MIXING TIMES AND APPLICATIONS OF FINITE MARKOV
CHAINS

JHON LENIN ACUNA AREVALO

ABSTRACT. This work explores the concept of mixing times for finite Markov
chains and some specific examples. After introducing the theoretical frame-
work, including definitions, key theorems, and proofs, we present concrete
examples to illustrate the convergence to a stationary distribution. In particu-
lar, we analyze the mixing time of top-to-random shuffling and simple random
walks on graphs, providing both theoretical derivations and computational
simulations. The purpose of this study is to demonstrate how mixing time
analysis offers a practical framework for understanding the speed of conver-
gence in stochastic systems, bridging mathematical theory with computational
experimentation.
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1. INTRODUCTION

The study of Markov chains and their mixing behavior has its origins in the early
20th century, when Andrey Markov introduced stochastic processes to generalize
independence in probability theory [3]. Since then, Markov chains have become a
cornerstone of probability and combinatorics.
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The concept of mizing time, which quantifies the speed at which a Markov chain
approaches its stationary distribution, has attracted considerable attention because
it bridges abstract mathematical theory with practical applications. Understanding
how quickly a system “forgets” its initial state is not only of theoretical interest but
also essential in areas such as randomized algorithms, Markov Chain Monte Carlo
methods, and statistical mechanics.

Organization of the paper. In Section 2, we lay down the mathematical
background, including measure-theoretic foundations, total variation distance, and
the basic theory of Markov chains. Section 3 introduces the definition of mixing time
and its fundamental properties. In Section 4, we discuss techniques for estimating
mixing time, including strong stationary times and Monte Carlo methods. Section
5 presents a detailed analysis of the top-to-random shuffle, both from a theoretical
and computational perspective.

2. MATHEMATICAL BACKGROUND

2.1. Measure-Theoretic Foundations. To rigorously define probability distri-
butions and concepts like total variation distance, we begin with the language of
measure theory. More specifically, we begin with the so-called o-algebra, which will
give us the framework to define probability with all the well-known properties we
are used to.

The definitions and results presented in this section follow the exposition of
Lawler [1], with emphasis on the finite state space setting relevant to this work.

Definition 2.1 (o-algebra). Let Q be a non-empty set. A collection F C 29, where
29 is the collection of all subsets of €, is called a o-algebra if it satisfies:

(1) Qe F,

(2) Ae F= A e F,

B) {A e CF=U, L An € F.

That is, F is closed under complementation and countable unions.

Definition 2.2 (Measurable Space). A pair (2, F), where Q is a set and F is a
o-algebra on €, is called a measurable space.

Definition 2.3 (Probability Measure). Let (€2, F) be a measurable space. A func-
tion P : F — [0,1] is called a probability measure if:
(1) P(Q) =1,
(2) P is countably additive: for any countable collection {A,}5%, C F of
pairwise disjoint sets,

() - S

Definition 2.4 (Probability Space). A probability space is a triple (Q, F,P),
where:

e ( is the sample space (set of all outcomes),

e F is a o-algebra of measurable events,

e [P is a probability measure on (9, F).
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In the setting of finite sample spaces, we can construct a foundational example of
a probability space using the basic principles of discrete probability. Let us consider
a finite set

Q={1,2,...,n},

which we interpret as our sample space—the collection of all possible outcomes of
a given random experiment. Associated with this sample space is the power set
F = 2. This collection serves as a c-algebra, meaning that it is closed under
countable unions, intersections, and complements. Since €2 is finite, the distinction
between countable and finite is trivial here, and the power set itself automatically
satisfies the requirements of a o-algebra.

To assign probabilities, we define a probability mass function (pmf) p : Q — [0, 1],
which assigns a non-negative number to each outcome in 2, such that the total
probability over all outcomes sums to 1:

n
> p(i) =1
i=1
Using this function, we define the probability of any event A C Q as:

P(4) = " p(i).
€A
This definition satisfies the axioms of probability: non-negativity, normalization
(i.e,, P(Q) = 1), and finite additivity (i.e., if A and B are disjoint events, then
P(AU B) = P(A) + P(B)). Thus, the triple (2, F,P) forms a valid probability
space.
Let us now illustrate this construction with some examples.

Example 1: A Fair Die. Consider the experiment of rolling a fair six-sided die. The
sample space is
Q=1{1,2,3,4,5,6},

and since the die is fair, each outcome is equally likely:
1
p(i) = &’ fori=1,2,...,6.

If A={2,4,6} is the event that the die shows an even number, then

1 1 1 1
P(4) = P({2,4,6}) = p(2) +p(4) +p(6) = 5 + 5 + = = 5.
Example 2: A Biased Coin. Suppose we have a biased coin for which the probability

of heads is 0.7 and that of tails is 0.3. Then, the sample space is
Q={H,T}, pMH)=0.7 p(T)=0.3.
If A= {H}, then P(A) = p(H) =0.7.

