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Abstract. We provide an introduction to simplicial localization that requires

as a prerequisite only basic knowledge of category theory. We begin with an

introduction to the notion of (∞, 1)-categories by describing quasicategories
and simplicial categories, the model structures on those categories and the

Quillen equivalence between them. Then we examine Dwyer and Kan’s sim-

plicial localization functor from relative categories to simplicial categories and
we give some conditions for functors on relative categories to lift to equiva-

lences of simplicial categories. We finish by giving some examples of simplicial

localization.
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1. Introduction

Roughly an (∞, 1)-category (or ∞-category for short) is a category with ob-
jects, morphisms between objects, 2-morphisms between morphisms, 3-morphisms
between 2-morphisms and so on ad infinitum. Additionally for all n > 1, the n-
morphisms are invertible. A motivating example is the ∞-category of topological
spaces, with 1-morphisms being maps between spaces, 2-morphisms homotopies of
maps, 3-morphisms homotopies of homotopies and so on. The 2-morphisms and
above are invertible because homotopies can be reversed. It is clear that an ∞-
category naturally encodes the data of homotopies. If we strengthen the definition
so that the 1-morphisms are also invertible one obtains an ∞-groupoid. To any
topological space one can associate its ‘fundamental ∞-groupoid’, a construction
which extends the idea of the fundamental groupoid or 2-groupoid of a topological
space in the canonical way. Grothendieck’s homotopy hypothesis [AG] roughly con-
jectures that there is an equivalence between homotopy types of topological spaces
and ∞-groupoids which is induced by the fundamental ∞-groupoid construction.
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The hypothesis is true for some definitions of ∞-groupoids but remains unproven
for others.

A natural question to ask is when a pair of ∞-categories is equivalent. One
tool for this task is given by Quillen’s [Q67] model categories. A model category
is a category with distinguished classes of morphisms, most importantly a class of
‘weak equivalences’, which together satisfy certain properties that allow one to do
homotopy theory. By defining a model category of ∞-categories, then a pair of ∞-
categories is equivalent if they are weakly equivalent. However, model categories
come with the limitation that their weak equivalences are not generally isomor-
phisms. One can resolve this by forming the homotopy category (or localization)
which is a category in which the weak equivalences are isomorphisms. But the local-
ization is created by quotienting maps under an equivalence relation, in particular
doing this ‘flattens’ the higher homotopical data contained in the model category.
Instead one can form the simplicial localization, an ∞-category which contains the
data of the homotopy category while preserving the higher homotopical data of the
model category. The purpose of this paper is to define the simplicial localization
and discuss its properties and applications. We pay particular attention to the
behavior of functors under simplicial localization.

There exist at least four distinct definitions or ‘models’ of ∞-categories. In sec-
tion 2 we will define two of these models: quasicategories and simplicial categories.

In section 3 we will define relative categories, localizations, model categories and
Quillen equivalences. Then in section 4 we will discuss model structures that can be
defined on the category of quasicategories and the category of simplicial categories.
We will introduce the homotopy coherent nerve which gives a Quillen equivalence
of two of these model structures, thus establishing quasicategories and simplicial
categories as equivalent models of ∞-categories.

In section 5 we will introduce Dwyer and Kan’s [DK1] simplicial localization
functor which produces a simplicial category from a relative category. We will show
that the simplicial localization of a model category will contain the information of
its homotopy category without sacrificing higher data.

In section 6 we will examine the simplicial localization on functors. We will
introduce Dwyer and Kan’s [DK2] hammock localization functor which is homotopy
equivalent to the simplicial localization. Then we will use the hammock localization
to prove that adjoint functors of relative categories whose unit and counit are weak
equivalences lift to weak equivalences of simplicial categories– a fact which was
stated but not proven in [DK2].

In section 7 we discuss some results which apply the simplicial localization;
notably we precisely state the homotopy hypothesis in the case of Kan complexes
and we discuss the model structure on relative categories.

2. Quasicategories and simplicial categories

Quasicategories are the easiest model of∞-categories to define and benefit having
a predominantly combinatorial definition. They were popularized by Joyal [J1],
[J2] and his work along with the extensive writing of Lurie [KDN], [HA], [HTT] has
greatly expanded the theory.

Definition 2.1 (Simplicial indexing category). The simplicial indexing category,
denoted ∆, is the full subcategory of Cat whose objects are the finite totally ordered
sets [n] := {0, 1, ..., n} for n ∈ Z≥0.
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The morphisms in the above category are functors F : [n]→ [m]. The category
[n] has a morphism f : n1 → n2 iff n1 ≤ n2. Thus, since the image of f is a
morphism F (n1) → F (n2) we must have F (n1) ≤ F (n2). A functor F : [n] → [m]
therefore induces a unique order preserving map [n]→ [m] and it is not hard to see
that the converse is true.

Definition 2.2 (Simplicial set). A simplicial set is a functor ∆op → Set. Accord-

ingly the category of simplicial sets, sSet, is the functor category Set∆
op

. For a
simplicial set X, the set Xn := X([n]) is called the set of n-cells.

Definition 2.3 (Face and degeneracy maps). We consider the order preserving
maps δni : [n−1]→ [n] which ‘skip’ i and σn

i : [n+1]→ [n] which ‘double’ i. These
maps and their images in a simplicial set, denoted dni and sni , are called the face
and degeneracy maps respectively.

Proposition 2.4. Any map in the simplicial indexing category can be written as the
composition of face and degeneracy maps. Thus a simplicial set X can be described
uniquely in terms of its n-cells and its face and degeneracy maps.

Proof. It suffices to show that any order preserving map [n]→ [m] can be written
as the composition of δs and σs. This can be shown explicitly via induction on
n. □

Definition 2.5 (Degenerate cell). We say that an n-cell in a simplicial set is
degenerate if it is the image of a degeneracy map.

One useful characterizations is as follows: the degenerate 1-cells are the identity
maps and the degenerate higher cell are those which contain an identity map as a
1-cell (i.e. as the image of some map [0]→ [n]).

Example 2.6 (Constant simplicial set). Fix a set S, then define a simplicial set
where the set of n-cells in each dimension is S and every map is the constant map
idS . This is called the consant simplicial set on S.

Example 2.7 (Nerve of a category). Given a category C define a simplicial set as
follows:

(1) The n-cells are chains of n morphisms in C, i.e. diagrams of the form

C0 C1 · · · Cn−1 Cn.

Note that this implies the zero-cells are the objects of C;
(2) The face maps in dimension n > 0 give the n − 1 fold chain obtained

from composing at the ith vertex (or simply omitting that vertex and the
respective map when i = 0, n);

(3) The degeneracy maps give the n+1 fold chain obtained from repeating the
ith vertex and adding an identity map between the appropriate vertices.

This simplicial set is called the nerve of the category C and it is denoted N(C).

Definition 2.8 (Standard simplex). The standard n-simplex, denoted by ∆n, is
given by the corepresentable functor [m] 7→ Hom([m], [n]).

