
FORCING: AN INTRODUCTION TO INDEPENDENCE PROOFS

IN SET THEORY

JOSHUA YAGUPSKY

Abstract. In 1963, Paul Cohen invented the technique of forcing as a way to

prove indpendence results in set theory. He used this method to demonstrate
that the continuum hypothesis, which states that the cardinality of the real

numbers 2ℵ0 is the smallest uncountable cardinal, is independent from the

standard ZFC axioms of set theory. That is, assuming ZFC is a consistent
theory, it cannot tell us whether or not the continuum hypothesis is true.

Cohen’s method allows one to easily prove independence results and construct

models of set theory with desired properties. In this paper, we will examine
the forcing method and use it to prove the independence of the continuum

hypothesis.
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1. Introduction

The notion that infinite sets could come in different sizes or cardinalities was
one of the main achievements of the early set theorists. Cantor famously showed
using the diagonal argument that, not only are there different sizes of infinity, but
that there are infinitely many such sizes. In particular, he showed that there are
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more real numbers, or equivalently more subsets of natural numbers, than there
are natural numbers. Since the cardinality of the natural numbers is the smallest
infinite cardinality, this raises the obvious question of whether the cardinality of
the real numbers is the second smallest. Cantor hypothesized that there was no
intermediate cardinality, a statement now called the continuum hypothesis, but
was unable to prove it. In 1940, Gödel showed that the continuum hypothesis
was consistent with the standard ZFC axioms of set theory, assuming the axioms
themselves were consistent. Finally, in 1963, Paul Cohen proved that it was also
consistent for the continuum hypothesis not to be true. His method for proving the
independence of the continuum hypothesis, known as forcing, is extremely flexible
and can be used for a wide variety of independence results. We’ll use the forcing
method in this paper to show that the continuum hypothesis is independent of the
ZFC axioms.

2. ZFC Set Theory

2.1. ZFC Axioms. Before we can prove any independence results, we’ll review the
basics of set theory from the perspective of first-order logic. We will assume the
reader is familiar with the basics of first-order logic: if not, [7] is a good reference.
Zermelo-Frankel set theory with Choice, or ZFC, is a first-order theory over a simple
language called the language of set theory. This language features no function
symbols and only one binary relation symbol, namely ∈. The elements of a structure
for the language of set theory are called sets. In this language, we often use bounded
quantifiers: formulas of the form ∀x ∈ y.φ(x) or ∃x ∈ y.φ(x). These are to be
interpreted as ∀x (x ∈ y =⇒ φ(x)) and ∃x (x ∈ y ∧ φ(x)), respectively. We also
abbreviate ¬(x ∈ y) as x ̸∈ y. The theory of ZFC can be generated by a computable
set of formulas known as axioms, most of which are quite simple. Despite its
simplicity, set theory has enormous expressive power, to the point that we can talk
about first order logic and model theory from within set theory. The fact that we
can do this means that ZFC can talk about its own models and their properties,
such as whether or not ZFC is consistent. As a result of the Gödel incompleteness
theorems, which we will not discuss in much detail here, if ZFC is consistent then
ZFC cannot prove that it is consistent. However, ZFC can prove relative consistency
results, which state that if ZFC is consistent so is some other theory, typically ZFC
augmented by some additional sentences.

Definition 2.1 (ZFC). ZFC set theory (Zermelo-Fraenkel Set Theory with Choice)
is the first-order theory in the language of set theory generated by the following
axioms:

(1) Extensionality: Two sets are equal if they have the same elements:
∀x.∀y. (∀z. (z ∈ x ⇐⇒ z ∈ y)) =⇒ x = y.

(2) Union: For any set, the union of its elements is also a set:
∀x.∃y.∀z.(z ∈ y ⇐⇒ ∃a ∈ x.(z ∈ a)).

(3) Foundation: Every nonempty set contains an element it is disjoint from:
∀x.(∃y.(y ∈ x) =⇒ ∃y ∈ x.∀z ∈ y.(z ̸∈ x)).

(4) Power Set: For any set, there exists a set whose elements are exactly the
subsets of the original set:
∀x.∃y.∀z(z ∈ y ⇐⇒ ∀a ∈ y(a ∈ x)).
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(5) Infinity: There is a set which contains a set with no elements and is closed
under the map x 7→ x ∪ {x}:
∃x. ((∃y ∈ x.∀a(a ̸∈ y)) ∧ ∀y ∈ x.∃z ∈ x.∀a(a ∈ z ⇐⇒ (a ∈ y ∨ a = y))).

(6) Choice: For any family of disjoint, nonempty sets, there exists another set
which contains exactly one element from each member of the family:
∀x. (∀y ∈ x.((∃z.z ∈ y) ∧ ∃!w ∈ x.∃a ∈ w.(a ∈ y)) =⇒ ∃w.∀y ∈ x.∃!a ∈ w(a ∈ y)).

(7) Replacement: Let φ be a formula in the language of set theory with free
variables x, y, w, and z, where w is a finite list of variables w1, . . . wn.
Then the following is an axiom: for all w1, . . . wn and for any A, if for each
element of A there exists a unique y such that φ(x, y, w,A) holds, then
there is a set B such that for any y, y ∈ B iff there is some x ∈ A satisfy-
ing φ(x, y, w,A). B is said to be the image of A under φ with parameters w:
∀w.∀A. ((∀x ∈ A.∃!y.φ(x, y, w,A)) =⇒ ∃B.∀y.(y ∈ B ⇐⇒ ∃x ∈ A.φ(x, y, w,A))).

Note that Replacement is an axiom schema: it is not a single axiom, but an infinite
list of axioms. If φ satisfies the first part of the implication in Replacement, we call
it a functional, and the set B we create is called the image of A under φ.

Lemma 2.2 (Pairing and Separation). The following are theorems of ZFC set
theory:

(1) Pairing: For any sets x and y, there is a set whose only elements are x and
y:
∀x.∀y.∃z.∀a.(a ∈ z ⇐⇒ (a = x ∨ a = y)).

(2) Separation: Let φ be a formula in the language of set theory with free
variables x,w, y, where w is a finite list of variables w1, . . . wn. Then the
following is a theorem of ZFC: for all w1, . . . wn and for any A, there exists
a set B whose elements consist of all and only those sets x ∈ A such that
φ(x,w,A) holds:
∀w1, . . . wn.∀A.∃B.∀x. (x ∈ B ⇐⇒ (x ∈ A ∧ φ(x,w,A))).

Proof. We’ll first show Pairing holds. The axiom of Infinity tells us there is a set
containing a set that has no elements and is closed under the operation x 7→ x∪{x}.
Applying this twice gives us that there exists a whose only elements are a set with
no elements and a set whose only element is a set with no elements. We’ll denote
this set 2, for reasons that we’ll discuss later. Let φ(x, y, w1, w2) be the formula
(y = w1 ∧ ¬∃z.z ∈ x) ∨ (y = w2 ∧ ∃z.z ∈ x). This formula is a functional on 2 for
any assignment of parameters w1 and w2, and the image of 2 under this functional
is a set whose only elements are w1 and w2. This gives us Pairing. We can use
a similar trick to prove Separation. Given a set, we want to obtain the set of all
and only those elements which satisfy a formula φ. Infinity tells us that there is a
set with no elements, and Pairing tells us that for any set a there is a set whose
only element is a. Suppose we are peforming Separation on a set A. Given φ,
we can write down a formula that will replace each element where φ holds with
its singleton, and replace all other elements with the empty set. This formula is
clearly a functional on A, and taking the union of its image will give us the desired
set B. □

The ZFC axioms are quite unwieldy to deal with directly, and we rarely will
except when proving certain structures are models of ZFC. The language of set
theory is not suitable for expressing interesting set theoretic notions because it
only contains one relation symbol and no constant symbols. Fortunately, there’s



4 JOSHUA YAGUPSKY

nothing stopping us from augmenting the language of set theory with newly defined
relation and function symbols. There is a fairly obvious way to do this: we can
define a new n-ary relation symbol as a formula with n free variables, and an n-ary
function symbol as a formula φ(w, y) with n+1 free variables such that ZFC proves
that for all variable assignments for the first n variables there exists a unique y such
that φ(w, y) holds. It’s also not difficult to show that every sentence in this new
language can be translated into an equivalent sentence in the original language of set
theory. We can even interatively define new notions in terms of previously defined
notions. Here are some of the notions that will be most helpful when proving results
in ZFC:

Definition 2.3 (Basic Set-Theoretic Definitions). Here we will define the most
common function and relation symbols we will use in set theory. When defining
the function symbols, we will briefly note how to prove that the definition sentence
succeeds.

x ⊆ y : The binary relation x ⊆ y is defined as ∀z ∈ x.(z ∈ y). This allows
Extensionality to be rewritten as ∀x.∀y.(x ⊆ y ∧ y ⊆ x) =⇒ x = y.

∅ : The constant symbol ∅ is defined by the formula ¬∃x.(x ∈ ∅). Existence
is guaranteed by Infinity, and uniqueness is guaranteed by Extensionality.

P(x) : The unary function symbol P(x) is defined by the formula ∀x.∀y.(y ∈
P(x) ⇐⇒ y ⊆ x). Existence is guaranteed by Power Set, and uniqueness
is guaranteed by Extensionality.

{x1, . . . xn} : For each n, the n-ary function symbol {x1, . . . xn} is defined by the formula
∀x1, . . . xn.∀x.(x ∈ {x1, . . . xn} ⇐⇒ (x = x1 ∨ . . . x = xn)). Existence is
guaranteed by repeatedly applying Infinity to obtain sets with exactly n
distinct elements, and then using Replacement to obtain a set with the
desired elements. Foundation implies no set can be an element of itself, so
the set x∪{x} contains all of the elements of x together with a new element
which is not in x. Uniqueness is guaranteed by Extensionality.⋃

A : The unary function symbol
⋃
A is defined by the formula ∀A.∀x.(x ∈⋃

A ⇐⇒ ∃a ∈ A.(x ∈ a)). Existence is guaranteed by Union, and
uniqueness is guaranteed by Extensionality. The binary function symbol
x ∪ y is defined as

⋃
{x, y}.⋂

A : The unary function symbol
⋂
A is defined by the formula ∀A.∀x.(x ∈⋂

A ⇐⇒ ∀a ∈ A.(x ∈ a)). Existence is guaranteed by Separation, and
uniqueness is guaranteed by Extensionality. Note that this fails if A is
empty, so as a convention we define

⋂
∅ = ∅. The binary function symbol

x ∩ y is defined as
⋂
{x, y}.

{τ | φ} : Let φ(x,w1, . . . wn) be a formula in the (possibly extended) language of set
theory, and let τ(x,w1, . . . wn) be a term in the extended language. Then
the n-ary function symbol {τ(x,w1, . . . wn) | φ(x,w1, . . . wn)} is defined to
be ∅ if there is no set containing all x such that φ(x,w1, . . . wn) holds,
and is otherwise defined as the set whose elements are exactly each of the
τ(x,w1, . . . wn) for all and only those x satisfying φ(x,w1, . . . wn) holds.
Existence is guaranteed by Replacement and Separation, and uniqueness
by Extensionality. One case where this definition will always succeed is if
our formula on the right hand side is of the form (x ∈ A)∧φ(x,w1, . . . wn, A)
because of Separation. We often write

{τ(x,w1, . . . wn, A), x ∈ A | φ(x,w1, . . . wn, A)}
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as a shorthand for {τ(x,w1, . . . wn, A) | (x ∈ A) ∧ φ(x,w1, . . . wn, A)}, in
order to indicate that this definition is always guaranteed to succeed.

A \B : The binary function symbol A \B is defined as {x ∈ A | x ̸∈ B}.
(x, y) : The binary function symbol (x, y) is defined as {x, {x, y}}. It is a theorem

of ZFC that (x, y) = (x′, y′) iff x = x′ and (y = y′), justifying the use of
this particular set as the definition of an ordered pair. We can also define
the two projection operations π0(A) =

⋂
A and π1(A) =

⋃
A \ π0(A): it is

not hard to show that π0(x, y) = x and π1(x, y) = y.
A×B : The Cartesian product A × B is be defined as {(x, y) | x ∈ A ∧ y ∈ B}.

The definition of the Cartesian product always succeeds, since we know
that for any y ∈ B the definition {(x, y) | x ∈ A} succeeds, and A × B is
clearly the same as

⋃
{{(x, y) | x ∈ A} | y ∈ B}. Subsets of A×B are called

binary relations from A to B. The domain of a binary relation is the set of
all zeroeth projections of each of its ordered pairs, and the range is the set
of all first projections of each of its ordered pairs.⊔

A : The disjoint union
⊔
A is defined as {(X,x) | X ∈ A, x ∈ X}. This defini-

tion always succeeds, since for anyX ∈ A the definition {(X,x) | x ∈ X} al-
ways succeeds, and

⊔
A is clearly the same as

⋃
{{(X,x) | x ∈ X} | X ∈ A}.

Note that the family of sets consisting of each set {(X,x) | x ∈ X} for all
X ∈ A is a pairwise disjoint family.

f : A −→ B : A set f is a function from a set A to a set B if it is a binary relation from A
to B satisfying ∀x ∈ A.∃!y ∈ B.(x, y) ∈ f . For each function f , we define a
unary function symbol f(x) to equal the empty set if x is not in the domain
of f and the unique y such that (x, y) ∈ f otherwise. We also define the
image and preimage function symbols f [X] = {f(x) | x ∈ X} and f−1[X] =
{x ∈ dom(f) | f(x) ∈ X}. The set of all functions from A to B, denoted
AB, exists because we can write it as {f ∈ P(A×B) | f is a function}. We
often range over this set by writing f : A −→ B rather than f ∈ AB.⋂

φ(x,w) τ(x,w) : If φ(x,w) is a formula in the language of set theory with n+1 free variables

and τ(x,w) is a term with n+ 1 free variables then
⋂

φ(x,w) τ(x,w) is a n-

ary function symbol defined as the empty set if no x satisfies φ(x,w), and
otherwise as the intersection of all τ(x,w) satisfying φ(x,w). This is well
defined since for any x satisfying φ(x,w) the intersection of τ(x,w) with
all τ(y, w) such that y satisfies φ(y, w) exists, and the result is the same no
matter which x we pick.

N : N is a constant symbol defined as
⋂

∅∈x∧∀y∈x.(y∪{y}∈x) x. Such an x does

exist by the axiom of Infinity. We define sets for each of the natural numbers
in the expected way: zero is assigned to the empty set, and if a natural
number n is assigned a set x, then its successor is assigned x ∪ {x}. Then
it’s easy to see by induction that N is the set of all natural numbers.

Indexed Family : If I is a set, a family of sets indexed by I is a function f with do-
main I. For each i ∈ I, we often write f(i) as simply Ai. We write⋃

i∈I Ai and
⋂

i∈I Ai to mean
⋃
f [I] and

⋂
f [I] respectively. We define

the indexed disjoint union as
⊔

i∈I Ai = {(i, x) | i ∈ I, x ∈ Ai}: this agrees
with our previous disjoint union definition if we consider a set as a fam-
ily indexed by itself. We define the indexed Cartesian product

∏
i∈I Ai as{

g : I −→
⋃

i∈I Ai | ∀i ∈ I.g(i) ∈ Ai

}
.
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2.2. Ordinals and Recursion. We will now turn our attention to the notion of
well orderings and ordinals. Well orders generalize the ordering relation on the
natural numbers to all kinds of sets, and allow us to perform the same kind of
inductive arguments and construct objects by recursion. Ordinals are special sets
which serve as natural representatives of well-orders, and have useful set-theoretic
properties. We will see that the whole universe of sets has a clean description in
terms of recursion on ordinals. Ordinals also give us a natural way to talk about
cardinalities of sets: the well-ordering theorem, which is a consequence of the axiom
of choice, tells us that any set can be well-ordered, and therefore every set has a
bijection with some ordinal. We will begin by examining the notion of a transitive
set.