General Observations. In both of these examples, the discrete sample space allowed
us to assign probabilities directly to individual outcomes and compute event proba-
bilities via summation. In fact, in both finite and countably infinite sample spaces,
it is common to use what is called the discrete o-algebra. This is nothing more
than the powerset of 2, denoted 2%, meaning that every subset of 2 is considered
a measurable event. The name “discrete” reflects that we are distinguishing every
single element of .
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In this setting, the probability measure P is completely characterized by its action

on singleton sets:
P({z}) = p(z), for each z € Q,
and extended linearly to arbitrary subsets of 2. In other words, once the proba-
bilities of individual outcomes are specified, the probability of any event A C € is
given by
P(A) = p().
z€A
Ezxample 3: Rolling Two Dice. Let us now consider a slightly more complex exam-
ple. Suppose two fair six-sided dice are rolled. The sample space consists of ordered
pairs:
Q={(,j):1<i,j <6},
so that |©2] = 36. Each outcome is equally likely with probability p(i,j) = %.
Define the event
A={(1,j) €Q:i+75=T}
i.e., the event that the sum of the two dice is 7. There are six such outcomes:
(17 6)7 (2’ 5)7 (37 4)’ (47 3)’ (57 2)7 (6’ 1)'

Hence, . )
P(A) =6 x %= 5
Such examples highlight the ease with which probability theory on finite sample
spaces allows explicit computation. This construction of probability measures on
finite spaces becomes the stepping stone towards the study of random variables,
expectation, and convergence—core topics of both theoretical and applied proba-

bility.

2.2. Total Variation Distance. Given two probability distributions on the same
sample space, how do we compare them? How close are they to each other? To
measure this notion of closeness, we often rely on a metric known as the total
variation distance. In the context of Markov chains, this metric plays a key
role, as it provides the means to begin quantifying the number of steps required
for the chain to converge to a certain limiting distribution—namely, the stationary
distribution, which we will define soon.

Definition 2.5 (Total Variation Distance). Let p and v be two probability mea-
sures on a common measurable space (£2, F). The total variation distance be-
tween p and v is defined as:

e = vlloy == sup |p(A) = v(A)].
AeF

This definition captures the maximum discrepancy between the probabilities
assigned by p and v to any measurable event A C Q).

Theorem 2.6 (Total Variation Distance for Finite or Countable Spaces [3]). Sup-
pose S is a finite or countable set. In this case, every probability measure on § is
determined by a probability mass function (pmf). Then for two probability measures
w and v with pmfs p(x) and v(z), we have

o= vy = % Z () — v(z)|.

e
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Proof. Let AT :={2 € Q:pu(x) >v(r)} and A~ :=Q\ AT. Then
sup [u(A) = v(A)| = p(AT) —v(AT) = > [u(x) — v(@)].
ACO zEAt

Note that for z € A* the terms u(z) — v(z) are nonnegative, while for z € A~ they
are nonpositive. Since

S () - v(a)) = 0

zEQ
because both distributions sum up to 1, it follows that the positive and negative
parts of the sum must have the same absolute value:

D @) —v(@)] = = Y [ulz) — (@)
zeAt TEA~

Therefore,

Y @) —v@)] =5 lulz) - v(x).

TEAT zeQ
Example 2.7. Let Q = {1,2,3}, and define two probability distributions

= vlley = £(j05 - 3] + 0.3 = 3] + Jo.2— 4]).

W=

1
33

Wl

1=(05,03,02), v= (
Method 1.

Compute each term:
05—1 =%, [03-1%]=45, [02-3%=2.
Adding;:

So

Method 2. Take
AT =z e Qi ) > v(a)} = {1.2}.
Then
p(A) = w(Ah) = (05+03) - (5 +3) =082 =L
No other subset yields a larger difference, so
lw—v|rv = § ~ 0.1667.
Both methods agree.

Remark 2.8. The total variation distance satisfies 0 < ||p — v||py < 1, with:
o lp—vlrv=0 = p=v,
o lu—vlrv=1+= pluv

The total variation distance can be interpreted as the maximum probability of
distinguishing between two distributions in a single experiment.
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2.3. Markov Chains. Markov chains constitute a fundamental and versatile class
of stochastic processes used to model systems that evolve in a probabilistic man-
ner over time. What distinguishes them is the Markov property: the future state
depends only on the present state, not on the sequence of past states. Broadly
speaking, a stochastic process is a collection of random variables indexed by time,
representing the evolution of a system whose future behavior is subject to inherent
randomness. In this section, we introduce the formal definition of discrete-time
Markov chains, describe their transition dynamics, investigate their long-term be-
havior, and examine key structural properties that govern their evolution.