The standard simplex in dimension n can be thought of as the prototypical ex-
ample of an n-cell. It has exactly one non-degenerate n-cell and each m-cell is the
image of that n-cell under exactly one of the maps [m] → [n]. Indeed the n-cells
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of a simplicial set X are in bijective correspondance with maps ∆n → X by the
Yoneda lemma.

When working with simplicial sets it is often helpful to draw diagrams in order
to understand what an n-cell/standard simplex ‘looks’ like. One can imagine a
zero-cell as a vertex. Then a 1-cell contains the information of an ordered pair of
vertices and a single relation between them. One can draw this like a morphism:

0 1.α

Of course there are more cells, but these are the only nondegenerate ones. In turn a
2-cell contains the information three vertices and three 1-cells being related follows:

1

0 2.

σ

The general procedure to produce an n-cell is to label vertices according to the maps
[0]→ [n] (evidently an n-cell will have n+1 vertices). The 1-cells can be produced
by observing which 0-cells are contained under their face maps. Subsequently, the
2-cells can produced by observing which 1-cells they contain and so on.

Definition 2.9 (Subcomplex). Given a simplicial set X we define a subcomplex
S to be a simplicial set such that Sn ⊆ Xn and the restrictions of the face and
degeneracy maps in X to S coincide with those maps in S.

Definition 2.10 (Horn). For i < n, the ith horn in dimension n, denoted Λn
i , is

the largest subcomplex of ∆n which does not contain dni (id[n]). Explicitly,

(Λn
i )m = {α ∈ Hom∆([m], [n]) | [n] ̸⊆ α([m]) ∪ {i}}.

We say that a horn is inner if 0 < i < n.

Definition 2.11 (Quasicategory). A simplicial set S is called a quasicategory if
it has inner horn extensions, i.e. for any inner horn, there is a map extending the
diagram below

Λn
i S

∆n

∃

In dimension 2, the horns are as follows:

Λ2
0 :

1

0 2

Λ2
1 :

1

0 2

Λ2
2 :

1

0 2.

Since only the center horn is inner, the above pictures should suggest that inner
horn extension is something like composition. This is almost the case, rather inner
horn extension gives non-unique composites.
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Theorem 2.12 ([KDN], 1.3.4.1). A simplicial set has unique inner horn extensions
iff it is isomorphic the nerve of a category.

Corollary 2.13. The nerve of a category is a quasicategory.

Definition 2.14 (Kan complex). A Kan complex is a simplicial set with all horn
extensions.

Kan complexes are often called ∞-groupoids because their 1-morphisms are in-
vertible up to homotopy. However, the terminology ∞-groupoid often refers to one
of many different and nonequivalent definitions which are designed to represent an
∞-category where all the n-morphisms are invertible for n > 0.

Theorem 2.15 ([KDN], 1.3.5.2). A category C is a groupoid iff its nerve is a Kan
complex.

Simplicial categories (also called simplicially enriched categories) due to Quillen
[Q67] are another important model of ∞-categories. They come into play as they
are often the most natural model to lift to from ordinary categories (the simplicial
localization lands in simplicial categories for example).

Definition 2.16 (Simplicial category). A simplicial category C has the following
data:

(1) A collection of objects ob(C);
(2) For each pair of objects X,Y ∈ ob(C) a simplicial set HomC(X,Y ) or just

Hom(X,Y ) when C is obvious;
(3) For each triple of objects X,Y, Z ∈ ob(C) a composition map of simplicial

sets Hom(Y, Z)×Hom(X,Y )→ Hom(X,Z);
(4) For each simplicial set Hom(X,X) a 0-cell, idX ,

such that the following diagrams commute:

(i) Associativity:

Hom(Z,W )×Hom(Y,Z)×Hom(X,Y )

Hom(Z,W )×Hom(X,Z) Hom(Y,W )×Hom(X,Y );

Hom(X,W )

(ii) Identity:

Hom(X,Y )× {idX} Hom(X,Y )×Hom(X,X)

Hom(X,Y ).

The diagram for post-composing by the identity should also commute.

Simplicial categories and simplicial sets are ‘related,’ but not quite equivalent
concepts. In section 4, this relationship will be made explicit.
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Example 2.17 (Constant simplicial category). Given a category C, it can ex-
pressed as the simplicial category with the same objects and whose hom objects
are the constant simplicial sets given by the hom sets of C.

Definition 2.18 (Locally Kan). A simplicial category is said to be locally Kan if
every hom object is a Kan complex.

Just as simplicial categories are related to simplicial sets, the constant simplicial
category is related to the nerve and locally Kan simplicial categories are related to
quasicategories.

Definition 2.19 (Simplicial functor). A simplicial functor between simplicial cat-
egories contains the following information:

(1) A function ob(C)→ ob(D);
(2) For everyX,Y ∈ C a map of simplicial sets Hom(X,Y )→ Hom(F (X), F (Y )).

Such that the following conditions are satisfied:

(i) Identity: For X ∈ C the map Hom(X,X) → Hom(F (X), F (X)) takes
idX 7→ idF (X);

(ii) Composition: For every triple X,Y, Z ∈ C the following square commutes:

Hom(Y,Z)×Hom(X,Y ) Hom(X,Z)

Hom(F (Y ), F (Z))×Hom(F (X), F (Y )) Hom(F (X), F (Z)).

The category of simplicial categories, with simplicial categories as objects and
simplicial functors as morphisms, is denoted sSet-Cat.

3. Localizations and model categories

There are many scenarios in which one encounters what is called a ‘weak equiv-
alence’: a map which preserves important structure of objects but which fails to
be an isomorphism. A weak homotopy equivalence between topological spaces is
a good example of such an equivalence. If one wishes for their weak equivalences
to be isomorphisms, they can formally invert the weak equivalences in their cat-
egory to form a new category called the localization. However, one might desire
for all the morphisms in the localization to correspond to honest maps on objects.
Additionally, such a procedure can introduce some issues with size.

Model categories were developed by Quillen [Q67] to provide a categorical frame-
work in which to do homotopy theory. We will apply this framework to∞-categories
in section 5. Model categories also resolve some of the issues with taking local-
izations via a construction called the homotopy category (akin to the homotopy
category of topological spaces) which is equivalent to the localization but more well
behaved.

Definition 3.1 (Relative category; [BK1], 3.1). A relative category is a pair (C,W )
such thatW is a subcategory containing all the objects of C. The class of morphisms
in W is called the ‘class of weak equivalences’. A functor of relative categories is a
functor which takes weak equivalences to weak equivalences.
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Definition 3.2 (Localization). Given a relative category, we define a localization
to be a category C[W−1] and a functor ι : C → C[W−1] satisfying the following:

(i) For every w ∈W the morphism ι(w) is an isomorphism;

(ii) For any category A, − ◦ ι : AC[W−1] → AC is fully faithful, and essentially
surjective on functors satisfying (i).

