AN INTRODUCTION TO FRACTAL DIMENSION WITH
APPLICATIONS TO BROWNIAN MOTION

GAVIN AN

ABSTRACT. Defining and analyzing the dimension of fractals is a subject that
can lead to many unintuitive and elegant results. One particularly interesting
application lies in a stochastic process known as Brownian motion.

Beyond simply defining fractal dimension and calculating it for various sets,
this paper also studies other properties of Brownian motion and fractal dimen-
sion itself: the relationship between fractal dimension and self-similarity; the
recurrence and transience of Brownian motion; and the zero set of Brownian
motion, to name a few.
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1. INTRODUCTION

When first confronted with the idea of fractal dimension (i.e. a notion of di-
mension which assigns to some sets a non-integer value), one could be forgiven for
being confused: how can something be “between” two and three dimensions? It all
just seems rather contrived.

Of course, it is contrived—just like everything else in math. The question is
whether mathematicians find the notion of fractal dimension useful in analyzing
sets, and as it turns out, the answer is yes (for example in probability theory,
where certain processes that draw inspiration from physics tend to display signif-
icant self-similarity). To better understand what is meant by fractal dimension,
it may be helpful to think of dimension as representative of the complexity of a
set. The Sierpinski triangle, for example, can be thought of as in some sense more
complex than a one-dimensional curve (since its “coarseness” is infinite; zooming
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in on the curve indefinitely will not render it smooth) but less complex than a two-
dimensional shape (since, similarly to a line, it does not take up any area). Thus
fractal dimension allows us to analyze and compare the complexity of different sets
as well as the spaces in which they live.

In this paper, we rigorously define fractal dimension, deduce some properties
of it, and apply it to analyze Brownian motion. In the following section, we go
through some measure theoretical preliminaries. In Section 3, we construct Haus-
dorff dimension and calculate it for a few example sets. We follow Chapters 6 and
7 in Stein and Shakarchi’s Real Analysis textbook here. [1] In Section 4, we con-
struct Brownian motion (an important example displaying fractal qualities) and
prove a few of its properties. In Section 5, we examine Brownian motion’s zero set,
and in Section 6, we explore some of the properties of multi-dimensional Brownian
motion. In these sections, we particularly examine the fractal qualities of these
mathematical objects, following Lawler’s Introduction to Stochastic Processes. [2]

2. PRELIMINARIES

We assume that the reader has a background in measure theory, such as the
definition of the Lebesgue measure on R¢. However, we will briefly review the
ideas found in abstract measure theory, which we will use when defining fractal
dimension. We loosely follow Chapter 6 of [1] here.

A measure space consists of a set X, a o-algebra M of “measurable sets” in
X, and a measure pu : M — [0, 00| satisfying countable additivity. As such, it is
often denoted by its parts (X, M, ). However, where there is no ambiguity, we
will instead simply use X for brevity.

Let X be a set. A function p, on X that maps every subset of X to a value in
[0,00] is called an exterior measure if it satisfies the following properties:

(i) 2.(0) = 0.

(ii) (Monotonicity) If By C Ej, then pu.(E1) < p«(Es).
(iii) (Countable subadditivity) If E4, Es,--- is a countable family of sets, then

oo (oo}
pe | U Ej | D0 ma(Ey).
j=1 =1

Given some exterior measure p, on X, we say a set £ C X is Carathéodory
measurable, or simply measurable, if

i(A) = p(ENA)+ p(E°NA) forevery A C X.

Proposition 2.1. ([1], Theorem 1.1, Chapter 6) Given an exterior measure fi,
on a set X, the collection M of Carathéodory measurable sets forms a o-algebra.
Moreover, . restricted to M is a measure.

We wish to make one further conclusion relating measurable sets to Borel sets
(defined below) under certain circumstances. We say that a set X is a metric
space if there exists a function d : X x X — [0, 00) such that

(i) d(x,y) = 0if and only if x = y,

(i) d(z,y) = d(y,x) for all z,y € X, and

(iii) d(z,z) < d(x,y) + d(y, 2) for all z,y,z € X.
We say that such a function d is a metric. Using d, it is possible to define the open
and closed sets of X. We can then define the Borel o-algebra B, as the smallest
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o-algebra (a collection of sets closed under countable unions, intersections, and
complements) in X that contains the open sets of X. We say that a set in B, is a
Borel set. Now, we define the distance between two sets A, B C X as
d(A, B) = inf{d(z,y) | x € A,y € B}.
Then we say an exterior measure u, is a metric exterior measure if
px (AU B) = e (A) + pe(B)  whenever d(A, B) > 0.

