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SACHA DE POYEN

Abstract. This paper aims to motivate the correspondence between alge-

braic sets and radical ideals by explaining why a more general correspondence

between sets of n-tuples and sets of polynomials in n variables fails. To do
this, we introduce the necessary ideas, including ideals, varieties, then prove

the Nullstellensatz in both an affine and projective situation. The first part in-

troduces readers to ideals and varieties, as well as affine and projective spaces.
The second proves the Nullstellensatzes, using the Rabinschowitz trick for the

affine case; and uses the affine case, as well as some facts about projective

ideals to prove the projective nullstellensatz case.
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1. Ideals and Varieties

Definition 1.1. An(k) is the set of to n-tuples of elements of the field k. If the
field is clear from the context, then we denote it by An.

It is natural to ask if there is a correspondence between subsets of C[x1, ..., xn]
and An, and if so, what would such a correspondence look like. In a perfect world
we would have something of the following form:

{sets of polynomials} ↔ {subsets of An}.

A strong candidate arises when examining the relationship between sets of polyno-
mials and their solution sets. We define a set map

V : {sets of polynomials} → {subsets of An},
V (S) = {x ∈ An|f(x) = 0 for all f ∈ S},

and another map

I : {subsets of An} → {sets of polynomials},
I(V ) = {f ∈ C[x1, ..., xn]|f(y) = 0 for all y ∈ V }.
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These maps have an interesting property called reverse inclusion. If I ⊂ J , then
V (J) ⊂ V (I), and if V ⊂ W , then I(W ) ⊂ I(V ). Unfortunately V isn’t injective;
the sets {x} and {x2} have the same set of zeroes and thus have the same image
under V . Nor is it surjective; no set of polynomials has Z as its solution set. The
same is true for I; the same examples prove this. To show that I isn’t injective,
take the sets Z and A. Their images under I are both {0} as no other polynomial
in one variable has infinitely many solutions. Let f ∈ I(S), then f2 ∈ I(S) as well.
If f ̸= 0, then f2 ̸= f , so I(S) ̸= {f}. As there is no set S such that I(S) = {f}, I
isn’t surjective on C[x1, ..., xn].

Definition 1.2. A subset X of An is called algebraic if there exists some set F of
polynomials such that f(x) = 0 for all f ∈ F and x ∈ X.

Restricting the codomain of V from all subsets of An to the set of algebraic sets
makes V surjective.

{sets of polynomials} → {algebraic subsets of An}.

If we want V to be injective, we also need to introduce the concept of an ideal.

Definition 1.3. We say a subset I of a ring R is an ideal if:
1. i+ j ∈ I for all i, j ∈ I
2. ri ∈ I for all i ∈ I and r ∈ R

Lemma 1.4. I(V ) is an ideal.

Proof. It suffices to show I(V ) is closed under addition and h · f ∈ I(V ) for all
f ∈ I(V ) and all g ∈ C[x1, ..., xn].

Let f, g ∈ I(V ) and h ∈ k[x1, ..., xn]. Then for all y ∈ V, (f + g)(y) = f(y) +
g(y) = 0.

Further, fh(y) = 0 · h(y) = 0, so fh ∈ I(V ) as well. □

We can restrict V to ideals without losing any algebraic sets, as the vanishing
set of a set of polynomials is the same as the vanishing set of the ideal generated
by those polynomials.

Lemma 1.5. V (S) = V (I) where I is the ideal generated by S.

Proof. Let y ∈ V (S) and f ∈ I. I is generated by S, so f = a1g1+a2g2+ ...+angn
for some {g1, ..., gn} in S. It follows that f(y) =

∑
1≤i≤n aigi(y). Each gi ∈ S, so

gi(y) = 0 for all y. Then f(y) = 0. □

In fact, the reason why this map is denoted by the letter I is because I(V ) is the
ideal corresponding to V . But even then, the ideals (x) and (x2) still correspond
to the same algebraic set, so the function isn’t injective.

Lets investigate why two ideals (f) and (g) might generate the same algebraic
set. In the case of (x) and (x2), we have that x|x2, and one might assume that
is a sufficient condition, but that isn’t true. Take for example f = (x − a) and
g = (x − a)(x − b), then V (f) ⊊ V (g). The example of (x) and (x2) gives us
another important clue, namely that V (f) = V (fn) for all n. Combining the two
insights above, we realize that (f) and (g) generate the same set when f |gn and
g|fm. To generalize this to non-principal ideals, V (f1, ..., fn) = V (g1, ..., gm) when
there exists an N such that fN

i ∈ (g1, ..., gm) and M such that fM
j ∈ (f1, ..., fn).
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Proof. To see this apply the fact that gn has the same set of solutions as g, and that
f |gn implies that V (f) ⊂ V (gn) = V (g). As g|fm we also have V (g) ⊂ V (fm) =
V (f), thus they are equal. □

Not all ideals are principal, and for non-principal ideals, Then we can eliminate
this “double counting” by only considering ideals which are radical.

Definition 1.6. For some ideal I,
√
I = {a|an ∈ I for some n ∈ N}

Definition 1.7. An ideal M is called radical if
√
I = I.

This gives us the desired bijection, but to show that, we must first prove Hilbert’s
nullstellensatz, which we will return to later. In the mean time, I would like to prove
that for all algebraic sets X, I(X) is a radical ideal.

Proof. Let X be an algebraic set, and suppose fn ∈ I(X), then fn(x) = 0 for
all x ∈ X, if fn(x) = 0, suppose for contradiction that f(x) = a ̸= 0, then
fn−1(x) = 0, and by induction f2(x) = 0. Yet 0 = f2(x) = f(x)f(x) = a2 for some
a ̸= 0, yielding a contradiction as the product of nonzero numbers is nonzero (over
C). □

We should turn our attention to the other map, that from algebraic sets to ideals.
There are cases where U ̸= V (I(U)), like the aforementioned Z case. One can find
other examples of this by subtracting a single (or finite number) of points from an
algebraic set. Then if we limit ourselves to sets of the form V (I(U)), we have no
double counting, and each thing of the form V (I(U)) is also an algebraic set. The
same prodcedure that makes I surjective, makes V injective.

Lemma 1.8. I(U) = I(V (I(U)))

Proof. Consider some point x ∈ U , then f(x) = 0 for all f ∈ I(U), and thus
x ∈ V (I(U)). Thus U ⊂ V (I(U)).

Consider some f ∈ J , then f(x) = 0 for all x ∈ V (J), thus f ∈ I(V (J)). Thus
J ⊂ I(V (J)).

Then consider I(V (I(U))). On the one hand U ⊂ V (I(U)) so I(U) ⊃ I(V (I(U)),
on the other hand, I(U) ⊂ I(V (I(U)). Then they are equal. □

From this, we conclude that for two subsets of U,W of An, I(U) = I(W ) =
I(V (I(U)). Considering only elements of the form V (I(U)) eliminates the possibil-
ity of double counting.

Additionally, restricting to radical ideals makes this map surjective. If R is a
radical ideal, then V (R) is an algebraic set, and I(V (R)) = R (again by Hilbert’s
nullstellensatz), thus every radical ideal has a preimage under V .

We can then use ideals instead of sets, as no useful information is lost in doing
so. Restricting ourselves to ideals in place of sets goes a long way to giving us
a correspondence between k[x1, ..., xn] and An, but this relationship is still not
bijective. The second direction of the previous proof touches on an important
property of this ideal-variety correspondence, namely reverse inclusion. If I ⊂ J ,
then V (J) ⊂ V (I). This type reverse inclusion will be familiar to anyone who knows
of the Galois correspondence, where a subset of the Galois group corresponds fixes
a larger Galois extension. There are also specific types of ideals that the reader
should be familiar with:

Definition 1.9. An ideal P is called prime if ab ∈ P if and only if a ∈ P or b ∈ P .
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Definition 1.10. An ideal M is called maximal if it isn’t contained in any proper
ideal.

Also here is a theorem that one should know:

Theorem 1.11. For P prime, R/P is an integral domain, for M maximal R/M
is a field.

Knowledge of this is necessary for some proofs in this paper. See Dummit and
Foote for further details. The following may be new to a reader:

Lemma 1.12. Let K be an algebraic extension of F . If F is algebraically closed,
then F ∼= K.

Proof. If K is algebraic of F , then for all k ∈ K, there exists f ∈ F [x] such that
f(k) = 0. Then k ∈ F , as F contains its roots. □

Theorem 1.13. V (I(X)) ⊃ X and I(V (S)) ⊃ S.

Proof. Let x ∈ X, then for all f ∈ I(X), f(x) = 0, thus x ∈ V (I(X). Similarly, let
f ∈ S, then for all x ∈ V (S), f(x) = 0, then f ∈ I(V (S)). □

Theorem 1.14. If X is algebraic, V (I(X)) = X.

Proof. IfX is algebraic, thenX = V (J) for some ideal J , and V (I(X)) = V (I(V (J)).
As I(V (J)) ⊃ J , V (I(V (J))) ⊂ V (J). On the other hand, V (I(V (J)) ⊃ V (J). □

Theorem 1.15. Every prime ideal is radical.

Proof. Let P be a prime ideal; suppose for contradiction that it isn’t radical. Then
there exists some a /∈ P and n ∈ N such that an ∈ P. If ak ∈ P and a /∈ p, then
ak−1 ∈ P as P is prime. By induction, a ∈ P , yielding a contradiction. □

Theorem 1.16. V is irreducible if and only if I(V ) is prime.

Proof. Suppose V is reducible, then there exist U,W such that U ∪W = V , then
I(V ) ⊂ I(U) and I(V ) ⊂ I(W ). Pick F ∈ I(U)− I(V ) and G ∈ I(W )− I(V ), then
V (FG) = V (F ) ∪ V (G) ⊃ U ∪W = V. Thus FG ∈ I(V ).

Suppose I(V ) isn’t prime, then there exist F,G /∈ I(V ) such that FG ∈ I(V ),
and consider the ideals (I(V ), F ) and (I(V ), G). Both ideals contain I(V ) so
V (I(V ), F ) ⊂ V and V (I(V ), G) ⊂ V so V (I(V ), F ) ∪ V (I(V ), G) ⊂ V. Further,
V every ⊂ V (I(V ), F ) ∪ V (I(V ), G) as for all y ∈ V , fg(y) = 0 implies either
f(y) = 0 or g(y) = 0. [2] (1.5) □

In fact, it is true in general that V (IJ) = V (I) ∪ V (J).

Theorem 1.17. The ideal (x1 − a1, x2 − a2, ..., xn − an) is maximal.

Proof. Suppose that I = (x1 − a1, ..., xn − an) isn’t maximal. Then there exists
some ideal J satisfying I ⊊ J . I ⊊ J implies that V (J) ⊊ V (I), but V (I) =
{(a1, a2, ..., an)} consists of only one point, so V (J) = ∅. We conclude that J =
C[x1, ..., xn].

□
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2. Projective Space

Before progressing to the Nullstellensatz, we should also introduce the concept
of projective space. Consider some points a and b of An+1. Each of these points
defines a line passing through the origin. Define a relation where a b if (0, a, b)
are colinear, or equivalently a = λb for some λ ∈ R. This relation is:
(i) Symmetric, as a = λb implies b = 1

λa.
(ii) Reflexive, as a = 1 · a
(iii) Transitive, as a = λ1b and b = λ2c implies a = λ1λ2c.
Then this is an equivalence relation. Let Pn denote the set of equivalence classes of
An+1 under this relation. Pn can be though of as the set of lines in An+1 \ 0 that
pass through the origin.

Any point P ∈ Pn, can be written P = [x1 : x2 : ... : xn : xn+1]. Fulton notes
that the values of xi are not well defined, but that the ratios xi : xj are well defined
for all xj ̸= 0. In essence P = [x1 : x2 : ... : xn+1] = [λx1 : λx2 : ... : λxn+1] for
all λ ∈ R − 0. Note that xi = 0 if and only if λxi = 0, so the zeroes are the same
regardless of the choice of λ.

In this way, Pn can be divided into two (disjoint) sets, namely the set of points
whose xi coordinate is non-zero, and those whose xi coordinate is zero. Define
Ui = {[x1 : x2 : ... : xn+1]|xi ̸= 0}. As the choice of i is arbitary, we will consider
only Un+1 going forward.

Every point P ∈ Un+1 can be written in the form [x1 : ... : xn : 1]. This form
suggests a natural bijection

An −→ Un+1

(x1, x2, ..., xn)→ [x1 : x2 : ... : xn : 1].

Denote H∞ = Pn − Un+1 = {[x1 : ... : xn : xn+1]|xn+1 = 0}. H∞ can be
identified with Pn−1.

It is natural to wonder why Un+1 is identified with An while H∞ is identified
with Pn−1. The answer lies in the fact that for some point P ∈ H∞, λP = [λx1 :
... : λxn : λ · 0] = [λx1 : ... : λxn : 0] = [x1 : ... : xn : 0], while for P ∈ Un+1,
P = [x1 : ... : xn : 1] = [λx1 : ... : λxn : λ] ̸= [λx1 : ... : λxn : 1].

Before progressing, we should ask ourselves what exactly it means for a P ∈ Pn

to be a zero of a polynomial. There is no canonical (n + 1)-tuple corresponding
to P , instead, we say that f(P ) = 0 if f(λx1, ..., λxn) = 0 for all λ > 0 where
x = [x1 : ... : xn : xn+1] are homogeneous coordinates for P .

Definition 2.1. Given a set S, the cone of S is the set {λx|λ > 0, x ∈ S} ∪ {0}.
The cone of S is denoted C(S). If you were to imagine that S was a circle over

the origin, then C(S) would be the cone with S as a base, and the origin as the
vertex.

Definition 2.2. A polynomial p(x1, x2, ..., xn) is called homogeneous in n variables,
or simply homogeneous if all its terms are of the same degree. In his book, Fulton
refers to homogeneous polynomials as forms.

Homogeneous polynomials have the following property:

F (λ(x1, ..., xn)) = λnF ((x1, ..., xn)).

For homogeneous coordinates x and y corresponding to P , F (y) = λF (x), and F (x)
and F (y) correspond to the same projective point. As a consequence, F (P ) is well
defined for all P ∈ Pn.
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Definition 2.3. An ideal I is called homogeneous if its is generated by homoge-
neous polynomials.

Lemma 2.4. Ip(X) = Ia(C(X)); if I homogeneous and Vp(I) ̸= ∅, then C(Vp(I)) =
Va(I).

Proof. First suppose that f(x) ∈ Ip(X), then f(λx) = 0 for all x ∈ X, or equally
f(y) = 0 for all y ∈ C(X). Thus f ∈ Ia(C(X)).

Now suppose f ∈ Ia(C(X)), then f(λx) = 0 for all x ∈ X. Thus f ∈ Ip(X).
Thus (1) is proved.

Now for (2). Let I be homogenous, and Vp(I) ̸= 0. First note that if x ∈ Vp(I),
then x ∈ Va(I) as f(x) = 0 for all f ∈ I, thus Vp(I) ⊂ Va(I). Then, we know that
I is homogeneous, so f(λx) = λf(x), thus C(Vp(I)) ⊂ Va(I).

Additionally, x ∈ Va(I) implies λx ∈ Va(I) as I homogeneous. Then [x] ∈ Vp(I)
so x ∈ C(Vp(I)). Thus C(Vp(I)) = Va(I) by mutual inclusion. □

3. Nullstellensatz(es)

To prove the Affine Nullstellensatz, better known as Hilbert’s Nullstellensatz,
we start by proving the weak Nullstellensatz, then use what is known as the Rabi-
nowitsch trick.

Theorem 3.1. Let k be a field with infinitely many elements, and let A = k[a1, ..., an],
be a finitely generated k-algebra. If A is a field, then A is algebraic over k.

Proof. Assume for contradiction that A is not algebraic over k, then there is some
t ∈ A such that t is transcendental over k. If A is a field, then k[t] ⊂ A implies
k(t) ⊂ A, but this poses a problem, namely that k(t) ∼= k(x), which is not a
finitely generated k-algebra. To see this, assume there exists set {v1, ..., vm} such
that k[v1, ..., vm] = k(x), then each vi =

fi
gi
, so they have a common denominator

d =
∏

gi. This implies that for all z ∈ k[v1, ..., vm], there exists l such that
dlz ∈ k[x] (in particular l is the degree of the minimal polynomial of z). But this
isn’t true for k(x) as b is divisible by only finitely many prime (irreducible) elements
of k[t], while Euclid’s theorem shows that there are infinitely many primes in k[t],
thus there are some elements of k(t) whose denominators cannot be eliminated by
any power of d. [1](Hulek 1.15, for alternative proof see Fulton 1.44) □

Theorem 3.2 (Weak Nullstellensatz). Let I be a proper ideal of C[x1, ..., xn], then
V (I) ̸= 0.

Proof. As I is a proper ideal, it is contained in some maximal ideal J . K =
k[x1, ..., xn]/J is a field. By Theorem 3.1, we have that k[x1, ..., xn]/J is an algebraic
extension of k. By our assumptions, k is algebraically closed, so k[x1, ..., xn]/J ∼= k.
The first isomorphism theorem gives us a surjective homomorphism

π : k[x1, ..., xn] −→ k

with kernel J and an isomorphism

φ : k = k[x1, ..., xn] −→ k.

Suppose π(xi) = bi, and define ai = φ−1(bi) then xi−ai ∈ J. Thus (x1−a1, ..., xn−
an) ⊂ J. But (x1 − a1, ..., xn − an) is a maximal ideal so J = (x1 − a1, ..., xn − an).
Then V (J) = {ai}, and I ⊂ J implies V (J) ⊂ V (I), so V (I) ̸= ∅. [2] (Fulton
1.7) □
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Theorem 3.3 (Hilbert’s Nullstellensatz). I(V (I)) =
√
I

Note: Fulton says that I(V (I)) =
√
I is equivalent to “if G vanishes whenever

F1, ..., Fn vanish, then Gn = a1F1+...+anFn”. This is true for the following reason,
which took me longer to grasp than I care to admit: if F1, ..., Fn be the generators
of I, and G vanishes simulatneously with them, then V (I) ⊂ V (G), which implies

that I(V (G)) ⊂ I(V (I)) =
√
I. As G ∈ I(V (G)), G ∈

√
I, so there exists n such

that Gn ∈ I. As I is generated by the Fi, G
n be written as a sum of Fi.

Proof. Consider a set of polynomials such that G vanishes whenever all the Fi

vanish, then consider the ideal (F1, ..., Fn, 1− xn+1G) of k[x1, ..., xn+1]. Note that
if all the Fis are zero then so is G, thus 1 − xn+1G = 1. Thus this ideal has no
shared solutions, of V (F1, ..., Fn, 1− xn+1G) = ∅. Thus J cannot be a proper ideal
of k[xn+1] by the weak nullstellensatz. Thus 1 ∈ J , so 1 can be written as a linear
combination of the Fi and G. Then

1 = A1(x1, ..., xn+1)F1 + ...+An(x1, ..., xn+1)Fn +B(x1, ..., xn+1)(1− xn+1G)

. Substituting xn+1 = 1
y for some y, yields

1 = A1(x1, ...,
1

y
)F1 + ...+An(x1, ...,

1

y
)Fn +B(x1, ...,

1

y
)(1− 1

y
G).

For sufficiently large n, the 1
y terms vanish, and

Y n = A1(x1, ..., y)F1 + ...+An(x1, ..., y)Fn +B(x1, ..., Y )(Y −G).