Definition 2.9 (Discrete-Time Markov Chain). Let (2, F,P) be a probability
space. A sequence of random variables {X;}:cn, taking values in a countable state
space X C €, is a discrete-time Markov chain if for all ¢ € N and all states
T, X1y, Tt, Tep1 € X, we have:

P(Xip1 =241 | Xo=m0,..., Xy = 7)) = P(Xyp1 = 21 | Xy = 34).

This is known as the Markov property. In simple words, it states that the
value of the chain in the next step depends solely on the current state and not on
the whole past. The way in which we achieved this is by using a probability matrix,
aka transition matrix, in which each state has a given non-negative probability
of going to all the others, including staying in the current one.

Definition 2.10 (Transition Matrix). For a Markov chain {X;} on a finite or
countable state space X, the transition matrix P = (P(x,y))s yex is defined by:

P(z,y) =P(Xyy1 =y | Xy =2x), foralz,yel.
Each row P(x,-) defines a probability distribution on X, i.e.,

ZP(x,y) =1, VredlX.

yeX

Definition 2.11 (Distribution at Time t). Given an initial distribution py on X,
the distribution of the chain at time ¢, denoted p, is given by:

pe(y) =P(Xy =y) = (P (y) = > po(z)P'(x,y),
x€EX

where jig is the initial distribution at time 0 and the matrix P! represents the
probability of transitioning from one state to another in ¢ steps. What becomes
important from now on is the idea of a stationary distribution, a probability
distribution attained eventually by the chain which from then on remains the same
no matter how many more steps we take (notice that each step corresponds to a
right multiplication by the matrix P). As we shall see shortly, such a distribution
always exists when the initial probability matrix P satisfies certain properties and
enough time has elapsed. This concept is useful because it highlights the idea of
randomness: there comes a point in time when the chain effectively “forgets” its
initial state. In other words, regardless of the starting distribution g, the chain
converges to a well-defined distribution over the states that is as spread out as
possible.

Definition 2.12 (Stationary Distribution). A probability distribution 7 on X is
called a stationary distribution for the Markov chain with transition matrix P
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if
m=mnP, thatis, w(y)= Z m(x)P(x,y), VyeiX.
reX
In words, this means that if the chain starts out distributed according to =, then
after one step (and in fact after any number of steps) it will still be distributed
according to m. Once reached, the stationary distribution remains unchanged under
the dynamics of the chain.

Definition 2.13 (Irreducibility). A Markov chain with state space X and transition
matrix P is said to be irreducible if for any z,y € X, there exists ¢t € N such that:

P'(z,y) > 0.
That is, every state is reachable from every other state in a finite number of steps.
Definition 2.14 (Aperiodicity). A state z € X’ has period d € N if
d=ged{t >1: P'(z,z) > 0}.

In other words, the period measures the greatest common divisor of all possible
return times to z. It captures the idea of how long it can take, in terms of step
lengths, for the chain to return to the state once it has left. A chain is called
aperiodic if every state has period 1, meaning that returns to each state can
eventually occur at arbitrary times without being locked into a fixed cycle.

The stationary distribution of a Markov chain represents the “long-run” behavior
of the system: the probabilities of finding the chain in each state after it has been
running for a long time. For this concept to be meaningful, we must ensure that
such a distribution is unique — otherwise, the long-term behavior would depend
on which stationary distribution we happened to end up in, making predictions
ambiguous. The natural question, then, is: under what conditions does a Markov
chain have a single stationary distribution?

A particularly important class of chains, called ergodic chains, satisfies this prop-
erty. We say that a Markov chain is ergodic if it is finite, irreducible and aperiodic.
The theorem below formalizes the idea that these structural properties are exactly
what is needed to guarantee the existence of a unique stationary distribution.

Theorem 2.15 (Convergence to Stationarity [3]). Let {X:} be a Markov chain
with finite state space X and transition matriz P. If the chain is irreducible and
aperiodic, then there exists a unique stationary distribution mw, and for any initial
distribution o,

Jim |po P = 7| ry = 0.

Proof. Let X be a finite state space and let P be the transition matrix of an
irreducible Markov chain on X'. Since P is stochastic, the vector of all ones is a right
eigenvector with eigenvalue 1, so 1 is an eigenvalue of P, and equivalently of P
(the superscript refers to the transpose of the matrix). Because P is a nonnegative
irreducible matrix, the Perron—Frobenius theorem guarantees that this eigenvalue
has a strictly positive left eigenvector v > 0 satisfying P'v = v, and that the
1-eigenspace of PT is one-dimensional. Normalizing v to sum to 1 produces a

probability vector
v

C Yeeav(®@)
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which satisfies 7T P = 7T, so 7 is a stationary distribution. The one-dimensionality
of the eigenspace implies that any other stationary distribution must be a scalar
multiple of 7, and the normalization condition ) ., 7(x) = 1 then forces equality.
Thus 7 exists, is unique, and satisfies w(z) > 0 for all z € X (see [3, Chs. 1-2] for
further details).