Proposition 2.2. ([1], Theorem 1.2, Chapter 6) If . is a metric exterior measure
on a metric space X, then u, restricted to the Borel sets is a measure.

As an example, R? with the Lebesgue measure defined on the Borel sets is a
measure space.

3. HAUSDORFF DIMENSION

Before defining Hausdorff dimension, we must first define a new measure on R?
deeply related to the idea of dimension. We follow Chapter 7 of [1] in this section.
We define the exterior a-dimensional Hausdorff measure of a set E as

o o0

my(B) = lim inf{;(diam F)* | EC kgl F},, diamF}, < 0},

where {F}} is a countable covering of sets whose diameter, defined as
diam Fy, = sup{|z —y| | z,y € F}},

is less than or equal to 4. It should be noted that

o0 oo
Ho(E) = inf{>_(diam Fy)* | | J Fix O E,diamF}, < 6}
k=1 k=1
increases monotonically as ¢ decreases, so the limit
mr(E) = lim Hq(E)
d—o00
exists, though could be infinite.

Exterior Hausdorff measure can be shown to be a metric exterior measure, as
defined in the previous section. Therefore, we can restrict it to the Borel sets and
attain a measure called Hausdorff measure. Thus, we have created a measure
space (R?, B,, o). Hausdorff measure satisfies the following property.

Proposition 3.1. ([1], Property 8, Chapter 7) If mo(E) < 0o and 8 > «, then
mg(E) = 0. Also, if ma(E) >0 and a > 3, then mg(E) = co.

Thus, for every set E, there exists some unique « such that
0 p<a,
mp(E) = {

oo fB>a.
We define the Hausdorff dimension of E to be a. A set with a non-whole number
dimension is called a fractal.
Now, we will go through some examples. The Cantor set is a fractal that can
be constructed by recursively removing the middle-third intervals in [0,1]. More
specifically, if Cop = [0, 1], we let

1 2 1 2 3 6 7 8
a=log]uz]. e=loglulzs]ufsav]s)
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FIGURE 1. Seven iterations of the Cantor set|8]

where C, is defined, given C,,_1, by removing the open middle third of each interval
making up C,—;. The first seven iterations of the construction can be seen in
Figure 1. We define the Cantor set C as

C= ﬁ C;.
j=1

Instead of directly calculating the Hausdorff dimension of C, we will prove a more
general theorem which will allow us to deduce the dimension of many self-similar
sets. This first requires the notion of self-similarity.

A function S : R? — R? is said to be a similarity with ratio » > 0 if

1S(x) = S(y)| = rlz -yl
for all z,y € RY.
A set FF C R? is said to be self-similar if there exist finitely many similarities

S1,89,- -+, S, with the same ratio r such that
F=8(F)USy(F)U---US,,(F).
Furthermore, we say that Sy, Ss,--- , Sy, are separated if there exists a bounded

open set O such that
O D S51(0)US(O)U---US,(0)
and the S (O) are disjoint. The set O is not necessarily related to F'.
The Cantor set is self-similar in R with ratio 1/3, since given similarities
Sy =x/3, Sy=z/3+2/3,
we have
C = Sl(C) @] SQ(C)
Furthermore, with O = (0, 1), we can see that S; and Ss are separated similarities.
We will now state a few requisite lemmas for our theorem (with proofs found in the

appendix). Throughout this section, we suppose Si,Ss,- - ,S,, are m separated
similarities with some contracting ratio r; that is, a ratio that satisfies 0 < r < 1.

Lemma 3.2. There exists a closed ball B such that Sy(B) C B for allk =1,--- ,m.

We will introduce a few pieces of notation for the next lemmas. Let S(B) denote
the set

S(B) = S1(B)US2(B)U---U Sy (B),
and Fj, = S*(B) denote the set
F,=S%B)=So0---05(B),
where k is the number of compositions. Also, for each d > 0 and set A, we let
A° = {z|d(z,A) < 5}
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For two compact sets A and B, we define the Hausdorff distance as
dist(A, B) = inf{é | B C A% and A C B°}.

Lemma 3.3. The distance function dist on compact sets in R? satisfies the follow-
ing properties:

(i) dist(A, B) =0 if and only if A= B.

(ii) dist(A, B) = dist(B, A).

(iii) dist(A4, B) < dist(4, C) + dist(C, B).

(iv) dist(S(A),S(B)) < rdist(A, B).
Lemma 3.4. There exists a unique non-empty compact set F' such that
F=51(F)U---US,(F).