As Y is arbitrary, setting Y = G gives

Gn = A1(x1, ..., y)F1 + ...+An(x1, ..., y)Fn

for sufficiently large n. [2] (Fulton 1.7) □

This has several corollaries, the most important of which are three bijections:

{radical ideals} ←→ {varieties of An},

{prime ideals} ←→ {irreducible varieties An}, and
{maximal ideals} ←→ {points in An}.

Proof. The forward direction of the first bijection follows from Theorem 1.14, and
the reverse implication follows from Hilbert’s nullstellensatz (Theorem 3.3). The
second bijection is proved in Theorem 1.16. The third bijection comes from Theo-
rem 1.17 and the reverse comes from the weak nullstellensatz (Theorem 3.2).

For some radical ideal J ,
√
J = J , so I(V (J)) = J , and V (I(X)) = X for any

algebraic set X. When understood as functions V and I from the radical ideals of
C[x1, ..., xn] to the algebraic sets of An and visa-versa, V and I are each other’s
inverse. In other words, we have built a one-to-one correspondence.

Note that an ideal M generated by {x1− a1, ..., xi− ai, ..., xn− an} corresponds
to a variety consisting of a single point. Then consider C[x1, ..., xn]/M . This is
isomorphic to C, thus M is maximal. Now suppose M is maximal, then it isn’t
contained in any proper ideals, by correspondence this means that V (M) doesn’t
contain any proper algebraic subsets. Yet for all x ∈ V (M) {x} is an algebraic
subset of V (M), so {x} = V (M).

Now consider some prime ideal P . □
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Theorem 3.4 (Projective Nullstellensatz).
(1) Vp(I) = ∅ if and only if there exists some integer N such that I contains all
homogeneous polynomials of degree ≥ N .
(2) If Vp(I) ̸= 0, then Vp(Ip(I)) =

√
I.

Proof. We have four equivalent statements:

(i) Vp(I) = ∅
(ii) Va(I) ⊂ {(0, 0, ..., 0)}
(iii) Rad(I) = Ia(Va(I)) ⊃ (X1, ..., Xn+1)
(iv) (X1, ..., Xn+1)

N ⊂ I for some N .

(i)⇒ (ii):
As shown above, Va(I) = C(Vp(I)), thus if Vp(I) = ∅, then C(Va(I)) = C(∅) ⊂
{(0, 0, ..., 0)}.
(ii)⇒ (iii):
As Va(I) ⊂ {(0, 0, ..., 0)}, then Ia(Va(I)) ⊃ Ia({(0, 0, ..., 0)}, or equally,√
I ⊃ (X1, ..., Xn+1).

(iii)⇒ (iv):

As (X1, ..., Xn+1) ⊂
√
I, then we know that for all Xi, there exists ni such that

Xni
i ∈ I. Then let N =

∑
(ni − 1) + 1. Then an element F ∈ (X1, ..., Xn+1)

N is
the product F = F1F2...FN where each Fj ∈ (X1, ..., Xn+1), so there is some Xi

that divides Fj . We only need to consider the case where Fj ∈ {X1, ..., Xn+1}, as if
the product of the Xjs is in I than so too is

∏
fjXj . Assume that F1F2...FN /∈ I,

then F1F2...Fn = Xn1−1
1 Xn2−1

2 ...X
nn+1−1
n+1 then regardless of our choice of XN , we

get that F ∈ I.
(iv)⇒ (i):
Suppose (X1, ..., Xn+1)

N ⊂ I, then let p ∈ Pn. Then V (I) ⊂ Vp(X1, ..., Xn+1,
so it suffices to show that Vp(X1, ..., Xn+1) = ∅. But the only common zero of
(X1, ..., Xn+1) is (0, 0, ..., 0), which has no equivalent in a projective situation. Thus
Vp(X1, ..., Xn+1) = ∅ as desired.

We prove (2) in the following way Vp(I) ̸= ∅, thus by Lemma 2.4, Ip(Vp(I)) =

Ia(C(Vp(I))) = Ia(Va(I)) =
√
I. [2] (Fulton 4.2)

□
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