Theorem 3.3. If a localization exists it is unique up to equivalence.

Proof. Suppose C[W−1], C[W−1]′ are localizations of (C,W ). Then we have func-
tors ι : C → C[W−1] and ι′ : C → C[W−1]′ sending w ∈ W to isomorphisms. By
(ii) there is a functor P : C[W−1]→ C[W−1]′ such that P ◦ι ≃ ι′ and dually a func-
tor Q : C[W−1]→ C[W−1]′ such that Q◦ ι′ ≃ F . So we have P ◦ ι ≃ P ◦Q◦ ι′ ≃ ι′.
Since −◦ ι′ is fully faithful we have P ◦Q ≃ 1. Dually Q◦P ≃ 1 so we are done. □

Construction 3.4. Given a relative category there is a general procedure to pro-
duce its localization. One takes the set of morphism in C and W op and considers
the free category generated by these morphism. That is the category whose ob-
jects are the objects of C and whose morphisms are composable words of the above
morphisms. Now on this category we can quotient each homset by the equivalence
relation generated by, i.e. given by zig-zags and compositions of, the following
relations:

(1) For f : X → Y we have f ◦ idX ∼ f ∼ idY ◦ f ;
(2) For f : X → Y and g ∈ Y → Z in C such that g ◦ f = h we have g ◦ f ∼ h;
(3) For w : X → Y in W we have w ◦ wop ∼ idY and wop ◦ w ∼ idX ;
(4) Any of the above relations precomposed or postcomposed (or both) by some

fixed morphism on both sides.

This construction gives a category and an obvious functor ι from C into this cat-
egory. We will show that this pair gives the localization of C with respect to W
and moving forward we will use the notation C[W−1] to refer to this category
specifically.

Remark 3.5. Depending on your definition of a category, the above construction
may fail to be a category as it is not always locally small ([HK], 4.15). We will
disregard any size issues with regard to localization and later simplicial localization,
however, they are given some treatment in [DK3].

Theorem 3.6. The above construction is a localization.

Proof. Note that the obvious functor ι : C → C[W−1] is faithful and bijective on
objects. Further it is evident that this functor satisfies (i).

Now consider the functor − ◦ ι. Suppose we have functors P,Q : C[W−1] → A
and a natural transformation η : P → Q indexed by objects of C[W−1]. Then we
have a natural transformation η ◦ ι : P ◦ ι→ Q◦ ι indexed by objects of C and given
by (η ◦ ι)X := ηι(X). So η ◦ ι = η′ ◦ ι implies ηι(X) = η′ι(X) and ι being surjective

on objects implies η = η′. This gives that − ◦ ι is faithful. Now suppose we have a
natural transformation µ : P ◦ ι → Q ◦ ι indexed by objects of C. I claim the set
of maps ηι(X) := µX is a natural transformation P → Q. At the very least this is

a collection of maps indexed by objects of C[W−1] since ι is bijective on objects.
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Now since µ is a natural transformation we have

Pι(X) Pι(Y )

Qι(X) Qι(Y ).

Pι(α)

ηι(X) ηι(Y )

Qι(α)

So for the morphisms in the image of ι we have that µ satisfies naturality. Now we
show this is the case for formal inverses of morphisms in the image of W under ι.
We have

Pι(X) Pι(Y ) Pι(X)

Qι(X) Qι(Y ) Qι(X).

Pι(w)

ηι(X)

Pι(w)op

ηι(Y ) ηι(X)

Qι(w) Qι(w)op

Since the whole square commutes the upper path commutes with the lower path.
Then since the left square commutes, the upper path thus commutes with the
middle path. So since Pι(w) is an isomorphism the right square thus commutes as
desired. We have shown that for morphisms in ι(C) and formal inverses of ι(W )
the appropriate squares for η commute. However, these sets of morphisms are
exactly C and W op which generate the morphisms of C[W−1] under composition.
Since the composition of commuting squares also commutes we have that η satisfies
naturality on all the morphisms of C[W−1]. So we have shown −◦ ι is fully faithful.

Lastly suppose there is a functor F : C → A which sends W to isomorphisms.
We will define a collection of maps of objects and morphisms F ′ : C[W−1] → A.
First let F ′(ι) = F on objects and morphisms in the image of ι (recall ι is bijective
on objects and faithful). Further for w ∈ ι(W ) let F ′ : ι(w)op 7→ F (w)−1. It
is evident that F ′ (which is not quite a functor yet) commutes with composition
within C ∪W op and since F and ι are functors it sends identities to identities. It is
also evidently a well defined map on objects. Now for the remaining morphisms in
C[W−1], which are composable words of morphisms in C∪W op, define F ′ of a word
to be F ′ applied to each map and then composed in A. Since it sends identities
to identities, we already have that F ′ is well defined with respect to morphisms
that are related by relation (1). Further the definition of F ′ gives that if it is well
defined on morphisms related by zig-zags and compositions of (1), (2), (3) then it
is also well defined on morphisms related by zig-zags and compositions including
(4) since F ′ is explicitly built to satisfy composition. But, since (2) and (3) live
entirely in C ∪W op where F ′ is already functorial, we are done. So F ′ is a well
defined map and by construction a functor through which F factors. □

While a relative category is the most general setup for a category with some
distinguished set of weak equivalences, we often desire something stronger. We
introduce the definition of a category with weak equivalences which strengthens
relative categories and then of a model category which stengthens categories with
weak equivalences.

Definition 3.7 (Category with weak equivalences). We say that a relative category
(C,W ) is a category with weak equivalences if:

(i) W contains all isomorphisms;
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(ii) W satisfies the two-out-of-three property, i.e. given composable morphisms
f, g if any two of {f, g, fg} are in W then so is the third.

Definition 3.8 (Model category; [Q67], Defn I.1.1). A model category (or a model
structure on a category) is a category C together with three distinguished classes
of morphisms, called weak equivalences, fibrations and cofibrations that satisfies
a set of five axioms. Morphisms which are simultaneously weak equivalences and
fibrations/cofibrations are called trivial fibrations/cofibrations. A model category
satisfies the following five axioms:

(i) M is complete and cocomplete, i.e. it has all small limits and colimits;
(ii) The class of weak equivalences satisfies the two-out-of-three property;
(iii) Weak equivalences, fibrations and cofibrations are closed under retracts, i.e.

for commuting diagrams in the form

X A X

Y B Y

idX

f g f

idY

if g is a weak equivalence, fibration or cofibration then so is f ;
(iv) Every cofibration satisfies the left lifting property with respect to every

trivial fibration, and every trivial cofibration satisfies the left lifting prop-
erty with respect to every fibration, i.e. there is a morphism completing
the following diagram

A X

B Y

f

i p

g

whenever i is a cofibration and p a trivial fibration or i is a trivial cofibration
and p a fibration;

(v) Every map has factorizations into a cofibration composed with a trivial
fibration and a trivial cofibration composed with a fibration. Additionally
these factorizations should give functors C [1] → C [2] which are sections of
the composition functor C [2] → C [1] and with the morphisms living in the
appropriate classes.