Definition 2.4 (Transitive Set). A set A is said to be transitive if for all a ∈ A
and all x ∈ a we have x ∈ A. In other words, A is transitive iff ∀a ∈ A.(a ⊆ A).

Lemma 2.5 (Properties of Transitive Sets). A set A is transitive iff
⋃
A ⊆ A iff

A ⊆ P(A). If A is a transitive set, so are
⋃
A and P(A). If B is a set of transitive

sets, then
⋃
B, B ∪

⋃
B, and

⋂
B are transitive.

Proof. Just apply the definition of transitivity. □

Definition 2.6 (Well-Founded Relation). Let A be a set, and let R be a binary
relation on A. We say that (A,R) is well-founded if every nonempty subset B ⊆ A
has an R-minimal element : an element b ∈ B such that no c ∈ B satisfies cRb.

Well-founded relations are not quite as nice as well-orders, but they still have a
useful notion of induction. Additionally, the axiom of Foundation tells us that the
element relation ∈ is well-founded on every set, as we will see in a moment. This
gives us a useful induction on sets, called ∈-induction.
Lemma 2.7 (Induction on Well-Founded Sets). Let A be a set and let R be a
well-founded binary relation on R. If φ(x,w) is a formula in the language of set
theory and ∀x ∈ A. ((∀y ∈ A.(yRx =⇒ φ(y, w))) =⇒ φ(x,w)) then φ(x,w) holds
for all x ∈ A.

Proof. By Separation, consider the set of all x ∈ A such that φ(x,w) does not hold.
If this set is nonempty, it has an R-minimal element, which we’ll call x. Since x
is R-minimal, every y ∈ A such that yRx must not be in this set, and therefore
φ(y, w) must hold. But by the inductive hypothesis, this means φ(x,w) holds,
which is a contradiction. Therefore, φ(x,w) holds for all x. □

Theorem 2.8 (∈-Induction). For each set X, the relation ∈ restricted to the ele-
ments of X is well-founded. Additionally, let φ(x,w) be a formula in the language
of set theory. Then the following sentence is a theorem of ZFC:

∀w. ((∀x.((∀y ∈ x.φ(y, w)) =⇒ φ(y, w))) =⇒ ∀x.φ(x,w))
Proof. First, we’ll prove ∈ is well-founded. Let A be any set, and let B be some
nonempty subset of A. Foundation tells us there is an element of B which is disjoint
from B: that is, there is some b ∈ B such that any c ∈ b is not in B. This is an ∈-
minimal element of B. Now suppose that the hypothesis of the ∈-induction holds.
Pick any set A: this will be well-founded with respect to ∈, and the hypothesis of
well-founded induction holds for A. Therefore, for each x ∈ A, φ holds, and by the
hypothesis of ∈-induction, A must satisfy φ as well. Therefore, every set satisfies
φ. □
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Definition 2.9 (Linear Order). Let A be a set, and let ≺ be a binary relation on
A. We say that (A,≺) is a (strict) linear order if the following requirements hold:

(1) Trichotomy: For all a, b ∈ A exactly one of the statements a ≺ b, b ≺ a, or
a = b hold.

(2) Transitivity: For all a, b, c ∈ A, if a ≺ b and b ≺ c then a ≺ c.

We define the non-strict version of the linear order to be a ⪯ b ⇐⇒ (a ≺ b)∨ (a =
b).

Definition 2.10 (Well-Order). Let A be a set, and let ≺ be a binary relation on
A. We say that (A,≺) is a (strict) well order if it is a linear order and ≺ is well-
founded on A. By Trichotomy, a minimal element of a subset B ⊆ A is actually a
least element : an element b ∈ B such that every c ∈ B satisfies b ⪯ c.

Definition 2.11 (Ordinal). A set A is called an ordinal if A is transitive and (A,∈)
is a well-ordered set.

Lemma 2.12 (Equivalent Definitions of Ordinals). Let A be any set. Then the
following are equivalent:

(1) A is an ordinal.
(2) A is transitive and ∈ linearly orders A.
(3) A is transitive and ∈ is trichotomous on A.
(4) A is transitive and all of its elements are ordinals.
(5) A is transitive and all of its elements are transitive.

Proof. If ∈ linearly orders a set, we know that it well-orders the set since ∈ is always
wellfounded. Any transitive set linearly ordered by ∈ is therefore an ordinal. If ∈
is merely trichotomous, we can still prove transitivity. Suppose A is a transitive
set and ∈ is trichotomous on A, and suppose a, b, c ∈ A satisfy a ∈ b and b ∈ c.
Applying Foundation to the set {a, b, c} tells us that c ̸= a and c ̸∈ a. But since
∈ is trichotomous on A, a ∈ c, so ∈ is transitive on A. Now if A is an ordinal,
then each element a ∈ A is also a subset of A, and is therefore well-ordered by ∈.
The set a is also transitive: if we have an element b ∈ a, then we have b ∈ A and
b ⊆ A. Therefore, any c ∈ b is also in A, and since ∈ is transitive on A, we also have
c ∈ a. Thus, any ordinal is a transitive set of ordinals, and is also a transitive set of
transitive sets. Now let A be transitive, and let each member of A also be transitive.
We will say that elements x, y ∈ A are incomparable if trichotomy fails. Suppose A
is not an ordinal. Then A has incomparable elements: use Foundation to pick an
x which is ∈-minimal among the elements of A incomparable with some element of
A, and apply Foundation again to pick a y which is ∈-minimal among the elements
of A incomparable with x. Any z ∈ y is a subset of y because y is transitive, and
by minimality z must be comparable with x. But since y is incomparable with x,
we can rule out z = x or x ∈ z, so z ∈ x. This works no matter which z we choose,
so x ⊆ y. Applying the same logic in the other direction gives y ⊆ x and therefore
x = y, contradicting incomparability. ∈ is therefore trichotomous on A, and since
A is transitive, it is an ordinal. □

The ordinals are a good example of a proper class, which is a collection of sets
too large to form a set. The class of all sets is also a proper class, since if there was
a set of all sets, it would contain itself, contradicting Foundation. Similarly, if there
was a set of all ordinals, then it would necessarily be transitive, since each element
of an ordinal is an ordinal. Therefore, the set would be a transitive set of ordinals,
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and therefore an ordinal, which again contradicts Foundation. We will often use
bounded quantifiers for proper classes: if we want to quantify over all ordinals, we
can write ∀α ∈ Ord.φ(α) to mean ∀α.(α ∈ Ord =⇒ φ(α)), where α ∈ Ord is the
formula saying that α is an ordinal. Our convention will be to implicitly quantify
over ordinals when using a Greek letter variable.

Lemma 2.13 (Properties of Ordinals). For any ordinal α, its successor α + 1 =
α ∪ {α} is an ordinal, and is the smallest ordinal strictly greater (in the sense of
∈) than α. The union of any set of ordinals is an ordinal. Every natural number is
an ordinal, and aside from 0, every natural number is a successor of some smaller
ordinal. The set of natural numbers N is an ordinal, denoted ω, and is the smallest
limit ordinal (an ordinal which is not the empty set or the successor of some smaller
ordinal). The class of ordinals Ord is linearly ordered by ∈: any two ordinals are
either equal, or one is an element of the other. It is even well-ordered: for any
formula φ(x,w), if ∃α.φ(α,w) then there exists a least such α with respect to ∈.

Proof. Let α be an ordinal: it is a transitive set of transitive sets. We therefore know
that A = α will be a set of transitive sets, and therefore A∪

⋃
A = α∪{α} = α+1

is transitive. Each element of this set is either α, which is transitive, or an element
of α, which is transitive, meaning this must be an ordinal as well. Any ordinal β
such that α ∈ β must satisfy {α} ⊆ β and α ⊆ β because β is transitive. Thus
α+1 ⊆ β, and α+1 is the smallest ordinal greater than α. The empty set, or 0, is
clearly an ordinal. Since ω is the smallest set that contains 0 and is closed under
ordinal successor, it can only contain ordinals which are either zero or successors.
ω is a limit ordinal since it could only be the successor of one of its elements, but
ω is closed under successor. The union of a set of ordinals is transitive since it is
a union of a set of transitive sets, and each element is a transitive set since each
ordinal only has elements which are transitive. Thus, the union of a set of ordinals
is an ordinal.

We’ll now show that ordinals are linearly ordered. First, if α and β are ordinals,
then we’ll show α ∈ β iff α ⊂ β. Clearly α ∈ β implies α ⊆ β by transitivity, and no
set is a member of itself. If α ⊂ β, then there is a smallest element x ∈ β which is
not in α. Every element of α must be strictly less than x by trichotomy: x cannot
equal an element of α, and if x was less than an element of α then transitivty would
imply x ∈ α. This gives α ⊆ x. Every element of x must be in α by minimality,
so we have x = α. Now suppose we have any two ordinals α and β. Let γ be their
intersection: this is clearly an ordinal, as it is a transitive set of transitive sets. If
α \ γ and β \ γ are both nonempty, then we have γ ∈ α and γ ∈ β by our previous
result. Taking intersections gives γ ∈ γ, which is a contradiction, so one of the
two sets must be empty. This means either α ⊆ β or β ⊆ α, and therefore α ∈ β
or α = β or β ∈ α. This also tells us that ω is the smallest limit ordinal, since
any smaller limit ordinal would be a natural number, which is always either 0 or
a successor ordinal. The fact that the ordinals are well-ordered follows from the
fact that each ordinal is a well-ordered set, so if some ordinal has a property, either
none of its elements have that property, meaning it is the smallest such ordinal, or
one of its elements does, in which case we can find the smallest such ordinal. □

We’ll now examine how ordinals can encode all well-ordered sets.
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Lemma 2.14 (Well-Order Isomorphism). Let (A,≺A) be a well-ordered set. If
(B,≺B) is a linearly ordered set which is isomorphic to (A,≺A), then ≺B is a
well-order on B and the isomorphism is unique.

Proof. We can find the minimum of any subset of B by taking the minimum of its
image in A and mapping it back to B under the isomorphism. Any two isomor-
phisms are equal because there can be no smallest element where the two isomor-
phisms disagree. See [7] 63.7 for details. □

Definition 2.15 (Initial Segment). Let (A,≺) be a well-order. If a ∈ A is any
element, then the initial segment of A below a is the set Aa = {x ∈ A | x < a}
together with the order relation ≺ restricted to Aa. Clearly it is also a well-order.

Lemma 2.16 (Isomorphisms with Initial Segments). No well-ordered set is iso-
morphic to an initial segment of itself.

Proof. By induction we can show that any such isomorphism would satisfy f(x) = x
for all x, and therefore this would be the identity function. The image is therefore
the whole set, not any initial segment. See lemma 63.9 in [7] for a full proof. □

Theorem 2.17 (Fundamental Theorem of Well-Orders). Every well-ordered set is
isomorphic to a unique ordinal under the ∈ relation, called the set’s order type.
This isomorphism is unique.

Proof. Uniqueness of the isomorphism is guaranteed by the existence of an isomor-
phism, and the uniqueness of the ordinal comes from the fact that for any distinct
ordinals α and β, one is an initial segment of the other, and there cannot be an
isomorphism between a well-ordered set and one of its initial segments. For exis-
tence, we’ll proceed by induction. If (A,≺) is our set, consider the set of all a ∈ A
such that the initial segment Aa is not isomorphic with an ordinal. Let x be the
least element of this set. For all y ≺ x, there is a unique isomorphism between Ay

and some ordinal γy. Using Replacement, take the set off all such isomorphisms
for each y ≺ x and take the union. If z ≺ y, then the isomorphism from Ay to γy
restricts to an isomorphism, which by uniqueness is the isomorphism from Az to γz.
Therefore, this union of functions will be a function. Its range will be a union of
ordinals, and is therefore and ordinal. It is also clearly an isomorphism, since it is
an isomorphism below each y ≺ x. Therefore, we have an isomorphism between Ax

and some ordinal, a contradiction. Therefore, each initial segment of A is uniquely
isomorphic to an ordinal. Taking the union of all of these isomorphisms gives us
an isomorphism from A to an ordinal. □

Ordinals, and well-founded relations more generally, can be used to define func-
tions and terms via recursion. This generalizes the notion of defining functions
on the natural numbers via recursion, and depends both on induction with well-
founded relations and the Replacement schema. We’ll first examine how to provide
recursive definitions for functions on well-founded sets, before turning our attention
to recursively defining terms on Ord.

Theorem 2.18 (Well-Founded Recursion). Let A be a set, and let R ⊆ A2 be
a well-founded relation. Suppose we have some term τ(x, y, w), with n + 2 free
variables. Then for every choice of parameters w there is a unique function f
defined on A such that f(x) = τ

(
x, f(·, w) ↾{y∈A|yRx}, w

)
for all x ∈ A.
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Proof. Uniqueness is easy: if there were two distinct functions, there would be a
minimal element where they disagreed, but they would agree below that element,
contradicting the recursive definition. For existence, we’ll say a subset of A is called
an initial segment if it is closed under R: if an element x is in the initial segment and
yRx then y is also in the initial segment. Note that this agrees with our definition
of initial segments if R is a well-order. Call a function f : I −→ A defined on an
initial segment of A an approximation if it satisfies f(x) = τ

(
x, f ↾{y∈I|yRx}, w

)
for all x ∈ I. Since I is closed under R, we can replace the y ∈ I in the set
comprehension with y ∈ A. Note that since R is also well-founded on I, if there is
such an approximation for an initial segment it is unique. Define f as the union
of all such approximations over all initial segments of A. We will show f is a
function that satisfies the recursive property. If, for some x ∈ A, we have (x, y) ∈ f
and (x, y′) ∈ f , then there must be approximations g : Ig −→ A and h : Ih −→ A
defined on initial segments containing x with g(x) = y and h(x) = y′. If we take
the intersection of their domains, we get another initial segment containing x, and
restricting both g and h to this intersection gives us two apprxomations on this
initial segment. They therefore must agree on this initial segment, so y = y′.
f is therefore a function on some subset of A. This subset must be an initial

segment, since it is the union of initial segments. We also know that f is an
approximation, since its value at any x ∈ R is the same as that of an approximation
which equals f on some initial segment containing x. If f is not defined on all of A,
we can find a minimal x ∈ A where f is not defined. For any y ∈ A such that yRx,
f will be defined on y by minimality. Adding x to the domain of f will therefore
preserve the fact that the domain is an initial segment. Define g as a function on
the domain of f together with x such that g(y) = f(y) when y is in the domain
of f and set g(x) = τ

(
x, f ↾{y∈A|yRx}, w

)
. Clearly this is an approximation, so f

must contain x in its domain, which is a contradiction. Therefore, f is defined on
all of A. □

Corollary 2.19 (Mostowski Collapse Lemma). Let A be a set, and let R be a
well-founded relation. If R is extensional on A, meaning ∀a ∈ A.∀b ∈ A.(∀x ∈
A.(xRa ⇐⇒ xRb) =⇒ a = b), then there exists a unique transitive set B and
a unique function f : A −→ B such that f is an isomorphism between (A,R) and
(B,∈). That is, f is a bijection and for all a, b ∈ A we have aRb iff f(a) ∈ f(b).

