ∈ GL. Hence, d(y) = d(x) + d(z) = d(z) ∈
d(GL) and the converse is obvious. This shows that d̃[x] = 0 iff [x] ∈ Im i,

or ker d̃ = Im i and completes the proof of exactness.
(3) If L/K is Galois, part (2) directly gives the desired result. If L/K is not

Galois, let M be the smallest Galois extension containing L and use part
(1) along with the fact that M/L is Galois.

(4) This follows from (Ẑ/d(GL))/(Ẑ/d(GK)) ∼= d(GK)/d(GL).
(5) Since fL/K = fL/fK , we have fL/fKdL(x) = 1/fKd(x) = dK(x).

(6) We have dL(ϕL) = 1 so that dK(ϕL) = fL/K = fL/KdK(ϕK) = dK(ϕ
fL/K

K ).

Thus, ϕ−1
L ϕ

fL/K

K ∈ ker dK = IK = GK̃ which proves the desired result.

□

We now fix some field K and some Galois extension L of K. Suppose that fK
is finite. Consider the map dK : GK → Ẑ. As we have seen before, this induces a

bijection dK : GK/IK → Ẑ. Now, since L ⊃ K, IL ⊂ IK and therefore dK acts on

GK/IL = GK/GL̃ = Gal(L̃/K). We may therefore define:

Definition 3.6. The frobenius semigroup of L̃ over K,

Frob(L̃/K) := {σ ∈ Gal(L̃/K) : dK(σ) ∈ N}

The Frobenius semigroup is important since we construct the reciprocity map
by first defining it on the Frobenius semigroup and using this to induce a map on
Gal(L/K).

Proposition 3.7. If L/K is finite, the canonical map Ψ: Frob(L̃/K) → Gal(L/K),
σ 7→ σ|L is a surjection.

Proof. Fix σ ∈ Gal(L/K). We will find σ̃ ∈ Frob(L̃/K) such that σ̃|L = σ. Fix

some ϕ ∈ Gal(L̃/K) such that dK(ϕ) = 1. Therefore, ϕ|K̃ = ϕK which implies

that ϕ|L∩K̃ = ϕK |L∩K̃ = ϕL∩K̃/K . So, the restriction of ϕ to L ∩ K̃ is the frobe-

nius automorphism of L ∩ K̃/K, which shows that it generates Gal(L/K). Hence,
σ|L∩K̃ = ϕ|n

L∩K̃
for some positive integer n. If n = 0, then σ is 1 and is mapped

onto trivially.

Next, we make use of the isomorphism from Gal(L̃/K̃) → Gal(L/(L ∩ K̃)) that

takes τ ∈ Gal(L̃/K̃) and maps it to τ |L. Now, we know that σϕ−n

L∩K̃
is 1 and

that σϕ−n|L ∈ Gal(L/K). Therefore, σϕ−n ∈ Gal(L/L ∩ K̃). Thus, there ex-

ists some τ ∈ Gal(L̃/K̃) such that τ |L = σϕ−n|L. Now, let σ̃ = τϕn. We have

τ ∈ Gal(L̃/K̃) ⊂ Gal(L̃/K) and ϕ ∈ Gal(L̃/K) so that σ̃ ∈ Gal(L̃/K). Clearly,

σ̃|L = τϕn|L = τ |Lϕ|nL = σϕ−n|Lϕn|L = σ|L = σ
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We are left to show that σ̃ ∈ Frob(L̃/K), i.e. that dK(σ̃) ∈ N. We know that

dK(σ̃) = dK(σ̃|K̃). But σ̃|K̃ = ϕnK . This is because τ fixes K̃ which implies that
τϕn|K̃ = ϕn|K̃ which is exactly ϕnK . Since n is positive, it follows that dK(σ̃) ∈ N
and we are done. □

Proposition 3.8. If σ ∈ Frob(L̃/K) and M is the fixed field of σ (defined to be
the fixed field of the subgroup generated by σ), then: fM/K = dK(σ); [M : K] is

finite; M̃ = L̃; and σ = ϕM .

Proof. See [1, Chapter IV, Proposition 4.5.] □

3.4. Abstract Valuation Theory. When working with local fields, valutions are
central. If K is a local field, a valuation v maps K to R ∪ {∞} with 0 7→ ∞. We
restrict valuations to K× to avoid carrying the infinity case. This is a G-module
and hence we define the valuation as a map on G-modules.

Fix a continuous G-module A as before and let v : AG = Ak → Ẑ satisfying:

• Let Z = Im v. Then, Z ⊂ Z and Z/nZ ∼= Z/nZ, i.e. the inverse limit of
Z/nZ equals that of Z/nZ.

• v(NK/kAK) = fKZ whenever K is finite over k (as before, k is the fixed
field of G).

Such a map is called a Henselian valuation. Given the map v, we may define

vK := 1
fK
v◦NK/k : AK → Ẑ. The following proposition allows us to easily navigate

between valuations on different fields:

Proposition 3.9. If L/K is a finite extension and a ∈ AL, we have vK(NL/K(a)) =
fL/KvL(a).

Proof. We have by definition

vK(NL/K(a)) =
1

fK
v(NK/k(NL/K(a))) =

1

fK
v(NL/k(a))

=
fL
fK

· 1

fL
v(NL/k(a)) = fL/KvL(a)

which proves the desired result. □

The following definitions prove important in defining the reciprocity map:

Definition 3.10. We say u ∈ AK is a unit of AK if vK(u) = 0. We say π ∈ AK is
a uniformizer or prime if vK(π) = 1. We denote the group of units by UK .

Now consider any a ∈ AK and let v(a) = n. Let π be a uniformizer of AK and
let u = π−na so that v(u) = 0. Thus, we have a = πnu where π is a uniformizer
and u is a unit. In other words, every element of AK can be expressed as a product
of a unit and the power of a uniformizer.