The proof of this lemma, again found in the appendix, implies that every self-
similar set F' can be expressed uniquely as a countable intersection of unions of

closed balls.

Theorem 3.5. The Hausdorff dimension of the unique F defined in the previous
lemma is logm/log(1/r).

Proof. Let a = logm/log(1/r). We will first prove that m, (F') < oo, and then (in
a more difficult step) prove that mq(F) > 0. This will prove that « is indeed the
Hausdorff dimension of F' by Proposition 3.1.

Recall that by Lemma 3.2, F}, = Sk(B) is by construction the union of m* sets
with diameter c¢r* (where ¢ = diamB), and that by our proof of that lemma (see
appendix), each Fy is a covering of F. For notation sake, we will denote each of
the m” sets as

B;, 1<i<mh.
Then for any § > 0, we can select a sufficiently large k such that cr* < § to find

(3.6) HO < z:(diamBi)'JZ < dmFrok = ¢,

since mr® = 1, because a = logm/log(1/r). Since ¢’ is a constant that depends
only on ¢, (3.6) holds for arbitrary §, and as a result we have m(F) < ¢

Now, we prove mq(F) > 0. First, fix an arbitrary point T in F. We define the
“vertices of the k' generation” as the m* points that lie in F and are given by

Sp,0---08,,(T), wherel <ny <m,---,1<n, <m.
We index each vertex by the similarities that resulted in it as (nq,--- ,ng). Note
that vertices are not necessarily distinct. Then, fix O that satisfies the separation
condition for the similarities Si,---,S,,. We define the “open sets of the k"
generation” to be the m” sets given by

Spy 0208, (0), where 1 <ny <m,---,1<n,<m.
The open sets of generation k are indexed by their similarities as (nq,- - ,ng). The
open sets of the k™ generation are disjoint, since those of the first generation are.

Consequently, if k& > 1, then each open set of the [*" generation contains m*~! open

sets of the k*" generation.
Let v be a vertex of the k' generation, and let O(v) be the corresponding open
set of the k' generation such that both carry the same label (n1,n2,- - - ,n). Since



6 GAVIN AN

T is at a fixed distance from the original set O, whose diameter is finite and non-zero,
we find that
(i) d(v,0(v)) < crk,
(ii) /¥ < diamO(v) < ’rk

for some constants ¢, ¢/, ¢’ > 0. Our goal is to prove that for any § > 0 and countable
covering U2, F; D F with diamF; < 4, we have

o0

> (diamF;)* > ¢ > 0.

j=1
To do this, we first note that each Fj is contained in an open ball B; of diameter
twice diamF;. Thus, we will scale the diameters of the balls by 2 and create a new
open covering U72,B; D F. Since F' is compact, we can extract a finite subcover
Uivlek D F. Thus, we want to show that any such finite covering of balls whose
diameters are less than § satisfies

N
(3.7) > (diamBg)* > ¢ > 0

k=1
where ¢ is a constant independent from ¢ and the cover of F' chosen. If we can do
this, then we will have shown that the analogous sum for finite covers taken from
the original countable covering (whose diameters are less than §) is also bounded
below by a constant, and therefore that m,(F) > 0. Then suppose B is such a
covering by balls; choose k such that

rk < min diamB; < rk-t
1<j<N

We will need one final lemma to prove our theorem, whose proof is again found in
the appendix.

Lemma 3.8. Suppose B is a ball in the covering B that satisfies
r! < diamB < ri! for some l < k.
Then B contains at most cmF~" vertices of the k™ generation.
Now, let N; denote the number of balls B; in B such that

rt < diamB; < ri=1

By the lemma, we see that the total number of vertices of the k'"

k o .
covered by B can be no more than ¢y, Nym*~L. Since all m* vertices of the k!
generation are contained in F, we must have ¢}, NymF=t > m¥ and hence

generation

k
Z Nm™t > 1/c.
1=1

Since o = logm/log(1/r), we see that m~! = r!®, and so
N k
> (diamB;)* > Y " Nirl® > 1/e,
=1 =1

because for each [, N; balls have diameter at least r!. Thus, we have (3.7) for all
relevant cases, and mq (F) > 0. O
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(A) Sierpinski carpet, (B) Menger sponge, (¢) 2D Cantor dust, (D) 3D Cantor dust,
iteration 6 iteration 4 iteration 6 iteration 5

FIGURE 2. Four fractals [§]

We can immediately apply this theorem to the Cantor set. Since C has r =1/3
and m = 2, we have that dimC = log2/log 3, or roughly 0.63. With a little extra
effort, it can also be shown that the Cantor set has 0.63-dimensional Hausdorff
measure 1. We will now look at three additional examples, as seen in Figure 2.