Proof. Well-founded recursion tells us there is a unique function f defined on A
such that for all x ∈ A we have f(x) = {f(y) | y ∈ A ∧ yRx}. This condition
is equivalent to aRb ⇐⇒ f(a) ∈ f(b) for all a, b ∈ A, so if we can show f
is a bijection we will have uniqueness. Let B be the image of f . f is clearly
surjective, so all we need to show is that f is injective and it is transitive. Injectivity
can be proved by induction. Suppose that for all y ∈ A such that yRx, f is
injective on y, meaning that for any z ∈ A if f(z) = f(y) then z = y. We’ll
show that f is injective on x. Pick some z such that f(x) = f(z). This means
{f(y) | y ∈ A ∧ yRx} = {f(y) | y ∈ A ∧ yRz}. By the inductive hypothesis, f is
injective on each y when yRx. Since these two sets are equal, we know that the
set of y ∈ A such that yRx equals the set of all y ∈ A such that yRz. Since R is
extensional, x = z, and f is injective on x. Therefore, f is injective on each x ∈ A.
B is transitive since it is the image of f , and each f(x) is a set consisting entirely
of f(y) for some y ∈ A, which is also in B. □
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Because well-orders are always well-founded, we can perform recursion on well-
ordered sets. This recursion method can also be extended to proper classes. How-
ever, we have to be somewhat careful, since this will be a term that we are defining,
not a function, and we cannot quantify over terms. However, we can prove existence
and uniqueness of the term we are defining as a metatheorem or theorem schema.

Theorem 2.20 (Transfinite Recursion for Classes). Suppose X is a class, or for-
mula with one free variable, and R is a class relation, or formula with two free
variables. Suppose R is well-founded on X, in the sense that every set whose ele-
ments are all in X has an R-minimal element, and set-like, which means for each
x ∈ X there exists a set whose elements are exactly all of the y ∈ X such that yRx.
Let τ(x, y, w) be a term with n + 2 free variables. Then there is a term σ(x,w)
such that for every x ∈ X we have σ(x,w) = τ(x, σ(·, w) ↾{y∈X|yRx}, w), where σ
restricted to a set is just the corresponding function. Our term σ is unique in the
sense that if any other term satisfies these properties then it agrees with σ for all
x ∈ X.

Proof. Uniqueness follows from well-founded induction: if the two terms disagreed
somewhere they would disagree on an R-minimal element ofX, but they would have
to agree on everything below this element, contradicting the recursive property. We
can define the term explicitly as follows: we’ll once again call a set of elements of X
an initial segment if it is downward closed under R. There is a formula expressing
that a set is an initial segment. Any initial segment is well-ordered by R, and
importantly for each x in the initial segment the set of all y ∈ X such that yRx is
a subset of the initial segment. We know by well-founded recursion that there will
exist a unique function on any initial segment which satisfies the recursive relation:
call such a function an approximation. Every element of X is contained in an initial
segment by induction. Therefore, we can define a term σ(x,w) as the unique y such
that every approximation on an initial segment which contains x has the value y
on x. The argument that this y is unique and that our term satisfies the recursive
property is exactly the same as for well-founded recursion on a set. □

We’ll now provide the most important recursive definitions we’ll use in set theory:

Definition 2.21 (Von Neumann Universe and Rank). For any ordinal α, we define
the α-th level by recursion:

Vα =
⋃
β<α

P(Vβ)

That is, the α-th level is the union of the powersets of each of the β-th levels for all
ordinals β < α. This definition by transfinite recursion works because the ordinals
together with the ∈ relation form a well-founded class, and ∈ is clearly set-like.
The Von Neumann Universe V is the proper class consisting of all sets which are
elements of some Vα: in other words, V =

⋃
α∈Ord Vα. The rank of a set is defined

by transfinite recursion: it is equal to the union of the successors of the ranks of each
of its elements. This definition succeeds since the proper class of all sets together
with the relation ∈ is well-founded and set-like. By induction, it’s easy to see that
the rank of a set is always an ordinal. We denote the rank of a set rank (x).

Theorem 2.22 (Von Neumann Hierarchy Theorem). Every set is in the Von Neu-
mann Universe, and the rank of a set x is the smalles ordinal α such that x ⊆ Vα.
Each Vα is a transitive set, and the rank of each ordinal is itself.
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Proof. Apply ∈-induction, induction on α, and the recursive definition of the Vα.
See proposition 64.22 in [7] for more details. □

2.3. Cardinals. We’ll now turn to the main reason we are interested in studying
set theory in the first place: infinite cardinalities. Often we think of cardinals as
equivalence classes of sets under the equinumerosity relation: two sets are said to
be equinumerous if there is a bijection between them. The axiom of Choice will
be crucial here, because it will allow us to represent these equivalence classes as
ordinals. Without the axiom of Choice, we can still define cardinals, but we run into
several difficulties: the cardinals being linearly ordered, for instance, is equivalent
to Choice.

Theorem 2.23 (Well-Ordering Theorem). Every set can be well-ordered.

Proof. This is a well-known equivalent of the Axiom of Choice. For a proof, see
theorem 69.6 in [7] for details. □

Definition 2.24 (Cardinality and Cardinals). The cardinality of a set, denoted
|X|, is the smallest ordinal α such that there exists a bijection from X to α. A
cardinal is an ordinal α which equals its own cardinality.

Lemma 2.25 (Properties of Cardinals). The cardinality of any set is a cardinal.
If X,Y are any sets, then |X| ≤ |Y | iff there is an injection from X to Y . An
ordinal α is a cardinal iff there is no surjection from a smaller ordinal β ∈ α onto
α. Every finite ordinal is a cardinal. The union of any set of cardinals is a cardinal:
in particular, ω is a cardinal. Any infinite cardinal is a limit ordinal.

Proof. If |X| = α, and |α| = β, then there is a bijection between β and α and a
bijection between α and X. Thus, there is a bijection between X and β. Since
|X| = α and there is a bijection from β to X, β ≥ α. Clearly, the cardinality of
any ordinal is at most itself, so β ≤ α, and therefore β = α. Thus, the cardinality
of X, which is α, satisfies |α| = α, and is therefore a cardinal.

If |X| < |Y |, then |X| ⊆ |Y |. The inclusion map from |X| to |Y | will be an
injection, and composing this with the bijections between |X| and |Y | gives us an
injection from X to Y . Now if there is an injection from X to Y , this also gives
us an injection from |X| into |Y |. This gives us a bijection from |X| to a subset of
|Y |. This subset is well-ordered, and will therefore be isomorphic to some ordinal γ.
We can see by induction that each element of γ will be at most the corresponding
element in |Y |, so since |Y | is an ordinal we have γ ≤ |Y |. But composing our
bijection between |X| and the subset of |Y | with the order isomorphism gives us a
bijection between |X| and γ, so ||X|| = |X| ≤ γ. Therefore, |X| ≤ |Y |.

If α is an ordinal and no smaller ordinal β < α surjects onto α, then α is the
smallest ordinal equinumerous with α, so α is a cardinal. If α is an ordinal and
β ∈ α is an ordinal, then β ⊆ α, and |β| ≤ |α| by the injectivity of the inclusion
map. If β surjects onto α, the axiom of choice tells us that this is equivalent to α
injecting into β, or |β| ≤ |α|, so |β| = |α|. Since |β| ≤ β < α, this tells us |α| < α,
so α is not a cardinal.

We can see any finite ordinal is a cardinal by induction: 0 is clearly a cardinal,
and if n ∈ N is a cardinal, then any surjection from some m ≤ n to n+ 1 is also a
surjection from a subset of m missing one element to n. This subset has cardinality
< m since m is a cardinal and the subset injects into m, but then the inductive
hypothesis tells us that we cannot have a surjection from any ordinal < n onto n.
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Let (κi)i∈I be a sequence of cardinals indexed by some set I, and let λ =
⋃

i∈I κi.
We will show λ is a cardinal as well. λ is clearly an ordinal since it is the union of
ordinals, so suppose there is a surjection from some ordinal α < λ onto λ. Since α
is in the union of all of the κi, it must be in at least one κi. The surjection from
α to λ gives a surjection from α to κi: if f is the surjection, define g to be equal
to f when f(β) ∈ κi and 0 otherwise. Then κi cannot be a cardinal, since there is
a surjection from an ordinal α ∈ κi onto κi. Since ω is the union of all ordinals in
N, each of which is a cardinal, ω is a cardinal. Note that if we have any successor
ordinal α + 1, where α is infinite, we can define a bijection between α and α + 1:
let f(n) = n + 1 when n ∈ ω, let f(α) = 0, and let f(β) = β for any β which is
infinite but not equal to α. Since α ≥ ω, this will be a bijection, so α + 1 cannot
be a cardinal. Any infinite cardinal must therefore not be a successor and cannot
be 0, so it is a limit ordinal. □

Theorem 2.26 (Cantor’s Theorem). For any set X, |X| < |P(X)|.

Proof. Consider any function f : X −→ P(X): we will show it is not surjective.
Define A ⊆ X to be {x ∈ X | x ̸∈ f(x)}. If f(a) = A for some a ∈ X, then we
have a ∈ f(a) iff a ∈ A iff a ̸∈ f(a), which is a contradiction. Therefore, f is not
surjective. □

Corollary 2.27 (Arbitrarily Large Cardinals). There is no set of all cardinals.

Proof. If A is a set of cardinals, then
⋃
A is a cardinal which is at least as large

as each element of A. Taking the cardinality of P(
⋃
A) gives a cardinal strictly

larger than the cardinality of
⋃
A, which is strictly larger than each element of A.

Therefore, A cannot contain this cardinal. □

Definition 2.28 (Aleph Numbers). We define the cardinals ℵα for all ordinals α
by transfinite recursion: ℵα is the smallest infinite cardinal strictly larger than each
element of {ℵβ | β < α}. ℵ0 is clearly ω, as ω is the smallest infinite cardinal. It is
also clear that every infinite cardinal is an ℵα for some unique ordinal α: this can
be proven by induction. If κ = ℵα where α is a a successor ordinal κ is called a
successor cardinal ; similarly, if α is a limit ordinal then κ is called a limit cardinal.
The successor of a cardinal κ, denoted κ+, is the smallest cardinal larger than κ:
if κ is infinite, κ = ℵα and κ+ = ℵα+1.

Now that we’ve identified the infinite cardinals, we will define some arithmetic
operations on them. These will be an extension of the notions of addition, multi-
plication, and exponentiation for natural numbers.

Definition 2.29 (Cardinal Arithmetic). Let (κi)i∈I be an indexed family of car-
dinals. The cardinal sum

∑
i∈I κi is defined as |

⊔
i∈I κi|. Similarly, the cardinal

product
∏

i∈I κi is defined as the cardinality of the cartesian product |
∏

i∈I κi|. If κ
and λ are cardinals, then κλ is the cardinality of the set of all functions from λ to κ.
In particular, since a subset of κ can be encoded as a function from κ to 2 and vice
versa, 2κ = |P(κ)|. The beth numbers ℶα are defined by transfinite recursion as the
smallest infinite cardinal greater than or equal to each element of

{
2ℶβ | β < α

}
.

It is easy to see that ℶ0 = ℵ0 and ℶα ≥ ℵα for every α ∈ Ord.

Lemma 2.30 (Properties of Cardinal Arithmetic). Sums, products, and exponents
of cardinals are weakly monotonic: if we replace each cardinal with a cardinal greater
than or equal to the original, we obtain a result greater than or equal to the original
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result. Cardinal arithmetic agrees with the arithmetic on natural numbers. The
distributivity laws hold: for any cardinal λ and family of cardinals (κi)i∈I , we have
the following:

λ ·
∑
i∈I

κi =
∑
i∈I

(λ · κi)

(∏
i∈I

κi

)λ

=
∏
i∈I

κλi

λ
∑

i∈I κi =
∏
i∈I

λκi

λκi·κj = (λκi)
κj

Proof. These properties follow immediately by constructing a bijection between the
relevant sets. For instance, a function from a disjoint union of sets to another set
can be encoded as a sequence of functions from each set in the union to the other
set, and vice versa. Once these properties are verified, the fact that they agree with
regular arithmetic on natural numbers is proved by induction. □

Lemma 2.31 (Squares of Infinite Cardinals). For any infinite cardinal κ, we have
κ · κ = κ

Proof. See lemma 68.10 in [7] for a proof. □

Corollary 2.32 (Sums and Products of Infinite Cardinals). If κ and λ are cardi-
nals, at least one of which is infinite, then κ+ λ = max{κ, λ}. If we also have that
neither κ nor λ are zero, then κ · λ = max{κ, λ}

Proof. If at least one of κ and λ are infinite, then so is max{κ, λ}. If neither are zero,
then by monotonicity we have κ = κ ·1 ≤ κ ·λ, and λ = 1 ·λ ≤ κ ·λ, so max{κ, λ} ≤
κ ·λ. Applying monotonicity again gives κ ·λ ≤ max{κ, λ}·max{κ, λ} = max{κ, λ},
so κ · λ = max{κ, λ}. For the sum, we have that κ + λ ≥ max{κ, γ} and κ + λ ≤
max{κ, λ} · 2 = max{κ, λ}. □

We’ll now define the main result which we will prove is independent of ZFC:

Definition 2.33 (Continuum Hypothesis). The continuum hypothesis is the sen-
tence ℵ1 = ℶ1, or equivalently ℵ1 = 2ℵ0 . ℶ1 is often called the cardinality of the
continuum, since it is the cardinality of the real numbers.

2.4. Relative Consistency, Absoluteness, and Transitive Models. We now
have a solid understanding of the ZFC axioms from the point of view of mathemat-
ical logic. We’ve seen that the axioms have a great deal of expressive power, and
can describe essentially all of the everyday mathematical concepts we are familiar
with, which are often stated in an intuitive set theory. Importantly, we can discuss
first-order logic and model theory within ZFC. First order structures are sets with
functions and relations, formulas can be encoded as natural numbers, and variable
assignments are just functions. If M is some first-order structure with a variable
assignment s and φ is a formula in the corresponding language, we write M, s |= φ
to say that φ is true in M under variable assignment s. A first-order language
can be encoded into the natural numbers, since sentences are finitary objects. We
can even encode the notion of a mathematical proof in ZFC, since a proof is a
finitary object consisting of a finite number of formulas put together in a particular
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way. This allows us to talk about ZFC within ZFC. For instance, there is a sen-
tence Con(ZFC), which states that no natural number is a proof of a contradiction
from the axioms of ZFC. Gödel famously showed that given a sufficiently expressive
consistent theory T , there will be no proof of Con(T ) from T . This means that,
assuming ZFC is consistent, it cannot prove its own consistency. See part VII of [7]
for a full proof of the incompleteness theorems. The best we can hope for is a rela-
tive consistency proof, which is a proof for a sentence of the form “if T is consistent,
so is T together with some additional axiom A.” ZFC is particularly well-suited for
these types of proofs because it proves that first-order logic is sound and complete:
a set of sentences, interpreted as a set of natural numbers, is consistent iff the set
has a model, in the sense of a set with the necessary interpretations of the relation
and function symbols. Since proofs in first-order logic can only mention a finite
number of axioms, we obtain the compactness theorem: a first order theory has
a model iff every finite subset has a model. See part III of [7] for a proof of the
soundness and completeness theorems, and chapter 5 of [2] for a proof of the com-
pactness theorem. To prove relative consistency results in ZFC, we therefore just
have to show that a model of the theory we are interested in can be transformed
into a model where an additional hypothesis holds true. In our case, forcing will
take a model of ZFC and extend in a particular way. The sentences that are true
in this new model will depend both on what is true in the original model and the
method we use to extend it. We therefore will want to capture the relationships
between the sentences which are true in the two models.