4. Abstract Class Field Theory

In this section, we dive right into stating the Class Field Axiom and proving the
local reciprocity theorem assuming it. For a concrete toy model illustrating these
ideas, the reader may consult the Appendix on Kummer Theory, where one sees
how a statement similar to the Class Field Axiom arises naturally in that setting.
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Fix a profinite group G and a G-module A. A Class Field Theory is a pair of maps

(d, v) where d : G → Ẑ is a continuous surjection and v is a Henselian valuation[1,
p. 300]. The class field axiom states[1]:

Axiom 4.1. For every cyclic extension L/K,∣∣H0
T (Gal(L/K), AL)

∣∣ = [L : K] and
∣∣H−1

T (Gal(L/K), AL)
∣∣ = 1

Our goal in this section is to use this axiom to prove the reciprocity theorem.
Once we have done so, local class field theory reduces to proving the axiom for

the case when k is a local field and A = k
×
. We show the reciprocity theorem

by explicitly constructing the map. We first construct a map r′ on the Frobenius

semigroup Frob(L̃/K) and then use the surjection Frob(L̃/K) → Gal(L/K) to
define r(σ) = r′(σ̃) where σ̃ 7→ σ under the surjection. We will show that r′ is
multiplicative so that r is a homomorphism. We then proceed to prove that r is a
bijection thus proving Theorem 1.1.

Proposition 4.2. If L/K is an unramified extension where L and K are both finite
over k, then Hi

T (Gal(L/K), UL) = 1 for i = 0,−1. Moreover, H1
T (Gal(L/K), AL)

is cyclic and generated by any uniformizer L.

Proof. Let G = Gal(L/K). Suppose u ∈ UL. We want to show that H−1
T (G,UL)

is trivial, i.e. whenever NL/K(u) = 1 u = vσv−1 = vσ−1 for some v ∈ UL.

Since H−1
T (G,AL) is trivial, we already have u = aσ−1 for some σ ∈ G and a ∈

AL. But since L/K is unramified, ϕL/K generates G which implies that IG =

⟨σ − 1: σ ∈ G⟩ =
〈
ϕL/K − 1

〉
. Therefore, we have u = aϕL/K−1. Pick a uniformizer

π of AK . We claim that π is also a uniformizer of AL. To see this, we have

vK(NL/K(π)) = vK(π · πϕ · · ·πϕn−1

)

since ϕ = ϕL/K generates G and moreover π ∈ AK implies that ϕ acts trivially
on π and therefore the above product becomes nvK(π) where n = |G|. But we
have vK(NL/K(π)) = fL/KvL(π) = nvL(π) since eL/K = 1 which shows that

vL(π) = vK(π) = 1. Thus, π is a uniformizer of AL. Let v = aπ−m where m = v(a)
so that v is a unit with a = πmv. We then have aϕ−1 = (πmv)ϕ(πmv)−1 but ϕ acts
trivially on πm ∈ AK so that u = aϕ−1 = vϕ−1. This shows that H−1

T (G,UL) = 1.

Next, we show that if u ∈ UK , then u ∈ NL/KUL. Suppose that u = NL/K(a)
for some a ∈ AL. We then have vK(u) = vK(NL/K(a)) = nvL(a) since L/K is
unramified. But vK(u) = 0 which implies that vL(a) = 0 so a ∈ UL. Therefore, we
only need to show that u ∈ NL/KAL. To see this, we observe that vK : AK → Z
induces a homomorphism ṽK : AK/NL/KAL → Z/nZ (this is well defined because
whenever x = NL/K(y) for some y we have vK(x) = nvL(y) ∈ nZ). This homo-
morphism is surjective since ṽK([πK ]) = [1] if πK is a uniformizer and 1 generates
Z/nZ ∼= Z/nZ. Moreover, by the Class Field Axiom, we have

∣∣AK/NL/KAL

∣∣ = n
and since Z/nZ ∼= Z/nZ, the image has cardinality n. This implies that vK is
an isomorphism. Now, if u ∈ UK , ṽK(u) = 0 which implies that [u] = 0, i.e.
u ∈ NL/KAL and we are done. □

As a consequence, if L/K is unramified, then NL/KUL = UK .
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Definition 4.3. Let K ⊂ L. We define the reciprocity map r′ : Frob(L̃/K) →
AK/NL̃/KAL̃ to be such that r′(σ) = [NM/K(π)] where M is the fixed field of σ

and π is a uniformizer of M .

Proposition 4.4. The map r′ is well defined

Proof. We need to show that the value of NM/K(π) is independent of the choice of
π. Suppose π and π′ are both uniformizers ofM . We need to show that NM/K(π) ≡
NM/K(π′) (mod NL̃/KAL̃) or equivalently,

NM/K(π)/NM/K(π′) = NM/K(π/π′) ∈ NL̃/KAL̃

Clearly, u = π/π′ ∈ UM . We know that M̃ = L̃ so that L̃/M is unramified.
Therefore, UM = NL̃/MUL̃ so that u ∈ NL̃/MUL̃. Hence, there is some x ∈ UL̃ such

that u = NL̃/M (x) which implies NM/K(u) = NM/K(NL̃/M (x)) = NL̃/K(x) which

shows the desired result. □

Next, we focus on showing that r′ is multiplicative. Here, we deviate from
Neukirch and follow the approach used in [3]. The following two lemmas will prove
useful:

Lemma 4.5. Let σ, ϕ ∈ Frob(L̃/K) such that dK(ϕ) = 1 and let n = dK(σ). Let
M be the fixed field of σ and let a ∈ AM . Then, NM/K(a) = NL̃/K̃(ψ) where

ψ = a · aϕ · · · aϕn−1

.

Proof. Let M ′ = M ∩ K̃ so that M ′ is unramified. Therefore, fM/K = fM ′/K = n
and eM ′/K = 1 so that [M ′ : K] = n. Now, since Gal(M ′/K) is generated

by ϕM ′/K , we get that NM ′/K(x) = x · xϕM′/K · · ·xϕ
n−1

M′/K . Now, by definition,
ϕM ′/K = ϕK |M ′ . Moreover, dK(ϕ) = 1 implies ϕ|K̃ = ϕK . Thus, ϕM ′/K = ϕ|M ′

because M ′ ⊂ K̃. So, whenever x ∈ AM ′ , we have NM ′/K(x) = x · xϕ · · ·xϕn−1

.