The first iteration of the Sierpiriski carpet involves taking a square, dividing it
into nine sub-squares, and removing the center one to create a ring. Each subse-
quent iteration repeats the process on the eight outer squares. [5] Thus, m = 8 and
r = 1/3, so the dimension of the Sierpiriski carpet is log 8/ log 3, or roughly 1.89.

The Menger sponge takes this idea into three-dimensions by splitting a cube
into twenty-seven sub-cubes and iteratively removing the center cube as well as the
center of each of the six sides. [6] Thus, m = 20 and r = 1/3, so its dimension is
log 20/ log 3, about 2.73.

Cantor dust can be constructed in two-dimensions or three-dimensions. In two-
dimensions, one divides a square as in the Sierpinski carpet, but removes all but the
corner squares iteratively. In three-dimensions, a cube is divided as in the Menger
sponge, but all but the corner cubes are removed iteratively. [7] The dimension
of Cantor dust in two and three dimensions is therefore log4/log3 ~ 1.26 and
log 8/ log 3 & 1.89 respectively, since » = 1/3 and m is 3 or 8.

4. BROWNIAN MOTION

A particularly interesting example of using Hausdorff dimension to analyze sets
comes in Brownian motion, a type of stochastic process. More specifically, Brownian
motion is a random continuous process. We will follow Sections 8.1 and 8.2 of [2]
in defining and constructing this process.

Let X} represent the value of a stochastic process at time ¢. We say that X; is
Brownian motion with mean 0 and variance o2 if:

(i) Xo =0,

(ii) For any s1 < ¢1 < s9 <ty < -+ < s, < ¢, the random variables X;, —
Xs,,, Xt, — X, are independent,

(iii) For any s < ¢, the random variable X; — X, has a normal distribution with
mean 0 and variance (t — s)o?, noting that standard Brownian motion has
o? =1,

(iv) X; is a continuous function of ¢; more formally, the function ¢ — X; is a
continuous function.
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Random Walk with N=500 steps

Position
& o
o o

|
-
o

0:2 0.4 0.6 0.8 1.0
Time (from 0 to 1)

o
o

FIGURE 3. Random walk with N = 500,ay = 1/v/500 [9]

We can also refer to Brownian motion starting at z. If X; is a Brownian motion
as defined above, the motion Y; constructed as

}/t:Xt—f—l'

is a Brownian motion starting at x.

This is a good definition of what Brownian motion should look like: it satisfies
continuity, randomness, and has the correct mean and variance. Now, we will
actually construct a process that satisfies it. There are several strategies for doing
so, but we will take a limit of random walks.

A random walk can be thought of as the path of a person randomly walking
down a number line. Letting S; be our position at time ¢, we start at S = 0. For
each discrete increment in time (we will use 1 for now), we flip a coin. Heads, we
increase our position by 1; tails, we decrease it by 1. Note that we are constrained
to a single axis of motion. More formally, we have

Sp=Y1+Ys+ Y,

where the Y; are independent random variables such that
IP{Y:l}:]P’{Y:O}:%

Here, P{Y = 1} denotes the probability of the event Y = 1 occurring. It should
be noted that this random walk already satisfies properties (i), (i7), and (i) of
standard Brownian motion if we constrain ¢ to be a whole number given by the
current timestep on our discrete walk.

Now, we will take some N and set the time increment to be At = %, defining a
new random walk as

Wiat = an Sk

where ap is a normalizing constant such that the variance of W7 is still 1. Since the
variance of Sy is N, we see that ay = LN is our desired constant. An example with
N = 500 can be seen in Figure 3. The details of the subsequent limiting process
are omitted here; the intuition is simply that we reduce the time increments as N
goes to infinity and thus create a continuous function satisfying the properties of
standard Brownian motion, as desired.