Definition 2.34 (Absoluteness). Let L be a first order language, and let M and
N be L-structures, with N being a L-substructure of M. If φ is a formula, then φ
is said to be absolute between M and N if for every variable assignment s in N we
have N , s |= φ iff M, s |= φ. Often we will work with defined relation and function
symbols: we will say such a relation or function symbol is absolute between M and
N if the definition sentence is absolute between the structures.

When we work with models of set theory, we will often work in models in which
the interpretation of the element relation is the actual element relation ∈. In other
words, we will consider the structure where the symbol ∈ on a set M is interpreted
as the binary relation M∈ = {(x, y) | x, y ∈M,x ∈ y}. This gives us a way we can
naturally translate a formula φ into a formula about the structure (M,∈), where
M is some set:

Definition 2.35 (Relativization). Let φ be a formula in the language of set theory,
not extended by any definitions. The formula φx, where x is a variable not occuring
in φ, is the formula obtained by replacing all the quantifiers in φ with quantifiers
bound to the new free variable x. If M is some set, the formula φM is called
the relativization of φ to M : it represents the sentence (M,∈) |= φ. We can
also relativize defined terms by relativizing their definition sentences, and this will
always produce a definition sentence in (M,∈). This also gives us a way to talk
about absoluteness between models: if N ⊆ M a term or formula is absolute
between (M,∈) and (N,∈) iff its relativizations are equivalent for formulas and
equal for terms for all possible variable assignments in N . We can also say that
a term τ or formula φ is absolute between some set M and the entire universe if
τM = τ or φM ⇐⇒ φ for all variable assignments in M .
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Definition 2.36 (Transitive Model). A transitive model of set theory is a transitive
set M such that (M,∈) is a model of ZFC.

Transitive models of set theory are particularly nice to work with, because a
wide class of sentences are absolute between transitive models and their transitive
submodels. These are the ∆0 formulas:

Definition 2.37 (∆0 Formula). Let φ be a formula in the language of set theory.
φ is said to be a ∆0 formula if there is some formula ψ where all quantifiers are
bounded and ZFC proves φ ⇐⇒ ψ.

Theorem 2.38 (∆0 Absoluteness). If M is a transitive model of set theory and φ
is a ∆0 formula then φ is absolute between M and V . Similarly, if N is a transitive
submodel of M, φ is absolute between N and M.

Proof. Since φ is ∆0 and equivalent over ZFC to a formula with only bounded
quantifiers, we can assume φ only has bounded quantifiers. We’ll first show φ ⇐⇒
φM whenever we assign the free variables of φ to elements of M. We proceed by
induction on the complexity of φ. By the definition of relativization, the atomic
formulas x = y and x ∈ y will be absolute, as will the conjunction, disjunction,
negation, and conditional formed from formulas which are absolute. Now for the
case of quantifiers, we know that since φ is ∆0 they will be bounded quantifiers.
This means we will have a formula of the form ∀x ∈ y.ψ or ∃x ∈ y.ψ. We only
will have to show the absoluteness for one of the quantifiers since we can just use
negation to obtain the other, so we’ll show it for ∃x ∈ y.ψ:

(∃x ∈ y.ψ)M ≡ (∃x.(x ∈ y ∧ ψ))M

≡ ∃x ∈ M.(x ∈ y ∧ ψM)

⇐⇒ ∃x ∈ M.(x ∈ y ∧ ψ)
⇐⇒ ∃x ∈ y.(x ∈ M ∧ ψ)

We can then drop the x ∈ M part due to transitivity: if x ∈ y then since y ∈ M
we have x ∈ M because M is transitive. The same reasoning holds when we want
to show that φ is absolute between N and M. □

Corollary 2.39 (Absolute Notions for Transitive Models). In any transitive set,
Extensionality holds. If M is a transitive model of ZFC, then the following notions
are absolute between it and the entire universe or any transitive supermodel:

• x ⊆ y.
• ∅, {x1, . . . xn}.
•
⋃
A,
⋂
A

• {τ(x,w1, . . . wn) | x ∈ y ∧ φ(x)}, where τ and φ are absolute notions be-
tween M and the entire universe or any transitive supermodel.

• A \B.
• (x, y), A×B.
• x is transitive.
• x is an ordinal, x is a successor/limit ordinal.
• ω.
• x is a finite/infinite ordinal.
• f is a function, dom(f), ran(f), f is injective, f is surjective.
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• Any definition by transfinite recursion, so long as the term used in the
recursion is absolute.

• x is a finite/infinite set.

Proof. Extensionality always holds in a transitive set, because all of the elements
of an element of a transitive set M will also be elements of M. Therefore, the
interpretation of ⊆ in M will be the real ⊆ relation, so Extensionality holds. All
of the relations and terms are absolute because they are ∆0 except for the last
one, although some are a bit difficult to verify. See [4] for the details. The one
statement which requires a bit more work is being a finite set or an infinite set.
Suppose x is finite in M. Then there is a bijection from x to some finite ordinal in
M. This will remain true in any transitive supermodel or even in the full universe,
so x will be finite there as well. Now if x is infinite in M, then there is an injection
f : ω −→ x in M, which will remain an injection in the larger universe. Thus, x is
finite/infinite in M iff it is finite/infinite in the larger universe. □

Note that several items are missing from our list. Most importantly, it is not
true that the set of all functions from a set A to a set B, the cardinality of a set, and
the property of being a cardinal are absolute. All of these can be defined in terms
of the power set operation, which is also not absolute between transitive models.
The reason is that, although all of the elements of a set in a transitive model are
required to be in the model, not all of its subsets are. In fact, as we will show
in the next section, if there are transitive models of ZFC then there are countable
transitive models. These models will contain the natural numbers, but not all of
the subsets of natural numbers. Although this is a bit strange, it is quite helpful
for our goal of proving that the continuum hypothesis is independent from ZFC,
since it means that the size of the power set is not necessarily fixed by ZFC. We’ll
now turn to the question of how we can build new models of ZFC.

3. Forcing

In this section, we will develop the notion of forcing, which is the primary way
we will prove independence results. The general idea of the method is to start with
a model of ZFC, which we’ll call M. We will assume M is transitive so that we
can leverage the facts of the ∈ relation. We can modify M slightly to obtain a
countable transitive set which is still a model of ZFC. This is quite surprising, but
it has the interesting side effect that all infinite sets in our model are externally
countable (although internally the model will “think” that some of these sets are
uncountable). Therefore, there will exist a bijection in the full set theoretic universe
between any two infinite sets of our model. The heart of forcing is to find a way to
extend this model that adds in a new desired object, such as a bijection or additional
subsets of some set, without disturbing the structure of the model. We’ll first show
how to construct our countable transitive model.

3.1. The Countable Transitive Model M. Before we begin with the forcing
argument, we need to briefly discuss the metamathematics of forcing. All of our
arguments will hinge on the existence of a countable transitive model of ZFC,
which we will show can be constructed from a transitive model of ZFC. However,
the consistency of ZFC only implies the existence of a model of ZFC, and this is
not sufficient to construct a transitive model. In order for our forcing argument to
work, we’ll use countable transitive models of large finite fragments of ZFC rather
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than all of ZFC itself. As a consequence of the reflection principle, which we will
prove in this section, every finite fragment of ZFC has a transitive model, namely
some Vα. We will show how to reduce this to a countable transitive model. Now
suppose we want to show that some statement φ is relatively consistent with ZFC.
What forcing will allow us to do is, for any finite fragment T of ZFC+ φ, produce
another finite fragment T ′ ⊆ ZFC and a procedure for turning a countable transitive
model of T ′ into a countable transitive model of T . Now suppose ZFC entailed ¬φ.
The theory ZFC+φ would therefore be inconsistent, and the compactness theorem
of first order logic would tell us that some finite fragment T ⊆ ZFC + φ. But
then T ′ ⊆ ZFC would be inconsistent, since we know how to turn models of T ′

into models of T , and there are no models of T . Therefore, ZFC would prove its
own inconsistency. Therefore, ZFC entails the relative consistency result if we can
find such a translation of finite fragments. This leads us to adopt the following
convention:

Convention 3.1 (Transitive Models of Set Theory). We will use the terms “tran-
sitive model of set theory” and “countable transitive model of set theory” to refer
to a (countable) transitive model of an arbitrarily large finite fragment of ZFC.

Now that we have the metamathematical argument out of the way, we can begin
examining how to obtain a countable transitive model from a transitive model.
We’ll begin with the following definition and associated results from logic:

Definition 3.1 (Elementary Substructure). Let L be a first order language, let
M be an L-structure, and let N be an L-substructure of M. N is called an
elementary substructure of M, denoted N ⪯ M, if every formula φ in the language
L is absolute between N and M for any variable assignment in N . That is, for any
variable assignment s for N , we have N , s |= φ iff M, s |= φ.

Lemma 3.2 (Tarski-Vaught Test). Let L be a first order language, let M be an
L-structure, and let N be an L-substructure of M. Suppose S ⊆ L is a set of
formulas that is closed under taking subformulas: such a set is called subformula
closed. Then every formula in S is absolute between M and N iff S satsifies the
Tarski-Vaught criterion: for every formula in S of the form ∃x.φ(x, y1, . . . yn) and
every n-tuple of elements b1, . . . bn ∈ dom(N ), if M |= ∃x.φ(x, b1, . . . bn) then there
exists some a ∈ dom(N ) such that M |= φ(a, b1, . . . bn). In particular, if S = L,
then N ⪯ M iff the Tarski-Vaught criterion holds for all formulas in L.

Proof. Induction on the structure of formulas in S. Most of the cases are straight-
forward, but the existential case requires the Tarski-Vaught criterion. See [2] for a
full proof. □

Theorem 3.3 (Löwenheim-Skolem Theorem). Let L be a first order language with
a countable signature, and let M be an L-structure. Then for any countable set
A ⊆ M there exists an elementary L-substructure N ⪯ M such that A ⊆ dom(N )
and dom(N ) is countable.

Proof. Fix a well-ordering of the domain of M. We will construct a sequence of
expanded languages L0 ⊆ L1 ⊆ . . . such that M is an Lk structure for every
k ∈ N using this well ordering. Set L0 = L. Now suppose we’ve defined Lk. To
define Lk+1, consider any formula φ(x, y1, . . . yn) ∈ Lk with n + 1 free variables.
Define a new n-ary function symbol fφ and interpret it in M to be the least
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element a ∈ dom(M) in the fixed well-ordering such that if M |= ∃φ(x, b1, . . . bn)
for b1, . . . bn ∈ dom(M) then M |= φ(fφ(b1, . . . bn), b1, . . . bn), and the least element
of dom(M) otherwise. Clearly, we have the following:

M |= ∀y1, . . . yn (∃x.φ(x, y1, . . . yn) =⇒ φ(fφ(y1, . . . yn), y1, . . . yn))

This interpretation of fφ is called an Skolem function for φ. Define the language
Lk+1 to be the first order language with a signature consisting of all relation and
function symbols in Lk together with all function symbols fφ for φ ∈ Lk. The
interpretation of Lk+1 for M is defined to be the interpretation of Lk for M when-
ever we have a function or relation symbol in Lk and the Skolem function for φ
whenever we have a function symbol fφ for φ ∈ Lk. This gives us a sequence of
languages Lk which are increasing and their corresponding interpretations in M.
The interpretations clearly satisfy the property that the interpretation of a function
or relation symbol in the language Lk is not modified for Ln for n ≥ k. Therefore,
we can define Lω to be a language whose signature consists of the union of the
signatures of all of the Lk, and define a corresponding interpretation of Lω for M
by taking the union of the interpretations. Now our original language L = L0 had
a countable signature, and therefore had countably many formulas. Since every
formula is assigned a Skolem function in the next language, if Lk has a countable
signature so does Lk+1. By induction, every language has a countable signature,
and since the countable union of countable sets is countable, Lω has a countable
signature as well. Consider any formula φ ∈ Lω: since it is finite in length, it only
mentions symbols from finitely many of the Ln. Taking the maximum of these
n shows us that it is in Lk for some k. Therefore, the Skolem function for the
formula has a symbol in Lk+1 and therefore in Lω. Thus, our language Lω has a
Skolem function for each of its formulas. We can enumerate the interpretations of
the function symbols (fn)

∞
n=0 : dom(M) −→ dom(M). Now take our countable set

A and consider its closure under the functions (fn)
∞
n=0. We can see that this set is

countable by setting A0 = A, repeatedly taking the union of An with the images
of An under every fk to give An+1, and letting Aω be the union of all of the An.
This is a countable union of countable sets and images of countable sets, and is
therefore countable. This set will be our dom(N ). Give it an interpretation in Lω

by restricting every relation symbol and function symbol to it. This will be an Lω

substructure of M, since dom(N ) is closed under each fn. Because our language
Lω has a Skolem function for every formula, the Tarski-Vaught criterion holds, and
dom(N ) is an Lω elementary substructure of M. Taking the L-reduct of N gives
N ⪯ M. □

Corollary 3.4 (Extracting a Countable Transitive Model). Suppose M is a tran-
sitive model of set theory. Then it contains a countable transitive elementary sub-
model N.

Proof. Apply Löwenheim-Skolem to M and take ∅ to be the subset we are ex-
tending. This will give us a countable model whose interpretation of the element
relation is ∈, and is therefore a well-founded model. Applying Mostowski collapse
gives us an isomorphic countable transitive model N. Since N is isomorphic to an
elementary substructure of M, it will satisfy whatever finite fragment of ZFC is
satisfied in M. □
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The fact that there are countable models of ZFC at all is a bit strange, so we
should take a moment to consider what this means. In a countable transitive model
M, there is a set P(N)M ∈ M such that M “believes” that it is the power set of the
natural numbers. However, since M is countable and transitive, this set can only
contain countably many elements. Despite this, M is still a model of ZFC, so it also
believes that there are strictly more sets of natural numbers than natural numbers.
This is possible because what it means for P(N)M to have a greater cardinality
than N in the model M is that there is no surjection from N to P(N)M in the model
M. There is certainly a bijection in the external universe V , since both sets have
cardinality ℵ0, but no such bijection can exist in the model M. Thus, cardinality
is not absolute between transitive models.

This suggests a method by which we could prove the independence of the con-
tinuum hypothesis. Start with a countable transitive model M. If we can somehow
add a bijection between P(N)M and ℵM

1 to our model while preserving the fact that
we have a model of set theory and that the power set of N and ℵ1 do not change
in our new model, then our new model will satisfy the continuum hypothesis. If
we instead add in ℵM

2 new subsets of natural numbers, which we can do since this
is a countable number and there are only countably many subsets in our ground
model, and we don’t change the cardinality of ℵ2, we will obtain a model of ZFC
where there are at least ℵ2 sets of natural numbers, so the continuum hypothesis
will fail. Forcing will provide us a method for performing these extensions.

Before we proceed, we need to show that there are transitive models of ZFC,
in the sense that any finite fragment of ZFC has a transitive model. We will even
show that we can make such models contain an arbitrary set. Although this will
not be useful for the purposes of extracting a countable transitive model, it will
be useful later when proving results about the Replacement axiom holding in our
forcing extension.