For any a ∈ AM , we therefore have

NM/K(a) = NM ′/K(NM/M ′(a)) = NM/M ′(a) ·NM/M ′(a)ϕ · · ·NM/M ′(a)ϕ
n−1

This looks similar to the desired result except that we wantNL̃/K̃ instead ofNM/M ′ .

However,

NL̃/K̃ |AM
= NM∩L̃/M∩K̃ = NM/M ′

since M ⊂ L̃. Thus,

NM/K(a) = NL̃/K̃(a) ·NL̃/K̃(a)ϕ · · ·NL̃/K̃(a)ϕ
n−1

= NL̃/K̃(a · · · aϕ
n−1

)

which shows the desired result □

Lemma 4.6. Let M/L and L/K be finite with M/K Galois and L/K unramified.
If u ∈ UM such that NM/L(u) ∈ UK , then NM/L(u) ∈ NM/KUM .

Proof. We use the inflation restriction exact sequence. The following sequence is
exact:

0 → H0
T (G/H,M

H)
Inf−−→ H0

T (G,M)
Res−−→ H0

T (H,M)

Letting G = Gal(M/K) and H = Gal(M/L), we get the sequence

0 → H0
T (Gal(L/K), UL)

Inf−−→ H0
T (Gal(M/K), UM )

Res−−→ H0
T (Gal(M/L), UM )
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Since H0
T (G,M) =MG/NGM , the sequence then becomes

0 → UK/NL/KUL
Inf−−→ UK/NM/KUM

Res−−→ UL/NM/LUM

Now, if v = NM/L(u) ∈ UK , it defines an element [v] ∈ UK/NM/KUM . Moreover,
Res(v) = 0 since v ∈ NM/LUM . Therefore v ∈ ker(Res) = Im(Inf). But since L/K
is unramified, NL/KUL = UK , which shows that UK/NL/KUL is trivial. So, the
image of Inf is trivial, which shows that v ∈ NM/KUM and we are done. □

Proposition 4.7. The map r′ is multiplicative

Proof. Let σ1, σ2, σ3 ∈ Frob(L̃/K) such that σ3 = σ1σ2. Let Mi be their respective
fixed fields and πi ∈ Mi be uniformizers so that r′(σi) = [NMi/K(πi)] = [ρi] where
ρi = NMi/K(πi). We need to show that r′(σ3) = r′(σ1)r

′(σ2). This can be achieved
by showing that ρ3 ≡ ρ1ρ2 (mod NL̃/K(AL̃)). Equivalently, we need to show that

ρ = ρ1ρ2/ρ3 ∈ NL̃/KAL̃.

Further we observe that vK(ρ) = 0: We have

vK(NMi/K(πi)) = fMi/KvMi
(πi) = fMi/K

since πi is a uniformizer. Since Mi is the fixed field of σi, we have dK(σi) = fMi/K ,
which shows that vK(ρi) = dK(σi). Hence, vK(ρ) = dK(σ1σ2/σ3) = dK(1) = 0 so
that ρ ∈ UK .

Now, each ρi is obtained by applying a different norm map, which makes it diffi-
cult to use the multiplicativity of the norm. Thus, we transfer to a common field

as follows: Let ϕ ∈ Gal(L̃/K) such that dK(ϕ) = 1 and let di = dK(σi). Let

ψi = πiπ
ϕ
i · · ·πϕdi−1

i so that Lemma 4.5 implies that ρi = NMi/K(πi) = NL̃/K̃(ψi).

For the sake of brevity, we will write N without subscript to denote NL̃/K̃ . There-

fore, ρ = N(ψ1)N(ψ2)/N(ψ3) = N(ψ1ψ2/ψ3) = N(u) where u = ψ1ψ2/ψ3. There-
fore, it suffices to show that N(u) ∈ NL̃/K(AL̃). In particular, we will show the

stronger statement that N(u) = NL̃/KUL̃. This looks like we could apply Lemma

4.6. However, we need to set up M , L and K appropriately so that all extensions
are finite, M/K is Galois and L/K is unramified.

We know that u ∈ UL̃ since ρ = N(u) ∈ UK . Now, L̃ is the union of finite
unramified extensions of L. Therefore, there is some finite unramified extension M

of L such that u ∈ UM . Let L′ = M ∩ K̃. Thus, upon restricting the norm map
to M , we get N(u) = NM/(M∩K̃)(u) = NM/L′(u). Here, M/L′ and L′/K are both

finite with M/K Galois and L′/K unramified over K, since L′ ⊂ K̃. Moreover,

NM/L′(u) = N(u) = NM1/K(π1)NM2/K(π2)/NM3/K(π3)

which is in UK , since each component of the product lies in AK and v(N(u)) = 0.

It follows by Lemma 4.6 that N(u) = NM/L′(u) ∈ NM/KUM ⊂ NL̃/KUL̃, which

shows the desired result. □

Note that r′ also acts as a map Frob(L̃/K) → AK/NL/KAL since NL̃/KAL̃ ⊂
NL/KAL.
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We now use the map r′ to construct a map r : Gal(L/K) → AK/NL/KAK . To

do so, we use the surjection Frob(L̃/K) → Gal(L/K). Given σ ∈ Gal(L/K), let

σ̃ ∈ Frob(L̃/K) that maps to σ. We then define r(σ) = [NM/K(π)] where M is
the fixed field of σ̃ and π is a uniformizer of M . That is, r(σ) = r′(σ̃) where

r′ : Frob(L̃/K) → AK/NL/KAL. This is called the reciprocity map and is often
denoted rL/K .

Proposition 4.8. The reciprocity map r : Gal(L/K) → AK/NL/KAL is well de-
fined.

Proof. We need to show that if σ̃ and σ̃′ are two elements of Frob(L̃/K) that map

to σ, then r′(σ̃) = r′(σ̃′). Let σ̃′ = σ̃τ̃ where τ̃ ∈ Gal(L̃/K). If dK(σ̃′) < dK(σ̃),

τ̃ ∈ Frob(L̃/K). In this case, we will be done if we can prove that r′(τ̃) = 1 because
r′(σ̃′) = r′(σ̃τ̃) = r′(σ̃)r′(τ̃) = 1.