Brownian motion also satisfies two important scaling properties:

Lemma 4.1. (Scaling Properties) ([2], Section 8.3) Suppose X is a standard
Brownian motion. Then
(i) Ifa>0 and Yy = a~Y2X,,, then'Y; is a standard Brownian motion.
(ii) If X; is a standard Brownian motion and Yy = tX1)¢, then Yy is a standard
Brownian motion.
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Another important property of Brownian motion is the Markov property, which
states that the movement of Brownian motion after any fixed time % is itself Brow-
nian motion. In fact, Brownian motion satisfies a stronger version of this property,
for which we need to define the notion of a stopping time. We say that a random
variable T is a stopping time if for all ¢, observing the movement of the Brownian
motion before ¢ is enough to determine whether 7" has been reached. For example,
if you are riding a bus down the street, the instruction “get off at the first red house
you see” gives a stopping time but “get off at the last red house you see” does not
(since there could always be another red house further along). As such,

Tz = mf{t | Xt = JI},
is a stopping time representing the first time that the Brownian motion attains a
value of . We say that Brownian motion satisfies the strong Markov property,
since for all stopping times 7', the process beyond time T’
Yi = Xoor — X

is itself a Brownian motion independent of what X; has done up until time 7. [2]
We can use the strong Markov property to prove the following proposition.

Proposition 4.2. (Reflection Principle) Suppose X; is a Brownian motion with
variance parameter o? starting at a and a < b. Then for any t > 0,

P{X, > b for some 0 < s <t} =2P{X; > b},
where P{X} is the probability of event X occurring.

Proof. Let T =Ty, be a stopping time that denotes the first time that the Brownian
motion reaches value b. Consequently, we note that

P{X, > b for some 0 < s <t} =P{T <t}

by continuity. Furthermore, since Brownian motion has a normal distribution, the
probability that it takes on any particular value is 0. (Briefly, that this does not
contradict the fact that Brownian motion has probability 1 of taking on some value
in the reals has to do with the uncountability of the real numbers). Then since

P{T =t} =P{X, =b} =0,
we have that
P{T <t} =P{T < t}.
Now, we consider the event that {X; > b}. Since X; is normal with mean a and
variance o2, we have

P{X, > b} = e (@=a)*/20%t g,

*° 1
| T
Also, since the event {X; > b | T > t} has probability 0 of occuring, we can write
P{X; >b} =P{T <t}P{X; > b |T <t} =P{T < t}P{X; > b | T < t}.
Now, suppose T' < t. Then by the strong Markov property, if we let
Y = Xopr — Xr = Xy — b,

then Y; is itself a Brownian motion. Then Y;_r = X; — b is a normal random
variable with mean 0, and by the symmetry of the normal distribution we have
that

P{X;—b>0|T <t} =1/2.
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Therefore, we can conclude that

P{T < t} = 2P{X, > b} = 2 e~ (@=a)*/20%t o

> 1
/b V2rto?

5. ZERO SET OF BROWNIAN MOTION

One particularly interesting set that we can examine is the zero set of Brow-
nian motion, defined as

Z={t| X, =0}

We follow Section 8.3 in [2] in exploring it.

A natural question to ask is whether standard Brownian motion will eventually
return to its starting point after a certain period of time. As it turns out, the
answer is yes, and this result can be proven using the zero set.

Theorem 5.1. Standard Brownian motion will return to the origin an infinite
number of times with probability 1.

Proof. First, take t > 1. We want to find the probability that B; returns to the
origin between times 1 and ¢, or

P{Z N [1,t] # 0}.

Assume that X3 = b > 0. The probability that Xs = 0 for some 1 < s <t given
X7 = b is the same as the probability that Xy < —b for some 0 < s <t —1
without being given X; = b, which by symmetry is the probability that X, > b for
0 < s <t—1. By the previously proven reflection principle, this implies that

(e ]

]P’{XS:Oforsome1§s§t|X1:b}:2/b ﬁ
Again by symmetry, this probability is the same if X; = —b. We now seek to
average the probability over all possible values of b. We can use the probability
density function of Brownian motion p(z,y) to do this, which yields the relative
probability that X; starting at x is arbitrarily close to y. Since X; — X is normal,
has mean 0, and has variance t, we have
1

27t

—x2/2(t—1)dx.

pi(z,y) = e o)/t

where —oo < y < oo. Using this notation, we can write
(5.2) P{X, =0 for some 1 < s <t}

= / p1(0,0)P{X, =0 for some 1 < s <t|X; =b}db

— 00

—2*/2(t=1) g | b,

o[ Lo [ I e

At this point, we can use the substitution y = z/+/t — 1 to simplify the integral

to
4/ / ie_(b2+y2)/2dydb,
0 Jb(t—1)-1/2 2m
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which can be evaluated using polar coordinates. Specifically, we can use the outer
integral to integrate over r and the inner integral to integrate over 6, yielding

oo /2 1 )
(5.3) 4/ / —e " 2rdfdr
0 arctan((v/t—1)—1) 27

Y 1 1 o0 2
=4 - —arctan —— | — re”" 2dr
<2 \/t—1> 277/0

2 1
=1— —arctan
T

Vi1

Then this is the probability that Brownian motion will return to the origin at
some point between 1 and t; in other words,