Remark 3.9. Quillen’s original definition is slightly different in that he only re-
quires finite limits and colimits. The above is what Quillen calls a ‘closed model
category’.

Example 3.10 (Quillen model structure on topological spaces; [Q67], II.3). The
category of topological spaces can be endowed with a model structure as follows:

(1) The weak equivalences are weak homotopy equivalences;
(2) The fibrations are Serre fibrations;
(3) The cofibrations are the maps which exhibit the left lifting property with

respect to all the trivial fibrations.
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Theorem 3.11. A model category C with weak equivalences W is a category with
weak equivalences.

Proof. The idea is to show that any isomorphism is a retract of an identity, and
then to use factorization to show that there is a weak equivalence p whose source
is any object X so that p = p ◦ idX . □

In general, when in the context of model categories, we will say that two things
are ‘weakly equivalent’ if they are related in the equivalence relation generated by
the weak equivalences.

Definition 3.12 (Fibrant and cofibrant objects). Since model categories are com-
plete and cocomplete, they have initial and terminal objects. We say an object
is fibrant if the map to the terminal object is a fibration and cofibrant if the map
from the initial object is a cofibration. An object satisfying both properties is called
bifibrant.

Construction 3.13 (Fibrant replacement). Consider an object X in a model cat-
egory. There is a unique morphism f : X → T to the terminal object. This can be
factored f = p ◦ i with i a trivial cofibration and p a fibration. We write:

X RX T.i p

SoX is weakly equivalent to an object RX which is fibrant. This process is called fi-
brant replacement and the notation RX should be suggestive of the fact that fibrant
replacement is a functor. This follows immediately from functorial factorization.

There is a dual notion called the cofibrant replacement of X, which is often
denoted LX.

Corollary 3.14. Every object in a model category is weakly equivalent to a bifibrant
object.

Remark 3.15. In a model category there is a suitable equivalence relation called
‘homotopy’ on maps of bifibrant objects such that weak equivalences are related to
homotopy equivalences.

Definition 3.16 (Homotopy category). Given a model category, one can form its
homotopy category, the category whose objects are the bifibrant objects and whose
morphisms are equivalence classes of morphisms under homotopy. We denote the
homotopy category by Ho(C).

For more precise details regarding homotopy in model categories see [PH], 7.3-5.

Theorem 3.17 ([Q67], Thm I.1). The homotopy category is equivalent to the lo-
calization with respect to the weak equivalences:

Ho(C) ≃ C[W−1].

The above theorem is quite interesting. The fibrations and cofibrations are
extra structure which allow a concrete construction of the localization of a model
category with respect to its weak equivalences. However, this construction, up to
equivalence, only relies on the underlying category of weak equivalences and not all
the model structure.
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Definition 3.18 (Quillen equivalence). Let M,N be model categories and F :
M ⇆ N : G be adjoint functors: F ⊣ G. We say that the pair (F,G) is a pair of
Quillen equivalences if:

(i) F preserves cofibrations and trivial cofibrations;
(ii) G preserves fibrations and trivial fibrations;
(iii) When B ∈ M if cofibrant and X ∈ N fibrant then f : B → GX is a weak

equivalence iff f# : FB → X is a weak equivalence.

When the first two axioms are satisfied we call (F,G) a Quillen adjunction.

Quillen adjunctions are designed to induce adjunctions on the homotopy cate-
gories and Quillen equivalences are designed to induce equivalences on the homotopy
categories. In this sense Quillen equivalences give that two model structures are
equivalent up to homotopy.

In general we will say that model structures are Quillen equivalent if they can
be connected via zig-zig and composite of Quillen equivalences.

Theorem 3.19 ([Q67], Thm I.3). A Quillen equivalence induces an equivalence on
homotopy categories.

4. Model structures of ∞-categories

As noted already, one should think of model categories as ‘the right place to do
homotopy theory in categories’; with some care one can translate many the notions
used for homotopy theory of topological spaces into model categories. Accord-
ingly, it is the framework that is used to study homotopy theory of ∞-categories.
We will introduce the model structures on simplicial sets and simplicial categories
and describe the Quillen equivalence between them which justifies the claim that
quasi-categories and locally Kan-simplicial categories provide ‘equivalent models of
∞-categories’.

Before describing the model structures we will need some additional definitions.

Definition 4.1 (Function complex). Given simplicial sets X,Y , their function
complex is the simplicial set:

Fun(X,Y )n := HomsSet(∆
n ×X,Y ).

Here the product on simplicial sets is defined using the product on sets. For the
maps in the function complex, note that any map α : [m] → [n] gives an obvious
map α̃ : ∆m → ∆n given by postcomposing with the elements of ∆m. Then
there is a map α̃ × id : ∆m × X → ∆n × X. Precomposing then gives a map
Fun(X,Y )n → Fun(X,Y )m as desired.

Definition 4.2 (Connected components). Given a simplicial set X define an equiv-
alence relation on X0 given by x ∼ y if x can be connected to y via a zig-zag and
composite of 1-cells. The set X0 quotiented by the above relation is called the set
of connected components of X and is denoted by π0X.

For simplicial sets X,Y we will write [X,Y ] := π0Fun(X,Y ).

Theorem 4.3 (Model structure on simplicial sets; [Q67], II.3). The Kan-Quillen
model structure on simplicial sets is defined by:
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(1) Weak equivalences are maps f : X → Y which induce for every Kan complex
K a bijection f∗ : [Y,K]→ [X,K];

(2) Cofibrations are monomorphisms in the category of simplicial sets, i.e. de-
greewise injections;

(3) Fibrations are Kan fibrations, i.e. maps f which have the lifting property
with respect to horn inclusions:

Λn
i X

∆n Y.

f

Theorem 4.4 ([Q67], Prop II.3.3). All objects in the above structure are cofibrant
and the fibrant objects are Kan complexes.

Remark 4.5. When we say weak equivalences of simplicial sets it will be in the
sense defined above unless stated otherwise.

Definition 4.6 (Homotopy category of a simplicial category). Given a simplicial
category C one can define a category, denoted π0C whose objects are the objects
of C and whose hom sets are given Homπ0C(X,Y ) := π0HomC(X,Y ).

Theorem 4.7 (Model structure on simplicial categories; [B1]). The Dwyer-Kan-
Bergner model structure on simplicial categories is defined by:

(1) Weak equivalences are functors which induce weak equivalences on the hom
simplicial sets and equivalences on the homotopy categories, called Dwyer-
Kan equivalences;

(2) Fibrations are maps F : C → D which induce fibrations on the hom sim-
plicial sets and such that if there is a map e : Fa1 → b in D which is an
isomorphism in π0(D) then there is a map d : a1 → a2 in C that is an
isomorphism in π0(C) and that Fd = e;

(3) Cofibrations are maps satisfying the left lifting property with respect to the
trivial fibrations.