Theorem 3.5 (Reflection Principle). Let φ(x1, . . . xn) be a formula in the language
of set theory. Then ZFC proves the following statement: for any ordinal α, there ex-
ists an ordinal β ≥ α such that ∀a1, . . . an ∈ Vβ

(
φVβ (a1, . . . an) ⇐⇒ φ(a1, . . . an)

)
Proof. The proof idea is similar to the proof of Löwenheim-Skolem: close Vα un-
der Skolem-like functions and use Tarski-Vaught to obtain the absoluteness. First,
let S be the smallest set containing all of the subformulas of φ: such a set will
be subformula closed. Since φ contains finitely many subformulas, S will be fi-
nite. Let φ1, . . . φk be the formulas, with m free variables x1, . . . xm. If we can
find an ordinal β ≥ α such that for any k and any free variable xj we have
∀a1, . . . aj−1, aj+1, . . . am ∈ Vβ . (∃aj .φk(ā) =⇒ ∃aj ∈ Vβ .φk(ā)) then the Tarski-
Vaught criterion will hold for Vβ . Since the language of set theory has no function
symbols, (Vβ ,∈) is naturally a substructure, and therefore every formula in S, in-
cluding φ, is absolute between Vβ and the entire universe by the Tarski-Vaught test.
To find such an ordinal, note that we can easily define a term τ(a1, . . . an) as the
smallest ordinal such that that for every k, we have ∃aj .φk(ā) =⇒ ∃aj ∈ Vβ .φk(ā).
Because there are only finitely many formulas, this last condition is really a finite
conjunction: otherwise we couldn’t talk about each of the implications holding.
Now set β0 = α, and set βn+1 to be the maximum of βn and the image of Vβn

under τ . This image will exist by Replacement. Now, let β be the supremum of
all of the βn. This will be a limit ordinal, and since it is the supremum of all βn,
Vβ will be the union of all of the Vβn

. Any assignment of free variables in Vβ will
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really be an assignment in some Vβn
, and therefore if some existential statement

holds under such an assignment there will be a witness at Vβn+1 ⊆ Vβ . Thus, Vβ
will satisfy the Tarski-Vaught criterion. □

3.2. Forcing Posets and Generic Filters. Now that we have a countable tran-
sitive model M of ZFC, we need some method to extend M in a controlled manner
so that it satisfies our desired logical properties. However, it is clear that we cannot
simply add in any set we like: we must ensure that the resulting structure remains
a model of ZFC. For instance, if we are to add a set G into M, we must ensure
that P(G) is also added, that all definable subseets of G are added, and so on. Fur-
thermore, it is not clear that even if we succeed in producing an extended model
that we can control any of its desired properties. For instance, suppose we want to
construct a model where the continuum hypothesis holds. If we have a countable
transitive model M, we know that P(ω)M and ℵM

1 are both countable infinite sets.
Even if we somehow add in a bijection between P(ω)M and ℵM

1 while maintaining
the fact that our extended structure is still a model of ZFC, it might be the case
that ℵ1 in our new model is different from ℵ1 in our original model, or that the
power set of ω has changed. In either case, the continuum hypothesis may not hold.

Forcing takes a clever approach to avoid these problems. Instead of adding in
an arbitrary new set G directly, we only add in a set which can in some sense
be approximated from within M. In other words, M contains a sketch of how
to construct G consisting of all finite pieces of information we can have about G.
It will also contain certain requirements that G must satisfy. For instance, if we
wish to adjoin a bijection between two infinite sets A,B ∈ M in our model, we
can approximate such a bijection by examining the set of all bijections between
finite subsets of A and B in our model. In this case, one requirement that must
be satisfied is that the resulting function is defined on all of A, and not just some
subset of A. By ensuring that our set G obeys these requirements, we will be able
to determine whether sentences in M[G] are true based on properties of the finite
approximations within M. This will give us both a great deal of generality in what
we can adjoin to our model M while maintaining control over what is true in the
extension.

We can make this notion more precise. Suppose we have such a set of finite
approximations. Then we can order these approximations based whether one ap-
proximation gives us more information than another approximation. This gives rise
to the following definition:

Definition 3.6 (Partially Ordered Set). A partially ordered set or simply a poset
is a pair P = (P,⪯) where P is a set and ⪯ is a binary relation on P satisfying the
following requirements:

(1) Reflexivity: For all p ∈ P , we have p ⪯ p.
(2) Antisymmetry: For all p, q ∈ P , if q ⪯ p and p ⪯ q then p = q.
(3) Transitivity: For all p, q, r ∈ P , if q ⪯ p and r ⪯ q then r ⪯ p.

We will often abuse notation and use P to refer to the underlying set P .

In forcing, the convention is that when we write q ⪯ p we mean that q gives more
information than p. One can think of this as saying that the collection of sets G
which satisfy q is a subset of those that satisfy p. In addition to our finite approx-
imations forming a poset, we will want two additional requirements. First, there
should be an empty approximation which gives us no information. Furthermore,
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we want our notion of forcing to add something new to our model: no single finite
approximation should completely determine G. This gives rise to the following
definition:

Definition 3.7 (Incompatible Elements). Let P be a poset, and let p, q ∈ P be
elements. p and q are said to be incompatible, denoted p ⊥ q, if there does not exist
an r ∈ P such that r ⪯ p and r ⪯ q.

Definition 3.8 (Notion of Forcing). Let P be a poset. P is said to be a notion of
forcing or a forcing poset if P satisfies the following requirements:

(1) P is rooted : There is a least element. That is, there is some 1P ∈ P such
that every p ∈ P satisfies p ⪯ 1P

(2) P is atomless: For all p ∈ P, there exist q, r ∈ P such that q, r ⪯ p and
q ⊥ r.

The elements of a forcing poset are called forcing conditions or simply conditions,
and the relation q ⪯ p is read “q extends p.”

Now that we know the structure of our forcing conditions, we need to specify how
they approximate our new set G. We will consider G to be the set of all conditions
that approximate it. These conditions will need to satsify two requirements. First,
if a condition is in G, then any condition weaker will also be in G. Second, any two
conditions need to cohere together in some sense. This will ensure that the set we
are approximating is well defined. The way we’ll define this is by saying any two
conditions in G will need to have a common extension in G. This gives rise to the
following definition:

Definition 3.9 (Filter). Let P be a poset. A filter is a subset G ⊆ P satisfying
the following two conditions:

(1) Upper set: For any p ∈ G and any q ⪰ p, we have q ∈ G.
(2) Downward directedness: For any p, q ∈ G, there is an r ∈ G such that

r ⪯ p, q.

Now it may be the case that the G we wish to add needs to satisfy certain
requirements. For instance, suppose we want to add a bijection from ℵ1 and P(N)
into our model. Our forcing poset would consist of bijections between proper subsets
of ℵ1 and proper subsets of P(N), with one bijection f extending a bijection g when
the domain of g is contained in that of f and f restricted to the domain of g agrees
with g. It’s clear that taking the union of a filter of such bijections will be another
bijection from a subset of ℵ1 to a subset of P(N). However, we want a bijection
between ℵ1 and P(N), not just a subset of each. We therefore need the resulting
function to be surjective, which will only be true if each A ∈ P(N) is in the range of
some condition of our filter. This kind of requirement has a special property: any
condition has an extension that satisfies it, since we can just pick an element not
in the domain of the condition and map it to A. From this, we have the following
definitions:

Definition 3.10 (Dense Set). Let P be a poset. A subset D ⊆ P is called dense if
for any p ∈ P, there exists a q ∈ D such that q ⪯ p.

Definition 3.11 (Generic Filter). Let P be a poset, and let D be a family of dense
subsets of P. A filter G on P is called D-generic if every D ∈ D contains a condition
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in G. We will shorten this by saying G meets every D ∈ D. Often the set D will
be clear from context, in which case we will just say that G is generic.

The fundamental result about generic filters is the following:

Theorem 3.12 (Rasiowa-Sikorski). Let P be a poset, let p ∈ P be any element, and
let D be a countable family of dense subsets of P. Then there exists a D-generic
filter G such that p ∈ G.

Proof. We will use the axiom of choice to define a sequence of elements in P. Let
p0 = p, and fix an enumeration (Dn)

∞
n=0 ∈ D of the dense sets. Suppose we

know pn. Since Dn is dense, there exists some q ⪯ pn which is in Dn. We’ll
let this be our pn+1. This gives us a sequence (pn)

∞
n=0 ∈ P. Define G as G =

{q ∈ P | ∃n ∈ N(pn ⪯ q)}. Clearly G contains each pn, so it contains p. G meets
every D ∈ D since it contains every pn, and pn ∈ Dn−1 for n > 0. We can now show
that G is a filter. If q ∈ G, then pn ⪯ q for some n. If q ⪯ r, then by transitivity
pn ⪯ r, so r ∈ G. Now suppose q, r ∈ G. Then for some m,n ∈ N, we have pn ⪯ q
and pm ⪯ r. Without loss of generality, assume n ≥ m. By the definition of our
sequence, pn ⪯ pm, and pn ∈ G. Therefore, pn ⪯ q, r, so q and r have a common
extension in G. Thus, G is a D-generic filter containing p. □

Convention 3.2. When proving facts about generic filters, we will occasionally
say that all sufficiently generic filters of a poset satisfy a given property. This
means that there exists a countable family of dense sets such that any filter generic
with respect to that family satisfies the given property. This implication cannot be
vacuous since there is always at least one generic filter by 3.12.

Although we can only use Rasiowa-Sikorski to prove the existence of generic
filters for countable families of dense sets, this is no obstacle for our forcing proofs.
Since we are working with a countable model M, and a forcing poset P ∈ M, only
countably many subsets of P will be sets in M (although internally there might be
uncountably many). The filters which we will consider will be generic with respect
to all dense subsets of P which are in the model M, and this will be sufficient. Here
is one more fact about generic filters which will be useful:

Definition 3.13 (Density Below an Element). Let P be a poset, and let p ∈ P be
an element. A set D ⊆ P is said to me dense below p if for any q ⪯ p there exists
some r ∈ D such that r ⪯ q.

Lemma 3.14. Suppose P is a poset, p ∈ P is an element, and D ⊆ P is dense
below p. Then any sufficiently generic filter G on P meets D if it contains p.

Proof. Given our set D, define a set D∗ to be the union of D and all elements in
P which are incompatible with p. Consider any G which is generic relative to this
set, and pick a q ∈ D∗ ∩G. Suppose p ∈ G. Then p and q cannot be incompatible,
since they are both in G, and therefore have a common extension in G. Therefore,
q ∈ D ∩G, so G meets D. □

3.3. P-Names and the Forcing Extension M[G]. Now that we’ve proved some
facts about generic filters, we can use the filter to construct our expanded model
M[G], which we’ll call the forcing extension of M by G. The notation we use
is reminiscint of the notation for adjoining an element to a ring in algebra, and
this is no coincidence. We will eventually show that M[G] is the smallest model
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of ZFC which extends M and contains G. Additionally, the method we use to
construct M[G] is quite similar to the method used to adjoin an element to a ring.
To adjoin an element to a ring, we consider all possible polynomials over that ring,
and quotient by a particular polynomial with special properties. The polynomials
represent “recipes” for elements in our new ring given our new element. To create
our forcing extension, we will take our countable transitive model M and consider
sets in M whose elements are “tagged” with elements in our forcing poset P: these
will be analogues of our polynomials. However, these elements will themselves be
sets with tagged elements, which themselves will be sets with tagged elements, and
so on. We call these tagged sets P-names. Our generic filter G will then “quotient”
the P-names in such a way that we end up recovering both the original model M
and the generic filter G. First, we’ll construct the P-names:

Definition 3.15 (P-names). Let P be a forcing poset. For any ordinal α, we define
the α-th P-name level by recursion:

V P
α =

⋃
β<α

P(V P
β × P)

Elements of the class V P =
⋃

α∈Ord V
P
α are called P-names. Every P-name consists

of ordered pairs (a, p), where a is a P-name and p ∈ P is a condition. We call the
domain of a P-name its set of potential elements. The name rank of a P-name is the
smallest ordinal strictly larger than the name ranks of all of its potential elements.
If we have some model M and a forcing poset P ∈ M we define MP

α, M
P, and

rankMP (A) analogously via relativization. It should be noted that the P-name rank
is absolute between transitive models: this is easy to see by induction on the name
rank.

Convention 3.3. Suppose M is a countable transitive model, and P ∈ M is a
forcing poset. When we refer to generic filters over P, we are always referring to
generic filters with respect to D = {D ∈ M | D ⊆ P, D dense}. This is a countable
collection of sets since M is countable, so by 3.12 there will always be a generic
filter G.

In our analogy, the P-names act like polynomials: they denote potential sets that
will exist in our model M[G] depending on what conditions are in our generic filter
G. Here is the definition of the forcing extension:

Definition 3.16 (Forcing Extension). Let M be a countable transitive model of
ZFC, let P ∈ M be a forcing poset, and let G be a generic filter over P. We define
a map evalG on the P-names MP recursively as follows:

evalG(A) = {evalG(a) | ∃p ∈ G.(a, p) ∈ A}
The forcing extension M[G] is the image of the P-names MP under the map evalG:

M[G] =
{
evalG(A) | A ∈ MP}

We are now in a position to prove some basic facts about the forcing extension
M[G]:

Definition 3.17 (Canonical Name). Let P be a forcing poset, and let A be any set.

The canonical name of A, denoted ÂP, is a P-name recursively defined as follows:

ÂP = {(âP, 1P) | a ∈ A}
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Theorem 3.18 (Properties of the Forcing Extension). Let M be a countable tran-
sitive model, let P ∈ M be a forcing poset, and let G be a generic filter over P.
Then G ̸∈ M. We have M ⊆ M[G] and G ∈ M[G]. M[G] is countable, transitive,
and contains the same ordinals as M

Proof. First, we’ll show G ̸∈ M. This will follow directly from the fact that P is
an atomless poset. Suppose G ∈ M. Then the set H = P \G is also in M since M
is a model. We will show that H is dense. Pick some p ∈ P. Since P is atomless,
there must exist q, r ⪯ p such that q ⊥ r. Since G is a filter, if q and r are both
in G, then they must have a common extension in G, but this is impossible since q
and r are incompatible. Therefore, at least one of q or r is in H. Since every p ∈ P
has an extension in H, H is dense. Since H is dense and in our model M, G must
meet H, but this is impossible since H = P \G. Therefore, G ̸∈ M.

Next, we’ll show M ⊆ M[G]. To do this, we’ll show that for any A ∈ M,

the canonical name ÂP evaluates to A under evalG. We’ll do so by induction on
rank of A. Suppose that for all a with rank (a) < α, we have evalG (âP) = a, and
rank (A) = α. Then all of the elements of A have rank less than α. Therefore, we
have the following:

evalG

(
ÂP

)
=
{
evalG(a) | ∃p ∈ G.(a, p) ∈ ÂP

}
=
{
evalG

(
b̂P

)
| ∃p ∈ G. (p = 1P ∧ b ∈ A)

}
=
{
evalG

(
b̂P

)
| b ∈ A

}
= {b | b ∈ A}
= A

Since each A ∈ M is equal to the evaluation of a P-name of M , namely ÂP, M ⊆
M[G]. We can also find a P-name that evaluates to G. Define Γ = {(p̂P, p) | p ∈ P}.
We’ll show this evaluates to G:

evalG(Γ) = {evalG a | ∃p ∈ G.(a, p) ∈ Γ}
= {evalG p̂P | ∃p ∈ G.(p̂P, p) ∈ Γ}
= {p | ∃p ∈ G.(p̂P, p) ∈ Γ}
= {p | p ∈ G}
= G

Finally, we’ll show that M[G] is countable, transitive, and has the same ordinals
as M. For countability, note that M[G] is the image of the set MP under the map
evalG. Since MP ⊆ M and M is countable, so is MP, and therefore so is M[G].
For transitivity, pick some a ∈ M[G], and pick some b ∈ a. By the definition
of M[G], there exists some name A ∈ MP such that a = evalG(A). We know
evalG(A) = {evalG(B) | ∃p ∈ G.(B, p) ∈ A}. Since b ∈ a = evalG(A), there exists
some B ∈ MP such that b = evalG(B). Thus, b is the evaluation of a P-name in M,
and therefore is in M[G]. Since M ⊆ M[G], the ordinals in M are also in M[G].
However, we can see easily by induction that the name rank of a P-name A ∈ MP

is at least the rank of its evaluation evalG(A): the name rank of A is the smallest
ordinal strictly larger than all of the potential elements of A, some of which have
evaluations which might not appear in the evaluation evalG(A), meaning the rank
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of evalG(A) cannot be larger than the name rank of A. Any ordinal α ∈ M[G] is
the evaluation of a name in MP with some ordinal name rank β ∈ M. But since
rank (α) = α and rank (α) ≤ β, we have either α = β or α ∈ β. The transitivity
of M means we have α ∈ M, meaning the forcing extension’s ordinals are all in
M. □

3.4. The Forcing Relations ⊩ and ⊩∗. We are quite close to establishing that
our forcing extension M[G] is a model of ZFC. Given that M[G] is a countable
transitive set with the same ordinals as M, we can prove several of the ZFC axioms
hold in the forcing extension. Proving the existence of a particular set in the
forcing extension simply requires us to find the right P-name that will evaluate to
the desired set under the generic filter G. However, we still have a few problems to
deal with. Some of the axioms, such as Power Set and Replacement, require us to
determine whether or not a property holds in the model M[G] holds based only on
the fact that G contains a particular forcing condition. Additionally, determining
whether the desired properties hold in the forcing extension, such as the continuum
hypothesis, requires us to reason about the forcing extension M[G] from within the
ground model M. Fortunately, because our generic filter G can be approximated
from within M, truth in M[G] is reducible to truth in M. This will allow us to
verify that the forcing extension is a model of ZFC and that the desired properties
hold. We will do this by introducing a logical notion which we’ll call the forcing
relation. Despite its semantic definition, we will show that it is definable from
within M and that it admits a syntactic definition.