1
N
As t goes to infinity, the right-hand sum goes to 1; hence, Brownian motion is
certain to eventually return to the origin. By the strong Markov property, since

the movement after Brownian motion returns to the origin is itself a Brownian
motion, this furthermore implies that it will return an infinite number of times. O

P{ZN[1,t]#0}=1— %arctan

Another interesting property of Z is its fractal dimension. We will use a concep-
tion of dimension similar, but different from Hausdorff dimension, called box (or
Minkowski) dimension.

Suppose A is a bounded set in R?. How many d-dimensional balls of diameter
€ are required to cover A? For 1-dimensional lines, this number is on the order of
e~ ! as € becomes small. For 2-dimensional objects, like squares, this number is on
the order of e2. The box dimension of A, then, is the number D such that the
number of e-diameter balls required to cover A is on the order of e~ as € becomes
small.

As it turns out, box dimension and Hausdorff dimension satisfy
dimHausdorff(E) < dimbox(E)
for all sets F¥. Furthermore, for the sets we will consider in the rest of this paper,
the two are equivalent.

Theorem 5.4. The box dimension of Z is 1/2 with probability 1.

Proof. Consider Z; = ZN[0,1] and n € N. We will try to cover Z; with balls
of diameter 1/n. For simplicity, we will divide the interval [0, 1] into n even sub-
intervals as follows:

n n

k—1 k
|: ,:|7 k:1723"'7n'
Note that this is similar to the alternative definition of box dimension discussed
involving placing the set under consideration onto a grid. We now want to know
how many of these intervals we need in order to cover the entire set. The probability
of needing a specific interval is

P(k,n) = P{Zﬂ [k;lﬂ # (Z)}

By the scaling properties of Brownian motion, scaling our original process by
(k—1)/n (and adjusting the argument accordingly) still yields standard Brownian
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motion. Therefore, we have

P(k,n) _P{Zﬂ [1&} #[b},

which we calculated above. Specifically,
2
P(k,n) =1— —arctan vk — 1,
T

and the expected number of intervals to cover Z; is
n n 2
P(k,n) = 1— — arct k—1.
; (k,n) Z{ —arc an v }

k=1
Recalling some trigonometry, we can use the Taylor series for arctan(1/t) to yield

m 1 1 m 1
t =———4+0(5)~=-——
arctanz = o — — + (=)

for large =, where O(1/2?) is a term on the order of 1/x2. Thus, we have

= = 2 2 [ 4
Pk,n)~1+ 7%7/ z—1)""2dz ~ =/n.

Therefore, it takes on the order of y/n intervals of length 1/n to cover Z, and the
box dimension of Z; is 1/2 with probability 1.

We then consider any 7" > 0 and define X'S = T-Y2Xp,. Then X'S is standard
Brownian motion, and

ZN10,T] is similar to {s € [0,1] | B, = 0}.

Since box dimension is invariant under similarities, and we have already proven the
dimension of the right-hand set is 1/2, we see that for every 7' > 0 we have with
probability 1
dimZN[0,T]=1/2

We now note that since Z can be represented as the countable union U2 ,(Z N

[0, k]), we have
dim(Z) = supdim(Z N [0, k]).
kEN

Since we have already proven that each of the sets on the right has dimension
1/2 with probability 1, and the intersection of countably many probability 1 events
still has probability 1, we conclude that dim(Z) = 1/2 with probability 1. a

The final interesting characteristic that we will investigate in Z is its topology.
Using the scaling properties of Brownian motion in Lemma 4.1, we note that Y; =
tX,,, is also a standard Brownian motion. As time goes to infinity in the X process,
time goes to 0 in the Y process. Then let Zx and Zy denote the zero sets of X;
and Y; respectively, noting that Z = Zx = Zy. Since Zx contains arbitrarily large
values of ¢, Zy contains arbitrarily small values of ¢; therefore, if I is an interval
containing 0, then Z N T # ().