Theorem 4.8. The fibrant objects in this model structure are locally Kan simplicial
categories.

Proof. One can easily check that the terminal simplicial set is the constant simplicial
set on one object and the terminal simplicial category is the category with one object
with the hom object being the terminal simplicial set. So note that a fibration
F : C → T in simplicial categories induces fibrations from the hom simplicial sets
to the terminal simplicial set. It follows that any fibrant object is locally Kan.
Conversely, if C is locally Kan and F : C → T a map to the terminal object then
the induced maps on the hom simplicial sets are maps from Kan complexes to the
terminal simplicial set. The maps on the hom simplicial sets are thus fibrations of
simplicial sets. In turn for any a1 ∈ C there is a unique map e : Fa1 → b which
is an equivalence in the homotopy category since the terminal simplicial category
has only one morphism. Evidently the map ida1

is an equivalence in the homotopy
category of C and maps to e. So C is fibrant. □

Construction 4.9. We will now describe a functor Path : ∆ → sSet-Cat. It is
not hard to check that such a functor will induce a functor sSet-Cat → sSet by
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C 7→ Hom(Path(−), C). Consider the toset [n], for any x, y ∈ [n] there is a poset
whose elements are totally ordered subsets beginning at x and terminating at y
under reverse inclusion. So for [n] there is a simplicial category Path([n]) whose
objects are the objects of [n], whose hom objects are the nerves of the posets defined
above and with composition given by taking the union of tosets. This construction
is functorial as follows: for a map α : [n]→ [m] each object is mapped to its image
under α and each n-cell, which is a totally ordered subset of [n], is mapped to its
image under α.

Definition 4.10 (Homotopy coherent nerve, [JC]). The homotopy coherent nerve,
denoted as Nhc : sSet-Cat→ Cat is exactly the functor

C 7→ Hom(Path(−), C).

Theorem 4.11 ([KDN], 2.4.3.12). Given a category C let C̃ denote the associated

constant simplicial category. Then N(C) is isomorphic to Nhc(C̃).

Theorem 4.12 ([KDN], 2.4.4.4). The homotopy coherent nerve admits a left ad-
joint.

The adjoint to the homotopy coherent nerve is often called rigidification. Fol-
lowing Kerodon we call this the path functor. One can think of this an extension
to the path functor defined on the [n]s [KDN], 2.4.4.15.

Theorem 4.13 (Model structure on quasicategories; [J2], 9.3). The Joyal model
structure on simplicial sets, often called the model structure on quasicategories is
defined as follows,

(1) The weak equivalences are maps which go to Dwyer-Kan equivalences under
the path functor;

(2) The cofibrations are monomorphisms;
(3) The fibrations are maps satisfying right lifting with respect to the trivial

cofibrations.

Additionally all objects are cofibrant and the fibrant objects in this model structure
are quasicategories.

Altogether we can state the correspondance between quasicategories and simpli-
cial categories

Theorem 4.14 ([J3], 2.10). The homotopy coherent nerve and the path functor are
Quillen equivalences between the model structure on quasicategories and the model
structure on simplical categories.

Corollary 4.15. The homotopy coherent nerve of a locally Kan simplicial category
is an quasicategory.

Lemma 4.16 ([DS], 5.9). The counit ϵD : Path(Nhc(D)) → D is a weak equiva-
lence when D is locally Kan.

Theorem 4.17. If C,D are locally Kan simplicial categories and f : C → D is
a weak equivalence, then Nhc(f) is a weak equivalence in the model structure on
quasicategories.

Proof. We begin with the composite,

Path(Nhc(C)) C D.
ϵC f
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This is a weak equivalence. Also, Nhc(C) is cofibrant and D is fibrant. Since the
homotopy coherent nerve and path functor are Quillen equivalences we have that
(f ◦ ϵC)# is a weak equivalence. Explicitly this is the composite:

Nhc(C) Nhc(Path(Nhc(C))) Nhc(C) Nhc(D)
η
Nhc(C) Nhc(ϵC) Nhc(f).

By the triangle identity this is just Nhc(f) so we have the desired statement. □

Remark 4.18. Note that this theorem does not say that if two locally Kan simpli-
cial categories are weakly equivalent then so are their corresponding quasicategories.
Being weakly equivalent merely means that they can connected by a zig-zag of weak
equivalences, and in particular this zig-zag need not pass through locally Kan sim-
plicial categories. Only when this condition is actually met, does the theorem
guarentee equivalent quasicategories.

There exist more models of ∞-categories, all of which can be connected back to
quasicategories and simplicial categories with Quillen equivalences. Bergner has a
good paper on this matter, though it is not fully up to date [B2]. More recently
Riehl and Verity have done work which explores this question from an axiomatic
perspective [RV].

5. Simplicial localization

We follow Dwyer and Kan’s original construction of the simplicial localization
which promotes a relative category to a simplicial category. Subsequently, we
provide relevant results that show the simplicial localization encodes interesting
information–both the homotopy category and higher data–about a model category

Definition 5.1 (O-Cat; [DK1], 1.4.ii). Fix a set O. An O-category is a category
whose set of objects is O. The category O-Cat is the category whose objects are
O-categories and whose morphisms are functors which are the identity on objects.

Construction 5.2. Let sO-Cat denote the category of simplicial objects in O-Cat,
i.e. functors ∆op → O-Cat with morphisms being natural transformations between
them. To every S ∈ sO-Cat a simplicial category can be associated whose set
of objects is O and hom objects are Hom(X,Y )n := HomS([n])(X,Y ). The face
and degeneracy maps induced by the face and degeneracy functors in S, while the
composition maps are given by composition in S.

Definition 5.3 (Standard resolution; [DK1], 2.5). Given a category C ∈ O-Cat,
define FC ∈ O-Cat to be the category which for every non-identity morphism
c ∈ C has a morphism Fc and whose non-identity morphisms are freely generated
by these Fc. This construction comes with functors φ : FC → C given by Fc 7→ c
and ψ : FC → F 2C given by Fc → F (Fc). Now the standard resolution of C,
denoted F∗C ∈ sO-Cat, is defined as follows:

(1) FnC := Fn+1C;
(2) dni := F iφFn−i : Fn+1C → FnC;
(3) sni := F iψFn−i : Fn+1C → Fn+2C.

Definition 5.4 (Simplicial localization; [DK1], 4.1). Given a relative category
(C,W ) with objects O, the simplicial localization, denoted L(C,W ) ∈ sO-cat,
is given by the levelwise localization F∗C[F∗W

−1]. At every level there is a map



ON RELATIVE FUNCTORS AND SIMPLICIAL LOCALIZATION 15

FnC → FnC[FnW
−1] and the face and degeneracy maps are given by precomposing

by the associated map in F∗C and factoring via the definition of localizations.