In order to talk about properties of the forcing extension from within the ground
model, we’ll use the fact that all of the elements of the forcing extension already
exist in the ground model as P-names. Depending on which conditions are in
the generic filter G, the sets that the P-names evaluate to might have different
properties. In order to discuss what properties of the forcing extension hold given
a condition in the generic filter, we’ll use formulas in the language of set theory
but restrict the variables to quantify over the P-names. We can then ask questions
about the evaluations of the P-names in this language.

Definition 3.19 (Name Assignment). Let M be a countable transitive model, and
let P ∈ M be a forcing poset. A variable assignment s for M is called a P-name
assignment if its range is in MP. Given a generic filter G ⊆ P, we define the variable
assignment evalG s for M[G] to be the composition (evalG) ◦ s.

Definition 3.20 (Forcing). Let M be a countable transitive model, and let P ∈ M
be a forcing poset. Suppose we have a condition p ∈ P, a P-name assignment s for
M, and a formula φ in the language of set theory. We say that p forces φ under
the name assignment s, written p, s ⊩ φ, if for any generic filter G containing p we
have M[G], evalG s |= φ.

Convention 3.4. Because the forcing relation is equivalent to a statement about
satisfaction in a model, if we have two name assingments s and s̃ which agree on
the free variables of φ, then for any p ∈ P we have p, s ⊩ φ iff p, s̃ ⊩ φ. Therefore,
we often abuse notation in order to avoid talking about the name assignment s.
Suppose φ has free variables x1, . . . xn, and we have P-names A1, . . . An. Then we
write p ⊩ φ(A1, . . . An) if for all name assignments s sending each xk to Ak we have
p, s ⊩ φ. This is equivalent to finding a single such variable assignment since the
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truth value of the forcing statement only depends on what values s takes on the
free variables of φ.

We can now prove several properties of the forcing relation directly from the
definition:

Theorem 3.21 (Properties of Forcing). The forcing relation satisfies the following
properties:

(1) If p, s ⊩ φ then for any q ⪯ p we have q, s ⊩ φ.
(2) If Γ is a set of formulas such that for any φ ∈ Γ we have p, s ⊩ φ and

Γ |= ψ then p, s ⊩ ψ.
(3) For any formulas φ and ψ, p, s ⊩ φ ∧ ψ iff p, s ⊩ φ and p, s ⊩ ψ.
(4) For any formula φ and any variable x, p, s ⊩ ∀x.φ iff for any P-name

A ∈ MP we have p, s [A/x] ⊩ φ.

Proof. If p, s ⊩ φ then for any generic G containing p we have M[G], evalG s |= φ.
For any q ⪯ p, any genericG containing q will also contain p because filters are upper
sets. Therefore, every generic G containing q will also satisfy M[G], evalG s |= φ,
and therefore q, s ⊩ φ. If p, s ⊩ φ for each φ ∈ Γ, then for any generic G containing
p we have M[G], evalG s |= Γ. Since Γ |= ψ, for every generic G containing p we
have M[G], evalG s |= ψ, and thus p, s ⊩ ψ.

Applying the previous result given the entailments φ ∧ ψ |= φ, φ ∧ ψ |= ψ, and
{φ,ψ} |= φ ∧ ψ gives the conjunction result. p, s ⊩ ∀x.φ iff for each generic G
containing p we have M[G], evalG s |= ∀x.φ. By definition of |=, this is equivalent
to M[G], (evalG s)[A/x] |= φ for every A ∈ M[G]. Since every element of M[G] is
the evaluation of some P-name, this is equivalent to M[G], evalG (s[A/x]) |= φ for
every A ∈ MP and every generic G containing p. This is equivalent to p, s [A/x] ⊩ φ
for every P-name A ∈ MP. □

Unfortunately, we can’t prove much more with our definition of forcing. We’d
like to be able to find a nice requirement for when a condition forces a negation,
for instance. The correct statement will turn out to be that p, s ⊩ ¬φ iff for any
q ⪯ p we have q, s ̸⊩ φ. However, we can only prove the forward direction with our
current knowledge; the reverse direction requires us to show that for any formula
φ and any p ∈ G there is some q ∈ G such that q ⪯ p and q “decides” φ under the
variable assignment s. That is, we need to show that either q, s ⊩ φ or q, s ⊩ ¬φ.
We could do this if the set of such conditions was dense and in M, since then we
could just take a common extension of the condition with p. Unfortunately, we
don’t yet know that this set is definable from within M, since it refers to facts
about the model M[G], not M. Additionally, we’d like to say that any formula
which holds in the model M[G] is forced by some condition in G, since this will
allow us to prove facts about M[G] from within M. Accomplishing this is the heart
of forcing, and will take quite a bit of work. Here is the general strategy: first,
we’ll examine more carefully what it means to force two P-names to be equal. We
will be able to define this relation via a formula in M, and show that it satisfies all
of the desireable properties. Then we will define a purely syntactical counterpart
to our forcing relation, which we’ll denote ⊩∗. This will be defined recursively on
the structure of formulas in the language of set theory, and can be thought of as
recursively transforming a formula φ(A1, . . . An) in the language of set theory to
another formula ψ(p,A1, . . . An) which will be satisfied in M iff p ⊩ φ(A1, . . . An).
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Although we will not prove it here, it is important for metamathematical reasons
that this transformation procedure is computable. We will then show that the
semantic and syntactic definitions of forcing are equivalent, meaning that the forcing
relation is definable in M, and that any formula is satisfied in M[G] iff it is forced
by some p ∈ G.

In order to define our syntactic forcing, we’ll need to determine what it means
for a condition in P to force the atomic sentences x ∈ y and x = y. We’ll first
examine the case of x = y, since this will be the most difficult. Fortunately,
because our forcing extension M[G] is transitive, we can use the fact that it satisfies
extensionality to determine when the evaluation of two P-names are equal. This will
involve an induction on the name rank of two P-names, so we’ll define rankP (A,B)
to be the maximum of the name ranks of A and B.

Definition 3.22 (Forcing Equality). Let M be a countable transitive model, and
let P ∈ M be a forcing poset. We’ll define a sequence of sets SM

α ∈ M by transfinite
recursion, where we have SM

α ⊆
{
(p,A,B) | p ∈ P, A,B ∈ MP, rankP (A,B) ≤ α

}
.

A triple (p,A,B) where p ∈ P and A,B ∈ MP of name rank at most α will be in
SM
α iff the following two requirements hold:

(1) For any q ⪯ p, if there is some (a, pa) ∈ A such that q ⪯ pa, then there exists
some r ⪯ q and some (b, pb) ∈ B such that r ⪯ pb and (r, a, b) ∈ SM

rankP (a,b)
.

(2) For any q ⪯ p, if there is some (b, pb) ∈ B such that q ⪯ pb, then there exists
some r ⪯ q and some (a, pa) ∈ A such that r ⪯ pa and (r, b, a) ∈ SM

rankP (a,b)
.

This transfinite recursion is well defined since the name ranks of potential elements
of A and B are strictly less than the name ranks of A and B.

Theorem 3.23 (Truth and Definability Theorem for Equality). Let M be a count-
able transitive model, and let P ∈ M be a forcing poset. Then for any P-names
A,B ∈ MP, we have the following:

(1) Definability: For any p ∈ P, p ⊩ A = B iff (p,A,B) ∈ SM
rankP (A,B).

(2) Truth: For any generic filter G ⊆ P, M[G] |= evalGA = evalGB iff some
p ∈ G forces A = B.

Proof. We will prove this by induction on rankP (A,B). Suppose that the state-
ments hold for all P-names of name rank less than rankP (A,B). Then we can show
it will be true for A = B. First, assume some p ∈ P forces A = B. Then by
3.21 we know p ⊩ A ⊆ B and p ⊩ B ⊆ A. We’ll examine the A ⊆ B part. Pick
some q ⪯ p, and pick any generic G ⊆ P containing q. We know p ⊩ A ⊆ B, and
p ∈ G, so evalGA ⊆ evalGB. Now suppose there is some (a, pa) ∈ A such that
q ⪯ pa. Then pa ∈ G, so evalG a ∈ evalGA. Therefore, evalG a ∈ evalGB. This
means there must exist some (b, pb) ∈ B such that pb ∈ G and evalG a = evalG b.
Since a and b are of smaller name rank than rankP (A,B), there must exist an
r0 ∈ G such that r0 ⊩ a = b. Taking the common extension of q, r0, pb gives a
condition r ∈ G such that r ⪯ pb and r ⊩ a = b, which by the induction hypothesis
is equivalent to (r, a, b) ∈ SM

rankP (a,b)
. This proves the first half of the definition

of SM
rankP (A,B), and the same logic applied to p ⊩ B ⊆ A gives the second half.

Therefore, (p,A,B) ∈ SM
rankP (A,B). Now suppose (p,A,B) ∈ SM

rankP (A,B). If we can

show that p ⊩ A ⊆ B and p ⊩ B ⊆ A, then we will have p ⊩ A = B since M[G] is
transitive for any generic filter G and extensionality holds for transitive sets. Pick
some generic filter G ⊆ P such that p ∈ G. We’ll show that the first clause of the
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definition of SM
rankP (A,B) leads to evalGA ⊆ evalGB. Pick some element of evalGA:

by the definition of the forcing extension M[G] it is the evaluation of some a ∈ MP.
Therefore, there is some pa ∈ G such that (a, pa) ∈ A. The first clause of the
definition together with the inductive hypothesis imply that the set of r ∈ P such
that there is some (b, pb) ∈ B with r ⪯ pb and r ⊩ a = b is dense below pa, so
because pa ∈ G we know G must meet this set. There is therefore some r ∈ G
and some (b, pb) ∈ B such that r ⪯ pb and r ⊩ a = b. Since r ⪯ b, we know
evalG b ∈ evalGB, and since r ⊩ a = b, we know evalG a = evalG b. Therefore,
every element in the evaluation of A is equal to some element in the evaluation of
b, so p ⊩ A ⊆ B. Applying the same logic to the other clause gives p ⊩ B ⊆ A, and
by the transitivity of M[G] we know p ⊩ A = B.

Now we’ll deal with the truth requirement. Clearly if p ⊩ A = B, then the
evaluations of A and B will be equal in any forcing extension. Now suppose that
for some generic G ⊆ P we have M[G] |= evalGA = evalGB, or equivalently
evalGA = evalGB. If we can show that there exist conditions in G which force
A ⊆ B and B ⊆ A, their common extension will force A = B. We’ll show the
existence of a p ∈ G which forces A ⊆ B. We know that p ⊩ A ⊆ B is equivalent to
the first clause, of the definition of SM

rankP (A,B). Consider the set of all p ∈ P which

either force A ⊆ B or there exists some (a, pa) ∈ A with pa ⪯ p but for any r ⪯ p
and every (b, pb) ∈ B with r ⪯ pb we have r ̸⊩ a = b. This is clearly a dense set of
conditions since either p ⊩ A ⊆ B or some q ⪯ p satisfies the negation of the first
clause of the definition of SM

rankP (A,B). It is also a set in M since forcing equality

between names of rank less than rankP (A,B) is definable in M by the inductive
hypothesis. Therefore, there is some p ∈ G satisfying this requirement by genericity.
Suppose the second part of the requirement holds. Then evalG a ∈ evalGA, and
therefore evalG a ∈ evalGB. Therefore, there must be some (b, pb) ∈ B such that
pb ∈ G and evalG a = evalG b. By the inductive hypothesis, this can only be true
if some condition r0 forces it to be true, but taking the common refinement of p,
pb, and r0 contradicts the second part of the requirement. Therefore, p cannot
satisfy the second part of the requirement, meaning p ⊩ A ⊆ B. Applying the
second clause gives a condition forcing B ⊆ A, and therefore a condition forcing
A = B. □

Although the argument was somewhat tedious, the preceding proof shows that
M knows what conditions will force the evaluations of names to be equal, and that
if two names evaluate to the same set there must be a single condition forcing this
fact. From this, we can fully define our syntactic forcing relation ⊩∗:

Definition 3.24 (Syntactic Forcing). Let M be a countable transitive model, and
let P ∈ M be a forcing poset. If φ is a formula in the language of set theory, p ∈ P
is a condition, and s is a name assignment, then we define the syntactic forcing
relation p, s ⊩∗ φ by recursion on the structure of φ:

(=) If φ ≡ (x = y) where x and y are variables, then p, s ⊩∗ φ is defined as
(p, s(x), s(y)) ∈ SM

rankP (s(x),s(y))
.

(∈) If φ ≡ (x ∈ y) where x and y are variables, then p, s ⊩∗ φ is defined as
∀q ⪯ p.∃r ⪯ q.∃(b, pb) ∈ s(y). (r ⪯ pb ∧ (r, s [b/z] ⊩∗ x = z)).

(¬) If φ ≡ (¬ψ) where ψ is a formula in the language of set theory, then
p, s ⊩∗ φ is defined as ∀q ⪯ p. (q, s ̸⊩∗ ψ).
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(∧) If φ ≡ (ψ ∧ θ) where ψ and θ are formulas in the language of set theory,
then p, s ⊩∗ φ is defined as (p, s ⊩∗ ψ) ∧ (p, s ⊩∗ θ).

(∀) If φ ≡ (∀x.ψ) where x is a variable and ψ is a formula in the language of
set theory, then p, s ⊩∗ φ is defined as ∀A ∈ MP. (p, s [A/x] ⊩∗ ψ).

The definitions for ∃, =⇒ , and ∨ are defined in terms of ¬, ∧, and ∀ in the natural
way.

Theorem 3.25 (Truth and Definability Theorem). Let M be a countable transitive
model, and let P ∈ M be a forcing poset. For any formula φ in the language of set
theory and any name assignment s, we have the following:

(1) Definability: For any p ∈ P, p, s ⊩ φ iff p, s ⊩∗ φ.
(2) Truth: For any generic filter G ⊆ P, M[G], evalG s |= φ iff there exists

some p ∈ G such that p, s ⊩ φ.