Let N be the fixed field of τ̃ and let πN be a uniformizer in AN . Further, since σ̃
and σ̃′ have the same restriction to L, τ̃ |L = 1. Thus, N contains L which implies
that AL ⊂ AN . So, r′(τ̃) = NN/K(πN ) = NL/K(NN/L(πN )) ∈ NL/KAL. Hence,
r′(τ̃) = 1 which shows the desired result.

The only case we are now left to consider is the case when dK(σ̃) = dK(σ̃′). In this

case, τ̃ ∈ ker dK = GK̃ , i.e. τ̃ |K̃ = 1. We also know that τ̃ |L = 1. Since L̃ = LK̃,
it follows that τ̃ = 1 and hence σ̃ = σ̃′ and we are done. □

Until now, we have showed that r exists and is a homomorphism because r′ is
multiplicative. In order to show that r induces an isomorphism Gal(L/K)ab →
AK/NL/KAL, we will need to simplify to specific cases and show that each case
implies the next. In particular, we will need to show that if the theorem holds for
the unramified and abelian, cyclic, totally ramified cases, then it also holds for the
abelian cyclic case. The following proposition is useful for transitioning between
these cases:

Proposition 4.9. If L/K and L′/K ′ are extensions with K ⊂ K ′ and L ⊂ L′,
then the diagrams

Gal(L′/K ′) AK′/NL′/K′AL′ Gal(L/K)ab AK/NL/KAL

Gal(L′/K ′) AK′/NL′/K′AL′ Gal(L/K ′)ab AK′/NL/K′AL

rL′/K′

NK′/K

rL/K

rL′/K′ rL/K′

both commute.

Proof. See [1, Chapter IV, Proposition 5.8 and 5.9.] □

We now move on to showing the reciprocity theorem. Recall that it states that
rL/K : Gal(L/K)ab → AK/NL/KAL is an isomorphism when L/K is a finite Galois
extension. Our approach will be as follows: We first show the result when L/K is
unramified. Combining this with the case when L/K is cyclic and totally ramified
will show the result for L/K abelian and cyclic. We then drop the cyclic assump-
tion before we finally drop the abelian assumption to complete the proof.
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We start by showing that rL/K is an isomorphism when L/K is unramified. Moving
forward, we will assume that L/K is finite, Galois.

Proposition 4.10. If L/K is an unramified extension, r is an isomorphism that
takes the frobenius automorphism ϕ = ϕL/K to a uniformizer π of K.

Proof. It will suffice to show that ϕ maps to a uniformizer of K, say π. Once this is
known, the map is obviously bijective. This is because Gal(L/K) and AK/NL/KAL

have equal order by the class field axiom and a generator ϕ of Gal(L/K) maps to
a generator π of AK/NL/KAL = H0

T (Gal(L/K), AL).

Let ϕK ∈ Gal(K̃/K) such that ϕK |L = ϕ. Since L ⊂ K̃, it follows that L̃ = K̃

so that ϕK ∈ Gal(L̃/K) with ϕK |L = ϕ. Therefore, by definition, r(ϕ) = r′(ϕK).
Moreover, the fixed field of ϕK is K itself since it is the Frobenius element. Thus,
r(ϕ) = [NK/K(π)] = [π] where π is some uniformizer of K. □

Now, we assume that L/K is abelian, cyclic and totally ramified. We prove the
theorem for this case.

Proposition 4.11. The reciprocity theorem holds when L/K is abelian, cyclic and
totally ramified

Proof. We will show that the map is injective. Bijectivity will then follow naturally
since the domain and range have equal group order. Since Gal(L/K) is cyclic, let σ
be a generator. If Gal(L/K) has order n, then we only need to show that whenever
r(σk) = 1 for 0 ≤ k < n, we have k = 0. The most natural way to show this would
be to show that n | k and this would force k = 0 if 0 ≤ k < n. We need some setup
before moving to this step. To start off, suppose that σ is a generator and k is such
that r(σk) = 1.

Recall the definition of r(σ). We choose some σ̃ ∈ Frob(L̃/K) that lifts σ. Since
L/K is totally ramified, we can choose σ̃ such that its fixed field M is totally ram-
ified over K. We will prove this later. However, the reason this choice of M is

important is as follows: Let F be a finite subextension of L̃/K that contains both

M and L and let F ′ = F ∩ K̃. Then, it is easy to see that NF/F ′ |AM
= NM/K

and also that NF/F ′ |AL
= NL/K since L is totally ramified. The former is because

M ∩F =M and M ∩F ′ =M ∩F ∩ K̃ =M ∩ K̃ which equals K since M is totally
ramified.

Moreover, F/F ′ is cyclic with degree n because it is isomorphic to Gal(L/K). To see
why, note that d(GF ′)/d(GF ) = 1 since F/F ′ is totally ramified. Therefore, the se-
quence 1 → IF ′/IF → GF ′/GF → 1 is exact, which shows that IF ′/IF ∼= GF ′/GF .
So, GF ′/GF

∼= G
F̃ ′/F̃

/GF̃ = GK̃/GL̃
∼= GK/GL.

Let πM and πL be uniformizers of M and L respectively so that they are both
uniformizers of F (since it contains both M and L). So, there is some u ∈ UF such
that πk

M = uπk
L. Now, by definition r(σk) = [NM/K(πk

M )] = [NF/F ′(πk
M )] since

πM ∈ AM which can then further be expanded as

r(σk) = [NF/F ′(uπk
L)] = [NF/F ′(u)][NF/F ′(πL)]

k
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However, πL ∈ AL implies NF/F ′(πL) = NL/K(πL) ∈ NL/KAL and therefore

[NF/F ′(πL)]
k = [1]. Hence, r(σk) = [NF/F ′(u)]. Since we are assuming r(σk) = 1,

it follows that NF/F ′(u) ∈ NL/KAL. In particular, since u is a unit, NF/F ′ ∈
NL/KUL so that NF/F ′(u) = NL/K(v) for some v ∈ UL. But if v ∈ UL, we have

NL/K(v) = NF/F ′(v). Hence, NF/F ′(u−1v) = 1.