In general, when we refer to the simplicial localization we will mean the associ-
ated simplicial category. In some proofs we will switch between these definitions as
necessary when one is more convenient.

Now we consider the simplicial localization in the case when it is applied to
model categories.

Theorem 5.5 ([DK1], 4.2). The homotopy category of the simplicial localization
is equivalent to the localization obtained by inverting weak equivalences:

π0L(C,W ) ≃ C[W−1].

Theorem 5.6 ([DK3], 4.8). Given a simplicial model category S∗ ([Q67], II.2), let

S := S0. The simplicial categories L(S,W ) and Scf
∗ are weakly equivalent, where

the latter is the restriction on bifibrant objects.

The above theorem admits a generalization:

Theorem 5.7 ([DK3], 4.4). Given a model category M and X,Y ∈ M one can
take the (co)simplicial resolutions ([DK3], 4.3), X∗ and Y∗. Then diagM(X∗, Y∗)
is weakly equivalent to LHM(X,Y ). Here M(X∗, Y∗) is a bifunctor ∆op → Set
given by taking the hom sets levelwise and the diagonal is given by precomposition
with the product map ∆op → ∆op ×∆op.

The above three theorems justify the claim that has been made throughout this
paper, that the simplicial localization of a model category is some sort of general-
ization of the homotopy category which contains higher homotopy data from the
model category.

We also have some other nice results:

Theorem 5.8 ([AM]; [VH]). The homotopy coherent nerve of (the fibrant replace-
ment of) the simplicial localization of a relative category is weakly equivalent in the
Joyal model structure to the localization of the nerve in the sense of ([HA], 1.3.4.1):

RNhcL(C,W ) ∼ N(C)[W−1].

The expression on left side is often referred to as the underlying quasicategory of a
relative/model category.

Theorem 5.9 ([DK4], 2.5). Every simplicial category is weakly equivalent to the
simplicial localization of a category with weak equivalences.

6. Equivalences under the hammock localization

We introduce the hammock localization functor which was invented by Dwyer
and Kan to make the hom objects of the simplicial localization easier to calculate.
Subsequently, we discuss two types of functors that lift to weak equivalences: adjoint
relative functors with unit and counit in weak equivalences and Quillen equivalences.
The former of these facts is stated, but not proven, in [DK2]; we provide a proof.
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Definition 6.1 (Hammock localization; [DK2], 2.1). Let (C,W ) be a relative cat-
egory. We define a simplicial category LH(C,W ) (or LHC when W is clear) whose
objects are the objects of C and whose hom objects are defined as follows:

The n-cells of LHC(X,Y ) are ‘reduced hammocks of height n and any length
k’, i.e. a commuting diagram of the form

C1,0 · · · Ck−1,0

X C1,1 · · · Ck−1,1 Y

...
...

C1,n · · · Ck−1,n

such that

(i) Arrows in adjacent columns point in opposing directions;
(ii) Leftward and downward pointing arrows are in W ,
(iii) No column consists only of identity maps.

The length k indexes the number of horizontal arrows in a single row and is a non-
negative integer. In the simplicial set LHC(X,X) there is a height zero hammock
with two copies of X and the identity map between them (the direction does not
matter). This is not reduced, but it can be reduced to the diagram with a single
vertex X. This is the identity 0-cell idX .

The ith degeneracy map is given by repeating the ith row of vertices and the
ith face map is given by collapsing the ith row of vertices (or just removing it if
i = 0, n). If the result is not reduced it can be made so by repeatedly composing
adjacent columns pointing in the same direction and removing any columns that
consist only of identity maps.

Finally the composition map LHC(Y,Z)×LHC(X,Y )→ LHC(X,Z) is given by
concatenating hammocks and expanding the vertex Y into n vertices with vertical
identity maps between them, then reducing as necessary.

Remark 6.2. One must be careful because writing the diagram with a single vertex
X is ambigous. There is, in each dimension, a hammock with two copies of X and
n+1 copies of the identity (again the directions give the same thing) which reduces
to this diagram. So one really needs to specify both the diagram and the dimension
in this case.

Proposition 6.3 (Hammock localization is a functor). Given a relative functor F :
(C,W ) → (D,V ), there is a simplicial functor LHF : LHC → LHD such that on
objects LHF (A) = F (A) and on morphisms the map LHF (X,Y ) : LHC(X,Y ) →
LHD(F (X), F (Y )) is given by applying F to a hammock and reducing as necessary.

Now we have defined the hammock localization functor, which we have promised
will allow us to more easily calculate the simplicial localization, we ought to ensure
that these functors are indeed equivalent. This is one of the main results of [DK2]:
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Theorem 6.4 ([DK2], 2.2). The obvious functors1

LH(C,W )← diagLHF∗C → F∗C[F∗W
−1] = L(C,W )

are weak equivalences. Here LHF∗C is a bifunctor ∆op → O-Cat given by taking
the hammock localization with respect to F∗W levelwise.

This theorem will prove to be useful, as some facts are easier to show using the
free resolutions, while others are easier using hammocks.

Lemma 6.5 ([DK2], 3.1). The homotopy category of the hammock localization is
equivalent to the localization obtained by inverting weak equivalences:

π0L
H(C,W ) ≃ C[W−1].

Proof. This fact follows by homotopy equivalence above, however, we need the
explicit description of this functor for a later proof. The map on objects is evident
and for morphisms we first have a rule for sending 0-cells X → Y to morphisms in
C[W−1]. Since all the left facing arrows are in W their inverses can be taken and
composing gives a morphism X → Y . To show this is a rule for sending morphisms
of π0L

HC(X,Y ) into C[W−1] it suffices to show that the image of the faces is the
same for any 1-cell, since 0-cells that can be connected by composite and zig-zag
will thus go to the same place. Reversing the left facing maps of a 1-cell gives a
diagram of the form

• · · · •

X Y.

• · · · •

Each square and the initial and terminal triangles in this ‘hammock’ will commute
thus the entire thing will commute, giving the desired result. Since composition is
given by composing hammocks, this rule evidently satisfies composition. Further it
sends the identity 0-cell to the identity. So our rule defines a (essentially surjective)
functor. I claim it is also fully faithful. The full part is obvious since every mor-
phism in C[W−1] is the composite of morphisms in C and W op. For faithfullness
we suppose that two 0-cells go to the same morphism. That is the 0-cells give
composable words which are related by the equivalence relation on C[W−1]. We
need to show that the 0-cells live in the same connected component when they give
composable words related by relations (1), (2),(3) and (4) of 3.4. We will implicitly
use the fact that 0-cells map injectively onto composable words. Relation (1) is ir-
relevant because reduced hammocks of height zero contain no identity maps. Now
note that for a 0-cell to give the composable word f ◦ g one of f or g is the formal
inverse of some weak equivalence. So now we have the diagrams:

1See proof of lemma 6.7.
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Z

X Z,

Y

g−1

h

f

idZ

g−1

Y

X Z.