Aperiodicity ensures that the chain is not trapped in a deterministic cycle. If the
period of a state were d > 1, then returns to that state would only occur at times
that are multiples of d, causing long-run behavior to oscillate between d distinct
patterns. Aperiodicity rules out such rigid cycling, allowing the distribution of the
chain to converge smoothly to the unique stationary distribution. In particular, for
all z,y € X,

lim P'(z,y) = n(y).

t—o0
Hence, no matter the starting state, the probability of being in y after t steps
converges to 7(y).
Finally, let pp be any initial distribution on X. The distribution of the chain at
time ¢ is
w(y) = po(z)P(z,y).

zeEX
Taking the limit and using P!(z,y) — 7(y) for each z,y gives

Jim gy (y) = > o) m(y) = m(y),

rzeX

so puy — 7 pointwise. Since X is finite, pointwise convergence of probability distri-
butions implies convergence in total variation, and therefore

lim ||py — 7|y = 0.
t—o0
]

We have thus established that if a finite Markov chain is ergodic, then the tran-
sition probabilities converge to the stationary distribution 7 regardless of the initial
state. This confirms both the existence and the uniqueness of 7w, and guarantees
that in the long run the chain will behave according to this single distribution.
With this foundational result, we can now explore a concrete example.

Example 1.16 (The Coupon Collector Problem). Consider a scenario
where we repeatedly collect coupons, each labeled with a number from the set
{1,2,...,n}. At each step, we choose one coupon uniformly at random and add it
to our collection if it is not already present. The process continues until we have
collected all n distinct coupons.

We can model this situation as a Markov chain whose state space is the set of
all subsets of {1,2,...,n}:

0= 2{1,2,...,71}’

where each state represents the set of distinct coupons collected so far. The chain
starts at the empty set @ (no coupons) and evolves by adding a randomly chosen
coupon to the set. If the coupon is already in the set, the state remains unchanged
for that step. Once the process reaches the full set {1,2,...,n}, it stays there
forever; in this sense the chain has reached a terminal state.
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The time it takes to collect all coupons is called the cover time (or coupon
collector time), formally defined as

T:=min{t >0: X, ={1,2,...,n}}.

This problem is of particular interest because it quantifies the number of steps
required to “cover” the entire set of states in a specific sense, and its analysis con-
nects naturally to the concepts of stationary distribution and convergence we have
just established.

One of the key questions for the coupon collector problem is not just the expected
time to collect all coupons, but also the probability that the process has not finished
by a given time. The next lemma provides a tail bound for the cover time 7, showing
that it is very unlikely for the process to take much longer than nlogn steps.

Lemma 2.16 (Tail Bound for 7 [2]). For any ¢ > 0,
IP’(T > nlogn + cn) < e “.

Proof. Let us first fix a particular coupon ¢ € {1,...,n}. After nlogn + cn steps,
the probability that coupon ¢ has not yet been collected is

nlog n+cn
1
-3
n

with z = L, we have

n’

x

Using the inequality 1 —x < e~

—C

1 nlogn+cn
(-2) < e-(nlognten)d _ g-(ogme) _ ©

n n

Now apply the union bound over all n coupons: the probability that some coupon
is still missing is at most

n- =e “
n
Since 7 is defined as the first time when no coupon is missing, the probability that
T exceeds nlogn + cn is bounded by e~ ¢, which is exactly the claim. O

This bound tells us that the distribution of 7 is sharply concentrated around
nlogn: adding only cn extra steps beyond nlogn makes the probability of not
having all coupons drop exponentially fast in ¢. This concentration property mirrors
the rapid convergence to stationarity which we will see in other examples such as
shuffling and random walks. This lemma will be used in the proof of Theorem 4.2
(top—to—random shuffle) to control the probability that the strong stationary time,
which we will define soon, exceeds a given threshold.

3. MIXING TIME

In the previous section, we established that an ergodic Markov chain converges
to a unique stationary distribution. However, from both a theoretical and prac-
tical perspective, knowing that convergence happens is only part of the story. In
real applications — whether simulating a physical system, designing a randomized
algorithm, or sampling from a complicated probability distribution — we need to
know how long it takes before the chain is “close enough” to stationarity for our
purposes.
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This is where the concept of mixing time becomes essential. The mixing time
measures the number of steps required for the distribution of the chain to be within
a chosen tolerance of the stationary distribution, no matter where the chain started.

Studying mixing times not only deepens our understanding of Markov chain
dynamics, but also connects to a broad range of applications. In this section and
the following one, we will introduce the formal definition of mixing time and discuss
some properties.

The treatment of mixing time and its fundamental properties is based on the
accounts given in Levin—Peres—Wilmer [3] and Sousi [2].