Since F/F ′ is a finite, cyclic extension generated by the same generator σ, we
have H−1

T (Gal(F/F ′), AF ) = 1. In other words, every element of kerNF/F ′ may

be written as aτa−1 for some a ∈ AF and τ ∈ Gal(F/F ′), which is in turn a power
of σ. Therefore, every element of the kernel may be written as aσa−1 for some
a ∈ AF . Since NF/F ′(u−1v) = 1, it follows that u−1v = aσa−1 for some a ∈ AF .

So, we have πk
Lv = πk

Fu
−1v = πk

Fa
σ−1. Now, since σ̃|L = σ, we have

(πk
Lv)

σ−1 = (πk
Lv)

σ̃−1 = (πk
Fa

σ−1)σ̃−1

Since πF ∈ AF and σ̃ ∈ GF we have πσ̃
F = πF so that

(πk
Lv)

σ−1 = (aσ−1)σ̃−1 = (aσ̃−1)σ−1

Let x = πk
Lva

1−σ̃. Then, xσ = x and hence x ∈ AF ′ . Now, we have

fF/F ′vF (x) = vF ′(NF/F ′(x)) = vF ′(x · xσ · · ·xσ
n−1

) =

n−1∑
i=0

vF ′(xσ
i

)

However, xσ = x and so xσ
i

= x which shows that fF/F ′vF (x) = nvF ′(x). But
F/F ′ is totally ramified, which implies that vF (x) = nvF ′(x).

Now, vF (x) = vF (π
k
Lva

1−σ̃) = k + vF (v) + vF (a
1−σ̃). Clearly v is a unit and

a1−σ = u−1v is also a unit. Therefore, both terms cancel out and we get vF (x) = k.
Therefore, nvF ′(x) = k which shows that n | k and we are done.

We are left to show that there exists some σ̃ ∈ Gal(L̃/K) with fixed field to-

tally ramified over K. We make use of the isomorphism Gal(L̃/K̃) → Gal(L/K).
One can see this by plugging in d(GK)/d(GL) = 1 in the exact sequence 1 →
IK/IL → Gal(L/K) → d(GK)/d(GL) → 1. We have σ ∈ Gal(L/K) = Gal(L̃/K̃) ⊂
Gal(L̃/K) and also ϕL ∈ Gal(L̃/L) ⊂ Gal(L̃/K). Therefore, σ̃ = σϕL ∈ Gal(L̃/K)
and we clearly have (σϕL)|L = σL = σ. Therefore, σ̃ lifts σ. We will show that the
fixed field M of σ̃ satisfies the desired property. Note that dK(σ̃) = dK(σϕL) =
dK(ϕL) since dK(σ) = 0 because σ ∈ GK̃ = IK . But dK(ϕL) = fL/K = 1. If M is
the fixed field of σ̃, then fM/K = dK(σ̃) = 1. Therefore, M/K is unramified and
we are done. □

Next, we drop the totally ramified assumption and prove the theorem when L/K
is abelian and cyclic.

Proposition 4.12. The reciprocity theorem holds when L/K is abelian and cyclic.

Proof. As before, we are done if L/K is unramified. Otherwise, let M be the
maximal unramified subextension of K. We then have the following commutative
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diagram:

Gal(L/M) AM/NL/MAL

Gal(L/K) AK/NL/KAL

rL/M

NM/K

rL/K

We know rL/M is an isomorphism since M is unramified. Now, by the class field

axiom, since L/K is finite and cyclic,
∣∣AK/NL/KAL

∣∣ = [L : K] and similarly∣∣AM/NL/MAL

∣∣ = [L :M ] < [L : K]. Therefore, NM/K must be injective and since

the diagram commutes rL/K must be injective. The fact that
∣∣(AK/NL/KAL)

∣∣ =
|Gal(L/K)| then shows that rL/K is a bijection. □

Next, we drop the cyclic assumption

Proposition 4.13. The reciprocity theorem holds when L/K is abelian.

Proof. Suppose M is a cyclic subextension of L. Since the map rM/K is an isomor-
phism, the commutative diagram shows that ker rL/K is a subset of the kernel of
the map Gal(L/K) → Gal(M/K). This holds for every cyclic subextension M , i.e.
ker rL/K lies in the intersection of all cyclic normal subgroups of Gal(L/K) (the
kernel of the map from G→ H corresponds to the coset of 0 which is H itself). If
L/K is abelian, the trivial group is cyclic and normal which shows that ker rL/K is
trivial. We are left to show surjectivity.

To show surjectivity, we use induction on n = [L : K]. The base case is obvi-
ous. If n is prime, then L/K is cyclic and we are done. Otherwise, there exists
some cyclic subextension M ⊂ L with degree less than n. Hence, by our induc-
tive hypothesis, rL/M is an isomorphism as is rM/K . Since rL/M is injective so is
NM/K : AM/NL/MAL → Ak/NL/KAL. We therefore obtain the following commu-
tative diagram:

1 Gal(L/M) Gal(L/K) Gal(M/K) 1

AM/NL/MAL AK/NL/KAL AK/NM/KAM 1

rL/M rL/K rM/K

where the rows are exact. Since rL/M and rM/K are known to be isomorphisms,
we may redraw the diagram as

Gal(L/K)

X Y

AK/NL/KAL

rL/K

s1i1

i2 s2

where X is isomorphic to Gal(L/M) and Y isomorphic to Gal(M/K). Suppose
x ∈ AK/NL/KAL. We aim to show that x ∈ Im rL/K . Let y = s2(x) and let
z ∈ Gal(L/K) such that s1(z) = y. Let x′ = rL/K(z) ∈ Im rL/K . Then clearly

s2(x) = s2(x
′) and therefore s2(x

′x−1) = 1, i.e x′x−1 ∈ ker s2. Since the bottom
sequence is exact, it follows that x′x−1 ∈ Im i2 which implies that x′x−1 ∈ Im rL/K
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because the left triangle commutes. Thus x′ ∈ Im rL/K then implies that x ∈
Im rL/K . This shows that rL/K is surjective and completes the proof. □

Proposition 4.14. If L/K is finite and Galois, the reciprocity map rL/K : Gal(L/K) →
AK/NL/KAL induces an injective map rL/K : Gal(L/K)ab → AK/NL/KAL.