X

f−1 g

f−1

idX h

Then for (3) we have the following diagrams:

X

X X,

Y

w

idX

w

idX

w

X

Y Y.

Y

w w

w

idY idY

Finally (4) can be obtained by concatenating the pictures above with the appropri-
ate morphisms. □

Lemma 6.6 ([DK1], 4.4). If u : X → Y ∈W then u induces weak equivalences

LC(Y,Z)
u∗

−→ LC(X,Z), LC(Z,X)
u∗−→ LC(Z, Y ).

Proof. Explicitly, the above maps are given by pre and postcomposing by Fn+1u
in the nth cell. It suffices to show that u induces a map of simplicial sets since it
will have the obvious inverse map u−1. So we want that for a simplicial map α the
following diagram commutes:

F kC[F kW−1](Y,Z) F kC[F kW−1](X,Z)

FmC[FmW−1](Y,Z) FmC[FmW−1](X,Z).

Fku∗

α α

Fmu∗

The maps α on the homsets are given by a functor F kC[F kW−1]→ FmC[FmW−1]
inO-cat. Thus, the diagram will commute if given a morphism f ∈ F kC[F kW−1](Y, Z)
we have α(f)◦Fmu = α(f ◦F ku). By functoriality, α(f ◦F ku) = α(f)◦α(F ku), so it
suffices to show that α(F ku) = Fmu. Since α is a simplicial map this only needs to
be checked on the face and degeneracy maps. Evidently F iφF k−1−i : F ku 7→ F k−1u
and F iψF k−1−i : F ku 7→ F k+1u. So u∗ and dually u∗ are isomorphisms (and thus
weak equivalences) of simplicial sets. □

Lemma 6.7 ([DK2], 3.3). If u : X → Y ∈W then u induces weak equivalences

LHC(Y, Z)
u∗

−→ LHC(X,Z), LHC(Z,X)
u∗−→ LHC(Z, Y ).
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Proof. The goal is to produce a map making the following diagram commute:

LHC(Y,Z) diagLHF∗C(Y, Z) LC(Y,Z)

LHC(X,Z) diagLHF∗C(X,Z) LC(X,Z).

u∗ u∗

The left map is given by precomposing hammocks with the hammock that has n+1
copies of u∗. It is obvious that this is a map of simplicial sets since the face and
degeneracy maps merely repeat or compose/remove rows in a hammock. Now, it
helps to think about what diagLHF∗C actually looks like. As a simplicial category
the n-cells are given by hammocks of height n with maps in Fn+1C and weak
equivalences in Fn+1W . The natural thing to do is to precompose a hammock
in the nth level with the map Fn+1u. Now the face and degeneracy maps on
diagLHF∗C(Y,Z) are given by first applying the associated map on LHF∗C(Y,Z)
to the hammock and then applying then applying the associated map on LC(Y,Z)
on all the maps in the hammock. In the previous proof we showed that for a map
α on the simplicial localization, we have α(F ku) = Fmu, so it is not hard to see
that the mapping we have given is a map of simplicial sets. This map is the desired
map completing the diagram and by the two-out-of-three property we are done.

In theorem 6.4 we asserted that the functors of simplicial categories were ‘obvi-
ous’. This is the case in that there are canonical maps that one can write down,
though it is not necessarily clear what those maps are. We provide some explicit
details. The maps are evidently constant on objects so we need only consider
what they do to the simplicial sets. The map diagLHF∗C → LHC is given by
taking the map φn+1 on every map in each hammock of height n. In turn the
map diagLHF∗C → LC is given at each level by inverting the left facing arrows
in Fn+1W and composing all the arrows (all the rows of the hammock will pro-
duce that same resulting map). In particular these functors will take the hammock
with n + 1 copies of Fn+1u to the hammock with n + 1 copies of u and the map
Fn+1u respectively. In turn since these are indeed functors, this gives exactly the
statement that the desired diagram commutes. □

Lemma 6.8 ([DK2], 3.5). Let F, F ′ : (C,W ) → (D,V ) be relative functors and
η : F → F ′ a natural transformation such that ηZ ∈ V for all Z ∈ D. Then for all
X,Y ∈ C the following diagram commutes up to homotopy

LHD(F (X), F (Y ))

LHC(X,Y ) LHD(F (X), F ′(Y )).

LHD(F ′(X), F ′(Y ))

ηY ∗

η∗
X

Proof. To show the above is to show a map h : ∆1×LHC(X,Y )→ LHD(F (X), F ′(Y ))
such that h(0,−) gives the top path and h(1,−) gives the lower path. It helps to
write down an explicit description of the simplicial set ∆1. There is a single nonde-
generate 1-cell which is an arrow 0→ 1. Now any n-cell has n+ 1 ordered vertices
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and it will contain the data of a 1-cell from each vertex to the next one. The n-cells
of ∆1 can be thought of as paths between n + 1 vertices that begin at 0 and end
at 1 (and the ones that are the identity on 0 and on 1). In particular they can be
characterized by the position i of the first non-zero vertex (we write i = n+1 when
there is none). This completely characterizes the n cells. So we consider n-cell
in ∆1 × LHC(X,Y ) and suppose that i ̸= 0, n + 1 is the first nonzero vertex on
the component in ∆1. Let the hammock of the component in LHC(X,Y ) be the
following:

C1,0 · · · Ck−1,0

F (X)
...

... Y.

C1,n · · · Ck−1,n

Then we define a map h whose image is given by:

F (X) F (C1,0) · · · F (Ck−1,0) F (Y )

...
...

...
...

F (X) F (C1,i) · · · F (Ck−1,i) F (Y )

F (X) F ′(X) F ′(C1,i+1) · · · F ′(Ck−1,i+1) F ′(Y ) F ′(Y ).

...
...

...
...

F ′(X) F ′(C1,n) · · · F ′(Ck−1,n) F ′(Y )

ηY

ηX ηY
ηY

ηX

ηX

When the component in ∆1 is the constant path on 0 or on 1 we simply send the
hammock to the upper and lower paths in the commutative diagram respectively.

Now, given a degeneracy map, applying it to an n-cell in ∆1 × LHC(X,Y ) will
double the jth vertex in ∆1, inserting an identity map, and double the jth row of
the hammock, again inserting identities. Applying h evidently leads to the jth row
being doubled, and since F and F ′ are functors, there are identity maps between.
Of course this is what one would get if they applied h first and then the degeneracy
map.

The same thing is true for the face maps. For j ̸= 0, n, a face map applied
to an n-cell in ∆1 × LHC(X,Y ) will compose at the jth vertex in ∆1 and at the
jth row of the hammock. When applying h the result will be that the jth row
has been collapsed. Here functoriality of F, F ′ will make sure that the composite
morphisms creating by collapsing the jth row will be the same whether h or the
face map was applied first. There is a bit more to check when one of the maps
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being composed is the map 0 → 1 but it follows immediately from the definition
of a natural transformation. The cases when j = 0, n are easy to check as well.
Altogether h is the desired homotopy. □

Theorem 6.9 ([DK2], 3.6). An adjoint pair of relative functors F ⊣ G between
(C,W ) ⇌ (D,V ) such that ηX : X → GF (X) ∈ W for X ∈ C and ϵY : FG(Y )→
Y ∈ V for Y ∈ D induces a weak equivalence LH(C,W ) ≃ LH(D,V ).