Definition 3.1 (Mixing Time). Let {X;}ien be an ergodic Markov chain with
transition matrix P on a finite state space X', and let 7 be its unique stationary
distribution. For € > 0, the mixing time is defined as:

tmix(€) := min {t eN: max | P (z,-) — 7THTV < 6} .

That is, tmix(e) is the smallest time ¢ such that, starting from any initial state
x € X, the distribution after ¢ steps is within ¢ in total variation distance of the
stationary distribution.

Lemma 3.2 (Subadditivity of Total Variation Distance [3]). Let pu,v, p be proba-
bility distributions on X. Then:
= pllev < llp = viiey + [lv = pllov-

Proof. By the triangle inequality for real numbers:

(@) = p()| < [p(x) —v(@)| +[v(z) — p(z)].
Summing over x € X and multiplying by %, we obtain:

lnpllav = 5 3 i) —p(@)| < 5 3 () = v@)| + o) = p@)]) = l—vliv+lv—pllry.
reX rzeX

O

Theorem 3.3 (Contraction of Total Variation Distance [2]). Let P be the transition
matriz of a Markov chain. Then for any two distributions p,v on X, and for any
teN,

|uP* = vP |ty < |lp— vy

Proof. Let u,v be two distributions on X'. Then:

(WP")(y) = Y p@)Pl(z.y), WP)y) =) v(z)P'(z,y).

reX reX
Taking the difference:

(P (y) = WP ()l = | Y (@) = v(@)P(,y)| < Y lule) = v(@)|P(z,y).

TEX reX
Summing over y:
S 1P ) - 0P < Y i) - v@)] S Phay) = 3 lul@) — v(@).
yeX TEX yeX zeX
Therefore,
|uP* = vP |ty < [lp— vy
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d

The contraction property tells us that the total variation distance between two
distributions decreases (or at least does not increase) as the chain evolves. In
other words, the chain forgets its initial state over time: two copies of the chain
started from different initial distributions will get progressively closer together in
distribution as we apply more steps of the transition matrix.

This observation is a cornerstone in the study of mixing times. It ensures that,
although the exact distance to stationarity at time ¢ can depend on the initial dis-
tribution, the rate at which convergence occurs is uniform: regardless of where the
chain starts, the distance to stationarity decreases over time at the same asymptotic
rate.

4. ESTIMATION TECHNIQUES FOR MIXING TIME

Since total variation distance is sometimes analytically intractable for large state
spaces, we rely on probabilistic and computational techniques to estimate the mix-
ing time. In this section, we present two important techniques: strong stationary
times, and Monte Carlo sampling.

The material on this section draws on the discussions in Levin—Peres—Wilmer [3]
and Berestycki [4].

Definition 4.1 (Stopping Time). Let {X;}+en be a Markov chain with state space
X. A random variable 7 : @ — N U {0} is called a stopping time with respect
to the chain if for every ¢ € N, the event {r = ¢} depends only on the values
Xo, Xq,..., X,

That is, whether or not the process stops at time ¢ is determined by observing
the chain up to and including time t.

Definition 4.2 (Strong Stationary Time). A stopping time 7 for a Markov chain
{X;} is called a strong stationary time if:

PX,=yl|r=t)=n(y), forallye X, teN.
That is, X, ~ 7w and is independent of the stopping time.

Theorem 4.3 (Total Variation Bound via Strong Stationary Time [4]). If T is a
strong stationary time, then:

| P () — TFHTV < P,(r > 1t).

Where P, (7 > t) denotes the probability that, when the chain starts from state
x, the random time 7 has not yet occurred by time ¢

Proof. Let A C X be any measurable set in the state space. Our goal is to bound
the absolute difference between the probability that the Markov chain is in set A
at time ¢, and the stationary probability of A.

We begin by decomposing the event {X; € A} into two disjoint events depending
on whether or not the strong stationary time exceeds ¢:

PX;€eA)=P(X: € A, 7<)+ P(X, € A, 7 >1).

Now, observe the key idea behind a strong stationary time: it is a stopping
time 7 such that once the process is stopped at time 7, the state X, is exactly
distributed according to the stationary distribution 7 and is independent of the
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past. Moreover, the definition implies that after time 7, the process remains in
stationarity. In particular, for all s <,

PX;eA|lT=8)=P(X;€A|T=3)=mn(4),
because X; = X, ~ m and does not change in distribution afterward.
Thus, for the first term:
P(X;e A, 7<t)= Zt:IP’(T =s)P(X;eA|T=3)= Xt:]P’(T = s)m(A) = w(A)-P(r <t).
s=0 s=0
Therefore,
PX;eA)=7(A) -P(r<t)+P(X; € A, 7 > 1).
Subtracting m(A) from both sides, we find:
IP(X; € A) —7n(A)| =|n(A) - P(r <)+ P(X; € A, 7 > t) — w(4)].
This simplifies to:
IP(X; € A) —7(A)|=|P(Xs € A, 7> 1) —w(A) - P(r > t)| <P(r > t),

because the worst-case discrepancy cannot exceed the total probability mass of the
event {7 > t}.
Finally, taking the supremum over all measurable sets A C X gives the total
variation bound:
||Pt(x, )= 7r||TV <P,(1 >1).
O