Proof. Note that one direction of truth always holds: if some condition in the
generic filter forces some formula, then the formula will hold in the forcing extension.
We proceed by induction on the structure of the formula φ. First, assume φ is
atomic. We’ve already dealt with the equality case, so we just need to check it
for the ∈ case. If φ ≡ A ∈ B where A and B are P-names, then the definition
of p ⊩∗ A ∈ B is ∀q ⪯ p.∃r ⪯ q.∃(b, pb) ∈ B. (r ⪯ pb ∧ (r ⊩∗ A = b)). Since truth
and definability holds for equality, this is equivalent to ∀q ⪯ p.∃r ⪯ q.∃(b, pb) ∈
B. (r ⪯ pb ∧ (r ⊩ A = b)). Now suppose p ⊩ A ∈ B. Pick some q ⪯ p and some
generic filter G ⊆ P containing q: we will have evalGA ∈ evalGB since p ∈ G. This
can only be true if there is some (b, pb) ∈ B such that pb ∈ G and evalGA = evalG b.
Since truth and definability hold for equality, there must exist some r0 ∈ G that
forces A = b. By taking the common extension of pb, r0, q, we get an r ∈ G which is
an extension of pb and q and forces A = b. This is the definition of p ⊩∗ A ∈ B. For
the other direction, suppose p ⊩∗ A ∈ B, and consider any generic G ⊆ P which
contains p. Then the definition of p ⊩∗ A ∈ B tells us that the set of conditions r
such that there exists some (b, pb) ∈ B with r ⪯ pb and r ⊩ A = b is dense below
p. This set is in M since forcing equality of names is definable in M. Since p ∈ G,
G must meet this set, so there is some r ∈ G and (b, pb) ∈ B such that r ⪯ pb and
r ⊩ A = b. The first condition tells us pb ∈ G, and therefore evalG b ∈ evalGB, and
the second condition tells us that evalGA = evalG b. Therefore, evalGA ∈ evalGB.

Now for truth. Suppose evalGA ∈ evalGB. Then there must exist (b, pb) ∈ B
such that pb ∈ G and evalGA = evalG b. By truth for =, some p ∈ G forces A = b.
If we take the common refinement of p and pb in G, we obtain a condition such
that any generic filter containing it forces b ∈ B and A = b, so it forces A ∈ B.

Now for the inductive step. We’ll show that the set of formulas in the language
of set theory satisfying truth and definability is closed under ¬, ∧, and ∀:

(¬) Suppose that φ ≡ ¬ψ, where ψ satisfies truth and definability. Then p, s ⊩∗

φ iff every q ⪯ p we have q, s ̸⊩∗ ψ. Since forcing ψ is definable, this is
equivalent to q, s ̸⊩ ψ. Suppose p, s ⊩ φ. Then if any extension q ⪯ p
satisfied q, s ⊩ ψ, then we could construct a generic filter containing q and
p which would satisfy ψ, contradicting the fact that p, s ⊩ ¬ψ. Therefore,
if p, s ⊩ ¬ψ then p, s ⊩∗ ¬ψ. Now suppose p, s ⊩∗ ¬ψ. Let G be a generic
filter extending p. If M[G], evalG s |= ψ, then some q ∈ G forces ψ under
s since truth holds for ψ. Taking the common extension of p and q gives
a condition stronger than p which forces ψ, which contradicts the fact that
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p, s ⊩∗ ¬ψ. Therefore, M[G], evalG s |= ¬ψ for every generic G containing
p, or in other words p, s ⊩ ¬ψ.

Now for truth. Suppose for some generic filterG ⊆ P we haveM[G], evalG s |=
¬ψ. Consider the set of conditions in P which either force ψ or have no
extension forcing ψ. This set is clearly dense: for any condition in P, either
some extension forces ψ, giving us an extension in this set, or no extension
does, meaning it is already in the set. This set is definable in M since
forcing ψ is, so G meets this set of conditions. No p ∈ G can force ψ, since
otherwise M[G], evalG s |= ψ. Therefore, the other requirement must be
satisfied, meaning there is some p ∈ G having no extension forcing ψ. This
means p, s ⊩∗ ¬ψ or equivalently p, s ⊩ ¬ψ.

(∧) Suppose φ ≡ ψ ∧ θ, where ψ and θ both satisfy truth and definability. By
definition, p, s ⊩∗ φ iff p, s ⊩∗ ψ and p, s ⊩∗ θ. By the inductive hypothesis,
this is equivalent to p, s ⊩ ψ and p, s ⊩ θ, which theorem 3.21 tells us is
equivalent to p, s ⊩ φ. This proves definability. For truth, if for some
generic filter G ⊆ P we have M[G], evalG s |= φ then M[G], evalG s |= ψ
and M[G], evalG s |= θ. By truth for ψ and θ, there exist q, r ∈ G such that
q, s ⊩ ψ and r, s ⊩ θ. Taking the common extension of these two conditions
gives us p ∈ G such that p, s ⊩ ψ and p, s ⊩ θ, which implies p, s ⊩ φ.

(∀) Suppose φ ≡ ∀x.ψ, where ψ satisfies truth and definability. Then the
definition of ⊩∗ tells us that p, s ⊩∗ φ iff for every A ∈ MP we have
p, s [A/x] ⊩∗ ψ. By definability for ψ, this is equivalent to p, s [A/x] ⊩ ψ
for all A ∈ MP, which by theorem 3.21 is equivalent to p, s ⊩ φ. This proves
definability. For truth, suppose we have some generic filter G ⊆ P such that
M[G], evalG s |= φ. Then for anyA ∈ MP we haveM[G], evalG s [A/x] |= ψ.
Consider the set of conditions p ∈ P such that either p, s [A/x] ⊩ ¬ψ for
some A ∈ MP or for every q ⪯ p and A ∈ MP we have q, s [A/x] ̸⊩ ¬ψ.
Clearly this set is dense, and since ψ satisfies definability so does ¬ψ, so
this set is in M. Therefore, G meets this set, say at p. There cannot exist
A ∈ MP such that p, s [A/x] ⊩ ¬ψ, since otherwise this would be true in
G, so for every q ⪯ p and A ∈ MP we have q, s [A/x] ̸⊩ ¬ψ. This means
for every A ∈ MP we have p, s [A/x] ⊩ ¬¬ψ, which implies p, s [A/x] ⊩ ψ.
Since this holds for every P-name A, we have p, s ⊩ φ.

□

Corollary 3.26 (Additional Properties of Forcing). Let M be a countable transitive
model, and let P ∈ M be a forcing poset. Then for any condition p ∈ P and any
name assignment s, the following hold:

(∨) If φ and ψ are formulas in the language of set theory, then p, s ⊩ φ ∨ ψ iff
for every q ⪯ p there exists an r ⪯ q such that r, s ⊩ φ or r, s ⊩ ψ.

( =⇒ ) If φ and ψ are formulas in the language of set theory, then p, s ⊩ φ =⇒ ψ
iff for every q ⪯ p either q ̸⊩ φ or there is some r ⪯ q such that r ⊩ ψ.

(∃) If φ is a formula in the language of set theory and x is a variable, then
p, s ⊩ ∃x.φ iff for every q ⪯ p there exists an r ⪯ q and a P-name A ∈ MP

such that r, s [A/x] ⊩ φ.

Furthermore, for every formula φ in the language of set theory, the set of all con-
ditions p ∈ P such that either p, s ⊩ φ or p, s ⊩ ¬φ is dense and in M. Finally,
p, s ⊩ φ iff the set of conditions which force φ under s is dense below p and in M.
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Proof. The first three statements follow from the fact that (φ ∨ ψ) is equivalent
to ¬(¬φ ∧ ¬ψ), (φ =⇒ ψ) is equivalent to ¬(φ ∧ ¬ψ), and ∃x.φ is equivalent
to ¬∀x.¬φ, and applying the relevant definition for syntactic forcing. The set of
conditions that force φ or ¬φ is the same as the set of conditions which either force
φ or have no extension forcing φ, and this is dense. Finally, if p, s ⊩ φ then the set
of q ∈ P such that q, s ⊩ φ is definable in M and contains every q ⪯ p, so it is dense
below p. If the set of q such that q, s ⊩ φ is dense below p, then any generic filter
G ⊆ P which contains p must meet this set. But then G would contain a condition
forcing φ, so φ would be satisfied in the forcing extension. Since this holds for every
generic G, p, s ⊩ φ. □

3.5. The Model M[G]. Now that we have the forcing relation and the truth and
definability theorem, we are in a position to show that the forcing extension M[G] is
a countable transitive model. The one thing we need to worry about for this proof
is the fact that M is not really a countable transitive model of all of ZFC, but
only a countable transitive model for an arbitrarily large finite fragment of ZFC.
Since we want M[G] to also satisfy an arbitrarily large finite fragment of ZFC,
we’ll show that for any finite fragment T ⊆ ZFC we can find a corresponding finite
fragment T ′ ⊆ ZFC such that if M |= T ′ then M[G] |= T . This is the content of
the Fundamental Theorem of Forcing. However, we can use a simple trick to avoid
worrying about finite fragments. If we show that M being a countable transitive
model of all of ZFC implies that M[G] is as well, then this will be enough. By the
truth and definability theorem, our forcing extension M[G] will satisfy some axiom
of ZFC iff M satisfies the appropriate translation of the formula. Our proof that
M[G] satisfies this ZFC axiom whenever M |= ZFC can then be understood as a
proof that ZFC entails the translation, or a proof of the translation from ZFC by
completeness of first-order logic. This proof will only use a finite number of axioms.
Therefore, any finite fragment of ZFC that holds in every forcing extension can be
proven to hold from some other finite fragment of ZFC which will hold in the ground
model.

Theorem 3.27 (Fundamental Theorem of Forcing). Let M be a countable tran-
sitive model and let P ∈ M be a forcing poset. For any generic filter G ⊆ P, the
forcing extension M[G] is a countable transitive model of ZFC.

Proof. By our theorem 3.18, we know that M[G] is transitive and countable. Tran-
sitivity implies it satisfies Extensionality and Foundation. Since M ⊆ M[G], and
ω ∈ M, we know ω ∈ M[G], giving us Infinity/Empty Set. We’ll show Union holds.

Suppose A is a P-name. Define the P-name Ã as follows:

Ã = {(a, p) | ∃(x, q) ∈ A. ((a, r) ∈ x, p ⪯ q, r)}

For any A ∈ MP this P-name will be an element ofM sinceM satisfies Replacement.
We will show that evalG Ã =

⋃
evalGA. Suppose b ∈ MP is a P-name such that

evalG b ∈ evalG Ã. Then by definition, G contains a condition p stronger than
conditions q and r such that (b, r) ∈ x for some x ∈ MP and (x, q) ∈ A. Since p
is stronger than both r and q, evalG b ∈ evalG x ∈ evalGA, so evalG b ∈

⋃
evalGA.

Similarly, if b is some P-name whose evaluation is in the union of the evaluation of
A, then there must be a potential element of A with condition q such that b is in
this potential element with condition r, and q, r ∈ G. Letting p be their common
refinement in G shows b ∈ Ã. Therefore, M[G] satisfies Union.
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Now we’ll show that any instance of Replacement will hold in M[G]. Let
φ(x, y, w, z) be a formula in the language of set theory which, for some assign-
ment of parameters evalG w, is a functional over some set evalGA. Consider the
formula ψ(x, p, w,A) which states A, x,w ∈ MP, p ∈ P, x is a potential element of
A, and there is some y ∈ MP such that p ⊩ φ(x, y, w,A). Reflection tells us that
for any set A and parameters w, there is a transitive set Q ∈ M containing every
condition in P and every potential element of A, and the formula ψ(x, p, w,A) is
absolute between M and Q for x ∈ Q. This will only require finitely many in-
stances of Replacement in M. Define the name B to consist of all (b, p) ∈ Q × P
such that there exists some (a, r) ∈ A with p ⪯ r and p ⊩ φ(b, a, w,A). We’ll show
that the evaluation of this B is the image of evalGA under φ. Suppose we have
evalG a ∈ evalGA, so (a, r) ∈ A for some r ∈ G. Then the fact that φ is a functional
means there is some b ∈ MP such that φ

(
evalG b, evalG a, evalG w, evalGA

)
holds in

M[G]. Some condition in G must force this to be true, and we can assume without
loss of generality that this p is stronger than r. Because φ is absolute between
M[G] and Q and a ∈ Q, we can assume b ∈ Q, and therefore (b, p) ∈ B. Thus,
evalG b ∈ evalGB. The other direction is easy: every name whose evaluation is in
the evaluation of B is forced to be the image of some element in the evaluation of
A under φ. Thus, evalGB is the image of evalGA for any parameters w.

Because we have Replacement and the ordinal 2 is in M[G] (since ω ∈ M[G] and
M[G] is transitive), we have Pairing, and then applying Replacement together with
Pairing gives us Separation. Therefore, to prove Power Set, all we need to show is
that for every A ∈ MP there exists a B ∈ MP such that every subset of evalGA
that is an element of M[G] is an element of evalGB, since we can just filter out all
of the elements of evalGB which are not subsets of evalGA in the model. It takes
finitely many instances of Separation/Replacement to show that for any A ∈ MP

there exists B ∈ MP such that B = P(dom(A)× P) × {1P}. In other words, B
consists of all possible sets consisting of potential elements of A tagged by elements
of P, each tagged with 1P. Consider some C ∈ MP such that evalG C ⊆ evalGA.
Once again using a finite number of instances of Replacement in M, we can show
that the set Ĉ = {(c, p) | c ∈ dom(A) ∧ p ⊩ c ∈ C} exists in M. This is clearly a

potential element of B, so if we can show evalG Ĉ = evalG C, we’re done. Pick any
c ∈ MP such that evalG c ∈ evalG C. Then some p ∈ G forces c to be in C, and
since (c, p) ∈ C, evalG c ∈ evalG Ĉ. Assume the converse: then some p ∈ G forces

c ∈ C, and therefore evalG c ∈ evalG C. Thus, evalG Ĉ = evalG C, so M[G] satisfies
Power Set.

Finally, we’ll show that Choice holds. We’ll equivalently prove the well-ordering
theorem. Let A ∈ MP be a name: since Choice holds in M, we can well-order
the potential elements of A. We can then construct a name for a well-ordering
of evalGA by tagging each ordered pair of the canonical name for α and the α-th
element with the condition 1P. In M[G] this will evaluate to a set of pairs consisting
of all elements of evalGA and ordinals, giving us a well-ordering of evalGA. Thus,
M[G] is a countable transitive model of ZFC. □

Corollary 3.28 (Minimality of the Forcing Extension). For any countable transi-
tive model M and generic filter G over a forcing poset P ∈ M, the forcing extension
M[G] is the minimal transitive model extending M by G. That is, for any transi-
tive model N of ZFC such that M ⊆ N and G ∈ N will contain every element of
M[G].
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Proof. Our model N will contain every P-name in M, and since it contains G,
the evaluation map evalG will be definable. Thus, for each A ∈ MP, A ∈ N and
evalGA ∈ N . Thus, M[G] ⊆ N . □

4. Independence Proofs

Forcing gives us a general way to construct new models of set theory: just pick the
appropriate notion of forcing, and use the forcing relation to determine what is true
in the new model. Now that we can construct new models of set theory with desired
properties, we can examine how to use this method to prove the independence of
the continuum hypothesis and related results. We’ll first introduce some common
forcing posets and examine their combinatorial properties, which will determine
how the cardinals change from M to M[G]. This will allow us to tightly control
the cardinality of power sets, so we can force CH to be true or not in the extension.

4.1. The Forcing Posets Fκ (A,B) and Bκ (A,B). The forcing method requires
us to first specify forcing posets. Recall that the forcing conditions should in some
sense represent approximations of the object we are trying to construct. In most
cases, we will want to construct a new map between two sets, possibly a bijection
between them. The obvious posets are therefore functions or bijections defined on
a subset of the first set. If p and q are such partial functions, we’ll say p ⪯ q if
the domain of q is a subset of the domain of p and p restricted to the domain of q
equals q. We can also put restrictions on how large the domain of these functions
are allowed to be. Here are the definitions of these posets:

Definition 4.1 (Partial Function Poset). Let A be an infinite set, and let κ be an
infinite cardinal such that κ ≤ |A|. If B is any set with at least two elements, then
we can define the partial function poset Fκ (A,B) to consist of all functions from a
subset of A of size < κ to B. The ordering relation for Fκ (A,B) is the extension
relation on partial functions.

Definition 4.2 (Partial Bijection Poset). Let A and B be infinite sets, and let
κ be an infinite cardinal such that κ ≤ |A|, |B|. Then we can define the partial
function poset Bκ (A,B) to consist of all bijections from a subset of A of size < κ
to a subset of B. The ordering relation for Bκ (A,B) is the extension relation on
partial functions.

It is trivial to see these are both forcing posets: the extension relation is a partial
order, the empty function is a least element, and we can always extend a function’s
domain by one element and map it to different elements of B to obtain incompatible
extensions of any condition. Now that we have a notion of forcing, we can examine
what objects are added in the forcing extension:

Lemma 4.3 (Forcing with Partial Functions and Partial Bijections). Let M be a
countable transitive model. Suppose A ∈ M is an infinite set, κ ∈ M is an infinite
cardinal with κ ≤ |A| in M, and B ∈ M has at least two elements. If G is a generic
filter for Fκ (A,B), then the forcing extension M[G] contains a surjection from A
to B. Similarly, if B is infinite and κ ≤ |A|, |B| in M, then the forcing extension
M[G] contains a bijection between A and B for a generic filter G on Bκ (A,B).

Proof. We know the forcing extension will contain the generic filter G. In either
case, for any a ∈ A ∈ M, the set of conditions in either Fκ (A,B) or Bκ (A,B)
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containing a in their domain will be a dense set, since we can always extend a
partial function or bijection to be defined on a without increasing the cardinality of
the domain beyond κ or not having an element in B to map a to. Similarly, for any
b ∈ B the set of conditions that contain b in their image will also be dense. Now we
can take the union of our generic filter G, which will be a set in M[G]. This union
must be a function, since if the union contained ordered pairs of the form (a, b)
and (a, c) for b ̸= c, these would have to come from incompatible conditions, which
cannot exist in a filter. For both posets, this function will be a function on all of
A, since some condition in G is defined on a for any a ∈ A. Similarly, it will be a
surjection in both cases, since some condition in G has b in its image for any b ∈ B.
Finally, in the case of partial bijections, the function will also be injective, since if
it contained (a, b) and (ã, b) for a ̸= ã, these would come from partial bijections in
G which are incompatible, since their union is not a bijection. Therefore, we have
an injection and surjection from A to B, or a bijection between A and B. □

4.2. Forcing CH: The Countable Closure Property. While the forcing posets
Fκ (A,B) and Bκ (A,B) add a surjection or bijection regardless of which κ we pick,
not all κ will work for controlling the cardinality of the continuum. For instance,
consider forcing with Fℵ0

(ℵ0,ℵ1) in some countable transitive model M. This gives
a surjection from ℵ0 and ℵ1, but of course ℵ0 is smaller than ℵ1. This is because

this only gives a surjection between ℵ0 and ℵM
1 , not ℵM[G]

1 . We’ve collapsed the
cardinality of ℵ1. This leads to a problem when we want to force CH or ¬CH: if
we’re not careful, the cardinals in our new model may be different than what they
were in the old model. Every cardinal in M[G] is clearly a cardinal in M: they
share the same ordinals, and if there is no map in M[G] from some ordinal to a
smaller ordinal then there certainly can’t be one in M. However, this does not go
the other way: we can force cardinals in M to no longer be cardinals in M[G] by
adding a bijection to a smaller ordinal. However, depending on our choice of κ,
we can exploit the combinatorial properties of the forcing posets to control which
cardinalities are changed. We’ll first examine forcing CH.

Definition 4.4 (Countable Closure Property). Let P be a forcing poset. P is said
to be countably closed if for any decreasing sequence of conditions (pn)

∞
n=0 ∈ P

there exists a condition p∗ ∈ P such that p∗ ⪯ pn for all n ∈ N. In other words,
any decreasing sequence of conditions of length ω has a lower bound.

Theorem 4.5 (Bℵ1
(A,B) is Countably Closed). The poset Bℵ1

(A,B) is countably
closed

Proof. Consider a decreasing sequence of conditions (fn)
∞
n=0 in Bℵ1

(A,B). This
is a sequence of functions (or possibly bijections) between countable subsets of A
and subsets of B, and the functions are increasing in the sense that each function
extends all previous functions. Therefore, the union of the functions is a function,
and if each function is a bijection, the union will be as well. The domain of this
function will be the union of the domains of each of the functions in the sequence.
Since each domain is countable and there are countably many functions, this set
will also be countable, and this function will be in Bℵ1 (A,B) □

The main fact about countably closed forcing posets is the following:

Lemma 4.6 (Preservation Lemma for Countably Closed). Let M be a countable
transitive model, and let P ∈ M be a poset with the countable closure property. If
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G ⊆ P is a generic filter and (f : ω −→ X) ∈ M[G] is a function from ω to a set
X ∈ M which is in the forcing extension, then f ∈ M. In other words, forcing with
a countably forcing poset adds no new functions from N to sets in M.

Proof. We’ll use the truth and definability theorem here. Let f̃ be a name for f .
Since f ∈ M[G] is a function between α andX, both of which are sets inX, then the

truth property tells us some condition p ∈ G forces the statement “f̃ is a function
from ω̂P to X̂P”. As a formula, this says p ⊩ ∀n ∈ ω̂P.∃!x ∈ X̂P. opP (n, x) ∈ f̃ , where
opP (n, x) is the canonical name for the ordered pair of names (n, x). In particular,

we have p ⊩ ∀n ∈ ω̂P.∃x ∈ X̂P. opP (n, x) ∈ f̃ . Unwrapping the definition of this
forcing statement tells us that for any q ⪯ p and n ∈ N there exists an x ∈ X and
some condition r ⪯ q such that r forces opP (n̂P, x̂P) ∈ f̃ . Now consider the set S of
functions of functions in M from N to X. If we can show that the set of conditions
which force f̃ ∈ ŜP is dense below p, then we’re done, since p ∈ G and therefore
our forcing extension will satisfy evalG f̃ = f ∈ S ∈ M, so by transitivity f ∈ M.
Pick some q ⪯ p. We can recursively construct a decreasing sequence of conditions
(qn)

∞
n=0 where qn ⪯ q and a sequence (xn)

∞
n=0 ∈ X such that qn ⊩ opP (n̂P, x̂nP) ∈ f̃ .

To construct a given qn and xn, we take a lower bound of all of the qm for m < n,
and use the fact that this is stronger than q to pick a qn stronger than the lower
bound and an xn ∈ X such qn forces the function f̃ to equal xn at n. Now using the
countable closure condition, we can find a q∗ ⪯ qn for all n ∈ N. For each n < N,
q∗ ⊩ opP (n̂P, x̂nP) ∈ f̃ . Since q∗ ⪯ q, q∗ also forces f̃ to be a function, so q∗ forces

f̃ to be the same function as n 7→ xn. But this last function is in S, and therefore
q∗ forces f̃ to be in ŜP. Since this construction worked for any q ⪯ p, we have that
the set of conditions forcing f̃ to be in ŜP is dense below p, so we’re done. □

Theorem 4.7 (CH is Relatively Consistent with ZFC). Let M be a countable
transitive model. Then there is a notion of forcing P ∈ M such that for every
generic filter G ⊆ P the forcing extension M[G] is a model for ZFC + CH.

Proof. We want 2ℵ0 = ℵ1 in our model, so we need to introduce a bijection between
P(N) and ℵ1. We know forcing with Bℵ1 (P(N),ℵ1) will introduce a bijection

between PM(N) and ℵM
1 in our forcing extensionM[G]. Since the poset is countably

closed, we will add no new functions defined on ω, and therefore no new functions
defined on countable sets in M. Therefore, we add no new subsets of N, since a
subset can be encoded as a function from N to 2. Similarly, ℵ1 in M will still be
the smallest uncountable cardinal in the forcing extension, since we cannot add a
surjection from a countable ordinal onto it. Therefore, our bijection between PM(N)
and ℵM

1 in M[G] will be a bijection between P(N) and ℵ1 in M[G], meaning M[G]
is a model of ZFC where the continuum hypothesis holds. □

4.3. Forcing ¬CH: The Countable Antichain Condition. We will now exam-
ine how to force ¬CH. This will require a different combinatorial property. Whereas
before our concern was that our new model had more subsets of natural numbers
than our ground model, here we want to make sure that ℵ2 doesn’t collapse down
to a smaller cardinal. Our approach will be to add ℵ2 new subsets of N, and then
show that this ℵ2 is the same as the ℵ2 in the new model. In other words, we will
want to preserve cardinals above ℵ1, rather than below ℵ1.

Definition 4.8 (Antichain of a Poset). Let P be any poset. An antichain of P is
a subset of P where every pair of distinct elements are incompatible.
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Definition 4.9 (Countable Antichain Condition). Let P be a forcing poset, and
let κ be an infinite cardinal. P is said to satisfy the countable antichain condition
or c.a.c. if every antichain in P is countable.

Theorem 4.10 (Approximation Lemma for c.a.c. Forcing). Let M be a count-
able transitive model, let X,Y ∈ M be any sets, and let P ∈ M be a forcing
poset satisfying the c.a.c. If G ⊆ P is a generic filter, then for any function
(f : X −→ Y ) ∈ M[G] there exists a function (g : X −→ P(Y )) ∈ M such that
f(x) ∈ g(x) for all x ∈ X and each g(x) is countable in M.

Proof. We’ll use the truth and definability theorem. Let f̃ be a name for f in M,
and let q ∈ G force “f̃ is a function between X̂P and ŶP”. Such a q must exist by the
truth property. We’ll define g(x) as the set of all y ∈ Y such that some extension

of q forces f̃(x̂P) = ŷP. This set is definable within M since the forcing relation is
definable. For every x we clearly have f(x) ∈ g(x), since the value of f(x) will be
forced by some condition in G, which we can take to be an extension of q. Now we
just need to show that the cardinality of each g(x) is countable. Fix some x ∈ X.

For each y ∈ g(x), use Choice to pick a unique qy ⪯ q such that f̃(x̂P) = ŷP. We’ll
show that this set is an antichain. If qy and qz are compatible, then they have

some common extension, which will force f̃(x̂P) = ŷP and f̃(x̂P) = ẑP, so it will in
particular force ŷP = ẑP. Since these are the canonical names for y and z, we must
have y = z and therefore qy = qz. This set is therefore an antichain, and must
therefore be countable. Since this set has the same cardinality as g(x), |g(x)| ≤ ω
for each x ∈ X. □

Corollary 4.11 (Cardinal Preservation for c.a.c. Forcing). Let M be a countable
transitive model, and let P ∈ M be a forcing poset satisfying the c.a.c. Then for
any generic filter G ⊆ P, M and M[G] have the same cardinals.

Proof. M and M[G] have the same cardinals less than or equal to ω. Suppose α is
an ordinal in M[G] (and therefore in M) such that α > ω and α is not a cardinal.
Then there is a surjection onto α from an ordinal β < α, which is clearly at least ω.
We will show α is not a cardinal in M either. Let f : β −→ α be the surjection in
the forcing extension. Since our forcing satisfies the countable antichain condition,
there will be an approximation g : β −→ P(α) in the ground model. If we take the
union of the image of g, we will obtain α. Since each set g(x) is countable and there
are |β| many such sets, the image has cardinality at most β × ω = β, since β ≥ ω.
Therefore, there is a surjection in M from β onto α, so α isn’t a cardinal in M.
We always know that cardinals in the forcing extension are cardinals in the ground
model, so this shows the forcing extension and ground model must have the same
cardinals. □

Theorem 4.12 (Fℵ0
(A,B) is c.a.c.). The poset Fℵ0

(A,B) satisfies the c.a.c. so
long as B is countable.

Proof. Suppose I is an antichain of conditions: we will show that it is countable.
To do so, we will define a sequence of subsets (An)

∞
n=0 ⊆ A by induction. We’ll set

A0 = ∅. Suppose we’ve defined An. For each partial function from a finite subset of
An, pick a q ∈ I extending it, if such a q exists. An+1 will be the union of An and the
domains of each of these q ∈ I. By induction, we can see that each An is countable:
the empty set has cardinality 0, and at successor stages, we are only adding at
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most the number of functions from all finite subsets of a countable set to another
countable set. Since each such function is a finite subset of the Cartesian product,
there will be at most (ℵ0 · ℵ0)

<ℵ0 = ℵ0 of them. An+1 is therefore countable. The
set Aω =

⋃
n∈NAn is also countable, as is the set of all partial functions with finite

domain from Aω to B. We’ll show that each element of I is in this set. Pick some
condition p ∈ I. Since the domain of p is a finite set, its intersection with Aω is
also finite. Since Aω is the union of all of the An, and there are ℵ0 of these sets,
the fact that the domain of p is finite implies there exsits some n ∈ N such that for
all m ≥ n we have dom(p) ∩ Am = dom(p) ∩ Am+1. If we consider the restriction
of p to An, this is a function from a finite subset of An to B. Since this function
is the restriction of some condition, namely p, to An, there must exist q ∈ I whose
restriction to An is the restriction of p to An and whose domain was added in An+1.
We will show p and q are compatible: any x in the domain of both p and q is in
An+1 and therefore in dom(p) ∩An+1 = dom(p) ∩An, and we know p and q agree
on An. Therefore, p and q have a common extension: just take their union. Since
p and q are both in I and are compatible, p = q, so dom(p) ⊆ An+1 ⊆ Aω. Thus,
every element of I has domain in Aω. The cardinality of I is at most the number
of functions from finite subsets of Aω to a countable set. Since Aω is countable, we
know this set has cardinality at most (ℵ0 · ℵ0)

<ℵ0 = ℵ0. □

Now that we have the antichain condition for our partial function poset, we can
use it to force a model where there are ≥ ℵ2 subsets of N:

Theorem 4.13 (¬CH is Relatively Consistent with ZFC). Let M be a countable
transitive model. Then there is a notion of forcing P ∈ M such that for every
generic filter G ⊆ P the foring extension M[G] is a model for ZFC + ¬CH.

Proof. We want 2ℵ0 ≥ ℵ2 in our model, so we need to introduce at least ℵ2 new
subsets of N into our model. A collection of ℵ2 subsets can be encoded as an injective
function from ℵ2 to 2ℵ0 , so we will force with the poset Fℵ0

(ℵ2,P(N)). This will

introduce an injection from ℵM
2 into P(N)M in M[G]. Since PM(N) ⊆ PM[G](N),

we will have an injection from ℵM
2 into the power set of N. We know that our poset

satisfies the c.a.c. Therefore, the forcing extension will have the same cardinals as

the ground model. In particular, ℵM
2 = ℵM[G]

2 , so in M[G] we will have 2ℵ0 ≥ ℵ2.
This means M[G] will be a model of ZFC satisfying the negation of the continuum
hypothesis. □
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