Proof. Let G = Gal(L/K) and let H = AK/NL/KAL. Since rL/K is a homomor-
phism, the commutator subgroup [G,G] gets mapped to [H,H]. However, since H
is abelian, its commutator subgroup is trivial, which implies that [G,G] ⊂ ker rL/K .

This shows that the induced map rL/K : Gal(L/K)ab → AK/NL/KAL is well de-
fined. To show injectivity, let M be the maximal abelian subextension of L/K.
Then, Gal(M/K) ∼= Gal(L/K)ab. We use the following commutative diagram:

Gal(L/K)ab
rL/K //

��

AK/NL/KAL

��
Gal(M/K)

rM/K// AK/NM/KAM

Since Gal(L/K)ab ∼= Gal(M/K) and Gal(M/K) ∼= AK/NM/KAM (since M is
abelian), it follows that rL/K must be injective. □

Finally, we show that rL/K : Gal(L/K) → AK/NL/KAL is surjective to complete
the proof of the theorem. Note that showing this will automatically show that the
induced map Gal(L/K)ab → AK/NL/KAL is also surjective. We restate Theorem
1.1 for reference:

Theorem 4.15. Assume the class field axiom. If L/K is a finite Galois extension,
there is an isomorphism rL/K : Gal(L/K)ab → AK/NL/KAL.

Proof. First, we assume Gal(L/K) is solvable and use induction on n = [L : K].
Once again, the base case is obvious. Now, since G = Gal(L/K) is solvable, the
commutator subgroup H = [G,G] is a strict subset of G. Therefore, M = F(H)∩L
cannot be K, which implies that either M = L or M is a proper intermediate
extension in which case we have [L :M ] < [L : K] which shows that rL/M is surjec-
tive and hence an isomorphism. This leads to the commutative diagram resembling
that in proposition 4.14 and by following the same steps, we may prove that rL/K

is surjective. If M = L, L/K is abelian and we are done. Thus, the theorem is true
in the solvable case.

Next, the general case. We use induction again with the result being obvious
for the base case. Suppose it holds whenever [L : K] < n for some n. We aim to
show that rL/K is surjective for [L : K] = n. We do so by showing that for every

prime p |
∣∣AK/NL/KAL

∣∣, Sp is contained in the image of rL/K where Sp denotes
the p-Sylow subgroup and p is a prime. Fix a prime p and let M be the fixed
field of the p-Sylow subgroup of Gal(L/K). Now, since Sp is a proper subgroup
of Gal(L/K), which implies that M properly contains K and hence [L : M ] < n.
Therefore rL/M is surjective. Therefore, if we show that Sp is contained in the
image of NM/K we will be done since the diagram as in Proposition 4.9 commutes.
To this end, let i : AK/NL/KAL → AM/NL/MAL be the canonical injection so that

NM/K(i(x)) = xσ1 · · ·xσ[M:K] = x[M :K] since i(x) ∈ AK is fixed by σi. Now, by
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definition of the p-Sylow subgroup, [M : K] is coprime with p. Thus, NM/K ◦ i is a
surjection from Sp to itself. This shows that Sp ⊂ ImNM/K and we are done. □

This completes the proof of Theorem 1.1 assuming the Class Field Axiom.

5. Local Class Field Theory

Now that we have completed the proof of Theorem 1.1 assuming the Class Field
Axiom, we verify the axiom in the local case. We begin by reviewing local fields.
See [8, Chapter 7] for a full treatment.

Definition 5.1. A discrete valuation on a field K is a map v : K → Z ∪ {∞}
satisfying v(xy) = v(x) + v(y), v(x) = ∞ iff x = 0 and v(x+ y) ≥ min{v(x), v(y)}.

We say thatK is a discrete valuation field if it has a non-trivial discrete valuation.
We define ring OK := {x ∈ K : v(x) ≥ 0}. This ring is a discrete valuation ring,
which means it is a principal ideal domain that has exactly one nonzero prime
ideal. We denote this ideal by pK . We define the residue class field of K as
κ = OK/pL. The discrete valuation induces a metric on K via an absolute value
given by |x|v = q−v(x) where q > 1 is some fixed real number.

Definition 5.2. A local field is a discrete valuation field that is complete with
respect to the metric induced by its valuation and has finite residue class field.

Example 5.3. Fix a prime p and let vp be the function which takes n to the highest
power of p in the prime factorization of n when n is an integer. We can extend
this definition to Q by letting vp(1/n) = −vp(n). Thus, vp defines a valuation on

Q called the p-adic valuation. This induces a metric given by ∥x∥p = p−vp(x). The
p-adic number field Qp is then defined as the completion of Q with respect to this
metric. We can then extend the definition of vp to Qp so that we get a metric on
Qp given by the same formula. It turns out that Qp is complete with respect to this
metric and is therefore a local field. The p-adic valuation also has the property that
vp(x+ y) = min{vp(x), vp(y)} when x ̸= y. This is called the ultrametric property.

In fact, every local field is either p-adic for some prime p or the field Fq((T )) of
formal Laurent series in T over the finite field Fq. Moving forward, we will assume
that the field we are working with is Qp for some prime p, though everything done
can be easily generalized to all local fields.

The main goal of this section is to prove the reciprocity theorem for local fields. To
this end, we first set up the local Class Field Theory by fixing a profinite group G,
fixing a G-module A and defining maps d and a Henselian valuation v.

Let k be a local field. Fix G = Gal(k/k) where k denotes the separable closure of k.