The continuity of Brownian motion also implies that Z is closed: since t; — ¢t
implies Xy, — Xy, we have that if a sequence of points t; € Z converges to ¢, then
t € Z as well. In the previous paragraph, we showed that 0 is not an isolated
point in Z; i.e., there exist positive and decreasing points ¢t; € Z such that ¢; — 0.
Though we will not prove this, it can be shown that none of the points of Z are
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isolated points and that Z contains no interval; any such set that is also non-empty
and closed is topologically homeomorphic to the Cantor set. [2] [3]

6. MULTI-DIMENSIONAL BROWNIAN MOTION

Suppose X}, X2 .-+, X{ are independent standard Brownian motions. Then
we define the standard d-dimensional brownian motion as a vector-valued
stochastic process

X = (Xt17Xt2ﬂ 7X21)

The resulting stochastic process maintains continuity, randomness, mean 0, and
the strong Markov property. Furthermore, we can calculate the probability density
of X; assuming Xy = x and denote it as

1 2
— = ly=aP/2t
T,y) = e .
pt( ay) (2Tl't)d/2
We follow Sections 8.4, 8.5, and 8.6 of [2] in exploring multi-dimensional Brownian
motion.

We now wish to ask whether multi-dimensional Brownian motion will always
return to the origin, in a property we call recurrence. We have already shown
that Brownian motion is recurrent in one-dimension; in other words, there are
arbitrarily large times ¢ such that X; = 0.

First, let X; be a standard d-dimensional Brownian motion. Let 0 < R; < Ry <
oo and B = B(Ry, Rz2) be the annulus

B={zeR!| R <|z| <Ry}
We denote the boundary of the annulus by
OB = {z € R?| |z| = Ry or |z| = Ry},

which can be thought of as the collection of points bordering B. We let f(xz) =
f(z, Ry, R2) be the probability that X, starting at point x will reach the “outer”
boundary {y | |y| = Rz} before it reaches the “inner” boundary {y | |y| = R1},.
Then if we let

T =T1pp = inf{t | X;, € OB},
we can write

f(z) = E*[g(Xy)]

where g(y) = 1 for |y| = Ry and g(y) = 0 for |y| = R;. As it turns out, by taking
inspiration from the heat equation from physics and using some differential calculus
that we will not get into here, we find that

In|z| —In Ry

f(z) =¢(|z]) = Ry Ry’ d=2,

R — g
2—d 2—d

Ry = R;

The symmetry of Brownian motion shows why f(x) depends only on the distance of

x from the origin. We can then ask what the probability is, in different dimensions,
of Brownian motion returning arbitrarily close to the origin.

f(x) = o(lz]) =
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Take some € > 0 and let Ry = €. As Ry approaches infinity, what is the prob-
ability that Brownian motion started at some x € B reaches Ry before R;? In
two-dimensions, this can be calculated by

InRy —Ine

As a result, 2-dimensional Brownian motion will return arbitrarily close to the
origin with probability 1. However, will it ever return exactly to the point 0, such
that X; = 0 for some t? If the answer is yes, there must be some Ry such that X,
reaches 0 before reaching the circle of radius Ry with positive probability. However,
the probability of this event can be expressed as

) . B B . In|z] —Ine]
Rilinoo]P’ {|X¢| = € before | X;| = Ro} = 15% {1 - } =0

I _ B L In|z] —Ine]
E%P {|X¢| = € before | X;| = Ra} = }E}I(l) {1 - } =0.

InRy —Ine

In other words, Brownian motion will never return to exactly 0, despite returning
arbitrarily close to it an infinite number of times. We say that Brownian motion in
two-dimensions therefore satisfies neighborhood recurrence, but not recurrence.

What about in d > 37 We can again take ¢ > 0 and ask what the probability of
Brownian motion never returning to the ball of radius € is. Since |z| > €, we have

2—d 2—d d—2
lim 6_|a”:1—(6> > 0.

Ro—oo ¢2—d _ Rg—d ||

Since this probability is greater than 0, the probability of returning to the ball is
less than 1. As a result, the probability of returning an infinite number of times
to the ball is 0, and eventually Brownian motion will escape any ball around the
origin and go off to infinity. We say that Brownian motion in three dimensions or
higher is therefore transient. Mathematician Shizuo Kakutani summarized these
surprising results in a quote: a drunk man will find his way home, but a drunk bird
may get lost forever.

Finally, we wish to consider what the fractal dimension of the path of multi-
dimensional Brownian motion is. (The path of one-dimensional Brownian motion
has dimension 3/2. [4])

We will let X; be a standard d-dimensional Brownian motion and A be

A={zx eR?| X; = x for some t}.

