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Abstract. We consider n-radial loop-erased random walk (LERW) on the square grid,

each running from a boundary point to an interior point of the square. We compute
the probability that the n-radial LERW meet at a single point in the scaling limit as

lattice size goes to 0. For n = 3, we prove that the scaling exponent of this asymptotic

probability coincides with that of 3−crossings of disjoint uniform spanning trees in an
annulus.
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1. Introduction

The loop-erased random walk (LERW) is a random walk with loops erased according
to their chronological order. It is a natural object that produces a self-avoiding path.
The LERW path is known to have a scaling limit as a curve up to reparameterization
to the chordal SLE2 path as the lattice size goes to zero [LSW04]. In this paper, we
are interested in the n−radial LERW, namely n loop-erased random walks running from
boundary points to interior points of a square grid. We are interested in the asymptotic
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behavior of these LERWs. Specifically, we want to compute the probability that the n−radial
LERWs meet at a single point in the scaling limit as lattice mesh size goes to 0. This
leads us to consider n non-intersecting LERWs running from the outer boundary to the
inner boundary of an annulus. By taking the radius of the inner boundary to 0, we can
approximate this probability. In Section 1.5, we introduce Fomin identity, a combinatorial
fact that relates the non-intersecting LERWs with the regular LERWs, which allows us
to compute the probability using the LERW Green’s function. By comparing the discrete
Green’s function of LERW with the continuous Green’s function, we obtain the exponent of
the scaling limit of n−radial LERWs meeting at a single point.

1.1. Notation. Let Z2 = Z + iZ denote the 2D discrete integer lattice. For z ∈ Z2, let
Sz denote the square of size 1 centered at z. In particular, let S = S0 be the unit square.
Suppose A ⊂ Z2 is a connected subset of the integer lattice. Let DA be the interior of⋃

z∈A Sz. Then ∂A = {z ∈ Z2 : dist(z,A) = 1} is the boundary of A. A path on Z2 is

denoted by ω = [ω0, · · · , ωk] ⊂ Z2, and |ω| = k is the length of ω.
The weight of a path of a simple random walk is given by

p(ω) = 4−|ω|.

Note that a trivial path [ω0] has length 0 and is assigned weight 1.

1.2. Green’s Function and Poisson kernel. Let z, w ∈ A. We write PA
z,w as the collec-

tion of paths from z to w in A. The random walk Green’s function counts the sum of the
weights of all such paths in A:

GA(z, w) =
∑

ω∈PA
z,w

p(ω).

The random walk Poisson kernel is the analogous quantity, where one of the points is on
the boundary of A. If z ∈ A,w ∈ ∂A, we define the Poisson kernel as follows:

HA(z, w) =
∑

ω∈PA
z,w

p(ω).

If both points are on the boundary, that is, if z, w ∈ ∂A, we call the following the boundary Poisson kernel:

H∂A(z, w) =
∑

ω∈PA
z,w

p(ω).

1.3. Loop-erased Random Walk. A rooted loop is a path that starts and ends at the
same point. The loop measure m̃ assigns the following measure to loop l :

m̃(l) = |l|−1p(l).

An unrooted loop is an equivalence class of rooted loops with the following equivalence
relation that identifies loops up to cyclic shifts:

[ω0, ω1, · · · , ωk = ω0] ∼ [ω1, · · · , ωk = ω0, ω1] ∼ · · ·

The unrooted loop measure m associated to weight p is defined as the sum of measures of all
the unrooted loops in this equivalence class. Let [ℓ] denote the unrooted loop equivalence
class and #[ℓ] denote the number of representatives in this equivalence class. Since any
rooted loop l ∈ [ℓ] has the same weight and length, let us denote them by p(ℓ) = p([ℓ]) = p(l).
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Denote |ℓ| similarly. Then the unrooted loop measure m associated to weight p is defined
as follows:

m(ℓ) = mp(ℓ) =
∑
l∈ℓ

m̃(l) =
#[ℓ]

|ℓ|
p(ℓ).

If V ⊂ A ⊂ Z2, we denote

FV (A) = exp

 ∑
ℓ⊂A,ℓ∩V ̸=∅

m(ℓ)

 = exp

 ∑
l⊂A,l∩V ̸=∅

m̃(ℓ)

 .

A self-avoiding walk (SAW) is a path η = [η0, . . . , ηk] such that η0, . . . , ηk are all distinct.
The (chronological) loop erasure is an operation on paths ω that removes nontrivial loops
that are encountered when tracing paths in chronological order and produces a SAW denoted
by LE(ω). Let ω = [ω0, · · · , ωτ ] be a simple random walk with stopping time τ < ∞. The
(chronological) loop-erasure LE(ω) is defined as follows:

• If ω is self-avoiding, i.e. ωi ̸= ωj for any i ̸= j, then set LE(ω) = ω.
• Otherwise, let s0 = max{t ≤ τ : ωt = ω0}. Let LE(ω)0 = ωs0 .
• For i ≥ 0, if si < τ, let si+1 = max{t : ωt = ωsi+1}. Set LE(ω)i+1 = ωsi+1

.
• If i = min{i : LE(ω)i = ωτ} then LE(ω) = [LE(ω)0, · · · ,LE(ω)i].

A loop-erased random walk (LERW) weight p̂ of a self-avoiding path η is defined as the sum
of weights of paths whose loop-erasure is η :

p̂(η;A) =
∑

w⊂A,LE(ω)=η

p(ω).

Proposition 1.1. Let η = [η0, · · · , ηk] be a self-avoiding path. For 1 ≤ j ≤ k, denote
Aj = A \ {η0, · · · , ηj−1} and let A0 = A. Then

p̂(η;A) = p(η)

k∏
j=0

GAj
(ηj , ηj) = p(η)Fη(A) = p(η) det[GA(ηi, ηj)]0≤i,j≤k.

Proof. According to the definition of loop-erasure, the loops that intersect η are erased
chronologically. For any loop l such that l ∩ η ̸= ∅, let i = min{0 ≤ i ≤ k : ηi ