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ABSTRACT. This paper explores the two ways in which the addition of convexity condi-
tions enhances solution methods in optimal control theory. First, in an unconstrained opti-
mization problem, convexity is necessary for the construction of the dual problem, whose
solutions describe the existence conditions for those of the primal problem. Second, the ap-
plication of such convexity-induced duality to constrained optimization problems allows for
the treatment of more dynamic constraints as those in the Karush-Kuhn-Tucker, Minimax
and Fenchel Duality Theorems.
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INTRODUCTION

We begin with the proof of the Lagrange Multiplier Theorem, which characterizes the
constrained extrema for functions not necessarily convex. After introducing convexity con-
ditions, we show that they induce a dual problem, whose solutions possess existence con-
ditions connected to those of the primal problem. We then present variations of duality
in constrained optimization problems, including the Karush-Kuhn-Tucker and the Mini-
max Theorems. Finally, in the exposition of Fenchel duality, we show that the invertibility

1



CONVEXITY AND DUALITY IN OPTIMAL CONTROL 2

of conjugation is a special property of convex functions that allows for the dualization of
optimization problems, and present convex duality in its most general form.

Only knowledge of analysis in R𝑛 is assumed, except for one or two theorems imported
from elementary topology which will be named. Readers are introduced to calculus on
Banach spaces and convex analysis at the beginning of relevant sections.

1. CHARACTERIZATION OF CONSTRAINED EXTREMA

In this section, we deduce the necessary conditions for the existence of solutions to the
general constrained optimization problem without convexity conditions. In the process, we
introduce some fundamental theorems from analysis on Banach spaces and discuss their
applications in solution algorithms.

1.1. Calculus on Banach spaces. This is a brief exposition on the extension of calculus in
R𝑛 to Banach spaces that provides the notation and vocabulary for the first section, including
the notions of dual spaces and types of differentiability.

Definition 1.1 (The operator space and its norm). 𝐵(𝑋,𝑌 ) denotes the space of all
continuous linear operators from 𝑋 to 𝑌 . Its norm for any 𝑔 : 𝑋 → 𝑌 is defined by

∥𝑔∥𝐵(𝑋,𝑌 ) := sup
∥𝑥 ∥𝑋=1

∥𝑔(𝑥)∥𝑌 = sup
𝑥∈𝑋

∥𝑔(𝑥)∥𝑌
∥𝑥∥𝑋

.

In cases where 𝑌 = R, the space 𝐵(𝑋,R) is also denoted as 𝜒∗ and called the dual
space of 𝑋 . The elements in 𝜒∗ = 𝐵(𝑋,R) are called functionals.

Similarly, by replacing absolute values with norms on respective Banach spaces, we gener-
alize the notions of differentiability and continuity.

Definition 1.2 (Fréchet-derivative). A function 𝑓 : 𝑈 → 𝑌 , where 𝑈 ⊂ 𝑋 is open
and 𝑋 and 𝑌 are normed linear spaces, is Fréchet differentiable (or strongly differ-
entiable) at 𝑥 if there is a linear operator 𝐴 ∈ 𝐵(𝑋,𝑌 ) such that

1
∥ℎ∥𝑋

∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐴ℎ∥𝑌 −→ 0 as ℎ −→ 0.

When 𝐴 exists, it is called a Fréchet-derivative of 𝑓 at 𝑥 and denoted variously as
𝐴 = 𝐴𝑥 = 𝑓 ′ (𝑥) = 𝐷 𝑓 (𝑥).

Definition 1.3 (Lipschitz). The Lipschitz property of a function describes the bound-
edness of the change in function values with respect to a movement in the domain. A
mapping 𝑓 : (𝑋, 𝑑𝑋) → (𝑌, 𝑑𝑌 ) is Lipschitz if there is𝐾 ≥ 0 such that 𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤
𝐾𝑑𝑋 (𝑥, 𝑦), where 𝐾 is called a Lipschitz constant.

Note that continuously differentiable functions are a subset of Lipschitz functions, which
are then a subset of uniformly continuous functions. Lipschitz functions are automatically
continuous: For any 𝑥 ∈ 𝑋 and 𝜖 > 0, there is an open ball of radius 𝑟 = 𝜖/2𝐾 around 𝑥
such that any 𝑦 ∈ 𝐵𝑟 (𝑥) will have 𝑑𝑌 ( 𝑓 (𝑥), 𝑓 (𝑦)) ≤ 𝐾𝑑𝑋 (𝑥, 𝑦) ≤ 𝜖/2 < 𝜖 . We will use
this property in the following proof of the Banach Contraction-Mapping Principle.

Another approach to describe the boundedness of change within a function is through the
boundedness of the Fréchet-derivative, relying on the Banach-space variant of the Mean-
Value Theorem.
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Theorem 1.4 (The Mean-Value Theorem). Let 𝑋 and 𝑌 be normed linear spaces and
𝑈 an open subset of 𝑋 . Suppose that 𝑓 : 𝑈 → 𝑌 is Fréchet differentiable everywhere
in 𝑈, in particular in the line segment 𝑙 = {𝑡𝑥2 + (1 − 𝑡)𝑥1 |0 ≤ 𝑡 ≤ 1} contained in
𝑈 for some fixed 𝑥1, 𝑥2 ∈ 𝑈. Then the supremum of the Fréchet-derivatives on 𝑙 are
Lipschitz constants for 𝑓 on 𝑙:

∥ 𝑓 (𝑥2) − 𝑓 (𝑥1)∥𝑌 ≤ sup
𝑥∈𝑙

∥𝐷 𝑓 (𝑥)∥𝐵(𝑋,𝑌 ) ∥𝑥2 − 𝑥1∥𝑋 .

Proof. See [1, Theorem 9.6]. □

1.2. Properties of the contraction mapping.

Definition 1.5 (Contraction). Let (𝑋, 𝑑) be a complete metric space and 𝐺 : 𝑋 → 𝑋 .
The mapping 𝐺 is a contraction if there is 0 ≤ 𝜃 < 1 such that

∀𝑥, 𝑦 ∈ 𝑋, 𝑑 (𝐺 (𝑥), 𝐺 (𝑦)) ≤ 𝜃𝑑 (𝑥, 𝑦).
That is, a Lipschitz function with Lipschitz constant less than 1 is a contraction. A
fixed point of the mapping is an 𝑥 ∈ 𝑋 such that 𝑥 = 𝐺 (𝑥).

Theorem 1.6 (Banach Contraction-Mapping Principle). Let (𝑋, 𝑑) be a complete
metric space and 𝐺 a contraction mapping on 𝑋 . Then there is a unique fixed point of
𝐺 in 𝑋 .

Proof. For any given 𝑥0 ∈ 𝑋 , we iteratively define a sequence {𝑥𝑘}∞𝑘=0 by 𝑥𝑘+1 = 𝐺 (𝑥𝑘),
which is Cauchy:

0 ≤ 𝑑 (𝑥𝑚, 𝑥𝑛) ≤ 𝑑 (𝑥𝑚, 𝑥) + 𝑑 (𝑥, 𝑥𝑛)
≤ 𝜃𝑚−1𝑑 (𝑥0, 𝐺 (𝑥0)) + 𝜃𝑛−1𝑑 (𝑥0, 𝐺 (𝑥0)) −→ 0 as 𝑚, 𝑛→ ∞.

Since 𝑋 is complete, this is equivalent to 𝑥𝑘 → 𝑥 for some 𝑥 ∈ 𝑋 . 𝐺 is Lipschitz, hence
continuous, so 𝐺 (𝑥𝑘) → 𝐺 (𝑥). Note that the sequence {𝑥𝑘}∞𝑛=0 is the same as {𝐺 (𝑥𝑘)}
except for the addition of 𝑥0 at the beginning, so they converge to the same limit 𝑥 = 𝐺 (𝑥).

□

Corollary 1.7 (Fixed Point Iteration). Suppose that (𝑋, 𝑑) is a complete metric space
and 𝐺 is a contraction mapping of 𝑋 with contraction constant 𝜃. Choose 𝑥0 ∈ 𝑋 and
define the sequence {𝑥𝑛}∞𝑛=0 by 𝑥𝑛+1 = 𝐺 (𝑥𝑛). Then 𝑥𝑛 → 𝑥, where 𝑥 is the unique
fixed point of 𝐺 in 𝑋 . Moreover,

𝑑 (𝑥𝑛, 𝑥) ≤
𝜃𝑛

1 − 𝜃 𝑑 (𝑥0, 𝑥1).

Proof. For the first part of the corollary, assume that the fixed point obtained is not unique.
That is, there is 𝑥′ ∈ 𝑋 such that 𝑥′ ≠ 𝑥 and 𝐺 (𝑥′) = 𝑥′. A contradiction follows:

𝑑 (𝐺 (𝑥), 𝐺 (𝑥′)) ≤ 𝜃𝑑 (𝑥, 𝑥′) < 𝑑 (𝑥, 𝑥′) = 𝑑 (𝐺 (𝑥), 𝐺 (𝑥′)).
The second part follows from triangular inequality of metric spaces used in the proof that
{𝑥𝑘}∞𝑘=0 is Cauchy in the preceding theorem:

𝑑 (𝑥𝑛, 𝑥0) ≤
𝑛∑
𝑘=1

𝑑 (𝑥𝑘 , 𝑥𝑘−1) ≤
𝑛∑
𝑘=1

𝜃𝑘−1𝑑 (𝑥1, 𝑥0) =
𝜃𝑛

1 − 𝜃 𝑑 (𝑥0, 𝑥1).

□
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Since the result usefully proves existence and uniqueness at the same time, we want to
have a similar statement for operators that send their domains to a different space.

Theorem 1.8 (Simplified Newton Method). Let 𝑋,𝑌 be Banach spaces and 𝑓 : 𝑋 →
𝑌 a Fréchet-differentiable mapping. Suppose that there is 𝑥0 ∈ 𝑋 such that 𝐴 = 𝐷 𝑓 (𝑥0)
has a bounded inverse and that there exists 𝑟 > 0 such that

∀𝑥 ∈ 𝐵𝑟 (𝑥0),


𝐼 − 𝐴−1𝐷 𝑓 (𝑥)




𝐵(𝑋,𝑋) ≤ 𝜅 < 1.

Then the equation 𝑓 (𝑥) = 𝑦 has a unique solution 𝑥 ∈ 𝐵𝑟 (𝑥0) if 𝑦 ∈ 𝐵𝛿 ( 𝑓 (𝑥0)), where

𝛿 =
(1 − 𝜅)𝑟

𝐴−1




𝐵(𝑋,𝑌 )

.

Proof. For given 𝑦 ∈ 𝐵𝛿 ( 𝑓 (𝑥0)), we define the mapping 𝑔𝑦 (𝑥) : 𝑋 → 𝑋 by 𝑔𝑦 (𝑥) =
𝑥 − 𝐴−1 ( 𝑓 (𝑥) − 𝑦) such that 𝑔𝑦 (𝑥) = 𝑥 if and only if 𝑓 (𝑥) = 𝑦. This is because if 𝐴−1

were the zero mapping, it would contradict our hypothesis that it is invertible. Now that the
problem has a similar structure to that of the fixed point, we check that our conditions are
equivalent to those of a contractive map.

By the chain rule, the derivative 𝐷𝑔𝑦 (𝑥) = 𝐼 − 𝐴−1𝐷 𝑓 (𝑥), so our assumption states that

𝐷𝑔𝑦 (𝑥)

𝐵(𝑋,𝑋) ≤ 𝜅 < 1. This implies that 𝑔𝑦 is contractive by the Mean Value Theorem:

∀𝑥1, 𝑥2 ∈ 𝐵𝑟 (𝑥0),


𝑔𝑦 (𝑥1) − 𝑔𝑦 (𝑥2)




∥𝑥1 − 𝑥2∥

≤ sup
𝑥∈𝐵𝑟 (𝑥0 )



𝐷𝑔𝑦

𝐵(𝑋,𝑌 ) ≤ 𝜅 < 1.

Also note that by our choice of 𝑦 and 𝛿,

𝑔𝑦 (𝑥0) − 𝑥0



𝑋
=


𝐴−1 ( 𝑓 (𝑥0 − 𝑦))



 ≤ ∥ 𝑓 (𝑥0) − 𝑦∥𝑌


𝐴−1



𝐵(𝑋,𝑌 )

≤ 𝛿


𝐴−1



𝐵(𝑋,𝑌 ) ≤ (1 − 𝜅)𝑟.
As a result, 𝑔𝑦 is a contraction which maps 𝐵𝑟 (𝑥0) to itself:

∀𝑥 ∈ 𝐵𝑟 (𝑥0),


𝑔𝑦 (𝑥) − 𝑥0




𝑋
≤


𝑔𝑦 (𝑥) − 𝑔𝑦 (𝑥0)




𝑋
+


𝑔𝑦 (𝑥0) − 𝑥0




𝑋

≤ 𝜅∥𝑥 − 𝑥0∥𝑋 + (1 − 𝜅)𝑟 < 𝑟.
The last equality follows from the definition of operator norm.

With the hypotheses in the Banach Contraction-Mapping Principle verified for 𝑔𝑦 , we
conclude that there exists unique 𝑥 ∈ 𝐵𝑟 (𝑥0) such that 𝑔𝑦 (𝑥) = 𝑥, which is the unique
solution for 𝑓 (𝑥) = 𝑦. □

1.3. The Inverse Function Theorem.

Lemma 1.9 (Inverse Function Theorem). Suppose that 𝑓 satisfy the hypotheses of
the Simplified Newton Method. Then the inverse mapping 𝑓 −1 : 𝐵𝛿 ( 𝑓 (𝑥0)) → 𝐵𝑟 (𝑥0)
is Lipschitz.

Note that the conditions above are identical to those in the Simplified Newton Method, so
our proof of the Inverse Function Theorem is near identical to the preceding proof. We
only need the invertibility condition to convert the boundedness of change in the inverse
function to that of movement within the domain.
Proof. Let 𝑦1, 𝑦2 ∈ 𝐵𝛿 ( 𝑓 (𝑥0)). The Simplified Newton Method states that there exist
unique 𝑥1, 𝑥2 ∈ 𝐵𝑟 (𝑥0) such that 𝑓 (𝑥1) = 𝑦1 and 𝑓 (𝑥2) = 𝑦2. For given 𝑦 ∈ 𝐵𝛿 ( 𝑓 (𝑥0)),
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𝑥

𝑓 𝑓

𝑦

𝑥0

𝑓 (𝑥0) + 𝐷 𝑓 (𝑥0) (𝑥 − 𝑥0)

𝑥1

𝑓 (𝑥1) + 𝐷 𝑓 (𝑥1) (𝑥 − 𝑥1)

𝑓 (𝑥2) + 𝐷 𝑓 (𝑥2) (𝑥 − 𝑥2)

𝑥2

(a) 𝑥𝑡+1 = 𝑦− 𝑓 (𝑥𝑡 )+𝐷 𝑓 (𝑥𝑡 )𝑥𝑡
𝐷 𝑓 (𝑥𝑡 ) is contractive.

𝑥

𝑓

𝑓

𝑦

𝑓 (𝑥0) + 𝐷 𝑓 (𝑥0)(𝑥 − 𝑥0)

𝑓 (𝑥1) + 𝐷 𝑓 (𝑥1)(𝑥 − 𝑥1)

𝑥2

𝑥0𝑥1𝑥3

𝑓 (𝑥2) + 𝐷 𝑓 (𝑥2)(𝑥 − 𝑥2)

𝑓 (𝑥3) + 𝐷 𝑓 (𝑥3)(𝑥 − 𝑥3)

(b) 𝑥𝑡+1 = 𝑦− 𝑓 (𝑥𝑡 )+𝐷 𝑓 (𝑥𝑡 )𝑥𝑡
𝐷 𝑓 (𝑥𝑡 ) is not contractive.

Figure 1. An application of Simplified Newton’s Method is in the numerical solution to
systems of equations. To find the point 𝑥̄ such that 𝑓 ( 𝑥̄ ) = 𝑦, we iteratively update the esti-
mate for 𝑥̄ by the Taylor approximation 𝑓 (𝑥𝑡+1 ) ≈ 𝑓 (𝑥𝑡 ) +𝐷 𝑓 (𝑥𝑡 ) (𝑥𝑡+1 − 𝑥𝑡 ) . Whether
𝑓 (𝑥 ) = 𝑦 has a solution depends on whether this mapping is contractive. If so, we would
arrive at a precise numerical solution with few iterations.

recall our definition of 𝑔𝑦 (𝑥) = 𝑥 − 𝐴−1 ( 𝑓 (𝑥) − 𝑦), which maps 𝐵𝑟 (𝑥0) onto itself with
Lipschitz constant 𝜅 < 1:

 𝑓 −1 (𝑦1) − 𝑓 −1 (𝑦2)



 = ∥𝑥1 − 𝑥2∥𝑋 =


𝑔𝑦 (𝑥1) − 𝑔𝑦 (𝑥2) + 𝐴−1 ( 𝑓 (𝑥2) − 𝑓 (𝑥1))




𝑋

≤


𝑔𝑦 (𝑥1) − 𝑔𝑦 (𝑥2)



 + 

𝐴−1


𝐵(𝑌,𝑋) ∥ 𝑓 (𝑥2) − 𝑓 (𝑥1)∥𝑌

≤ 𝜅∥𝑥1 − 𝑥2∥𝑋 +


𝐴−1



𝐵(𝑌,𝑋) ∥𝑦1 − 𝑦2∥.

Upon rewriting the relationship as


 𝑓 −1 (𝑦1) − 𝑓 −1 (𝑦2)



𝑋 = ∥𝑥1 − 𝑥2∥𝑋 ≤



𝐴−1



𝐵(𝑌,𝑋)

1 − 𝜅 ,

we see that 𝑓 −1 is Lipschitz with constant of at most



𝐴−1



𝐵(𝑌,𝑋)

1 − 𝜅 . □

A stronger statement concerns the invertibility of the derivative, formalized as:

Definition 1.10 (Diffeomorphism). Let 𝑋,𝑌 be Banach spaces and 𝑈 ⊂ 𝑋,𝑉 ⊂
𝑌 open. Suppose that the bijective function 𝑓 : 𝑈 → 𝑉 and its inverse 𝑓 −1 are
Fréchet-differentiable with continuous derivatives on 𝑈 and 𝑉 . That is, the maps 𝑥 ↦→
𝐷 𝑓 (𝑥) and 𝑦 ↦→ 𝐷 𝑓 −1 are continuous from𝑈 to 𝐵(𝑋,𝑌 ) and from𝑉 to 𝐵(𝑋,𝑌 ). Then
𝑓 is called a diffeomorphism on𝑈 and𝑈 is diffeomorphic to V.

Lemma 1.11. Let 𝑋,𝑌 be Banach spaces and 𝐺𝐿 (𝑋,𝑌 ) denote the set of all iso-
morphisms of 𝑋 onto 𝑌 . Then 𝐺𝐿 (𝑋,𝑌 ) is an open subset of 𝐵(𝑋,𝑌 ). Moreover,
for 𝐺𝐿 (𝑋,𝑌 ) ≠ ∅, the mapping 𝐽𝑋,𝑌 : 𝐺𝐿 (𝑋,𝑌 ) → 𝐺𝐿 (𝑌, 𝑋) given by ∀𝐴 ∈
𝐵(𝑋,𝑌 ), 𝐽𝑋,𝑌 (𝐴) = 𝐴−1, the map of an invertible function onto its inverse, is bijective
and continuous.
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Proof. Let 𝐴 ∈ 𝐺𝐿 (𝑋,𝑌 ) and 𝐻 ∈ 𝐵(𝑋,𝑌 ) be such that ∥𝐻∥𝐵(𝑋,𝑌 ) < 𝜃/


𝐴−1




𝐵(𝑌,𝑋)

for some 𝜃 < 1. We will show that the operator 𝐴 + 𝐻 is bijective, that is, an element of
𝐺𝐿 (𝑋,𝑌 ).

Define 𝑆𝑁 = 𝐴−1 ∑𝑁
𝑛=0 (−𝐻𝐴−1)𝑛 in 𝐵(𝑌, 𝑋) such that the sequence {𝑆𝑁 }∞𝑁=1 is Cauchy

in 𝐵(𝑌, 𝑋). By the Cauchy-Schwartz Inequality,

∀𝑀 > 𝑁, ∥𝑆𝑀 − 𝑆𝑀 ∥𝐵(𝑌,𝑋) ≤


𝐴−1



𝐵(𝑌,𝑋)

𝑀∑
𝑛=𝑁+1



(𝐻𝐴−1)𝑛




≤


𝐴−1



𝐵(𝑌,𝑋)

𝑀∑
𝑛=𝑁+1

(∥𝐻∥𝐵(𝑋,𝑌 )


𝐴−1



𝐵(𝑌,𝑋) )

≤


𝐴−1



𝐵(𝑌,𝑋)

𝑀∑
𝑛=𝑁+1

𝜃𝑛 → 0 as 𝑁 → ∞.

Hence 𝑆𝑁 converges, say to 𝑆, in 𝐵(𝑌, 𝑋) such that

(𝐴 + 𝐻)𝑆 = lim
𝑁→∞

(𝐴 + 𝐻)𝑆𝑁 = lim
𝑁→∞

𝑁∑
𝑛=0

[(−𝐻𝐴−1)𝑛 − (−𝐻𝐴−1)𝑛+1]

= lim
𝑁→∞

[𝐼 − (−𝐻𝐴−1)𝑁+1] = 𝐼

By a similar calculation, 𝑆(𝐴 + 𝐻) = 𝐼, so 𝐴 + 𝐻 has an inverse 𝑆 : 𝑌 → 𝑋 , which makes
it bijective. As a result, the operator 𝐴 = (𝐴 + 𝐻) − 𝐻 is bijective.

For continuity of the map 𝐴 ↦→ 𝐴−1, we will show that (𝐴 + 𝐻)−1 → 𝐴−1, or equiva-
lently, 𝑆 − 𝐴−1 → 0, as ∥𝐻∥𝐵(𝑋,𝑌 ) → 0. Recall that for |𝑥 | < 1, (1 + 𝑥)−1 =

∑∞
𝑛=0 (−𝑥)𝑛.

Analogously, our construction of {𝑆𝑁 } gives
∥𝑆∥𝐵(𝑌,𝑋) = lim

𝑁→∞
∥𝑆𝑁 ∥𝐵(𝑌,𝑋) ≤



𝐴−1


𝐵(𝑌,𝑋)/(1 − 𝜃),

such that

𝑆 − 𝐴−1


𝐵(𝑌,𝑋) ≤ ∥𝑆∥𝐵(𝑌,𝑋) ∥𝐻∥𝐵(𝑌,𝑋)



𝐴−1


𝐵(𝑌,𝑋) → 0 as ∥𝐻∥𝐵(𝑋,𝑌 ) → 0,

with


𝐴−1




𝐵(𝑌,𝑋) fixed and ∥𝑆𝑁 ∥𝐵(𝑌,𝑋) bounded. □

Theorem 1.12 (Inverse Function Theorem). Let 𝑋,𝑌 be Banach spaces. Let 𝑥0 ∈ 𝑋
be such that 𝑓 is Fréchet differentiable in a neighborhood of 𝑥0 ∈ 𝑋 and 𝐷 𝑓 (𝑥0) is
an isomorphism. Then there is an open set 𝑈 ⊂ 𝑋 containing 𝑥0 and open set 𝑉 ⊂ 𝑌
containing 𝑓 (𝑥0) such that 𝑓 : 𝑈 → 𝑉 is a diffeomorphism. Moreover, for all 𝑦 ∈ 𝑉
and 𝑥 ∈ 𝑈 such that 𝑦 = 𝑓 (𝑥),

𝐷 ( 𝑓 −1)(𝑦) = (𝐷 𝑓 (𝑥))−1.

Proof. Let 𝐴 = 𝐷 𝑓 (𝑥0). Since 𝑓 is continuously differentiable, 𝐷 𝑓 (𝑥) → 𝐴 in 𝐵(𝑋,𝑌 ),
which implies 𝐴−1𝐷 𝑓 (𝑥) → 𝐼 on 𝐵(𝑋, 𝑋), as 𝑥 → 𝑥0 in 𝑋 , so there is 𝑟 ′ > 0 such that

𝐼 − 𝐴−1𝐷 𝑓 (𝑥0)



 ≤ 𝜅 < 1 for any 𝑥 ∈ 𝐵𝑟 ′ (𝑥0). At the same time, lemma 2.7 implies that
there is 0 < 𝑟 ′′ ≤ 𝑟 ′ such that 𝐷 𝑓 (𝑥) has a bounded inverse with



𝐷 𝑓 (𝑥)−1



𝐵(𝑌,𝑋) ≤

𝐴−1



/(1 − 𝜅), for all 𝑥 ∈ 𝐵𝑟 ′′ (𝑥0). Now that 𝐷 𝑓 (𝑥) satisfies the hypotheses of the Sim-
plified Newton Method, there is 𝑟, 𝛿 > 0 such that 𝑓 : 𝑈 → 𝑉 is isomorphic, where

𝑉 = 𝐵𝛿 ( 𝑓 (𝑥0)) with 𝛿 =
𝑟

2


𝐴−1




𝐵(𝑌,𝑋)
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𝑈 = 𝐵𝑟 (𝑥0) ∩ 𝑓 −1 (𝑉).
𝑈 and 𝑉 are then potential diffeomorphic subsets of the domain and the codomain. To
verify the that 𝑦 ↦→ 𝐷 𝑓 −1 is indeed continuous, we only need to prove the latter equality
𝐷 ( 𝑓 −1 (𝑦)) = (𝐷 𝑓 )−1 (𝑥) whenever 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉 and 𝑓 (𝑥) = 𝑦, which allows us to write
𝑦 ↦→ 𝐷 𝑓 −1 (𝑦) as the composition of three continuous functions:

𝑦 ↦→ 𝑓 −1 (𝑦) ↦→ 𝐷 𝑓 ( 𝑓 −1 (𝑦)) ↦→ 𝐷 𝑓 ( 𝑓 −1 (𝑦)) = 𝐷 𝑓 −1 (𝑦)

𝑌
𝑓 −1

−−−→ 𝑋
𝐷 𝑓−−−→ 𝐵(𝑋,𝑌 ) 𝐽−→ 𝐵(𝑌, 𝑋),

where 𝐽 is defined and shown to be continuous in Lemma 1.11, while the continuity of 𝑓 −1

and 𝐷 𝑓 is given by Lemma 1.9 and the assumption that 𝑓 is continuously differentiable.
It remains to check that 𝐷 𝑓 −1 = (𝐷 𝑓 )−1. For given 𝑦 ∈ 𝑉 , let 𝑘 ∈ 𝑌 be small enough

such that 𝑦 + 𝑘 ∈ 𝑉 and ℎ = 𝑓 −1 (𝑦 + 𝑘) − 𝑥, then

 𝑓 −1 (𝑦 + 𝑘) − 𝑓 −1 (𝑦) − 𝐷 𝑓 (𝑥)−1𝑘



𝑋
=


ℎ − 𝐷 𝑓 (𝑥)−1 [ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)]




𝑋

=


𝐷 𝑓 (𝑥)−1 [ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐷 𝑓 (𝑥)ℎ]




𝑋

≤2


𝐴−1



𝐵(𝑋,𝑌 ) ∥ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) − 𝐷 𝑓 (𝑥)ℎ∥𝑌 → 0 as ℎ → 0,

since 𝑓 is differentiable at 𝑥. As 𝑘 → 0, it follows from the Lipschitz property of 𝑓 −1 that
∥ℎ∥𝑋 =



 𝑓 −1 (𝑦 + 𝑘) − 𝑓 −1 (𝑦)



𝑋
≤ 𝑀 ∥𝑘 ∥𝑌 → 0.

Then, as 𝑘 → 0,


 𝑓 −1 (𝑦 + 𝑘) − 𝑓 −1 (𝑦) − 𝐷 𝑓 (𝑥)−1𝑘




𝑋

→ 0, so 𝑓 −1 is differentiable at
𝑦 = 𝑓 (𝑥) and 𝐷 𝑓 −1 (𝑦) = 𝐷 𝑓 (𝑥)−1. □

1.4. The Lagrange Multiplier Theorem. Rather than directly solve the constrained min-
imization problem, we will convert it into an unconstrained problem whose critical points,
characterized by the zero gradient, automatically satisfy the equality constraints. Consider
𝐿 : 𝑋 × R𝑚 → R, defined as

𝐿 (𝑥, 𝜆) = 𝑓 (𝑥) + 𝜆1𝑔1 (𝑥) + · · · + 𝜆𝑚𝑔𝑚 (𝑥) (1.1)
such that its gradient over 𝜆 describes every constraint in the minimization problem:

𝐷𝐿 (𝜆; 𝑥) = (𝑔1 (𝑥), 𝑔2 (𝑥), . . . , 𝑔𝑚 (𝑥)).
Indeed, there is a one-to-one correspondence between constrained and unconstrained mini-
mization problems, meaning that when asked to minimize 𝐿, we can construct an equivalent
problem with 𝑚 constraints by plugging in a vector of the standard basis in R𝑛. The La-
grange Multiplier Theorem comments on the feasibility of this approach.

Theorem 1.13 (Lagrange Multiplier Theorem). Let 𝑋 be a Banach space, 𝑈 ⊂ 𝑋
open, and 𝑓 , 𝑔𝑖 : 𝑈 → R, 𝑖 = 1, . . . , 𝑚 continuously differentiable. Suppose 𝑥 ∈ 𝑈
maximizes the value of 𝑓 under the constraints 𝑔𝑖 (𝑥) = 0 for all 𝑖 = 1, . . . , 𝑚. That is,
𝑥 ∈ 𝑀 , where

𝑀 = {𝑥 ∈ 𝑈 : ∀𝑖 = 1, . . . , 𝑚, 𝑔𝑖 (𝑥) = 0}
is a relative extrema for 𝑓 |𝑀 . Then there exists 𝜆 = (𝜆0, . . . , 𝜆𝑚) ∈ R𝑚+1 such that
𝜆 ≠ 0 and

⟨𝜆, 𝐷 𝑓 (𝑥)⟩ = 𝜆0𝐷 𝑓 (𝑥) + 𝜆1𝐷𝑔1 (𝑥) + · · · + 𝜆𝑚𝐷𝑔𝑚 (𝑥) = 0.
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Proof. Let 𝑥 be a local minimum of 𝑓 |𝑀 such that there exists an open neighborhood 𝑉
containing 𝑥 with 𝑓 (𝑥) ≤ 𝑓 (𝑦) for every 𝑦 ∈ 𝑀 ∩𝑉 . If we define 𝐹 : 𝑉 → R𝑚+1 by

𝐹 (𝑦) = ( 𝑓 (𝑦), 𝑔1 (𝑦), . . . , 𝑔𝑚 (𝑦)),
then it is not possible for its first term to be less than 𝑓 (𝑥) and satisfy the conditions defining
𝑀 at the same time. In other words,

∀𝜖 > 0,∀𝑦 ∈ 𝑉, ( 𝑓 (𝑥) − 𝜖, 0, . . . , 0) ≠ 𝐹 (𝑦).
𝐹 cannot map an open subset of𝑉 containing 𝑥 onto an open set around 𝐹 (𝑥) = ( 𝑓 (𝑥), 0, . . . , 0).

From this result, we use the contrapositive of the generalized Inverse Function Theorem
to show that 𝐷𝐹 (𝑥) cannot map 𝑋 onto R𝑚+1. Assume, for the sake of contradiction, that
it does. Then construct the space 𝑋̃ = span{𝑣1, · · · , 𝑣𝑚+1 |𝐷𝐹 (𝑣𝑖) = 𝑒𝑖} where 𝑒𝑖 is the
standard unit vector in the 𝑖-th direction in R𝑚+1. That is, 𝑋̃ consists of the preimage of the
standard basis for R𝑚+1. We can do this because 𝐹 is a surjective mapping, so there is at
least one choice of 𝑣𝑖 for each 𝑒𝑖 , albeit not necessarily unique. For our purposes, any choice
of 𝑣𝑖 yields an invertible and Lipschitz map 𝐷𝐹 (𝑥) defined by the restriction of 𝐷𝐹 (𝑥) to
a subset of 𝑋 isomorphic to R𝑚+1.

For the local extremum 𝑥, define 𝑋̂ = {𝑣 ∈ 𝑋̃ |𝑥 + 𝑣 ∈ 𝑉} and ℎ(𝑣) : 𝑋̂ → R𝑚+1, ℎ(𝑣) =
𝐹 (𝑥 + 𝑣) such that 𝐷ℎ(0) = 𝐷𝐹 (𝑥) by the chain rule. Defined by the further restriction
of 𝐷𝐹 (𝑥) to the intersection between its domain and 𝑉 − 𝑥, the function ℎ preserves its
invertibility and Lipschitz property. By the Inverse Function Theorem, 𝐹 maps an open
subset of 𝑋̂ , which is also open in𝑉 , onto an open subset of R𝑚, contradicting our previous
observation.

Rather, 𝐷𝐹 maps onto a proper subspace of R𝑚+1 and there is some nonzero vector 𝜆
orthogonal to 𝐷𝐹 (𝑥)(𝑋). That is,

∀𝑦 ∈ 𝑋, 𝜆0𝐷 𝑓 (𝑥)(𝑦) + 𝜆1𝐷𝑔1 (𝑥)(𝑦) + · · · + 𝜆𝑚𝐷𝑔𝑀 (𝑥)(𝑦) = 0.
□

The Lagrange Multiplier Theorem confirms that solutions to the initial constrained op-
timization problem are indeed the unconstrained extrema of some function in the form

𝐿 (𝑥, 𝜆) = 𝑓 (𝑥) −
𝑚∑
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥). (1.2)

Later, we shall see that 𝐿 is an example of the Lagrangian of an optimization problem.

2. DUALITY IN CONVEX OPTIMIZATION

2.1. Properties of convex sets and functions. This subsection introduces the fundamental
concepts in convex analysis and several operations between the domain and the dual space
that are particularly useful when applied to convex functions.

Definition 2.1 (Convex). A subset 𝐶 ∈ 𝑋 is convex if every line segment formed by
connecting two points in 𝐶 is contained by 𝐶. That is,

∀𝑥, 𝑦 ∈ 𝐴,∀𝑡 ∈ [0, 1], 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐴.
The epigraph of the function 𝑓 is denoted and defined as

epi 𝑓 = {(𝑥, 𝑦) ∈ 𝑋 × R| 𝑓 (𝑥) ≤ 𝑦}.
A function 𝑓 is convex if epi 𝑓 is a convex set. A function 𝑔 is concave if −𝑔 is convex.

The epigraph also induces the notion of closed functions, specifically:
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Definition 2.2 (Lower semicontinuous). If 𝑓 : 𝑋 → R satisfy any of the three equiv-
alent conditions, then it is lower semicontinuous, abbreviated as l.s.c., at point 𝑥0 :

(i) For every 𝑦 < 𝑓 (𝑥0), there exists a neighborhood around 𝑥0 such that 𝑓 (𝑥) > 𝑦,
or

lim inf
𝑥→𝑥0

𝑓 (𝑥) ≥ 𝑓 (𝑥0);

(ii) For every 𝛾 ∈ R, the level set 𝑉𝛾 = {𝑥 | 𝑓 (𝑥) ≤ 𝛾} is closed;
(iii) The epigraph of 𝑓 is closed.

See [2, Proposition 1.1.2.] for proof of equivalence. A function 𝑔 is upper semicon-
tinuous, or u.s.c., if −𝑔 is l.s.c.

Convexity and lower semicontinuity are preserved in several operations:

Proposition 2.3.
(a) For the convex set 𝐶 ⊂ 𝑋 , the interior of 𝐶, denoted as 𝐶◦, and the closure of

𝐶, denoted as 𝐶, are convex. If 𝐶◦ ≠ ∅, then 𝐶 = 𝐶◦;
(b) The pointwise supremum of a family of convex functions is convex;
(c) The pointwise supremum of a family of l.s.c. functions is l.s.c.

Proof. (a) Here we define 𝐶 as the set containing the limit points of all sequences {𝑐𝑛}∞𝑛=0
formed by elements in 𝐶. If 𝑐, 𝑑 ∈ 𝐶, then there is (𝑐𝑛) → 𝑐 and (𝑑𝑛) → 𝑑, so (𝜆𝑐𝑛 +
(1 − 𝜆)𝑑𝑛) → 𝜆𝑐 + (1 − 𝜆)𝑑. For all 𝜆 ∈ [0, 1], 𝜆𝑐𝑛 + (1 − 𝜆)𝑑𝑛 ∈ 𝐶 by convexity, so
𝜆𝑐 + (1 − 𝜆)𝑑 is a limit point of a sequence in 𝐶 and 𝜆𝑐 + (1 − 𝜆)𝑑 ∈ 𝐶, which proves
the convexity of 𝐶. We define 𝐶◦ as the set of points in 𝐶 that has an open ball around it
contained within 𝐶. Take the open balls 𝐵𝜖1 (𝑥), 𝐵𝜖2 (𝑦) ⊂ 𝐶◦. By convexity, the open set
𝜆𝐵𝜖1 (𝑥) + (1 − 𝜆)𝐵𝜖2 (𝑦) is a subset of 𝐶, so there exists an open ball around 𝜆𝑥 + (1 − 𝜆)𝑦
contained in 𝐶 and the convexity of 𝐶◦ is proven.

Since 𝐶◦ ⊂ 𝐶, the inclusion 𝐶◦ ⊂ 𝐶 follows from the definition of closure. To show
that 𝐶 ⊂ 𝐶◦, we write 𝑐 ∈ 𝐶 as the limit point of sequence (𝑐𝑛) and try to find a sequence
{𝑥𝑛}∞𝑛=0 ⊂ 𝐶◦ such that (𝑥𝑛) → 𝑐. Note that the convex combination of any 𝑐 ∈ 𝐶 and
𝑥 ∈ 𝐶◦ is in 𝐶◦ :

∃𝜖 > 0, 𝐵𝜖 (𝑥) ⊂ 𝐶,
∀𝜆 ∈ [0, 1], 𝜆𝑐 + (1 − 𝜆)𝐵𝜖 (𝑥) = 𝐵 (1−𝜆) 𝜖 (𝜆𝑐 + (1 − 𝜆)𝑥) ⊂ 𝐶.

We can now pick any 𝑐0 ∈ 𝐶 to construct a sequence 𝑥𝑛 = 𝜆𝑛𝑐0 + (1 − 𝜆𝑛)𝑐𝑛, where
(𝜆𝑛) → 0, so that (𝑥𝑛) → lim𝑛→∞ 𝑐𝑛 = 𝑐 and {𝑥𝑛}∞𝑛=0 ⊂ 𝐶◦. Thus 𝑐 is also a limit point
in 𝐶◦.

(b) If 𝑓 : 𝑋 → R is the pointwise supremum of the collection of functions { 𝑓𝑖}, then its
epigraph is the intersection of epi 𝑓𝑖 . Since convexity is preserved under infinite intersec-
tion, epi 𝑓 is convex and 𝑓 is a convex function.

(c) The result is analogous to (b): The pointwise supremum of a family of l.s.c. functions
has an epigraph formed by the intersection of their epigraphs, which are closed by Defini-
tion 2.2. Since closedness is preserved under infinite intersection, the epigraph of superior
envelop is also closed and its corresponding function is l.s.c. □

We now define the functional operation that is critical to our later construction of dual
problems. Specifically, it transform a functional in 𝑋 one in 𝜒∗ with the desirable properties
of convexity and lower semicontinuity.
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5 𝑓 ∗ (𝑥∗)𝑓 (𝑥)

𝑥∗ ↦→ ⟨𝑥∗, 𝑥𝑖⟩ − 𝑓 (𝑥𝑖)

Figure 2. The conjugate function is the superior envelop of the family of affine maps
{𝑥∗ ↦→ ⟨𝑥∗, 𝑥𝑖 ⟩ − 𝑓 (𝑥𝑖 ) |𝑥𝑖 ∈ 𝑋}.

Definition 2.4 (Conjugate function). For any 𝐹 : 𝑉 → R that is proper, meaning
𝐹 ≠ +∞ and has value−∞ nowhere in its domain, its conjugate function 𝐹∗ : 𝑉∗ → R
is defined as

𝐹∗ (𝑥∗) = sup
𝑥∈𝑋

{⟨𝑥∗, 𝑥⟩ − 𝐹 (𝑥)}.

As the pointwise supremum of the family of convex l.s.c., or more precisely, affine maps
𝑥∗ ↦→ ⟨𝑥, 𝑥∗⟩−𝐹 (𝑥), 𝐹∗ is convex and lower semicontinuous on 𝜒∗. In fact, any convex l.s.c.
function 𝑓 : 𝑋 → R can be expressed as the pointwise supremum of all affine functions
ℎ such that ℎ ≤ 𝑓 in 𝑋 . The existence of affine minorants of any convex function is later
shown in Corollary 3.4, while the construction of convex functions as the superior envelop
of affine maps is formalized in the regularized space.

Definition 2.5 (Γ−regularization). If the function 𝐹 : 𝑉 → R is the pointwise supre-
mum of a family of continuous affine functions, then 𝐹 ∈ Γ(𝑉). In particular, Γ0 (𝑉)
denotes Γ(𝑉) excluding the constant functions +∞ and −∞.

From our observation, Γ(𝑉) is equivalent to the class of convex l.s.c. functions in 𝑉 ,
while Γ0 (𝑉) is the further restriction of that set to proper functions. For a geometric proof
of this result, see [6, Theorem 20.3.].

The localized set of such affine functions gives another interpretation of differentiability
adapted for testing convexity.
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Definition 2.6 (subgradient). A function 𝑓 : 𝑋 → R is subdifferentiable at point 𝑥 if
there is at least one affine function 𝑙 : 𝑋 → R such that 𝑙 ≤ 𝑓 in 𝑋 and 𝑙 (𝑥) = 𝑓 (𝑥). The
slope 𝑥∗ ∈ 𝑋 of such an affine function is the subgradient of 𝐹 at 𝑥, and the collection
of subgradients at 𝑥 form the subdifferential of 𝐹 at 𝑥, denoted as 𝜕𝐹 (𝑥).

Formally, 𝑥∗ ∈ 𝜕𝐹 (𝑥) if and only if 𝐹 (𝑥) is finite and ⟨𝑥′ − 𝑥, 𝑥∗⟩ + 𝐹 (𝑥) ≤ 𝐹 (𝑥′) for every
𝑥′ ∈ 𝑋 and 𝐹 (𝑥) = ⟨𝑥∗, 𝑥⟩, or equivalently, 𝐹 (𝑥) + 𝐹∗ (𝑥∗) = ⟨𝑥, 𝑥∗⟩.

Like conjugation, subdifferentiability introduces a dual relation:

Proposition 2.7. For the function 𝐹 : 𝑉 → R. if 𝑢∗ ∈ 𝜕𝐹 (𝑢), then 𝑢 ∈ 𝜕𝐹∗ (𝑢∗). If,
furthermore, 𝐹 ∈ Γ(𝑉), then the two statements are equivalent.

Proof. See [4, Corollary I.5.2.]. □

In fact, the one-to-one correspondence between the greatest affine minorants of a con-
vex function and those of its conjugate suggests that conjugation on convex functions is
invertible. From the subgradients of the conjugate function, it is possible to recover the
affine minorants that frame the original function, should they exist. Convexity is a neces-
sary condition for the existence of affine minorants and the invertibility of conjugation, as
later proven analytically in Theorem 3.5 and Corollary 3.4.

−1 1

−1

1

2

(a) Construction of the conjugate function.

−1 1

−1

1

2

(b) Restoration of a convex function from its conjugate using sub-
gradient duality.

Figure 3. The dual matching between the subgradients of a convex function and its conju-
gate induces a bijection between the points on their graphs.

The definition of the subgradient captures convexity conditions. While subdifferen-
tiability constrains the set of differential points to those with a derivative from below, it
relaxes the requirement for derivatives if we consider any l.s.c. convex function with a dis-
continuity, or a continuous convex function such as |𝑥 | that is not Fréchet differentiable.
Specifically,

Proposition 2.8. If the function 𝐹 : 𝑉 → R is convex, finite and continuous at the
point 𝑢 ∈ 𝑉 , then 𝜕𝐹 (𝑣) ≠ ∅ for all 𝑣 in the interior of its effective domain, the subset
of D 𝑓 where 𝐹 ≠ +∞.

Proof. See [4, Proposition I.5.2.]. □
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2.2. Lagrangian duality. Using the duality of the conjugate and subgradients of a convex
function, we will show the equivalence between a convex minimization problem and its
dual maximization problem. Other than the possibility of simplifying solution algorithms,
the advantage of this approach is that the existence conditions of a maximization problem is
now linked to those of its dual minimization problem, characterizing the sufficient existence
conditions that the Lagrange Multiplier Theorem alone fails to address.

Definition 2.9 (perturbed problem). Consider the problem P for 𝐹 : 𝑋 → R :
inf𝑥∈𝑋 𝐹 (𝑥), where 𝑋 is a Hausdorff topological vector space with dual 𝜒∗. For another
Hausdorff topological vector space 𝑌 and its dual 𝑌 ∗, we construct the perturbation
functionΦ : 𝑋 ×𝑌 → R such that Φ(𝑥, 0) = 𝐹 (𝑥) and the perturbed problem P𝑦 for
given 𝑦 ∈ 𝑌 as inf𝑥∈𝑋 Φ(𝑥, 𝑦).

In an unconstrained maximization problem, the maximizing arguments in the primal and
perturbed problems are identical, regardless of choice of Φ. The following discussion on
the Karush-Kuhn-Tucker Theorem shows that the perturbation function is useful (and aptly
named) in constrained optimization where the addition of the second argument punishes
the first argument for violating any constraint.

Definition 2.10 (dual problem). For primal problem P and its perturbed problems
{P𝑦 |𝑦 ∈ 𝑌 }, the dual problem, denoted as P∗, is

sup
𝑦∈𝑌 ∗

{−Φ∗ (0, 𝑦∗)}, where Φ∗ (0, 𝑦∗) = sup
𝑥∈𝑋
𝑦∈𝑌 ∗

[⟨𝑦∗, 𝑦⟩ −Φ(𝑥, 𝑦)] .

We denote the minimal value in P as inf P and the maximal value in P∗ as supP∗.

The inner product pairing for product topology, computed as ⟨(𝑥∗, 𝑦∗), (𝑥, 𝑦)⟩ = ⟨𝑥∗, 𝑥⟩ +
⟨𝑦∗, 𝑦⟩, verifies that for Φ∗ (0, 𝑦∗) is obtained by the fixing 𝑥∗ = 0 in conjugation of Φ.
Fixing 𝑦 = 0 in the sup expression, we have

∀𝑥 ∈ 𝑋,−Φ∗ (0, 𝑦∗) = − sup
𝑥∈𝑋
𝑦∈𝑌 ∗

{⟨𝑦∗, 𝑦⟩ −Φ(𝑥, 𝑦)} ≤ −[⟨𝑦∗, 0⟩ −Φ(𝑥, 0)] = Φ(𝑥, 0).

This implies the weak duality result supP∗ ≤ inf P , which gives an extremal relation
between the solutions of the primal and dual problems, should they exist.

Proposition 2.11 (extremal relation). If solutions exist for both P and P∗ such that
inf P and supP∗ are equal with a finite value, then all solutions 𝑥 of P and 𝑦̄∗ of P∗

satisfy the extremal relation Φ(𝑥, 0) +Φ∗ (0, 𝑦̄∗) = 0.
Conversely, if there are 𝑥 ∈ 𝑋 and 𝑦̄∗ ∈ 𝑌 ∗ that satisfy the above condition, then

they are solutions to P and P∗, and inf𝑥∈𝑋 P = sup𝑦∗∈𝑌 P∗ is finite.

Proof. Suppose that inf P = Φ(𝑥, 0) = supP∗ = −Φ∗ (0, 𝑦̄∗). Upon rearrangement,
Φ(𝑥, 0) +Φ∗ (0, 𝑦̄∗) = 0.

Conversely, the weak duality
−Φ∗ (0, 𝑦∗) ≤ sup

𝑦∗∈𝑌 ∗
{−Φ∗ (0, 𝑦∗)} ≤ inf

𝑥∈𝑋
Φ(𝑥, 0) ≤ Φ(𝑥, 0)

argues that attainment of extrema is necessary for equality between −Φ∗ (0, 𝑦∗) andΦ(𝑥, 0),
which is equivalent to the extremal relation. □
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We now investigate the conditions under which the strong duality inf P∗ = supP with
its extremal relation holds, beginning with the existence conditions for the general convex
minimization problems.

Theorem2.12 (existence conditions). Consider the optimization problem inf𝑢∈𝐶 𝐹 (𝑢),
where 𝐶 is convex and 𝐹 : 𝐶 → R is convex, l.s.c. and proper. The set of its solutions
is a convex set in the reflexive Banach space 𝑋 . In addition, suppose that one of the
following conditions is assumed:

(i) 𝐶 is bounded;
(ii) 𝐹 is coercive over 𝐶, meaning 𝐹 (𝑢) → +∞ for 𝑢 ∈ 𝐶 as ∥𝑢∥ → ∞.

Then the problem has at least one solution, and the set of all solutions is convex. If it
is further assumed that 𝐹 is strictly convex, then the problem has a unique solution.

Proof. For the convexity result, construct a problem with an identical solution set, but ex-
tended to 𝑋:

inf
𝑥∈𝑋

𝐹̂ (𝑥) where 𝐹̂ (𝑥) =
{
𝐹 (𝑥) 𝑥 ∈ 𝐶
+∞ 𝑥 ∉ 𝐶

.

Note that 𝐹̂ is also convex and l.s.c. Suppose inf𝑢∈𝐶 𝐹 (𝑢) = 𝛼 ≠ +∞, which follows
from the assumption that 𝐹 is proper. Now the set of minimizing arguments for 𝐹 can be
rewritten as the epigraph {𝑢 ∈ 𝑋 |𝐹̂ (𝑢) ≤ 𝛼}, which is convex by since 𝐹̂ is convex.

For the existence result, construct a sequence in 𝐶 denoted {𝑢𝑛 |𝑢𝑛 ∈ 𝐶}∞𝑛=0 such that
𝐹 (𝑢𝑛) → 𝛼. If either condition is met, {𝑢𝑛} is bounded in 𝑋 . In the case of condition (ii),
∥𝑢∥ → ∞ will lead to ∥𝐹 (𝑢) − 𝛼∥ → ∞ and contradict the construction of {𝑢𝑛}. There
is then a subsequence {𝑢𝑛𝑘} of {𝑢𝑛} that converges weakly to some 𝑢̄ ∈ 𝐶. Since lower
semicontnuity is preserved on the weak topology, 𝐹 (𝑢̄) ≤ lim inf𝑢𝑛𝑘→∞ 𝐹 (𝑢𝑛𝑘) = 𝛼, so 𝑢̄
is the solution to inf𝑢∈𝐶 𝐹 (𝑢), which takes on a value greater than −∞.

If there are two different solutions, 𝑢1 and 𝑢2, the convexity of the solution set argues that
𝑢̄ = (𝑢1 + 𝑢2)/2 is also a solution, which leads to the contradiction that 𝐹 (𝑢̄) ≤ 1

2 (𝐹 (𝑢1) +
𝐹 (𝑢2)) = 𝛼 if 𝐹 is strictly convex. □

Theorem 2.13 (dual existence conditions). Let 𝑋 be a reflexive Banach space and
Φ ∈ Γ0 (𝑋 × 𝑌 ) while satisfying the following conditions:

(i) Φ is stable: ∃𝑥0 ∈ 𝑋, 𝑦 ↦→ Φ(𝑥0, 𝑦) is continuous and finite at 0 ∈ 𝑌 ;
(ii) Φ is coercive: Φ(𝑥, 0) → ∞ as ∥𝑥∥𝑋 → ∞.

Then there is P and P∗ each have at least one solution.

Proof. From condition (ii), Φ(𝑢, 0) satisfies the hypotheses in Theorem 2.12, so P has at
least one solution. For the solution to P∗, consider the value function ℎ : 𝑌 → R, ℎ(𝑦) =
inf𝑥∈𝑋 Φ(𝑥, 𝑦). If Φ ∈ Γ0 (𝑋 × 𝑌 ), then ℎ is convex:

∀𝑝, 𝑞 ∈ 𝑌, ℎ(𝜆𝑝 + (1 − 𝜆)𝑞) = inf
𝑥∈𝑋

Φ(𝑥, 𝜆𝑝 + (1 − 𝜆)𝑞),

∀𝑢, 𝑣 ∈ 𝑋, inf
𝑥∈𝑋

Φ(𝑥, 𝜆𝑝 + (1 − 𝜆)𝑞) ≤ Φ(𝜆𝑢 + (1 − 𝜆)𝑣, 𝜆𝑝 + (1 − 𝜆)𝑞).
By the convexity of Φ,

ℎ(𝜆𝑝 + (1 − 𝜆)𝑞) ≤ 𝜆Φ(𝑢, 𝑝) + (1 − 𝜆)Φ(𝑣, 𝑞) ≤ 𝜆ℎ(𝑝) + (1 − 𝜆)ℎ(𝑞).
Because Φ is continuous at 0, there is a neighborhood𝑊 around 0 in 𝑌 such that Φ(𝑥0, 𝑦)
is continuous and bounded above, say by 𝑀 < +∞. By definition, the minimized value
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ℎ(𝑦) = inf𝑥∈𝑋 Φ(𝑥, 𝑦) ≤ Φ(𝑥0, 𝑦) ≤ 𝑀 , which implies ℎ is continuous at 0. Take the ball
𝑉 = −𝑊 ∩𝑊centered around 0 and there is the ball 𝛿𝑊 for every 𝛿 ∈ (0, 1) such that for
any 𝑥 ∈ 𝜖𝑊 , one of the following cases follows:

𝑥

𝛿
∈ 𝑉 =⇒ ℎ(𝑥) ≤ (1 − 𝛿)ℎ(0) + 𝛿ℎ(𝑥/𝛿) ≤ ℎ(0) + 𝛿𝑀, or

− 𝑥

𝛿
∈ 𝑉 =⇒ ℎ(𝑥) ≥ (1 + 𝛿)ℎ(0) − 𝛿ℎ(𝑥/𝛿) ≥ ℎ(0) − 𝛿𝑀.

Since 𝑀 is constant, there is always small enough 𝛿 such that |ℎ(𝑥) − ℎ(0) | < 𝜖 and ℎ is
continuous as 0. Since ℎ is convex, Proposition 2.7 then implies 𝜕ℎ(0) ≠ ∅. Furthermore,
the subgradient 𝜕ℎ∗∗ (0) = 𝜕ℎ(0) ≠ ∅ by Theorem 3.5. We will complete the proof by
showing the solution set to P∗ is exactly 𝜕ℎ∗∗ (0).

If 𝑦̄∗ is a solution of P∗, then for every 𝑦∗ ∈ 𝑌 ∗, −Φ∗ (0, 𝑦̄∗) ≥ −Φ∗ (0, 𝑦∗), or equiva-
lently, −ℎ( 𝑦̄∗) ≥ −ℎ(𝑦∗), which is then rewritten as:

−ℎ∗ ( 𝑦̄∗) = sup
𝑦∗∈𝑌 ∗

[⟨0, 𝑦∗⟩ − ℎ∗ (𝑦∗)] = ℎ∗∗ (0).

This is equivalent to 𝑦̄∗ ∈ 𝜕ℎ∗∗ (0), since 𝑦̄∗ is an affine minorant:
ℎ∗∗ (𝑦) − ℎ∗∗ (0) = sup

𝑦∗∈𝑌 ∗
[⟨𝑦∗, 𝑦⟩ − ℎ∗ (𝑦∗)] + ℎ∗ ( 𝑦̄∗)

= sup
𝑦∗∈𝑌 ∗

[⟨𝑦∗, 𝑦⟩ − ℎ∗ (𝑦∗)] − sup
𝑦∗∈𝑌 ∗

[⟨0, 𝑦∗⟩ − ℎ∗ (𝑦∗)]

≥ sup
𝑦∗∈𝑌 ∗

[⟨𝑦∗, 𝑦⟩] ≥ ⟨𝑦̄∗, 𝑦⟩ .

□

Now we characterize the solution set using duality. We introduce the Lagrangian, which
incorporates the arguments of the primal and dual problems into one equation.

Definition 2.14 (Lagrangian). TheLagrangian of problemP relative to perturbations
{Φ : 𝑋 × 𝑌 → R} is 𝐿 : 𝑋 × 𝑌 ∗ → R with

∀𝑥 ∈ 𝑋, 𝑦∗ ∈ 𝑌, −𝐿 (𝑢, 𝑦∗) = sup
𝑦∈𝑌

{⟨𝑦∗, 𝑦⟩ −Φ(𝑥, 𝑦)},

or equivalently, 𝐿 (𝑥, 𝑦) = −Φ∗
𝑥 (𝑦∗), where Φ𝑥 is the map 𝑦 ↦→ Φ(𝑥, 𝑦) for fixed 𝑥 ∈ 𝑋 .

The saddle points of 𝐿 : 𝑋 × 𝑌 ∗ → R are the set of points (𝑥, 𝑦̄∗) ∈ 𝑋 × 𝑌 ∗ such that
∀𝑥 ∈ 𝑋,∀𝑦 ∈ 𝑌 ∗, 𝐿 (𝑥, 𝑦∗) ≤ 𝐿 (𝑥, 𝑦̄∗) ≤ 𝐿 (𝑥, 𝑦̄∗).

Note that for any 𝑥0 ∈ 𝑋 , the Lagrangian 𝐿 (𝑥0, 𝑦
∗) is concave and u.s.c. in 𝑌 ∗, since

−𝐿 (𝑥0, 𝑦
∗) = Φ∗

𝑥0 (𝑦
∗) is convex and l.s.c. as a conjugate function. If Φ is convex, then

dually, for 𝑦∗0 ∈ 𝑌 ∗, the Lagrangian 𝐿 (𝑥, 𝑦∗0) is convex in 𝑋 . Furthermore,

Theorem 2.15. For Φ ∈ Γ0 (𝑉 ×𝑌 ), (𝑥, 𝑦̄∗) is a saddle point of 𝐿 if and only if 𝑥 solves
P , 𝑦̄∗ solves P∗ and inf P = supP∗.
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Proof. We will express the perturbation functions and then the affiliated problems using the
Lagrangian:

Φ∗ (𝑥∗, 𝑦∗) = sup
𝑥∈𝑋

[⟨𝑥∗, 𝑥⟩ + ⟨𝑦∗, 𝑦⟩ −Φ(𝑥, 𝑦)]

= sup
𝑥∈𝑋

{⟨𝑢∗, 𝑢⟩ + sup
𝑦∈𝑌

[⟨𝑦∗, 𝑦⟩ −Φ(𝑥, 𝑦)]}

= sup
𝑥∈𝑋

[⟨𝑥∗, 𝑥⟩ − 𝐿 (𝑥, 𝑦∗)] .

In particular, −Φ∗ (0, 𝑦∗) = − sup𝑥∈𝑋 [−𝐿 (𝑥, 𝑦∗)] = inf𝑥∈𝑋 𝐿 (𝑥, 𝑦∗), so the dual problem
P∗ becomes sup𝑦∗∈𝑌 ∗ inf𝑥∈𝑋 𝐿 (𝑥, 𝑦∗) for any perturbation function Φ. If it is further as-
sumed that Φ ∈ Γ0 (𝑋 × 𝑌 ), the invertibility of conjugation implies an analogous relation-
ship

Φ(𝑥, 𝑦) = Φ∗
𝑥 (𝑦) = sup

𝑦∗∈𝑌 ∗
[⟨𝑦, 𝑦∗⟩ −Φ∗

𝑥 (𝑦∗)] = sup
𝑦∗∈𝑌

[⟨𝑦, 𝑦∗⟩ + 𝐿 (𝑥, 𝑦∗)],

such thatΦ(𝑥, 0) = sup𝑦∗∈𝑌 ∗ 𝐿 (𝑥, 𝑦∗) and the problemP becomes inf𝑥∈𝑋 sup𝑦∗∈𝑌 ∗ 𝐿 (𝑥, 𝑦∗).
If (𝑥, 𝑦̄∗) is a saddle point of 𝐿 in 𝑋 × 𝑌 ∗,

𝐿 (𝑥, 𝑦̄∗) = inf
𝑥∈𝑋

𝐿 (𝑥, 𝑦∗) = −Φ∗ (0, 𝑝∗) = sup
𝑦∗∈𝑌 ∗

𝐿 (𝑥, 𝑦∗) = Φ(𝑥, 0)

satisfies the extremal relation, which is equivalent to 𝑥 and 𝑦̄∗ being solutions of P and P∗,
respectively, and inf P = supP∗ by Proposition 2.11. □

Using the Lagrangian, we can show that the existence conditions of solutions to the dual
problem and those of the primal problems are equivalent.

Theorem 2.16. Suppose that Φ ∈ Γ0 (𝑋 × 𝑌 ) and P is stable, meaning that it has a
value function ℎ(𝑦) = inf𝑥∈𝑋 Φ(𝑥, 𝑦) that is finite and subdifferentiable at 0. Then 𝑥 is
a solution of P and only if there exists 𝑦̄∗ ∈ 𝑌 ∗ such that (𝑥, 𝑦̄∗) is a saddle point of 𝐿.

Proof. By Theorem 2.15, if (𝑥, 𝑦̄∗) is a saddle point, then 𝑥 solves P and 𝑦̄∗ solves P∗. To
prove the converse direction, we have shown in the proof of Theorem 2.13 that if 𝐿 is stable,
then P∗ has at least one solution 𝑦̄∗ and inf P = supP∗. Again, by Theorem 2.15, (𝑥, 𝑦̄∗)
is a saddle point of 𝐿.

□

2.3. The Minimax Theorem. The perturbation function can be written as the pointwise
infimum of the Lagrangian, which in turn contains the supremum expression. The exis-
tence of oppositional optimizing arguments relates the computation of the Lagrangian to
the solution of zero-sum games, which direct us to the study of minimax theory.

The Minimax Theorem investigates conditions on function 𝐿 : 𝑋 × 𝑌 → R necessary
for equality to be attained in the minimax inequality

sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝐿 (𝑥, 𝑦) ≤ inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝐿 (𝑥, 𝑦),

which follows from the definitions of the supremum and infimum: Since every element in
the set {inf𝑥∈𝑋 𝐿 (𝑥, 𝑦) |𝑦 ∈ 𝑌 } is less than or equal to any element in the set{sup𝑦∈𝑌 𝐾 (𝑥, 𝑦) |𝑥 ∈
𝑋}, the supremum of the former is less than or equal to the infimum of the latter.

To begin the investigation, we show that the attainment of equality is equivalent to the
existence of a saddle point (𝑥, 𝑦̄), which takes the same value as the above expression: By
the definition of the saddle point,

inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝐿 (𝑥, 𝑦) ≤ max
𝑦∈𝑌

𝐿 (𝑥, 𝑦) = 𝐿 (𝑥, 𝑦̄) = min
𝑥∈𝑋

𝐿 (𝑥, 𝑦̄) ≤ sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝐿 (𝑥, 𝑦),
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which when combined with the minimax inequality, is equivalent to
sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝐿 (𝑥, 𝑦) = inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝐿 (𝑥, 𝑦).

Conversely, if the extrema are equal and attained in each argument, say at 𝑥 and 𝑦̄, (𝑥, 𝑦̄)
obeys the definition of a saddle point:

sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝐿 (𝑥, 𝑦) = max
𝑦∈𝑌

inf
𝑥∈𝑋

𝐿 (𝑥, 𝑦) = 𝐿 (𝑥, 𝑦̄) = min
𝑥∈𝑋

sup
𝑦∈𝑌

𝐿 (𝑥, 𝑦) = inf
𝑥∈𝑋

sup
𝑦∈𝑌

𝐿 (𝑥, 𝑦).

Then the hypotheses in the Minimax Theorem are equivalent to the existence conditions
for saddle points. A set of assumptions that form the basis for the existence conditions for
function 𝐾 : 𝐶 × 𝐷 → R is that 𝐶 and 𝐷 are convex, closed and non-empty subsets of
reflexive Banach spaces. At the same time, 𝑣 ↦→ 𝐿 (𝑢, 𝑣) is concave and u.s.c. for any 𝑢 ∈ 𝐶
and 𝑢 ↦→ 𝐿 (𝑢, 𝑣) is convex and l.s.c. for any 𝑣 ∈ 𝐷, or 𝐿 is concave-convex and closed for
brevity.

Proposition 2.17. If 𝐿 : 𝐶 × 𝐷 → R is a concave-convex function, where 𝐶 and
𝐷 are convex subsets of reflexive Banach spaces, then the set of saddle points of 𝐿,
denoted as𝐶0×𝐷0, is convex. Furthermore, if strict concavity holds for every function
in {𝑣 ↦→ 𝐿 (𝑢, 𝑣) |𝑢 ∈ 𝐶}, then 𝐷0 contains at most one element. Similarly, if strict
convexity holds for every function in {𝑢 ↦→ 𝐿 (𝑢, 𝑣) |𝑣 ∈ 𝐷}, then 𝐶0 contains at most
one element.

Proof. Assume that 𝐶0 × 𝐷0 is non-empty and 𝛼 ∈ 𝐶0 × 𝐷0. Then by the definition of
the saddle point, which takes value 𝛼, 𝐿 (𝑢1, 𝑣) ≤ 𝛼 and 𝐿 (𝑢2, 𝑣) ≤ 𝛼 for any 𝑢1, 𝑢2 ∈
𝐶0, 𝜆 ∈ (0, 1) and given 𝑣 ∈ 𝐷. By the convexity of 𝑢 ↦→ 𝐿 (𝑢, 𝑣), 𝐿 (𝜆𝑢1 + (1 − 𝜆)𝑢2, 𝑣) ≤
𝜆𝐿 (𝑢1, 𝑣) + (1 − 𝜆)𝐿 (𝑢2, 𝑣) ≤ 𝛼. At the same time, 𝐿 (𝑢, 𝑣0) ≥ 𝛼 for 𝑣0 ∈ 𝐷0, so 𝐿 (𝜆𝑢1 +
(1−𝜆)𝑢2, 𝑣0) = 𝛼 is another saddle point. If concavity is strict and there are more than one
saddle points 𝑢1, the 𝐿 (𝜆𝑢1+ (1−𝜆)𝑢2, 𝑣) < 𝛼 and 𝜆𝑢1+ (1−𝜆)𝑢2 ∉ 𝐶0×𝐷0, contradicting
this observation. □

Theorem 2.18 (von Neumann). Suppose that 𝐿 : 𝐶 × 𝐷 → R is closed and concave-
convex and 𝐶 and 𝐷 are convex subsets of the reflexive Banach spaces 𝑋 and 𝑌 . If 𝐶
and 𝐷 are bounded, then 𝐾 has at least one saddle point, say (𝑢̄, 𝑣̄), and the extrema
are attained:

𝐿 (𝑢̄, 𝑣̄) = min
𝑢∈𝐶

max
𝑣∈𝐷

𝐿 (𝑢, 𝑣) = max
𝑣∈𝐷

min
𝑢∈𝐶

𝐿 (𝑢, 𝑣).

Proof. By the Banach-Alaogu Theorem, 𝐶 and 𝐷 are compact for the weak topologies of
𝑋 and 𝑌 . The lower semicontinuity of 𝑢 ↦→ 𝐾 (𝑢, 𝑣) and upper semicontinuity 𝑣 ↦→ 𝐿 (𝑢, 𝑣)
are also preserved in the weak topologies, so the infimum of 𝑢 ↦→ 𝐿 (𝑢, 𝑣) is attained for
any 𝑣 ∈ 𝐷. First consider the case where 𝑢 ↦→ 𝐿 (𝑢, 𝑣) is strictly convex such that the
minimizing argument is unique. Let 𝑒 : 𝐷 → 𝐶 be the well-defined map from a given 𝑣 to
the minimizing argument of 𝐿 (𝑢, 𝑣) and 𝑓 (𝑣) = 𝐿 (𝑒(𝑣), 𝑣) = min𝑢∈𝐶 𝐿 (𝑢, 𝑣). As the lower
envelop of concave u.s.c. functions, 𝑓 (𝑣) is concave and u.s.c. and its maximum is attained,
say at 𝑣̄, so 𝑓 (𝑣̄) = max𝑣∈𝐷 min𝑢∈𝐶 𝐿 (𝑢, 𝑣).

We now show that 𝑢̄ = 𝑒(𝑣̄). By the concavity of 𝑣 ↦→ 𝐿 (𝑢, 𝑣), 𝐿 (𝑢, 𝑒𝜆) ≥ 𝜆𝐿 (𝑢, 𝑣) +
(1 − 𝜆)𝐿 (𝑢, 𝑣̄). For 0 < 𝜆 < 1, define 𝑒𝜆 = 𝑒((1 − 𝜆) 𝑣̄ + 𝜆𝑣). Then by the concavity of 𝑓
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and 𝑣 ↦→ 𝐿 (𝑢, 𝑣),
𝑓 (𝑣̄) ≥ 𝑓 ((1 − 𝜆) 𝑣̄ + 𝜆𝑣) = 𝐿 (𝑒𝜆, (1 − 𝜆) 𝑣̄ + 𝜆𝑣)

≥ (1 − 𝜆)𝐿 (𝑒𝜆, 𝑣̄) + 𝜆𝐿 (𝑒𝜆, 𝑣) ≥ (1 − 𝜆) 𝑓 (𝑣̄) + 𝐿 (𝑒𝜆, 𝑣).

Upon rearrangement, 𝑓 (𝑣̄) ≥ 1
𝜆
𝐿 (𝑒𝜆, 𝑣) ≥ 𝐿 (𝑒𝜆, 𝑣). In particular, Since 𝐶 is weakly

sequentially compact, the sequence 𝑒𝜆𝑛 converges to some point 𝑢̄ ∈ 𝐶 as 𝜆𝑛 → 0. By the
lower semicontinuity of 𝑢 ↦→ 𝐿 (𝑢, 𝑣) (first inequality), the definition of 𝑒, and the concavity
and the upper semicontinuity of 𝑣 ↦→ 𝐿 (𝑢, 𝑣) (second inequality),

∀𝑢 ∈ 𝐶, 𝐿 (𝑢̄, 𝑣̄) ≤ lim inf
𝜆𝑛→0

𝐿 (𝑒𝜆𝑛 , 𝑣̄) ≤ lim
𝜆𝑛→0

𝑓 ((1 − 𝜆𝑛) 𝑣̄ + 𝑣)

≤ lim sup
𝜆𝑛→0

𝐿 (𝑢, (1 − 𝜆𝑛) 𝑣̄ + 𝜆𝑛𝑣),

so 𝐿 (𝑢̄, 𝑣̄) = lim𝜆𝑛→0 𝐿 (𝑒(𝜆(1 − 𝜆𝑛) 𝑣̄ + 𝜆𝑛𝑣) and (1 − 𝜆𝑛) 𝑣̄ + 𝜆𝑛𝑣) = 𝐿 (𝑒𝑣̄, 𝑣̄). Since the
minimizing argument in 𝐶 for 𝑢 ↦→ 𝐿 (𝑢, 𝑣) is unique, 𝑢̄ = 𝑒(𝑣̄). Combine the statement
contained in the above inequality

∀𝑢 ∈ 𝐶, 𝐿 (𝑢, 𝑣̄) ≥ 𝑓 (𝑣̄) ≥ 𝐿 (𝑢̄, 𝑣̄),
with the definition of 𝑣̄:

∀𝑣 ∈ 𝐶, 𝑓 (𝑣̄) ≥ 𝑓 (𝑣) = min
𝑢∈𝐶

𝐿 (𝑢, 𝑣) ≥ 𝐿 (𝑢̄, 𝑣),

and (𝑢̄, 𝑣̄) is a saddle point of 𝐿 in 𝐶 × 𝐷, which is equivalent to:
max
𝑣∈𝐷

min
𝑢∈𝐶

𝐿 (𝑢, 𝑣) = sup
𝑣∈𝐷

inf
𝑢∈𝐶

𝐿 (𝑢, 𝑣) = inf
𝑢∈𝐶

sup 𝑣 ∈ 𝐷𝐿 (𝑢, 𝑣) = min
𝑢∈𝐶

max
𝑣∈𝐷

𝐿 (𝑢, 𝑣).

The attainment of extrema follows from the compactness of 𝐶 and 𝐷, invoked in the con-
struction of (𝑢̄, 𝑣̄).

In cases where 𝑢 ↦→ 𝐿 (𝑢, 𝑣) is convex but not strictly so, apply the observation to the
perturbed Lagrangian 𝐿 𝜖 : 𝐶 × 𝐷 → R, defined as

𝐿 𝜖 (𝑢, 𝑣) = 𝐿 (𝑢, 𝑣) + 𝜖 ∥𝑢∥𝐶 ,
which is strictly convex in 𝐶 and has a unique saddle point (𝑢̄𝜖 , 𝑣̄𝜖 ). By the weak com-
pactness of 𝐶 and 𝐷, there is some sequence 𝜖𝑛 → 0 and some (𝑢̄, 𝑣̄) ∈ 𝐶 × 𝐷 such that
𝑢̄𝜖𝑛 → 𝑢̄ weakly in 𝐶 and 𝑣̄𝜖𝑛 → 𝑣̄ weakly in 𝐷. The assumptions on 𝐿 then imply

𝐿 (𝑢̄, 𝑣) = lim inf
𝜖𝑛→0

𝐿 (𝑢, 𝑣) + 𝜖𝑛∥𝑢∥𝐶 ≤ 𝐿 (𝑢̄, 𝑣̄) ≤ lim sup
𝜖𝑛→0

𝐿 (𝑢, 𝑣) + 𝜖𝑛∥𝑢∥𝐶 = 𝐿 (𝑢, 𝑣̄),

so (𝑢̄, 𝑣̄) is a saddle point of 𝐿 and equality is attained. The attainment of the extrema within
follows from compactness. □

Theorem 2.19. Let 𝐿 : 𝐶 × 𝐷 be a closed concave-convex function, where 𝐶 and 𝐷
are closed convex nonempty subsets of reflexive Banach spaces. Suppose that

∃𝑢0 ∈ 𝐶, lim
𝑣∈𝐷

∥𝑢∥→∞
𝐿 (𝑢0, 𝑣) = ∞,

∃𝑣0 ∈ 𝐷, lim
𝑢∈𝐷

∥𝑣∥→∞
𝐿 (𝑢, 𝑣0) = −∞.

Then 𝐿 has at least one saddle point (𝑢̄, 𝑣̄) such that
𝐿 (𝑢̄, 𝑣̄) = min

𝑣∈𝐷
max
𝑢∈𝐶

𝐿 (𝑢, 𝑣) = max
𝑢∈𝐶

min
𝑣∈𝐷

𝐿 (𝑢, 𝑣).
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Proof. For given 𝜇 > 0, define 𝐶𝜇 = {𝑢 ∈ 𝐶 |∥𝑢∥ ≤ 𝜇} and 𝐷𝜇 = {𝑣 ∈ 𝐷 |∥𝑣∥ ≤ 𝜇} so
that𝐶𝜇 and 𝐷𝜇 are closed, convex and bounded, satisfying the hypotheses of the preceding
theorem. There is then a saddle point (𝑢̄𝜇, 𝑣̄𝜇) of 𝐿𝜇 : 𝐶𝜇 × 𝐷𝜇 → R.

Recall from the proof of Theorem 2.12 that if 𝑢 ↦→ 𝐿 (𝑢, 𝑣) is coercive, convex and l.s.c.,
then it is bounded from below by a constant 𝑀 > −∞. In particular, −∞ < 𝑀 ≤ 𝐿 (𝑢̄𝜇, 𝑣)
and similarly, 𝐾 (𝑢, 𝑣̄) ≤ 𝑁 ≤ +∞ for some constant 𝑁 . By the definition of the saddle point,
𝐾 (𝑢̄𝜇, 𝑣) ≤ 𝐾 (𝑢̄𝜇, 𝑣̄𝜇) ≤ 𝐿 (𝑢, 𝑣̄𝜇) ≤ 𝑁 . Boundedness implies that there is a sequence
𝜇 𝑗 → ∞ such that 𝑢̄𝜇 𝑗 → 𝑢̄ weakly in 𝐶, 𝑣̄𝜇 𝑗 → 𝑣̄ weakly in 𝐷 and 𝐿 (𝑢̄𝜇 𝑗 , 𝑣̄𝜇 𝑗 ) = 𝛼. □

2.4. Karush-Kuhn-Tucker Theorem. We return to constrained optimization problems
to observe how, as in the unconstrained minimization problem, convexity conditions intro-
duce new methods of characterizing the solution set. Specifically, they allow us to practice
the transformation to Equation (1.1) without relying on the Inverse Function Theorem for
verification and generalize the Lagrange Multiplier Theorem.

The hypotheses in all theorems of this subsection contain the following assumptions.
Consider the constrained minimization problem for the convex l.s.c. function 𝐽 : 𝐶 → R,
is a convex set in the topological vector space 𝑋 with dual pairing 𝜒∗ and 𝐵 : 𝐶 → 𝑌 is
convex with respect to ≤:

∀𝑢, 𝑣 ∈ 𝐶,∀𝜆 ∈ (0, 1), 𝐵(𝜆𝑢 + (1 − 𝜆)𝑣) ≤ 𝜆𝐵(𝑢) + (1 − 𝜆)𝐵(𝑣),
while the subset of 𝐶 satisfying 𝐵(𝑢) ≤ 0 is nonempty. 𝑌 is similarly a topological vector
space with the dual pairing 𝑌 ∗, and 𝑢 ↦→ ⟨𝑦∗, 𝐵(𝑢)⟩ is l.s.c. The partial ordering relation in
𝑌 and 𝑌 ∗ are defined such that ⟨𝑝∗, 𝑝⟩ ≥ 0 whenever 𝑝∗ ≥ 0, 𝑝 ≥ 0 or 𝑝∗ ≤ 0, 𝑝 ≤ 0 and
⟨𝑝∗, 𝑝⟩ ≤ 0 whenever 𝑝∗ ≥ 0, 𝑝 ≤ 0 or 𝑝∗ ≤ 0, 𝑝 ≥ 0. It is constructed using the convex
cone in [4, Section III.5.], so we denote {𝑞 ≥ 0|𝑞 ∈ 𝑌 } as 𝐾 and {𝑞∗ ≥ 0|𝑞∗ ∈ 𝑌 ∗} as 𝐾∗.

Consider the constrained minimization problem P:

inf
𝑢∈𝐶
𝐵𝑢≤0

𝐽 (𝑢), or equivalently, inf
𝑢∈𝐶
𝐵𝑢≤0

𝐹 (𝑢), where 𝐹 (𝑢) =
{
𝐽 (𝑢) 𝑢 ∈ 𝐶 and 𝐵𝑢 ≤ 0
+∞ otherwise

.

We choose the perturbation function to be

Φ(𝑢, 𝑝) = 𝐽 (𝑢)+𝜒𝐸𝑝 , where 𝐽 (𝑢) =
{
𝐽 (𝑢) 𝑢 ∈ 𝐶 and 𝐵(𝑢) ≤ 0
+∞ otherwise

and 𝐸𝑝 = {𝑢 ∈ 𝐶 |𝐵(𝑢) ≤ 𝑝},

𝜒𝐸𝑝 =

{
0 𝑢 ∈ 𝐸𝑝
+∞ 𝑢 ∉ 𝐸𝑝

is called the indicator function of 𝐸𝑝 .

Proposition 2.20.
(a) The set 𝐸𝑝 is closed and convex in 𝑌 regardless of the choice for 𝑝;
(b) The set 𝐸 = {(𝑢, 𝑝) ∈ 𝑋 ×𝑌 |𝑢 ∈ 𝐶, 𝐵(𝑢) ≤ 𝑝} is closed and convex in 𝑋 ×𝑌 ;
(c) Φ ∈ Γ0 (𝑋 × 𝑌 ).

Proof. (a) The ordering condition states that for given 𝑢 ∈ 𝐶, 𝐸𝑝 = {𝑝 | ⟨𝑝∗, 𝐵(𝑢) − 𝑝⟩ ,∀𝑝∗}.
For any fixed 𝑝∗, the map 𝑢 ↦→ ⟨𝐵(𝑢) − 𝑝, 𝑝∗⟩ is convex l.s.c., so its epigraph {𝑢 ∈
𝐶 | ⟨𝐵(𝑢) − 𝑝, 𝑝∗⟩} is convex and closed. As the intersection of these sets, 𝐸𝑝 = ∪𝑝∗≥0{𝑢 ∈
𝐶 | ⟨𝐵(𝑢) − 𝑝, 𝑝∗⟩} is convex and closed.

To show (b), apply the same reasoning to the map (𝑢, 𝑝) ↦→ ⟨𝐵(𝑢) − 𝑝, 𝑝∗⟩, which is
convex and l.s.c. like 𝑢 ↦→ ⟨𝐵(𝑢) − 𝑝, 𝑝∗⟩.
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(c) Note that 𝐸 (𝑢, 𝑝) is represents the same set as 𝐸𝑝 (𝑢). Rewrite the perturbation
function as Φ(𝑢, 𝑝) = 𝐽 (𝑢) + 𝜒𝐸 (𝑢, 𝑝). 𝐽 is l.s.c. and convex by assumption and so is
𝜒𝐸 (𝑢, 𝑝) as the indicator function of a convex closed set. As their sum, Φ is convex and
l.s.c., or equivalently, Φ ∈ Γ0 (𝑋 × 𝑌 ). □

Now to construct the dual problem. Writing 𝑝 = 𝐵(𝑢) + 𝑞, 𝑞 ≥ 0 for 𝐵(𝑢) ≤ 𝑝, the
conjugate of the perturbation function becomes

Φ∗ (0, 𝑝∗) = sup
𝑢∈𝐶
𝑝∈𝑌

{⟨𝑝∗, 𝑝⟩ −Φ(𝑢, 𝑝)} = sup
𝑢∈𝐶
𝑝∈𝑌
𝐵𝑢≤𝑝

{⟨𝑝∗, 𝑝⟩ − 𝐽 (𝑢)}

= sup
𝑢∈𝐶

sup
𝑞∈𝑌
𝑞≥0

{⟨𝑝∗, 𝐵𝑢⟩ + ⟨𝑝∗, 𝑞⟩ − 𝐽 (𝑢)}.

Equivalently, because ⟨𝑝∗, 𝑞⟩ can be inflated to +∞ whenever 𝑝∗ ≥ 0,
Φ∗ (0, 𝑝∗) = sup

𝑢∈𝐶
{⟨𝑝∗, 𝐵(𝑢)⟩ − 𝐽 (𝑢)} + 𝜒𝐾∗ (−𝑝∗),

−Φ∗ (0, 𝑝∗) = inf
𝑢∈𝐶

{− ⟨𝑝∗, 𝐵(𝑢)⟩ + 𝐽 (𝑢)} − 𝜒𝐾∗ (−𝑝∗).

We have the dual problem P∗, defined as
sup
𝑝∗≤0

inf
𝑢∈𝐶

{− ⟨𝑝∗, 𝐵(𝑢)⟩ + 𝐽 (𝑢)} − 𝜒𝐾∗ (−𝑝∗). (2.1)

We then have a stability condition is necessary for the finiteness of the solution.

Lemma 2.21. P is stable if inf 𝑢∈𝐶
𝐵𝑢≤0

𝐽 (𝑢) is finite and there is 𝑢 ∈ 𝐶 so that −𝐵(𝑢) < 0.

Proof. From the assumption, there is a neighborhood𝑉 around 0 in𝑌 such that−𝐵(𝑢0)+𝑝 ≥
0, which implies Φ(𝑢0, 𝑝) = 𝐽 (𝑢0), for every 𝑝 ∈ 𝑉 and ℎ(𝑝), so 𝑝 ↦→ Φ(𝑢0, 𝑝) is convex,
continuous and bounded, say by the constant 𝑀 < +∞. Then ℎ(𝑝) = inf𝑢Φ(𝑢, 𝑝) ≤
Φ(𝑢0, 𝑝) ≤ 𝑀 , so ℎ is finite, convex and continuous, which implies it is subdifferentiable
in 𝑉 , in particular at 0, by Proposition 2.8. □

Theorem 2.22. Suppose that inf P is finite. Then 𝑢̄ ∈ 𝐶 is a solution to P if and only
if there exists 𝑝∗ ∈ 𝑌 ∗ such that (𝑢̄, 𝑝∗) is a saddle point of the Lagrangian. That is,
∀𝑢 ∈ 𝐶,∀𝑝∗ ≤ 0, 𝐽 (𝑢̄) − ⟨𝑝∗, 𝐵(𝑢̄)⟩ ≤ 𝐽 (𝑢̄) − ⟨𝑝∗, 𝐵(𝑢̄)⟩ ≤ 𝐽 (𝑢) − ⟨𝑝∗, 𝐵(𝑢)⟩ .

In this case, ⟨𝑝∗, 𝐵(𝑢̄)⟩ = 0.

Proof. To compute the Lagrangian in this case,
−𝐿 (𝑢, 𝑝∗) = sup

𝑝∈𝑌
{⟨𝑝∗, 𝑝⟩ −Φ(𝑢, 𝑝)} = −𝐽 (𝑢) + sup

𝑝∈𝑌
𝑝≥𝐵(𝑢)

⟨𝑝∗, 𝑝⟩

= −𝐽 (𝑢) + ⟨𝑝∗, 𝐵(𝑢)⟩ + sup
𝑞∈𝑌
𝑞≥0

⟨𝑝∗, 𝑞⟩ = −𝐽 (𝑢) + ⟨𝑝∗, 𝐵(𝑢)⟩ + 𝜒𝐾∗ (−𝑝∗),

𝐿 (𝑢, 𝑝∗) = 𝐽 (𝑢) − ⟨𝑝∗, 𝐵(𝑢)⟩ − 𝜒𝐾∗ (−𝑝∗).
The point (𝑢̄, 𝑝∗) is then a saddle point of the above Lagrangian if
𝐽 (𝑢̄)−⟨𝑝∗, 𝐵(𝑢̄)⟩−𝜒𝐾∗ (−𝑝∗) ≤ 𝐽 (𝑥)−⟨𝑝∗, 𝐵(𝑢̄)⟩−𝜒𝐾∗ (−𝑝∗) ≤ 𝐽 (𝑥)−⟨𝑝∗, 𝐵(𝑢)⟩−𝜒𝐾∗ (−𝑝∗).
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Since is the infimum is finite, it cannot be the case that 𝐽 (𝑢) = +∞ or 𝜒𝐾∗ (−𝑝∗) = +∞, so
it is necessary and sufficient for (𝑢̄, 𝑝∗) to satisfy 𝑢̄ ∈ 𝐶, 𝑝∗ ≤ 0 and

𝐽 (𝑢̄) − ⟨𝑝∗, 𝐵(𝑢̄)⟩ ≤ 𝐽 (𝑥) − ⟨𝑝∗, 𝐵(𝑢̄)⟩ ≤ 𝐽 (𝑥) − ⟨𝑝∗, 𝐵(𝑢)⟩
to be a saddle point for 𝐿 and solutions for P and P∗.

Setting 𝑝∗ = 0 in the first half of this inequality, we have ⟨𝑝∗, 𝐵(𝑢̄)⟩ ≥ 0, while the
assumptions 𝑝∗ ≥ 0 and 𝐵(𝑢) ≤ 0 gives ⟨𝑝∗, 𝐵(𝑢̄)⟩ ≤ 0, so ⟨𝑝∗, 𝐵(𝑢̄)⟩ = 0. The result also
follows from the extremal relation:

Φ(𝑢̄, 0) +Φ∗ (0, 𝑝∗) = 𝐽 (𝑢) + ⟨𝑝∗, 𝐵(𝑢)⟩ − 𝐽 (𝑢) = 0.
□

We now turn to the special case where 𝑋 = 𝜒∗ = R𝑛, 𝑌 = 𝑌 ∗ = R𝑚 and𝐶 = {(𝑢1, . . . , 𝑢𝑛) |∀1 ≤
𝑖 ≤ 𝑛, 𝑢𝑖 ≥ 0}. The function 𝐵 : R𝑛 → R𝑚 is convex and l.s.c. in every component
𝐵𝑖 : R𝑛 → R.

Corollary 2.23 (Karush-Kuhn-Tucker). 𝑢̄ ∈ 𝐶 is a solution to P if and only if there
exists 𝑝 ∈ R𝑚, 𝑝 ≤ 0, such that

∀𝑢 ∈ 𝐶,∀𝑝 ≥ 0, 𝐿 (𝑢̄, 𝑝) ≤ 𝐿 (𝑢̄, 𝑝) ≤ 𝐿 (𝑢, 𝑝).
In this case,

∑𝑚
𝑖=0 𝑝𝑖𝐵𝑖 (𝑢̄) = 0, which implies that for all 1 ≤ 𝑖 ≤ 𝑚, then either 𝐵𝑖 (𝑢̄) <

0 and 𝑝𝑖 = 0, or 𝐵𝑖 (𝑢̄) = 0. 𝑝∗ is called the Kuhn-Tucker vector corresponding to
solution 𝑢̄ to problem P .

With this result comes a statement of existence conditions analogous to Theorem 2.16:

Corollary 2.24. Assume, for the problem P : inf𝑥∈𝑋 𝐹 (𝑥), that 𝐹 : 𝑋 × 𝑌 → R is a
concave-convex function. 𝑥 ∈ R𝑛 is a solution to P if and only if there exists 𝑥∗ ∈ R𝑚

such that (0, 0) ∈ 𝜕𝐿 (𝑥∗, 𝑦̄), where 𝐿 is the Lagrangian of P . Furthermore, every 𝑢̄∗
that satisfies this condition is a Kuhn-Tucker vector for P .

Proof. The analytic proof is the application of 2.16. See [6, Theorem 36.6] for a geometric
proof using the Minimax Theorem. □

If we impose another inequality condition −𝐵(𝑢) ≤ 0, then the problem P is subject to
the strict equality constraint, 𝐵(𝑢) = 0. Combining the optimality conditions, we have

(i) 𝐵(𝑢̄) < 0 and 𝑝𝑖 = 0, or 𝐵𝑖 (𝑢̄) = 0,
(ii) 𝐵(𝑢̄) > 0 and 𝑝𝑖 = 0, or 𝐵𝑖 (𝑢̄) = 0,

for every 1 ≤ 𝑖 ≤ 𝑚. This implies that 𝐵𝑖 (𝑢̄) = 0 is a necessary condition satisfied by the
solution, but they also characterize the critical points in ??, the Lagrangian. The problem
P then becomes equivalent to

max 𝐿 (𝑢, 𝑝) = 𝐽 (𝑢) −
𝑛∑
𝑖=1

𝑝𝑖𝐵𝑖 (𝑢),

whose first-order conditions encapsulate the conditions derived using duality:
(i)

𝐷𝐿 (𝑢̄, p) = 𝐷 𝑓 (𝑢̄, p∗) −
𝑚∑
𝑖=1

𝑝𝑖𝐷𝐵𝑖 (𝑢̄),

such that 𝐽 (𝑢̄) − ⟨p∗, 𝐵𝑢̄⟩ ≤ 𝐽 (𝑢) − ⟨p∗, 𝐵𝑢⟩ for every choice of p∗.
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(ii)
𝐷𝑖𝐿 (𝑢, p̄∗) = 𝐵𝑖 (𝑢) = 0,

such that 𝐽 (𝑢) − ⟨p̄∗, 𝐵(𝑢)⟩ ≥ 𝐽 (𝑢) − ⟨p∗, 𝐵(𝑢)⟩ and 𝐵(𝑢) = 0.
The result is identical to the requirements on Equation (1.2), except 𝜆 is replaced by p.
Hence, Lagrange multipliers are a special case of Kuhn-Tucker vectors.

3. DUALITY GENERALIZED

3.1. Conjugation as isomorphism. We begin by importing two separation theorems from
functional analysis:

Theorem 3.1 (Helly-Hahn-Banach, analytic form). Suppose the function 𝑝 : 𝑋 → R
with 𝑝(𝜆𝑥) = 𝜆𝑝(𝑥) and 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) for every 𝜆 > 0 and 𝑥, 𝑦 ∈ 𝑋 . Let
𝑔 : 𝐺 → R, where 𝐺 is a linear subspace of 𝑋 , be affine with 𝑔(𝑥) ≤ 𝑝(𝑥) for any
𝑥 ∈ 𝑋 . Then there exists an affine function 𝑓 : 𝑋 → R that extends 𝑔 from 𝐺 to 𝑋 ,
satisfying 𝑓 = 𝑔 in 𝐺 and 𝑓 ≤ 𝑝 in 𝑋 .

Theorem 3.2 (Hahn-Banach, first geometric form). Let 𝑋 be a topological vector
space with convex subsets 𝐴 and 𝐵 which do not intersect. If one of them, say 𝐴, is
open, then there is a closed hyperplane separating 𝐴 and 𝐵.

Here, we define a hyperplane, or more accurately an affine hyperplane, as 𝐻 ⊂ 𝑋 such that
𝐻 = { 𝑓 (𝑥) = 𝛼} for a given functional 𝑓 ∈ 𝜒∗.

Theorem 3.3 (Hahn-Banach, second geometric form). Let 𝑋 be a topological vector
space and 𝐴 and 𝐵 its nonempty convex subsets that do not intersect. If 𝐴 is closed and
𝐵 compact, then there is a closed hyperplane that strictly separates 𝐴 and 𝐵.

The formulations adapt [3, Theorems 1.1., 1.6. and 1.7.] for convex analysis. Their proofs
are also found (with brilliant illustrations) in [5, Theorem 4.17. and Theorem 4.24.]. An
important corollary of the separation theorems is that a convex l.s.c. proper function always
has an affine minorant:

Corollary 3.4. If 𝑓 : 𝑋 → R is convex, l.s.c. and proper, then 𝑓 ∗ : 𝜒∗ → R cannot
be the constant function +∞. In particular, it is bounded below by an affine continuous
function.

This result comments on the feasibility to find affine functionals below a convex function
and to construct it as their superior envelop, as accomplished in the preceding section. Us-
ing this fact, we now show that conjugation is in fact invertible when applied to convex
functions. This observation follows intuitively as any 𝑓 ∈ Γ(𝑋) is constructed as the point-
wise supremum of all its affine minorants, which is sup𝑥∗∈𝜒∗ ⟨𝑥∗, 𝑥⟩ − 𝑓 ∗ (𝑥∗), so we can
restore the original function by conjugating 𝑓 ∗, as formalized below.

Theorem 3.5 (Fenchel-Moreau). If 𝑓 : 𝑋 → R is convex, l.s.c. and proper, then
𝑓 ∗∗ = 𝑓 , where 𝑓 ∗∗ : 𝑋 → R is defined by

𝑓 ∗∗ (𝑥) = sup
𝑥∗∈𝜒∗

{⟨𝑥∗, 𝑥⟩ − 𝑓 ∗ (𝑥∗)}.
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Proof. We first take the case where 𝑓 ≥ 0. By the definition of the conjugate function,
⟨𝑥∗, 𝑥⟩ − 𝑓 ∗ (𝑥∗) ≤ 𝑓 (𝑥) for any 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝜒∗, so as the pointwise supremum of
the left-hand side in 𝜒∗, 𝑓 ∗∗ is similarly less than or equal to 𝑓 on all of 𝑋 . To show that
𝑓 ∗∗ = 𝑥, assume, for the sake of contradiction, that 𝑓 ∗∗ (𝑥0) < 𝑥0 for some 𝑥0 ∈ 𝑋 . Apply
the Hahn-Banach theorem, second geometric form, to the epigraph of 𝑓 ∗∗ (𝑥) and the point
(𝑥0, 𝑓

∗∗ (𝑥0)) and there exists a closed hyperplane, in particular, a linear functional strictly
separating them. That is, there exists 𝑥∗ ∈ 𝜒∗, 𝑘 ∈ R, 𝛼 ∈ R such that

∀(𝑥, 𝑦) ∈ epi 𝑓 , ⟨𝑥∗, 𝑥⟩ + 𝑘𝑦 >𝛼, (3.1)
⟨𝑥∗, 𝑥0⟩ + 𝑘 𝑓 ∗∗ (𝑥0) <𝛼. (3.2)

Note that 𝑘 ≥ 0 since 𝑦 can be chosen to be arbitrarily large for fixed 𝑥 ∈ D 𝑓 .
We want to construct a contradiction to. From (3.1) and the assumption that 𝑓 ≥ 0, we

have for 𝜖 > 0,
∀𝑥 ∈ D 𝑓 , ⟨𝑥∗, 𝑥⟩ + (𝑘 + 𝜖) 𝑓 (𝑥) ≥𝛼,〈

− 𝑥∗

𝑘 + 𝜖 , 𝑥
〉
− 𝑓 (𝑥) ≤ − 𝛼

𝑘 + 𝜖 .

As a result,

𝑓 ∗
(
− 𝑥∗

𝑘 + 𝜖

)
= sup
𝑥∈𝑋

[〈
− 𝑥∗

𝑘 + 𝜖 , 𝑥
〉
− 𝑓 (𝑥)

]
≤ − 𝛼

𝑘 + 𝜖 ,

𝑓 ∗∗ (𝑥0) ≥
〈
− 𝑥∗

𝑘 + 𝜖 , 𝑥0

〉
− 𝑓 ∗

(
− 𝑥∗

𝑘 + 𝜖

)
≥
〈
− 𝑥∗

𝑘 + 𝜖 , 𝑥0

〉
+ 𝛼

𝑘 + 𝜖 .

Upon rearrangement, ⟨𝑥∗, 𝑥0⟩ + (𝑘 + 𝜖) 𝑓 ∗∗ (𝑥0) ≥ 𝛼, contradicting (3.2).
For the general case, fix some 𝑥∗0 ∈ D 𝑓 ∗ and define 𝑓 (𝑥) = 𝑓 (𝑥) −

〈
𝑥∗0, 𝑥

〉
+ 𝑓 ∗ (𝑥∗0),

which is convex, proper and l.s.c. as the sum of such functions. Furthermore, 𝑓 ≥ 0 by the
definition of the conjugate function and falls into the previous case such that ( 𝑓 )∗∗ = 𝑓 .
This then implies 𝑓 ∗∗ = 𝑓 , since
( 𝑓 )∗ (𝑥∗) = sup

𝑥∈𝑋
[⟨𝑥∗, 𝑥⟩ − 𝑓 (𝑥) +

〈
𝑥∗0, 𝑥

〉
− 𝑓 ∗ (𝑥∗0)]

= sup
𝑥∈𝑋

[⟨𝑥∗, 𝑥⟩ − 𝑓 (𝑥) +
〈
𝑥∗0, 𝑥

〉
] − 𝑓 ∗ (𝑥∗0) = 𝑓 ∗ (𝑥∗ + 𝑥∗0) − 𝑓 ∗ (𝑥∗0),

( 𝑓 )∗∗ (𝑥) = sup
𝑥∗∈𝑋

[⟨𝑥∗, 𝑥⟩ − ( 𝑓 )∗ (𝑥∗)] = sup
𝑥∗∈𝑋

[
〈
𝑥∗ + 𝑥∗0, 𝑥

〉
− ( 𝑓 )∗ (𝑥∗ + 𝑥∗0)] + 𝑓 ∗ (𝑥∗0) −

〈
𝑥∗0, 𝑥

〉
= 𝑓 ∗∗ (𝑥) + 𝑓 ∗ (𝑥∗0) −

〈
𝑥∗0, 𝑥

〉
= 𝑓 (𝑥) = 𝑓 (𝑥) + 𝑓 ∗ (𝑥∗0) −

〈
𝑥∗0, 𝑥

〉
.

□

The invertibility of conjugation is a special property of convex functions that induces the
one-to-one correspondence between the primal and dual problems. Recall the value func-
tion of the primal problem inf𝑥∈𝑋 𝐹 (𝑥) with perturbation function Φ : 𝑋 ×𝑌 → R, defined
as ℎ(𝑦) = inf𝑥∈𝑋 Φ(𝑥, 𝑦) = inf𝑥∈𝑋 𝐹 (𝑥). The Fenchel-Moreau Theorem states that

ℎ∗∗ (0) = sup
𝑦∗∈𝑌

−ℎ∗ (𝑦∗) = sup
𝑦∗∈𝑌

−Φ∗ (0, 𝑦∗),

which is consistent with our previous construction of the dual problem.
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3.2. Fenchel Duality Theorem.

Theorem 3.6 (Fenchel-Rockafellar). Suppose 𝑓 , 𝑔 : 𝑋 → R are convex functions and
𝑥0 ∈ D 𝑓 ∩D𝑔 𝑓 . Then

inf
𝑥∈𝑋

{ 𝑓 (𝑥) + 𝑔(𝑥)} = sup
𝑥∗∈𝜒∗

{− 𝑓 ∗ (−𝑥∗) − 𝑔∗ (𝑥∗)} (3.3)

= max
𝑥∗∈𝜒∗

{− 𝑓 ∗ (−𝑥∗) − 𝑔∗ (𝑥∗)} = − min
𝑥∈𝜒∗

{ 𝑓 ∗ (−𝑥∗) + 𝑔∗ (𝑥∗)}

Proof. Define 𝑎 = inf𝑥∈𝑋 [ 𝑓 (𝑥) +𝑔(𝑥)] and 𝑏 = sup𝑥∗∈𝜒∗ [− 𝑓 ∗ (−𝑥∗) −𝑔∗ (𝑥∗)], then 𝑏 ≤ 𝑎,
since for every 𝑥∗ ∈ 𝜒∗ and 𝑥 ∈ 𝑋 ,

− 𝑓 ∗ (𝑥∗) − 𝑔∗ (𝑥∗) ≤ −[⟨−𝑥∗, 𝑥⟩ − 𝑓 (𝑥)] − [⟨𝑥∗, 𝑥⟩ − 𝑔(𝑥)] = 𝑓 (𝑥) + 𝑔(𝑥).
Assume 𝑎 > −∞, otherwise 𝑏 = 𝑎 directly follows. Apply the Hahn-Banach Theorem, first
geometric form, to 𝐴 = epi 𝑓 ◦, which is nonempty because 𝑓 is continuous at 𝑥0, and 𝐵 =
{𝑦 ≤ 𝑎 − 𝑔(𝑥) | [𝑥, 𝑦] ∈ 𝑋 ×R}. 𝐴 and 𝐵 are convex from the convexity of 𝑔. Furthermore,
𝐴 ∩ 𝐵 = ∅, since for every (𝑥, 𝑦) ∈ 𝐴, 𝑦 > 𝑓 (𝑥) ≥ 𝑎 − 𝑔(𝑥). Then there exists a closed
hyperplane that strictly separates𝐴 and 𝐵. In particular, since 𝐴 = epi 𝑓 by Corollary 3.4,
there is 𝑥∗ ∈ 𝜒∗, 𝑘 ∈ R, 𝛼 ∈ R such that the affine hyperplane Φ(𝑥, 𝑦) = ⟨𝑥∗, 𝑥⟩ + 𝑘𝑦 = 𝛼
separates epi 𝑓 and 𝐵. That is,

∀(𝑥, 𝑦) ∈ epi 𝑓 , ⟨𝑥∗, 𝑥⟩ + 𝑘𝑦 ≥𝛼, (3.4)
∀(𝑥, 𝑦) ∈ 𝐵, ⟨𝑥∗, 𝑥⟩ + 𝑘𝑦 ≤𝛼. (3.5)

As in the preceding proof, 𝑘 ≥ 0 because otherwise 𝑘𝑦 would not be bounded from
below if we choose large enough 𝑦 for fixed 𝑥0 ∈ D 𝑓 ∩ D𝑔. We now show that in fact
𝑘 > 0. Assume, for the sake of contradiction, that 𝑘 = 0, so ∥𝑥∗∥𝜒∗ ≠ 0 and (3.4), (3.5)
become

∀𝑥 ∈ D 𝑓 , ⟨𝑥∗, 𝑥⟩ ≥𝛼,
∀𝑥 ∈ D𝑔, ⟨𝑥∗, 𝑥⟩ ≤𝛼.

But for small enough 𝜖0 > 0, 𝐵(𝑥0)𝜖0 ⊂ D 𝑓 , so ⟨ 𝑓 , 𝑥0 + 𝑧𝜖0⟩ ≥ 𝛼 for any 0 ≤ 𝑧 ≤ 1. By
the definition of functional norm, this implies ⟨ 𝑓 , 𝑥0 + 𝜖0𝑧⟩ ≥ 𝛼+ 𝜖0∥ 𝑓 ∥. At the same time,
⟨ 𝑓 , 𝑥0⟩ ≤ 𝛼, so ∥ 𝑓 ∥ = 0, a contradiction.

From (3.4),

𝑓 ∗
(
−𝑥

∗

𝑘

)
= sup
𝑥∈𝑋

〈
−𝑥

∗

𝑘
, 𝑥

〉
− 𝑓 (𝑥) ≤

〈
−𝑥

∗

𝑘
, 𝑥

〉
−
(
𝛼

𝑘
−
〈
𝑥∗

𝑘
, 𝑥

〉)
= −𝛼

𝑘
,

and from (3.5),
∀(𝑥, 𝑦) ∈ 𝐵, ⟨𝑥∗, 𝑥⟩ + 𝑘𝑎 − 𝑘𝑔(𝑥) ≤ ⟨𝑥∗, 𝑥⟩ + 𝑘𝑦 ≤ 𝛼,

𝑔∗
(
𝑥∗

𝑘

)
= sup
𝑥∈𝑋

〈
𝑥∗

𝑘
, 𝑥

〉
− 𝑔(𝑥) ≤ 𝛼

𝑘
− 𝑎.

From this result and from our choice of 𝑏, we have

− 𝑓 ∗
(
−𝑥

∗

𝑘

)
− 𝑔∗

(
𝑥∗

𝑘

)
≥𝑎,

− 𝑓 ∗
(
−𝑥

∗

𝑘

)
− 𝑔∗

(
𝑥∗

𝑘

)
≤𝑏.
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Since 𝑏 ≤ 𝑎, 𝑎 = 𝑏 = − 𝑓 ∗
(
−𝑥

∗

𝑘

)
− 𝑔∗

(
𝑥∗

𝑘

)
, so the relation (3.3) and the supremum in it is

attained. □

Another common formulation of Fenchel Duality, useful in maximizing the difference be-
tween two functionals, is

inf
𝑥∈𝑋

{ 𝑓 (𝑥) − 𝑔(𝑥)} = sup
𝑥∗∈𝑋

{𝑔∗ (−𝑥∗) + 𝑓 ∗ (−𝑥∗)},

where we define the concave conjugate of 𝑔 as 𝑔∗ (𝑥∗) = inf𝑥∈𝑋{⟨𝑥∗, 𝑥⟩ − 𝑔(𝑥)}.
3.3. Special cases. We now show that results from the previous discussions on the Mini-
max Theorem and the Karush-Kuhn-Tucker Theorem are special cases of Fenchel-Moreau
and Fenchel-Rockafellar duality.

To begin, we introduced a generalized Fenchel duality theorem particular to the reals
from [6, Corollary 31.2.1.].

Theorem 3.7. Let 𝑓 be a closed proper convex function on R𝑛 and 𝑔 a closed proper
concave function on R𝑚. Let 𝐴 be a linear transformation from R𝑚 to R𝑛. We have

inf
𝑥
{ 𝑓 (𝑥) − 𝑔(𝐴𝑥)} = sup

𝑦∗
{𝑔∗ (𝑦∗) − 𝑓 ∗ (𝐴𝑇 𝑦∗)},

if either of the following conditions is satisfied:
(a) There exists 𝑥 ∈ riD 𝑓 such that 𝐴𝑥 ∈ riD𝑔;
(b) There exists 𝑦∗ ∈ riD𝑔∗ such that 𝐴𝑇 𝑦∗ ∈ riD 𝑓 .

The relative interior of the convex set 𝐶 ∈ R𝑛, denoted as ri𝐶, consists of all 𝑧 ∈ R𝑛

such that
∀𝑥 ∈ 𝐶, ∃𝜇 > 1, (1 − 𝜇)𝑥 + 𝜇𝑧 ∈ 𝐶.

Under (a), the supremum on the right-hand side is attained at some 𝑦∗, while under (b),
the infimum on the left-hand side is attained at some 𝑥.

Apply this observation to the Fenchel problem P:
inf
𝑥∈R𝑛

{𝜒𝐶 (𝑥) + 𝜒∗𝐷 (𝐴𝑥)},

where𝐶 and 𝐷R𝑚 are non-empty convex, and 𝜒∗𝐷 is the conjugate of the indicator function
of set 𝐷, so 𝜒∗𝐷 : R𝑚 → R, 𝑦∗ ↦→ sup𝑦∈𝐷 ⟨𝑦∗, 𝑦⟩. Then,

inf
𝑥∈R𝑁

P = inf
𝑥∈𝐶

sup
𝑦∈𝐷

⟨𝐴𝑥, 𝑦⟩ .

Furthermore, since 𝐷 is convex, and so is its indicator function. By Theorem 3.5, (𝜒𝐷)∗∗ =
𝜒𝐷 . By Theorem 3.7,

inf
𝑥∈R𝑛

P = inf
𝑥∈R𝑛

{𝜒𝐶 (𝑥) − (−𝜒∗𝐷 (𝐴𝑥))}

= sup
𝑦∈R𝑚

{−𝜒𝐷 (𝑦) − sup
𝑥∈𝐶

{−
〈
𝐴𝑇 𝑦, 𝑥

〉
}}

= sup
𝑦∈𝐷

inf
𝑥∈𝐶

⟨𝐴𝑥, 𝑦⟩ .

Hence, Fenchel duality implies the von Neumann Minimax Theorem for linear operators.
Lagrangian duality is a special case of Fenchel-Rockafellar daulity. Consider, again, the

constrained problem that induces the Karush-Kuhn-Tucker Theorem. The objective is to
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choose 𝑥 ∈ R𝑛 to minimize 𝐽 : R𝑛 → R subject to 𝐵(𝑥) ≤ 0 for 𝐵 : R𝑛 → R𝑚. Recall that
the primal problem is equivalent to

inf
𝑥∈R𝑛

𝐽 (𝑥) + 𝜒𝐾 (−𝐵𝑥).

Apply the Fenchel Duality Theorem with 𝑓 (𝑥) = 𝐽 (𝑥) and 𝑔(𝑥) = 𝜒𝐾 (−𝐵𝑥):

inf
𝑥∈R𝑛

[𝐽 (𝑥) + 𝜒𝐾 (−𝐵𝑥)] = sup
𝑦∗∈𝑌 ∗

{
− sup
𝑥∈𝑋

[⟨𝑦∗, 𝐵𝑥⟩ − 𝐽 (𝑥)] + −𝜒𝐾∗ (−𝑦∗)
}

= sup
𝑦∗∈𝑌 ∗

{
inf
𝑥∈𝑋

[− ⟨𝑦∗, 𝐵𝑥⟩ + 𝐽 (𝑥)] + −𝜒𝐾∗ (−𝑦∗)
}

= sup
𝑦∗≤0

inf
𝑥∈𝑋

{− ⟨𝑦∗, 𝐵(𝑥)⟩ + 𝐽 (𝑥)},

which is identical to the dual problem described in (2.1).
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