In other words, A is the path of X;. For ease, we consider the bounded set A; =
An{z | |z| < 1}; since the proof holds for all such bounded sets, we can take the
limit as the bounds goes to infinity and prove it for A in general. We first look at
the unit ball, {z | |x| < 1}, and create a minimal cover with balls of diameter e.
The number of balls required is on the order of e~%; how many of these balls are
required to cover A;7

In d = 2, the same argument that proves neighborhood recurrence can also prove
that every open ball is visited by the Brownian motion. Therefore, every ball is
needed, and the dimension of A is two.

In d > 2, we can use the calculations that proved transience to show that the
probability that Brownian motion visits a ball of diameter /2 centered around a
point z (with |z| > €/2) is (¢/(2|z|))?~2. Therefore, when e is small and |z| is of
order 1, the probability of visiting a generic ball of radius € in the unit sphere is on
the order of ce?~2. Since each of the roughly e~¢ balls is chosen with probability on
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the order of ce?~2, the total number of balls needed is on the order of €?=2¢=% = 72,
and the dimension of A is two.

Therefore, we conclude that the path of multi-dimensional Brownian motion
(critically, regardless of the dimension) has dimension 2.
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APPENDIX A. PROOFS OF LEMMAS

Lemma 3.2. There exists a closed ball B such that S, (B) C Bforallk=1,--- ,m

Proof. Note that if S is a similarity with ratio r, we can use the definition and the
triangle inequality to yield

1S(x)] < 15(z) = 5(0)[ + [5(0)]
< rlz| + [S(0)].

If R is the radius of our desired ball B (which we will center on the origin), we want
an R such that if |z| < R (equivalently, if z € B), then |S(z) < R| (S(z) € B). Then
by the above inequality, we want to satisfy rR+ |S(0)] < R, or R > |S(0)|/(1 —r).
In this way, we can find a By, for each Sk such that Si(By) C Bg, and let B be the
By, with the largest radius R. Thus, Si(B) C B for all k. O

Lemma 3.3. The distance function dist on compact sets in R? satisfies the follow-
ing properties:
(i) dist(A, B) =0 if and only if A = B.
(i) dist(A4, B) = dist(B, A).
(iii) dist(A B) < dist(A, C) + dist(C, B).
(iv) dist(S(A),S(B)) < rdist(A, B).
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Proof. First, note that if A # B, then without loss in generality there must exist
some point x such that x € A\ B. Since B is compact, we can let 6 = d(z, B)/2 > 0
and find that B ¢ A%, so dist(A, B) > § > 0. To prove the other direction, we can
find that if dist(4, B) # 0, then without loss in generality there exists some ¢ and
x € A such that 2 ¢ B® D B, which implies that A # B. Thus, (i) is proven.

To prove (ii), we use the symmetry of the definition.

To prove (iii), we see that if A C C® and C C B2, then for any a € A, there
isa b€ B and ¢ € C such that d(a,c) < §; and d(c,b) < d2. Thus, by the triangle
inequality, d(a,b) < §; + 62, so A C B%*%. Since the inverse can be similarly
proven, we see that (7ii) is satisfied.

To loosely prove (iv), we use the fact that similarities are compositions of rota-
tions, translations, and dilations. Hausdorff distance can be shown to be rotation
and translation-invariant, while dilations by r can only dilate the distance by a
factor of r. O

Lemma 3.4. There exists a unique non-empty compact set F' such that
F=85(F)U---US,(F).

Proof. First, we take B as in Lemma 3.2, and let Fj, = S*(B) as defined above.
Since B is compact and non-empty, each F}, is as well, and sinec S(B) C B, we
have Fy C Fj_1. Then we let
oo
F=)F,
k=1

noting that F' is compact, non-empty, and that S(F) = N2 Fi = F. We can also
prove that F is unique. Suppose G is another compact non-empty set such that
S(G) = G. Then by Lemma 3.3, dist(F,G) < rdist(F,G), and since r < 1, this
forces dist(F,G) = 0, so F' = G. Thus, the proof is complete. O

Lemma 3.8. Suppose B is a ball in the covering B that satisfies
r' < diamB < r'"'  for some [ < k.
Then B contains at most em*~! vertices of the k" generation.

Proof. Let v be a vertex of the k** generation such that v € B, and let O(v) be its
corresponding open set. Then properties (i) and (i7) above guarantee that there
exists some fixed dilate B of B such that O(v) C B* and Bx contains the open
set of generation [ that contains O(v). We note that each open set in generation
| has volume approximately equal to r¥ by property (ii) above. Since Bx has
volume cr? (since r¥ is approximately the volume of B), B* can contain at most
c open sets of generation I, and therefore at most em”~! open sets of generation k.
Thus, B can also contain at most em”~! vertices of generation k, and the lemma is
proved. [
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