Let A be the G-module k×. If k is a local field, then Gal(κ/κ) is isomorphic to Ẑ so

that there is a surjection d : G→ Ẑ (See [1] Ch II Proposition 9.9). Next, since v is
a homomorphism on k×, v(k×) = mZ for some m. So, we can define vk : k

× → Z
to take x 7→ v(x)/m so that vk is surjective onto Z. If Z = Im vk we clearly have
Z ⊂ Z and Z/nZ ∼= Z/nZ for all n. Moreover, by [1] Ch II Proposition 4.8, vk
satisfies vk(NK/kk

×) = fKZ for any K is finite over K. Thus, vk is a Henselian
valuation. We may therefore apply the results of Abstract Class Field Theory. We
now prove the class field axiom using the approach in [4].
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Theorem 5.4. If k = Qp is a local field with v, d and A as above, then for any

finite cyclic extension L/K, we have
∣∣H−1

T (G,L×)
∣∣ = 1 and

∣∣H0
T (G,L

×)
∣∣ = [L : K],

where G = Gal(L/K) (not to be confused with Gal(k/k)).

Proof. The fact that H−1
T (G,L×) = 1 follows from Hilbert’s Theorem 90 (see ap-

pendix) along with the fact that H1
T = H−1

T for cyclic groups. We are left to
show that

∣∣H0
T (G,L

×)
∣∣ = [L : K]. The method we will use to show this will be

to show that the Herbrand quotient h(L×) = [L : K], which along with the fact
that H−1

T (G,L×) yields the desired result. We further simplify by noting that the

sequence 1 → UL → L× vL−−→ Z → 0 is exact so that h(L×) = h(UL)h(Z). Since we
are considering Z as a G-module with trivial action, H0

T (G,Z) = Z/[L : K]Z and

H−1
T (G,Z) = 0 since ag − a = 0 for all g ∈ G, a ∈ Z. Thus, h(Z) = [L : K] and it

now suffices to show that h(UL) = 1. We will further reduce the problem by finding
W ⊂ UL with finite index such that h(W ) = 1. Then, h(UL) = h(UL/W )h(W ) =
h(W ) = 1 by Proposition 2.7. We find W as follows.

First, consider OK as an additive G-module. By the normal basis theorem, there
is a basis of L as a vector space over K of the form {ασ : σ ∈ G} where α ∈ OK

(we can scale α so that it lies in OK). We then let V =
∑

σ∈G α
σOK ⊂ OL. Note

that we can choose α with valuation as large as we want by simply multiplying
by the required power of p. Since p ∈ K, σ fixes p and the sum is unchanged.
Moreover, V ∼= IndG1 OK via the isomorphism that takes f : G→ OK to

∑
aσf(σ).

This tells us by Shapiro’s Lemma and its extension to H0
T (Proposition 2.6) that

Hi
T (G,V ) = 0 so that h(V ) = 0, where V is viewed as an additive G-module.

However, we need W ⊂ UL to be multiplicative. We therefore try to convert V to
a multiplicative module via an isomorphism that preserves Hi

T . This will give us
our desired module W .

The most natural way to convert addition to multiplication is using exponentia-
tion exp(x) =

∑
xk/k!. This is a formal power series which has radius of con-

vergence R = p−1/(p−1), i.e. the series converges whenever vp(x) > 1/(p − 1).
Since we can choose α to have arbitrarily large valuation, we can choose it so that
vp(α) > 1/(p − 1), which will ensure that V ⊂ BR(0) (this denotes the ball of
radius R centered at 0). Now, let W = exp(V ). It is easy to see that exp: V →W
is injective since when x ̸= 0 we have vp(x) < ∞ which implies that vp(x

k) is
a strictly decreasing sequence and hence by the ultrametric property, we have
vp(exp(x) − 1) = vp(x) < ∞. So, if x ̸= 0, exp(x) ̸= 1. Since exp takes addi-
tion to multiplication, W is now a multiplicative G-module with h(W ) = 1 since it
is isomorphic to V . Moreover, vp(exp(x)− 1) = vp(x) > 1/(p− 1) > 0 implies that
p | exp(x)− 1, i.e. exp(x) = 1 + pβ ⊂ OL where β ∈ OL. Since 1 is a unit in k, it
therefore follows that exp(x) is also a unit so that W ⊂ UL.

We are still left to show that UL/W is finite. This can be seen with some topol-
ogy. First, note that V is open as follows. Let r = vp(α) and let x ∈ L with
vp(x) = R > r. We then have x = pRu where u is a unit. Since u is a unit, u ∈ V
and since R > r, pR ∈ V and hence x ∈ V . Therefore, Bp−R(0) ⊂ V . We can do
this at any point and not just 0 so V is open. This shows that W is open since
exp is a homeomorphism (its inverse is the logarithm which is again continuous).
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Moreover, UL is compact since it a closed subset of a compact set OL. An open
subgroup of a compact group has finite index. Therefore, W has finite index in UL.
This shows the desired result. □

Appendix: Kummer Theory

We turn to Kummer Theory, which serves as a model case for the abstract ap-
proach to Theorem 1.1. Our aim is to prove Theorem 5.5. We give two proofs:
first via cohomology, then via an abstract reformulation that isolates the minimal
assumptions needed. Following [1, IV.3], we call this the Kummer Theory Axiom.
Verifying this axiom recovers Theorem 5.5, analogous to how Neukirch derives the
main reciprocity law. This prepares the ground for abstract class field theory. We
begin by explaining the theorem of interest.

In most standard treatments, the main goal of Kummer Theory is to prove that
there is a correspondence between cyclic Galois extensions of a field K and cyclic
subgroups of the multiplicative group K×/(K×)n where (K×)n denotes the image
power map that takes x 7→ xn. The set of nth roots of unity, denoted µn, is the ker-
nel of this map. Note that n is any integer that is not divisible by the characteristic
of K. This is proved as a corollary of the following theorem

Theorem 5.5. Let L/K be a finite cyclic Galois extension of fields where K is a
field that contains the nth roots of unity µn where n is some integer not divisible
by the characteristic of K. Then, the group (K× ∩ (L×)n)/(K×)n is isomorphic to
Hom(G,µn), the set of homomorphisms from G to µn, where G = Gal(L/K).

