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Abstract. Spectral graph theory is powerful in studying graphs via linear al-

gebra. The first half of this paper introduces readers to concepts and examples

of graphs, reviews needed linear algebra knowledge, defines several important
matrices in spectral graph theory, and explores properties of the Laplacian

matrix. The second half of the paper discusses the Matrix-Tree Theorem and

follows the proof in the reading materials of Professor Stanley’s Combinatorial
Analysis course on MIT Open Courseware.
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1. Introduction

Graphs are structures formed by a set of vertices and a set of edges that connect
between these vertices. For instance, flight information can be recorded as a graph,
where each airport is a vertex and flights denote edges between vertices (airports).
Another example could be relations on social media, where each person is a vertex
and an edge is drawn if two people are friends. Graph theory wishes to extract
information and properties from these structures.

Spectral graph theory offers an exciting way to study graphs by introducing linear
algebra tools. Graphs are represented in matrices, and certain graph properties can
be encapsulated in linear algebra properties such as eigenvalues and determinants.
This paper will introduce spectral graph theory and then discuss and prove the
Matrix-Tree Theorem, which counts the number of spanning trees in a graph by
computing the determinant of a certain matrix.

2. Basic Definitions

We begin with basic definitions in graph theory.
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Definition 2.1. A graph G is a pair (V,E), where V is the set of vertices, and
E ⊆ 2V is the set of edges, with each element being of size 2. In other words, each
edge e ∈ E is a two-element subset of V , i.e. e = {u, v} for u, v ∈ V .

This paper uses this definition so that edges in graphs are assumed to be undi-
rected ({u, v} is unordered as a set) and there is no self-loop (each edge must
involve two vertices). There is at most one edge between two vertices (a set has no
duplicates within).

In later contexts, V denotes the vertice set and E denotes the edge set in graph
G, unless otherwise noted. We assume V and E are finite sets.

Definition 2.2. Let G be a graph and u ∈ V . Then v is a neighbor of u if
{u, v} ∈ E. We denote it as u ∼ v, and sometimes say that u and v are connected.

Definition 2.3. Let G be a graph, and u ∈ V . The degree of u, denoted deg(u),
is the number of neighbors of u.

Definition 2.4. Let n ∈ Z such that n ≥ 2. A path p of a graph G is a tuple of
vertices (v1, v2, . . . , vn) ∈ V n such that {vi, vi+1} ∈ E for all integers 1 ≤ i ≤ n−1.

Definition 2.5. A cycle of a graph G is a path (v1, v2, . . . , vn) such that v1 = vn.

Definition 2.6. A graph is connected if for any pair u, v ∈ V , there exists a path
between them.

Hence, all vertices can reach others in some way, and there is no isolated vertex.

Definition 2.7. Let G = (VG, EG), H = (VH , EH) be graphs. H is a subgraph of
G if VH ⊆ VG and EH ⊆ EG. We denote it as H ⊆ G.

After learning these basic concepts, we will look at two common types of graphs,
trees and complete graphs.

Definition 2.8. A tree T is a graph that is connected and has no cycles.

The following are some common examples of trees.

The left figure is a typical binary tree, where each father node is connected to
two child nodes. The tree on the right, however, has various numbers of child nodes.

Definition 2.9. Let T = (V,E) be a tree. A vertex v ∈ V is a leaf if it has only
one neighbor.

Lemma 2.10. There exists a leaf in any tree.

Proof. Proceed by contradiction. Let T = (V,E) be a tree of n vertices, and assume
it has no leaf. Since T is connected, all v ∈ V will have at least two neighbors.
Let v1 ∈ V , and suppose v2 ∼ v1 and v0 ∼ v1. Similarly, consider v2, we will find
another neighbor v3 ∼ v2, and then v4 ∼ v3. Following the same pattern, for each i,
we can at least find vi−1 ∼ vi and vi+1 ∼ vi (to avoid cycles, indexes less than vi−1
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won’t be a neighbor). At the point vn−1 (the n-th vertex involved), we need to find
another neighbor other than vn−2 ∼ vn−1. While it can only be connected to one
of V \{vn−2, vn−1} = {v0, v1, . . . , vn−3}, this must form a cycle, which contradicts
the definition of a tree. Thus, there must exist at least one leaf in a tree. □

Lemma 2.11. A tree T with n vertices will have exactly n− 1 edges.

Proof. We will proceed by induction.
Base Case: n = 1

A tree with one vertex will just be a single point, without edges. This matches
our claim that it has 1− 1 = 0 edges.
Induction Hypothesis: Let k ∈ N, assume that all trees with k vertices have k − 1
edges.
Induction Step: Consider n = k + 1, and let Tk+1 be a tree with k + 1 vertices.
Then by Lemma 2.10, there exists vertex u that is a leaf of Tk+1.

We consider the graph T ′ = Tk+1\{u}, formed by removing u and its (only)
edge. We prove T ′ is a tree by contraposition. If T ′ is not a tree, then either it
contains a cycle or is not connected. Then adding u back, Tk+1 also contains a
cycle or is not connected (since u, a leaf, cannot be in a cycle or the middle of a
path). Thus, Tk+1 must not be a tree, which is the opposite of our assumption.

As T ′ is a tree with k vertices, by induction hypothesis, T ′ has k − 1 edges.
Adding u and its edge back, the original tree Tk+1 has k − 1 + 1 = k edges. □

Corollary 2.12. Let G be a graph, then
G is connected ⇐⇒ G has a subgraph that is a tree and has the same vertex set.
Consequently, a connected graph with n vertices has at least n− 1 edges.

Proof. Let G = (V,EG) be a graph.
(⇐) Assume G has a subgraph that is a tree and has the same vertex set, namely
T = (V,ET ). In other words, ET ⊆ EG.

As T is a tree, for any v1, v2 ∈ V , there exists a collection of edges in ET that
forms a path between v1, v2. Since this collection of edges is also in EG, this means
that G must also be connected.
(⇒) Assume G is connected. We claim that the Breadth First Search (BFS) al-
gorithm offers a way to create such a subgraph tree T = (VT , ET ) that covers the
same vertices.

The process is the following:
We start with VT , ET being empty sets. Pick any vertex v, and write Sv = {v′ ∈

V : v′ ∼ v} as the set of neighbors of v.

(1) Let v be the current vertex. Add v to VT .
(2) Iterate through all v′ ∈ Sv. If v′ /∈ VT , add v′ to VT and {v, v′} to ET

(otherwise, do nothing).
(3) Pick any v′ ∈ Sv as the current vertex and repeat the same process. Stop

until VT = V .

The way of adding vertices ensures that the subgraph is connected, and the if-
condition in step 2 ensures there is no cycle. So the subgraph is a well-defined
tree.

From the forward direction, we conclude that

|EG| ≥ |ET | = n− 1.

□
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Lemma 2.13. Let G be a graph with n vertices. If G is not a tree and has n − 1
edges, then there must exist a cycle in G.

Proof. By means of contradiction. Suppose there are no cycles in G. Since G is
not a tree, G must not be connected, i.e. there exists a tree T ⊃ G that uses up
the same vertex set. Thus, T will have more than n− 1 edges yet be a tree with n
vertices, which contradicts Lemma 2.11. Thus, G must contain a cycle. □

Definition 2.14. Let G = (VG, EG) be a connected graph and S = (VS , ES) be a
subgraph. S is a spanning tree of G if S is a tree and VS = VG.

Basically, a spanning tree is a tree that spans all vertices in a graph. Corol-
lary 2.12 implies that G being connected is necessary and sufficient for spanning
trees to exist.

Example 2.15. We study the spanning trees in the following graph.

In this graph, since vertex 1 is only connected to 2, edge a must be included.
Then to create a spanning tree that connects to vertex 3 and 4, only two edges of
the triangle need to be taken. Therefore, the spanning trees are abc, abd, acd, as
shown below.

Besides trees, another type of graph is the complete graph.

Definition 2.16. A graph G is a complete graph if any two vertices are connected
by an edge, i.e. for all u, v ∈ V , {u, v} ∈ E. We denote a complete graph with n
vertices as Kn.

Complete graphs with the same number of vertices share the same shape. The

number of edges in Kn is
(
n
2

)
= n(n−1)

2 , as choosing two vertices form an edge.

Observation 2.17. Let G be a graph with n vertices. Then

G ⊆ Kn,

for Kn sharing the same vertices.
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3. Linear Algebra Introduction

The Spectral Theorem is an important cornerstone of linear algebra in spectral
graph theory.

Theorem 3.1. (Spectral Theorem) A real symmetric matrix has an orthonormal
basis of eigenvectors.

This version of the Spectral Theorem is modified from the version in [1].
This theorem is especially helpful when we convert a graph into a real symmetric

matrix and learn about its eigenvalues. We will introduce several commonly-used
matrices in spectral graph theory and then focus on the Laplacian Matrix, which
is used in the proof of the Matrix-Tree Theorem.

Notation 3.2. Let m,n, i, j ∈ Z+ that 1 ≤ i ≤ m, 1 ≤ j ≤ n.

• For a vector v ∈ Rm, v(i) denotes the i-th entry of v.
• For a m × n matrix M , M(i, j) denotes the entry that is on the i-th row
and j-th column of the matrix.

We start by defining the adjacency matrix and the degree matrix.

Definition 3.3. Let G be a graph with n vertices. Then its adjacency matrix AG
is a n× n matrix such that

AG(i, j) =

{
1, if i ∼ j

0, otherwise.

Definition 3.4. Let G be a graph with n vertices. Then its adjacency matrix DG

is a n× n matrix defined as

DG(i, j) =

{
deg(i), if j = i

0, otherwise.

For instance, in a complete graph Kn, since all vertices have degree n − 1, we
have DG = (n− 1) · I, where I is the n× n identity matrix.

We then define the Laplacian Matrix.

Definition 3.5. Let G be a graph with n vertices. Its Laplacian Matrix LG is
defined as LG = DG −AG. Incorporating definitions of DG and AG,

LG(i, j) =


deg(i), if j = i

−1, if j ∼ i

0, otherwise.

Lemma 3.6. Let G be a graph of n vertices and LG be its Laplacian matrix. For
all x ∈ Rn,

(LGx)(i) =
∑
i∼j

(x(i)− x(j)).
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Proof.

(LGx)(i) =

n∑
j=1

LG(i, j)x(j)

=
∑
j∼i

((−1) · x(j)) + deg(i)x(i)

=
∑
j∼i

((−1) · x(j)) +
∑
j∼i

1 · x(i)

=
∑
j∼i

(x(i)− x(j))

□

It is helpful to consider the quadratic form of the Laplacian Matrix.

Proposition 3.7. Let G be a graph of n vertices and LG be its Laplacian Matrix.
For all x ∈ Rn,

x⊤LGx =
∑
i∼j

(x(i)− x(j))2.

Proof. By Lemma 3.6, we have

x⊤LGx =

n∑
i=1

x(i)(LGx)(i)

=

n∑
i=1

x(i)∑
j∼i

(x(i)− x(j))


=
∑
i∼j

[x(i) · (x(i)− x(j)) + x(j) · (x(j)− x(i))]

=
∑
i∼j

(x(i)− x(j))2.

□

Corollary 3.8. Let G be a graph and LG be its Laplacian Matrix. Then LG has an
orthonormal basis of eigenvectors, and its eigenvalues, λ1, . . . , λn, can be chosen to
satisfy that 0 ≤ λ1 ≤ . . . ≤ λn.

Proof. By Definition 3.5, LG(i, j) ∈ R and LG(i, j) = LG(j, i) for all 1 ≤ i, j ≤ n.
Thus, LG is real and symmetric. By Theorem 3.1(Spectral Theorem), LG has
an orthonormal basis of eigenvectors. We notate its orthonormal eigenvectors as
ψ1, ψ2, . . . , ψn, respectively corresponding to eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.

For all 1 ≤ i ≤ n, we have

ψ⊤
i LGψi = ψ⊤

i λiψi = λi||ψi||2 = λi.

Meanwhile, by Proposition 3.7,

λi = ψ⊤
i LGψi =

∑
a∼b

(ψi(a)− ψi(b))
2 ≥ 0.

Thus, all eigenvalues of LG are non-negative. □
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Corollary 3.9. Let G be a graph and LG be its Laplacian Matrix with eigenvalues
0 ≤ λ1 ≤ . . . ≤ λn. Then λ1 = 0.

Proof. By Lemma 3.6, for vector 1 (the all-1s vector), LG(i) =
∑

0 = 0. Thus,

LG1 = 0 · 1.
This means that the smallest eigenvalue λ1 must be zero. □

Proposition 3.10. Let G be a graph and its Laplacian matrix LG has eigenvalues
0 ≤ λ1 ≤ . . . ≤ λn. Then

G is connected ⇐⇒ λ2 > 0.

Proof. (⇒) Assume G is connected. Let ψ be an eigenvector such that LGψ = 0.
By Proposition 3.7,

0 = ψ⊤LGψ =
∑
i∼j

(ψ(i)− ψ(j))2.

In other words, for all i ∼ j, ψ(i) = ψ(j). Since G is connected, inductively
ψ(u) = ψ(v) for all u, v ∈ V . Thus, ψ must be the multiple of 1, meaning that the
subspace of eigenvalue 0 must be one-dimensional. Hence, λ2 > 0.
(⇐) By contraposition, assume G is NOT connected. Then G could be separated
into two distinct graphs G1 and G2, without any edges in between. We suppose G
has n vertices and G1 has m vertices (m < n and G2 has n−m vertices).

By reorganizing the order of vertices, the Laplacian matrix can be expressed as

LG =

[
LG1

O
O LG2

]
,

where O denotes the all-0s matrix.

We consider the vector v1 =

[
1
0

]
, where first m indexes are 1 and later n −m

indexes are 0.
Then for any integer 1 ≤ i ≤ m,

(LGv1)(i) = (LG1
1)(i) +

∑
0 · 0 = 0.

For any integer m < i ≤ n,

(LGv1)(i) =
∑

0 · 1 + (LG20)(i) = 0.

Thus, LGv1 = 0.

Without loss of generality, for vector v2 =

[
0
1

]
(where the last n−m indexes are

1), LGv2 = 0. Yet v1, v2 are linearly independent.
Thus, there must be at least two independent eigenvectors with eigenvalues 0, so
λ2 = 0. □

We will then introduce the Incidence Matrix, closely related to the Laplacian
Matrix. The Incidence Matrix is defined based on the concept of orientation.

Definition 3.11. Let G be a graph. For each edge ej = {u, v} (where u, v ∈ V ),
its orientation, denoted as δ(ej), is either the ordered pair (u, v) or the ordered pair
(v, u). We say that the first vertex in the ordered pair is the starting vertex, and
the second vertex is the ending vertex.

In short, an orientation picks a direction for each edge, as an ordered pair.
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Definition 3.12. Let G be a graph with n vertices and m edges, with V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . em}. The incidence matrix MG is the following
n×m matrix:

MG(i, j) =


1, if the edge ej has starting vertex vi

−1, if the edge ej has ending vertex vi

0, otherwise.

We observe that for each column (denoting each edge), there can only be two
nonzero entries, namely 1 and −1 that represent the starting and ending vertex.

Notation 3.13. Let G be a graph and MG be its incidence matrix.

(1) For all vi ∈ V , MG(vi) refers to the row vector corresponding to vertex vi.
(2) For all ej ∈ E, MG(ej) refers to the column vector corresponding to edge

ej .

Similar notations apply to the reduced incidence matrix and other similar ma-
trices defined later.

Lemma 3.14. Let G be a graph. Despite the choice of orientation,

LG =MGM
⊤
G .

Proof. We check each entry i, j of matrix MGM
⊤
G matches LG.

MGM
⊤
G (i, j) =

n∑
k=1

MG(i, k) ·M⊤
G (k, j) =

n∑
k=1

MG(i, k) ·MG(j, k).

Case 1: i = j

MGM
⊤
G (i, j) =

n∑
k=1

MG(i, k)
2 =

∑
k∼i

(±1)2 = deg(i).

Case 2: i ̸= j
Under a given k, MG(i, k) ·MG(j, k) is nonzero only if both MG(i, k),MG(j, k)

are nonzero. As a column of MG has only two nonzero terms, this means that a
nonzero value is only possible if ek = {i, j}. As we assume no multiple edges, there
is at most one such k for each i, j.

Thus, if i ∼ j, then

MGM
⊤
G (i, j) =

n∑
k=1

MG(i, k) ·MG(j, k) = 1 · (−1) = −1.

Otherwise, if i is not connected to j, then MG(i, k),MG(j, k) cannot be simul-
taneously nonzero, so

MGM
⊤
G (i, j) =

n∑
k=1

0 = 0.

All of these match the entries in a Laplacian matrix. □

Note that this result does not depend on the orientation and is always true.

Lastly, we define the determinant in a combinatorial way, which will be helpful
in later proof of the Matrix-Tree Theorem.
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Definition 3.15. Let A = (ai,j) be a n × n matrix, with 1 ≤ i, j ≤ n. Let Sn
be the set of bijective functions (permutations) from {1, 2, . . . , n} to itself, and let
σ ∈ Sn. Then the determinant of A is defined as

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σ(i)

)

Note that sgn(σ) is the sign of the permutation σ (see definition in [1]).

Proposition 3.16. Let A = (ai,j), an n×n matrix, and A⊤ be its transpose. Then

det(A⊤) = det(A).

Proposition 3.17. Let A = (ai,j), an n× n matrix, be upper-triangular (meaning
that ai,j = 0 for all i > j). Then

det(A) =

n∏
i=1

ai,i.

4. Matrix-Tree Theorem Introduction and Preparations for Proof

Then we introduce the Matrix-Tree Theorem, the main theorem that we seek to
prove in this paper. The Matrix-Tree Theorem enables us to compute the number of
spanning trees in a graph by converting the problem into computing the determinant
of a certain matrix. We mainly explain the exposition in [4].

Definition 4.1. The complexity of a graph G is the number of spanning trees in
G, denoted as κ(G).

By Corollary 2.12, κ(G) = 0 if G is not connected. For the rest of the paper, we
only care about G being connected, where κ(G) > 0.

Theorem 4.2. (The Matrix-Tree Theorem) Let G = (V,E) be a connected graph,
and let L be its Laplacian Matrix. Let L0 be the matrix formed by removing the last
row and column (or any row and column of the same index) of L. Then

κ(G) = det(L0).

Before laying out the ingredients for the proof, let’s first see an example.

Example 4.3. We will apply this formula to Example 2.15.
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In Example 2.15, we decide that there are three spanning trees here, namely
abc, abd, acd. We verify this result with the Matrix-Tree Theorem.

LG =


1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

 .
Removing the last row and column,

L0 =

 1 −1 0
−1 3 −1
0 −1 2

 .
Then calculating by the last column,

det(L0) = −(−1) ·
[
1 −1
0 −1

]
+ 2 ·

[
1 −1
−1 3

]
= −(−1) · (−1) + 2 · (3− 1) = 3.

This matches our computation (the same is true for removing any row and col-
umn).

The following theorems and claims are the building blocks of the proof of The-
orem 4.2. One of those is the Binet-Cauchy Theorem which provides insights into
determinants in matrix multiplication, which is based on the following lemma.

Lemma 4.4. Let A and B be n× n matrices. Then

det(AB) = det(A) · det(B).

A proof of this lemma can be seen in [2].

Definition 4.5. Let A = (aij) be anm×nmatrix, and B = (bji) be a n×mmatrix,
as 1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume m ≤ n. If S = {j1, j2, . . . , jm} ⊆ {1, 2, . . . , n}
and j1 < j2 < . . . < jm, then A[S] represents the m×m matrix such that

A[S](p, q) = apjq ,

and B[S] represents the m×m matrix such that

B[S](p, q) = bjqp.

Basically, only the rows/columns indexed by S are preserved, and others are
discarded, to form a square matrix.

Example 4.6. Consider matrix A =

[
a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

]
and B =


c1 d1
c2 d2
c3 d3
c4 d4
c5 d5

.
Let S = {1, 3} ⊆ {1, 2, 3, 4, 5}.
Then by Definition 4.5,

A[S] =

[
a1 a3
b1 b3

]
, and B[S] =

[
c1 d1
c3 d3

]
.
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The Binet-Cauchy Theorem generalizes Lemma 4.4 to multiplication of rectan-
gular matrices.

Theorem 4.7. (Binet-Cauchy Theorem) Let A be an m × n matrix and B be a
n×m matrix.

(1) If m > n, then det(AB) = 0.
(2) If m ≤ n, then

det(AB) =
∑

S⊆{1,2,...,n},|S|=m

(detA[S])(detB[S]).

Note that the matrix AB will be a m ×m matrix, so it makes sense to discuss
its determinant. Lemma 4.4 is the particular case of this theorem at m = n.

Proof. Case 1: m > n
Let ϕ, ψ be the linear map corresponding to matrix A,B, respectively. Then

matrix AB denotes the following linear map:

km
ψ // kn

ϕ // km

Since im(ϕ) ≃ kn/ ker(ϕ) ⊂ kn, we have dim(im(ϕ)) ≤ n < m. Therefore,
im(ϕ◦ψ) ≤ dim(im(ϕ)) < m. So ϕ◦ψ is NOT surjective, and thus NOT invertible,
meaning det(AB) = 0.
Case 2: m ≤ n

We observe that

(4.8)

[
Im×m A
On×m In×n

] [
A Om×m

−In×n B

]
=

[
Om×n AB
−In×n B

]
Note that I represents the identity matrix and O represents the all-zero matrix.
(4.8) can be verified by conducting the matrix multiplication.

For simplicity, denote[
Im×m A
On×m In×n

]
=M1,

[
A Om×m

−In×n B

]
=M2,

[
Om×n AB
−In×n B

]
=M3.

By Lemma 4.4, it’s true that

(4.9) det(M1) · det(M2) = det(M3).

Claim: det(M1) = 1.
This is true by applying Proposition 3.17, as M1 is an upper triangular matrix

and its determinant would be products of diagonal.
Claim: det(M3) = (−1)(m+1)n det(AB).

We need to pick σ ∈ Sn such that
∏n
i=1 ai,σ(i) ̸= 0. To avoid picking the zeros

of Om×n on the upper-left, then it must be true that

σ({1, 2 . . . ,m}) = {n+ 1, n+ 2, . . . , n+m}.

This means that

σ({m+ 1, . . .m+ n}) = {1, 2, . . . , n}.

Looking at the lower left of M3, the only way to pick a nonzero product is to let

σ(m+ i) = i,
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for each 1 ≤ i ≤ n. Thus, the different ways to pick σ is isomorphic to Sm,
depending on how σ is defined on {1, 2, . . . ,m}. We write permutation β ∈ Sm,
and observe that for σ defined in the way above, sgn(σ) = (−1)mnsgn(β).

This is because for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, though i < m + j, it’s true
that σ(i) > n ≥ σ(m + j). Considering all possible i and j, (−1)mn should be
multiplied in addition to sgn(β). Thus,

det(M3) = (−1)mn · (−1)n
∑
β∈Sm

(
sgn(β)

n∏
i=1

ai,n+β(i)

)
= (−1)(m+1)n · det(AB).

Claim: det(M2) = (−1)(m+1)(n−m) det(A) · det(B).

Look at

[
A Om×m

−In×n B

]
.

Again, we look for permutations σ : {1, 2, . . . ,m + n} → {1, 2, . . . ,m + n} that
forms nonzero products. To avoid Om×m on the upper-right, it must be true that

σ−1({n+ 1, n+ 2, . . . , n+m}) ⊆ {m+ 1,m+ 2, . . . ,m+ n}.

In other words, this is similar to picking m-size subsets in {1, 2, . . . , n}, denoted
as S ⊆ {1, 2, . . . , n}, and then consider all permutations within matrix B[S].

Consequently, consider each m+1 ≤ i ≤ m+n such that i−m ∈ {1, 2, . . . , n}\S,
we have

σ(i) = i−m,

in order to match the nonzero entries in the lower-left −In×n. Thus, considering
the top m rows that haven’t been defined, their output will exactly correspond to
the columns of index in S (in order for σ to be bijective). In other words,

σ({1, 2, . . .m}) = S ⊆ {1, 2, . . . , n}.

In this way, we explore the behavior of σ and it appears to be based on the
choice of S and the permutations Sm in A[S] and B[S]. Remind that S is m-size
subset of {1, . . . , n}, and for simplicity, we denote S(i) as the i-th smallest element
in S. We denote A[S] = (ai,j) and B[S] = (bi,j), where 1 ≤ i, j ≤ m.

Let σ1, σ2 ∈ Sm. By a similar reasoning as the previous claim, sgn(σ) =
(−1)m(n−m)sgn(σ1)sgn(σ2). Then

det(M2) = (−1)m(n−m) · (−1)n−m ·
∑

S⊆{1,2,...,n},|S|=m

 ∑
σ1,σ2∈Sm

n∏
i,j=1

ai,S(σ1(i))bj,S(σ2(j))


= (−1)(m+1)(n−m) ·

∑
S⊆{1,2,...,n},|S|=m

( ∑
σ1∈Sm

n∏
i=1

ai,S(σ1(i))

)
·

 ∑
σ2∈Sm

n∏
j=1

bj,S(σ2(j))


= (−1)(m+1)(n−m) ·

∑
S⊆{1,2,...,n},|S|=m

det(A[S]) · det(B[S]).

By (4.9),

det(AB) =
∑

S⊆{1,2,...,n},|S|=m

det(A[S]) · det(B[S]),

since (−1)m(m+1) = 1 is true despite m’s parity. □
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While this theorem is useful in computing the determinant, the following def-
inition and lemma will relate this computation of determinant with the idea of
spanning trees.

Definition 4.10. Let G be a graph, and M [G] be its incidence matrix (with any
orientation). The reduced incidence matrix of G, denoted asM0, is the matrix with
the last row of M [G] removed.

Note that as G has n vertices, the matrix M0 will have n − 1 rows, which is
exactly the number of edges in a spanning tree of G.

Lemma 4.11. Let G be a connected graph with n vertices, and let M0 be its reduced
incidence matrix. Let S ⊆ E be a set of n− 1 edges in G.

(1) If S forms a spanning tree in G, then det(M0[S]) = ±1.
(2) If S doesn’t form a spanning tree in G, then det(M0[S]) = 0.

Note that the notation M0[S] makes sense. G is connected and M0 has n − 1
rows, so the number of edges in G is greater than or equal to n− 1.

Proof. Proof of case 2:
This is equivalent to showing that the columns of M0[S] are linearly dependent.

As S cannot form a tree, Lemma 2.13 implies that there must exist at least a cycle
within S.

Let (v1, v2, . . . , vn) be the cycle such that v1 = vn. We then define C1, C2, two
complementary subsets of S: for each 1 ≤ i ≤ n−1, if δ({vi, vi+1}) = (vi, vi+1), then
{vi, vi+1} ∈ C1; otherwise δ({vi, vi+1}) = (vi+1, vi), so {vi+1, vi} ∈ C2. Exploiting
Notation 3.13, we discover that by property of cycle,∑

e∈C1

M0(e)−
∑
e′∈C2

M0(e
′) = 0.

These vectors are linearly dependent, hence making det(M0[S]) = 0.
Proof of case 1:

We will proceed by induction on the number of vertices in graph G (thus also
S).
Base Case: n = 2.

Without loss of generality, we assume the orientation follows the graph above.
So

M [S] =

[
1
−1

]
, M0[S] = [1].

Thus, it’s true that det(M0[S]) = ±1.
Induction Hypothesis: Let k ∈ N such that k > 2. We assume that for all possible
G with k− 1 vertices, any spanning trees Sk−1 in G will have det(M0[Sk−1]) = ±1.
Induction Step: We examine spanning trees Sk, in a graph G with k vertices.

(For better clarifications, I’ll explain the process while simultaneously showing
an example, as shown in the graph above. The red part is the spanning tree with

orientation picked. Then M [Sk] =


1 0 0
−1 1 1
0 −1 0
0 0 −1

 .)
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Let vk be the vertex represented by the last row, which is removed fromM [Sk] to
formM0[Sk]. As Sk is a spanning tree, there exists an edge ej ∈ S that is connected
to vk. We assume ej = {vl, vk}, without loss of generality in the orientation.

(Particularly in this example, the removed vertex vk is the 4th vertex, meaning
the 4th row, and the corresponding ej is edge c, meaning the 3rd column. Here

M0[Sk] =

 1 0 0
−1 1 1
0 −1 0

 .)
As ej represents a column in M0[Sk], this column has only one nonzero entry,

which is on the row of vl. Write M ′
0, a (k − 2) × (k − 2) matrix by removing the

row of vl and the column of ej in M0[Sk]. Then

(4.12) det(M0[Sk]) = ±1 · det(M ′
0).

(Particularly, the only nonzero term in the 3rd column of M0[Sk] is the 2nd
row, meaning vl here is vertex 2. By removing the 3rd column and second row,

M ′
0 =

[
1 0
0 −1

]
.)

We observe that det(M0[Sk]) is the reduced incidence matrix of a k−1 spanning
tree formed by collapsing vl and vn as a single vertex and removing the merged
vertex. This is reasonable, because the rows of both vertices are removed and the
edge connecting the two vertices is removed, while all other information in the
graph is preserved.

(In this example, the collapsed tree is the following graph, with the merged

vertex marked purple. Note that M =

 1 0
−1 1
0 −1

, and M ′
0 above is hence formed

by removing the row of the merged vertex here.)

It needs to be clarified that only the chosen spanning tree is collapsed, and the
edges not chosen in the tree won’t participate in this process. Also, the collapsed
graph must be a tree, because by contraposition, if it has cycles or isn’t connected,
the original tree cannot be a tree. Since the collapsed tree is a spanning tree with
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k − 1 vertices, by induction hypothesis and (4.12), det(M ′
0) = ±1, so

det(M0[Sk]) = ±1 · ±1 = ±1.

□

5. Proof of Theorem

Gathering the ingredients, we can finally prove Theorem 4.2.

Proof. Let G = (V,E) be a connected graph with n vertices. Remind that L is its
Laplacian Matrix and L0 is formed by removing the last (or i-th) row and column
of L. From Lemma 3.14, L =MM⊤ implies L0 =M0M

⊤
0 .

Note that M0 has n − 1 rows, and as G is connected, it has more than n − 1
edges. Thus, for any S ⊂ E of length n − 1, it makes sense to discuss M0[S].
Further, let T be the set of spanning trees. Thus, by Theorem 4.7, Lemma 4.11
and Proposition 3.16, we have

det(L0) =
∑
S

det(M0[S]) det(M
⊤
0 [S])

=
∑
S

det(M0[S]) det(M0[S]
⊤)

=
∑
S

det(M0[S]) det(M0[S])

=
∑
S/∈T

det(M0[S])
2 +

∑
S∈T

det(M0[S])
2

= 02 +
∑
S∈T

(±1)2 = κ(G).

Since the last row removed can represent any vertex, this implies that the index
of the removed row/column won’t affect this calculation. □

6. Refined Version and A Special Case

While the determinant of a matrix can be difficult to compute, the following
corollary refines the theorem by relating it with a product of eigenvalues.

Corollary 6.1. Let G be a connected graph with n vertices, and L is its Laplacian
Matrix. Let 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn be the eigenvalues of L. Then

κ(G) =
1

n
λ2λ3 . . . λn.

Proof. Without loss of generality, assume L0 is defined by removing the last row and
column of L. We correlate det(L0) with the characteristic polynomial det(L− xI).
Claim: The coefficient of x in det(L− xI) equals −n · det(L0).

We employ the fact that each row and column of L will add up to zero. Originally,

L− xI =


a1n

L0 − xI .
.

an1 an2 .. ann − x

 .
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Adding the first n − 1 rows to the last row won’t change the determinant, and
we have

det(L−xI) = det




a1n
L0 − xI .

.
−x −x .. −x


 = (−x)·det




a1n
L0 − xI .

.
1 1 .. 1


 .

Thus, the coefficient of x is calculated by considering the determinant of the last
matrix at x = 0 and adding the first n− 1 columns to the last column.

det




a1n
L0 .

.
1 1 .. 1


 = det




0
L0 0

0
1 1 .. n


 = n · det(L0).

Thus, the coefficient of x here will be −n · det(L0).
Claim: The coefficient of x in the characteristic polynomial equals to −λ2λ3 . . . λn.

By definition and property of the characteristic polynomial (seen in [2]),

det(L− xI) = (λ1 − x)(λ2 − x) . . . (λn − x)

= −x(λ2 − x) . . . (λn − x)

Note that the coefficient of x here would be −λ2λ3 . . . λn. Incorporating the two
claims, we reach the conclusion that

κ(G) = det(L0) =
1

n
λ2λ3 . . . λn.

□

The following result is a special case, about finding κ(G) of complete graphs.

Example 6.2. Let Kn be the complete graph of n vertices. Then

κ(Kn) = nn−2.

Proof. We discover that for Kn, its Laplacian Matrix

LKn = n · I − J,

where I is the identity matrix and J is the all-ones matrix.
The eigenvalues of I are all 1s. For J , as its image has dimension 1, its kernel

has dimension n− 1, meaning it has eigenvalue 0 with multiplicity n− 1. Its image
is spanned by 1, corresponding to an eigenvalue n with multiplicity 1.

Thus, the eigenvalues of LKn are λ1 = 0, and λ2 = λ3 = . . . = λn = n. By
Corollary 6.1,

κ(Kn) =
1

n
× nn−1 = nn−2.

□
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