Definition 4.4 (Empirical Monte Carlo Estimation). Let {Xt(i)}lN:1 be N indepen-
dent runs of a Markov chain starting from state . The empirical distribution

ﬁ%) at time t is defined by

N

~ 1

NS\?(A) ::NE 1{Xt<i>€A}, for any A C X.
i=1

In the context of Markov chains, this construction is a way of approximating the
true distribution of the chain at time t. Instead of calculating p:(A) = P(X; € A)
analytically, we simulate N independent copies of the chain, record which states
they occupy at time ¢, and take the fraction that fall inside A. Thus ﬁg\t,) is the
simulated distribution of the chain at time ¢, and as N grows large it converges to
the exact distribution ;.

This empirical distribution approximates P(x,-), and one may compute:

5 [ - ).

~(t
Vo~ s
TV
TEXobs

|7
where X5 is the set of observed states in the simulation.

This method will be our main computational tool for estimating mixing times in
the examples that follow. By repeatedly simulating the Markov chain from a given
initial state and recording the proportion of visits to each state at various times, we
can construct empirical distributions and compare them to the stationary law using
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total variation distance. This approach allows us to visualize the convergence pro-
cess and to check how closely our theoretical bounds match what actually happens
in practice.

In the remainder of this work, we will apply this method to concrete scenarios
using Python implementations specifically designed for each case. For the interested
reader, the complete source code used to generate our simulations and plots is
available at:

https://github.com/JLenin312/Markov_Chains_Mixing Times_Paper.git

This repository contains a notebook that can be adapted for further experimenta-
tion.

5. TorP-TO-RANDOM SHUFFLING MODEL

In this section, we study a classical Markov chain on the symmetric group S,
modeling the process of shuffling a deck of n cards. The chain is ergodic — finite,
irreducible, and aperiodic — and thus converges to the uniform distribution on S,,.
Our goal is to analyze its mixing times both theoretically and via simulation. The
analysis follows the classical proofs as presented in Levin—Peres—Wilmer [3].

5.1. State Space and Stationary Distribution. The state space of interest is
the symmetric group:
Sp={0:{1,2,...,n} = {1,2,...,n} | o is a bijection}.

Each element o € S, corresponds to one possible ordering of the cards. The size of
the state space is |S,,| = n!, which grows factorially in n.

The stationary distribution 7 for both models is the uniform distribution on
Sh, €.,

(o) = i', for all o € 5,,.
n!

5.2. Top-to-Random Shuffle.

Definition 5.1 (Top-to-Random Shuffle). At each step, the top card of the deck is
removed and inserted uniformly at random into one of the n positions in the deck.
This process defines a Markov chain on S, with transition matrix P. The chain
is:
e Irreducible: From any permutation o, we can reach any other 7 € S,, by
successively moving cards from the top into the correct positions.
e Aperiodic: For any state o € 5,,, there is a positive probability that the
top card is reinserted into its original position, leaving the deck unchanged.
Thus P(o,0) > 0, so the period of every state is 1, and the chain is aperi-
odic.

Theorem 5.2 (Mixing Time of Top-to-Random Shuffle [4]). Let {X.} be the
Markov chain on S,, induced by the top-to-random shuffle. Then for any e € (0,1),

tmix(€) < nlogn + cn,
where ¢ = log(1/e).

Proof. We construct a strong stationary time 7 as follows:
e Initially, all n cards are unmarked.
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e Whenever a card is moved (i.e., selected from the top), if it is unmarked,
mark it.
e Let 7 be the first time at which all cards have been marked.

This process corresponds to the classical coupon collector problem, where
each “coupon” (card) must be collected at least once. So by standard tail bounds
for the coupon collector problem (Lemma 1.14):

P(r > nlogn+cn) <e “.

Because 7 is a strong stationary time, we can directly relate the tail probability
of 7 to the distance from stationarity. Recall Theorem 4.3:

1P (z,) = 7llrv < Pulr > t),
which tells us that if the strong stationary time has almost certainly occurred by

time ¢, then the chain is very close to its stationary distribution at that time.
In our case, we have already established that

P(r > nlogn+cn) < e “.

This means that after nlogn + cn steps, the probability that we have not yet
reached stationarity is at most e ¢. In other words, the mixing time tyix(€) is the
smallest time at which the chain is within € of stationarity for all starting states.
Setting e~ = ¢ (so ¢ = log(1/¢)) and by the tail bound:

tmix(€) < nlogn + cn,

as claimed.
Thus, the combination of the strong stationary time construction and the coupon
collector bound gives us a sharp, explicit upper bound on the mixing time. ([l

Remark 5.3. Forn =52 and ¢ = i, this yields tix =~ 278, reflecting the logarith-
mic growth rate predicted by the bound ¢yix(e) < nlogn + cn.