By taking the projective limit, the above theorem can be extended to infinite

field extensions L/K. Then, letting L = K, we see that K× ∩ (K
×
)n = K×. This

is because the power map is surjective by virtue of K being algebraically closed.
Hence, K×/(K×)n ∼= Hom(G,µn). With a little more work this can be shown to
imply the correspondence between cyclic extensions and cyclic subgroups. The rest
of the section will focus on proving Theorem 5.5.

We begin with the cohomological approach by viewing L× and K× as multiplica-
tive, right G-modules. The following lemma is by Emmy Noether:

Theorem 5.6 (Hilbert’s Theorem 90). If L/K is a finite Galois extension, then
H1(Gal(L/K), L×) is trivial.

The proof relies on the following lemma

Lemma 5.7. View L as a vector space over K. Consider the space V of all K-
linear maps from L to itself. The space of K-linear maps on L is a vector space
over L. The K-fixing automorphisms on L are linearly independent over L in V .

Proof. Let σ1, . . . , σn denote the K-fixing automorphisms over L. Suppose that
they are not linearly independent. Then, there exists a smallest natural number
m such that a1σ1 + · · ·+ amσm = 0 where ai are all nonzero. Then, suppose that
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x0 ∈ L such that σ1(x0) ̸= σ2(x0). Let bi = (σ1(x0)− σi(x0))ai so that∑
biσi(x) =

m∑
i=2

(σ1(x0)− σi(x0))aiσi(x) =

m∑
i=1

aiσ1(x0)σi(x0)−
m∑
i=1

aiσi(x0)σi(x)

= 0−
m∑
i=1

aiσi(x0x) = 0

for any x ∈ L, since
∑
aiσi(x) = 0 for every x ∈ L. However, this gives us only

m−1 distinct non-zero coefficients since b1 = 0, contradicting the minimality of m.
Thus, σi must be linearly independent. □

Proof of Theorem 5.6. Upon explicitly computing H1(Gal(L/K), L×), we see that
this is equal to Z/B where Z the set of maps f : G → M satisfying f(gh) =
f(h)gf(g) and B is the set of maps of the form f(g) = mgm−1. Let f ∈ Z. We
know that G = Gal(L/K) is the set of automorphisms on L fixing K and therefore
G as a set of vectors in V is linearly independent. Thus there exists some x ∈ L×

such that

t =
∑
σ∈G

f(σ) · σ(x) =
∑
σ∈G

f(σ)xσ ̸= 0

If τ ∈ G,

τ(t) =
∑
σ∈G

τ(f(σ))τ(σ(x)) =
∑
σ∈G

f(σ)τxστ

Since f ∈ ker d1, f(σ)τ = f(τ)−1f(στ) so that

τ(t) =
∑
σ∈G

f(τ)−1f(στ)xστ = f(τ)−1
∑
σ∈G

f(στ)xστ = f(τ)−1t

Therefore, we get f(τ) = tτ(t)−1 = (t−1tτ )−1 and hence f ∈ B, which shows the
desired result. □

Proof of Theorem 5.5. We first start with the short exact sequence

1 → µn → L× Pn−−→ (L×)n → 1

where Pn denotes the power map. Applying group cohomology to this short exact
sequence, we get a long exact sequence

1 → H0(G,µn) → H0(G,L×) → H0(G, (L×)n) → H1(G,µn) → H1(G,L×) → · · ·

Here, G = Gal(L/K). However, by Hilbert’s Theorem 90, H1(G,L×) = 1 so that
the sequence terminates at H1(G,L×). We now compute the rest of the terms. We
have H0(G,M) = MG and µn ⊂ K so that it is fixed by G. Hence, µG

n = µn.
Similarly, H0(G,L×) = (L×)G which can be written as LG \ 0 = K×. Similarly,
H0(G, (L×)n) = K× ∩ (L×)n. We are now left to compute H1(G,µn).

Write H1(G,µn) = Z/B. Since µn is fixed by G, B is trivial. Moreover if f ∈ Z,
f(σ) is fixed by G so that f(στ) = f(σ)f(τ)σ = f(σ)f(τ) which shows that f is
a homomorphism. Hence, H1(G,µn) ∼= Hom(G,µn). We therefore get the exact
sequence

1 → µn → K× Pn−−→ K× ∩ (L×)n → Hom(G,µn) → 1

which shows that Hom(G,µn) ∼= (K× ∩ (L×)n)/(K×)n and we are done. □
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To prove the result abstractly, we use the formulation developed in Section 3.
We fix a profinite group G and a continuous G-module A, which in the concrete
case gives rise to L× and K×.

In addition, the two most important facts in our proof of Theorem 1.1 were µn ⊂ K
and H1(G,L×) = 1. Therefore, our abstract formulation must encompass these
facts. To this end, fix a surjective homomorphism P : A → A with finite cyclic
kernel µP and fix some field K so that µP ⊂ AK . This corresponds to the power
map that takes a to an. The axiom is as follows:

Axiom 5.8. For all finite cyclic extensions L/K, H1(Gal(L/K), AL) is trivial.
1

Now, to prove Theorem 5.5, we fix a field k and let G = Gal(k/k). We choose

A = k
×
. Fix some integer n and let µP : a 7→ an. Choose a field K ⊃ k that con-

tains µP . For any finite cyclic extension L of K we then have H1(Gal(L/K), AL) =
H1(Gal(L/K), L×) = 1. This gives us everything we need to continue the proof
the same way as before. In essence, rather than directly using Hilbert’s Theorem
90, we are given the same result as an axiom. For any system in which this axiom
is true, Theorem 5.5 holds.

The latter approach illustrates how Neukirch proved Theorem 1.1. If we were
to do it from scratch, we would: first set up an abstract formulation and assume
the Kummer Theory Axiom. Then, prove Theorem 5.5 assuming this and finally
prove the Kummer Theory Axiom itself. The last step is the proof of Theorem 5.6
and the previous step is exactly the same as our concrete proof of Theorem 5.5.
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