Proof. There are two things to show here.

(1) We begin with showing that F and G induce equivalences on π0L
HC and

π0L
HD. First, the functors F,G induce obvious functors F̃ : C[W−1] ⇆

D[V −1] : G̃ which agree with F,G on C,D and send formal inverses to

formal inverses. η and ϵ will give natural transformation 1 → G̃F̃ and
F̃ G̃→ 1 and since they live in C[W−1] and D[V −1] they are in particular

natural isomorphisms. So F̃ , G̃ are equivalences.
Now consider the functors π0L

HF : π0L
HC ⇆ π0L

HD : π0L
HG. I claim

the following diagram commutes, giving us what we want:

π0L
HC π0L

HD

C[W−1] D[V −1].

π0L
HF

F̃

In the lower path, the left facing arrows are inverted and the morphism
are composed, then F̃ is applied to the composite. Meanwhile in the upper
path, F is applied to each morphism then the left facing arrows are inverted
and composed. Since F̃ (wop) = F (w)op the result is the same.

(2) Now we show that F : LHC(X,Y )→ LHD(F (X), F (Y )) and dually for G
are weak equivalences. First we have the diagram

LHC(GF (X), GF (Y ))

LHC(X,Y ) LHC(X,GF (Y )).

LHC(X,Y )

η∗
X

ηY ∗

Since the bottom left map is the identity map this is really the diagram

LHC(GF (X), GF (Y ))

LHC(X,GF (Y )).

LHC(X,Y )

η∗
X

FG

ηY ∗
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By the two-out-of-three property FG is homotopic to a weak equivalence
and thus itself a weak equivalence. So for any Kan complex K we have

[LHC(GF (X), GF (Y )),K] [LHD(F (X), F (Y )),K] [LHC(X,Y ),K]G∗ F∗

is a bijection for all X,Y . So the first map is an injection and the second
a surjection. By duality we conclude that F ∗ is a bijection for all K and
G(A), G(B). So the map F |G induces a weak equivalence on simplicial sets.
Finally consider the diagram

LHD(F (X), F (Y )) LHD(FGF (X), FGF (Y ))

LHC(X,Y )

LHC(GF (X), GF (Y )) LHD(FGF (X), FGF (Y )).

FG

F

GF

F |G

We know every map in this diagram other than F is a weak equivalence, so
by the two-out-of-three property we conclude that F itself is also a weak
equivalence. By duality G is as well.

□

Theorem 6.10 ([DK3], 5.6). If M,N are model categories that are Quillen equiv-
alent, then LHM and LHN are weakly equivalent.

Note that the Quillen adjunctions are generally not relative functors, so we
should not expect them to induce functors on simplicial categories under hammock
localization. Mazel-Gee showed that despite this obstruction a Quillen adjunction
gives an adjoint pair of functors on underlying quasicategories [MG].

7. Examples

We give some examples where the simplicial localization can be used to produce
interesting simplicial categories.

• Note that the function complex makes the category of simplicial sets en-
riched in itself. This becomes a simplicial model category under the Kan-
Quillen and Joyal model structures. So we have:
(1) By theorems 4.4 and 5.6 the localization of simplicial sets under the

Kan-Quillen model structure is weakly equivalent to the simplicial cat-
egory of Kan complexes. By [KDN], 3.1.3.4 this is enriched in Kan
complexes, for this reason we call this the ∞-category of ∞-groupoids
and is often denoted by S or ∞Grpds.

(2) By theorems 4.13 and 5.6 the localization of simplicial sets under the
Joyal model structure is weakly equivalent to the simplicial category
of quasicategories. By [CR1], 22.4 this is enriched in quasicategories
and thus forms an ‘(∞, 2)-category’.
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• The Dold-Kan correspondance states that there is an equivalence of cate-
gories between simplicial abelian groups and nonnegative chain complexes
in Ab.

N : Ab∆
op

⇆ Ch(Ab)+ : Γ.

These are in particular model categories so they are categories with weak
equivalences. The weak equivalences are, weak equivalences on the under-
lying simplicial sets in the case of simplicial abelian groups, and quasi-
isomorphisms in the case of non-negative chain complexes. Additionally,
the functors N and Γ preserve weak equivalences. This is enough to say
that N ⊣ Γ satisfy the conditions of theorem 6.9, thus the associated sim-
plicial categories of simplicial abelian groups and of chain complexes are
weakly equivalent, induced by the functors N,Γ under hammock localiza-
tion. Exposition on the Dold-Kan correspondance can be found in [GJ],
II.3.
• A classical result by Quillen [Q67] (Ex. 2, pp. 64) is that the Quillen model
structure on topological spaces and the Kan-Quillen model structure on
simplicial sets have a Quillen equivalence between them. In particular this
equivalence is given by the singular simplicial set functor (which gives the
fundamental ∞-groupoid in Kan complexes) and its left adjoint geometric
realization, the contructions of which can be found in [KDN], 1.2.2-3. This
is usually written:

| − | : sSetKan-Quillen ⇆ TopQuillen : Sing(−).

This quite a remarkable statement because it tells us that simplicial sets
and topological spaces have equivalent homotopy categories. However, with
the machinery of simplicial localization we can expand this result.

Theorem 6.10 gives a weak equivalence LH(TopQuillen) ∼ LH(sSetKan-Quillen).

Further, we have a weak equivalence RLH(TopQuillen) ∼ LH(sSetKan-Quillen)
where R is the fibrant replacement. This statement is the homotopy hy-
pothesis when our ∞-groupoids are Kan complexes; the singular simplicial
set functor induces an equivalence of the ∞-category of topological spaces
and the ∞-category of ∞-groupoids.

Interestingly, in more recent work Barwick and Kan showed that relative cate-
gories admit a model structure which is equivalent to the model structures on the
models of ∞-categories.

Theorem 7.1 (Model structure on relative categories; [BK1], 6.1). There is a
model structure on relative categories that is Quillen equivalent to the model struc-
ture on complete Segal spaces as defined in [CR2], 7.2.

Complete Segal spaces are a model for ∞-categories with the model structure
Quillen equivalent to the models of ∞-categories which we have discussed. This
gives the desired statement.

The simplicial localization factors into this as follows.

Theorem 7.2 ([BK2], 1.8). A functor of relative categories maps to a weak equiv-
alence under simplicial localization if and only if it is a weak equivalence in the
model structure on relative categories.
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However, the simplicial localization itself is not known to induce an Quillen
equivalence on models of ∞-categories.
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