5.3. Simulation Results for n = 6. To complement this example, we report a
Monte Carlo simulation for a deck of n = 6 cards (A simulation for n = 52 is
computationally difficult since 52! is a very large number). Figure 1 shows the
decay of ||fit — 7||Tv as a function of the number of shuffles ¢ (solid blue), together
with the reference line ¢ = % (red dashed). We see a short transient fluctuation
during the first few shuffles, followed by a rapid drop; in this run, the curve falls
below 1/4 around ¢ &~ 9 shuffles. This is consistent with the fact that for small n

the empirical mixing time can be substantially better than the general upper bound
tmix(e) < nlogn+ nlog(l/e).
Forn=6and ¢ = %, the bound yields
nlogn + nlog(l/e) = 6log6+ 6logd ~ 19.07,

while the simulation indicates that ||fi — || Tv typically drops below 1/4 near ¢ ~ 9.

This gap can be explained by the fact that the theoretical bound is designed to
hold in a very general sense, namely for all values of n and for all possible starting
states of the chain. Because of this generality, the bound cannot take advantage of
the fact that for a fixed small n (say n = 6) and a specific starting state (sorted
deck), convergence may occur much faster. The simulation, by contrast, reflects
this faster convergence in the particular small state space we are testing.
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Top-to-Random Shuffle: Convergence to Uniform Distribution

0.5 4 —— TV distance to uniform
---e=1/4

0.4

Total Variation Distance
o
w

o
N

0.1

T T g T T T
0 10 20 30 40 50
Number of shuffles

FIGURE 1. Top-to-random shuffle for n = 6: empirical total vari-
ation distance to the uniform distribution versus shuffle count t.

6. SIMPLE RANDOM WALK ON THE COMPLETE GRAPH

In this section we analyze the simple random walk on the complete graph K,, and
compute the total variation distance to stationarity exactly, which yields a closed-
form expression for the mixing time. The analysis is inspired by the treatment in
Berestycki [4].

6.1. Model and basic properties. Let the state space be the vertex set X =
{1,2,...,n} of the complete graph K, for n > 3. The simple random walk on K,
is the Markov chain with transition probabilities

L if x,
Py =7 V7
0, ify=u=.

This finite Markov Chain satisfy our two important properties.

o Irreducibility: for any = # y we have P(x,y) = 1/(n — 1) > 0, hence all
states communicate in one step.

o Aperiodicity (when n > 3): there are cycles of lengths 2 and 3 through each
vertex, so the ged of return times contains both 2 and 3 and is therefore 1.

Moreover, the uniform distribution m(z) = 1/n for x € X is stationary, since for

T £y,
11 11

W(I)P(l’,y) = ﬁ n—1 = E n—1 :W(y)P(y71‘)7

and summing over x gives 7P = 7.
Theorem 6.1 ([3]). Fizn > 3 and a starting state v € X. Let a; := P'(z,x) and,
for any y # x, let by := Pt(x,y). Then

1Pl = (1 1) (-5 ) . r=012,

n n
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Consequently, for any € € (0,1), the e-mizing time is

tmix(e):mm{tGN: (17%)(ni1) Se}: ’Vlo%g((n—lg-‘

Proof. Let X; be a simple random walk on the complete graph K, where, at each
step, the chain jumps uniformly to a vertex other than the current one. The tran-
sition matrix P is given by:

0 ifx =y,
P(l’,y){l if o #
n—1 Y-

This Markov chain is irreducible and aperiodic (for n > 3), and it has a unique
stationary distribution 7, where 7(y) = & for all y € X.
Let us fix an initial state x and define:

e a; := P'(z,z) (the probability of being at the starting state at time t),
o by := Pt(x,y) for y # z (the probability of being in any other state, which
are all equal by symmetry).

Note that the total probability at time ¢ satisfies:
ay + (TL — 1)bt =1.
Now, the total variation distance at time t is:

1
Hpt(x’ )= 7rHTV ) Z

yeX

1
P - 3.

Breaking this sum into the contribution from x and the other n — 1 states:

1 )

+(n—1)|b — =
Using the fact that a; + (n — 1)b; = 1, we can compute:

ay — —
n n

l—at
by = ——.
t n—1
Thus:
1 1-— 1
be——| = |—2% - 2.
n n—1 n

Let’s now compute a; directly. At ¢t = 0, we are at x, so ag = 1. At t =1, we
have a; = 0 (no self-loops). But for ¢ > 2, the recurrence relation can be derived

as:
1 1 (n — 1)bt
Ft+1 = Zmpt(%y) - Z n— lbt - n—1 = b
yF#T yF#
Similarly, since a; + (n — 1)b = 1, we get:

1—at 1—at
by=—-", = = :
t n—1 at41 1

This gives a linear recurrence:

l—at
ag41 = n—l
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Solving this recurrence with ag = 1, we find:

Then:
L0065
a — —| = 1—— .
n n n—1
Similarly,
L |lma 1| 1 1\ 1
R n| n n—1 n—1

So the total variation becomes:

IW%%JﬂHV;l@i)(ni1y+(nn'@i>(ni1Y‘niJ

This proves the main formula. To obtain the mixing time, we solve:

(1_111) (ni1>t§8'

log (=2

Taking logs:

>
~ log(n—1)
So the minimal such integer is:
log (71781/")
tmix = | 7 N
(¢) log(n — 1)

O

6.2. Simulation Results on K, for n = 52. To complement, we carried out a
Monte Carlo experiment for the simple random walk on the complete graph Ko,
starting from a fixed vertex Figure 2.

By Theorem 5.1.,
P =l = (- =)

For n = 52 this becomes

51 ~0.9808, t=0,
1
51 1 5 ~ 0.01923, t=1,
[Pl =555 =17 )
55 ~ 377 x 1077, t=2,

1
51

Thus, the exact TV distance plunges from =~ 0.98 at t = 0 to ~ 0.019 after a
single step, and is already< 1073 by ¢ = 2.

This example vividly contrasts two regimes: a large initial discrepancy at ¢ = 0;
and a near-instant approach to stationarity on Kjo, where one step already leaves

and decays by another factor = each additional step.
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Random Walk on K_n (n=52), trials=20000

1.0 1 —e— Estimated TV (Monte Carlo)
0.8 1
@
(¥
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8
2 0.6 1
fal
c
S
®
@
S 041
T
e
0.2
0.0 o e - . e — e
0 1 2 3 4 5 6 7 8
t (steps)

FIGURE 2. Random walk on K, with n = 52: empirical total
variation distance to the uniform distribution versus time .

the walk within about 2% in TV of uniform, and two steps drive it to extreme
precision.

ACKNOWLEDGMENTS

I would like to express my gratitude to my mentor, Brin Harper, for her invalu-
able guidance, encouragement, and insightful feedback throughout the course of this
project. Her patience and support were fundamental in shaping both the direction
and the clarity of my work. I am also grateful to Peter May and my classmates
for making the REU 2025 an unforgettable experience filled with collaboration,
learning, and inspiration.

7. BIBLIOGRAPHY

REFERENCES

[1] Gregory F. Lawler. Introduction to Stochastic Processes. Retrieved from: https:
//hamband.math.sharif.ir/wiki/_media///22635/14002/introduction_to_stochastic_
processes_-_gregory_f._lawler.pdf

[2] Perla Sousi. Mizing Times of Markov Chains. Lecture notes, University of Cambridge. Decem-
ber 8, 2020. Retrieved from: https://www.statslab.cam.ac.uk/~ps422/mixing-notes.pdf

[3] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times
(2nd ed.). Retrieved from: https://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf

[4] Nathanaél Berestycki. Mizing Times of Markov Chains: Techniques and Examples. Lecture
notes, University of Cambridge. November 22, 2016. Retrieved from: https://homepage.
univie.ac.at/nathanael.berestycki/wp-content/uploads/2022/05/mixing3.pdf


https://hamband.math.sharif.ir/wiki/_media/دانشکده/دروس/22635/14002/introduction_to_stochastic_processes_-_gregory_f._lawler.pdf
https://hamband.math.sharif.ir/wiki/_media/دانشکده/دروس/22635/14002/introduction_to_stochastic_processes_-_gregory_f._lawler.pdf
https://hamband.math.sharif.ir/wiki/_media/دانشکده/دروس/22635/14002/introduction_to_stochastic_processes_-_gregory_f._lawler.pdf
https://www.statslab.cam.ac.uk/~ps422/mixing-notes.pdf
https://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
https://homepage.univie.ac.at/nathanael.berestycki/wp-content/uploads/2022/05/mixing3.pdf
https://homepage.univie.ac.at/nathanael.berestycki/wp-content/uploads/2022/05/mixing3.pdf

	1. Introduction
	2. Mathematical Background
	2.1. Measure-Theoretic Foundations
	2.2. Total Variation Distance
	2.3. Markov Chains

	3. Mixing Time
	4. Estimation Techniques for Mixing Time
	5. Top-to-Random Shuffling Model
	5.1. State Space and Stationary Distribution
	5.2. Top-to-Random Shuffle
	5.3. Simulation Results for n=6

	6. Simple Random Walk on the Complete Graph
	6.1. Model and basic properties
	6.2. Simulation Results on Kn for n=52

	Acknowledgments
	7. Bibliography
	References

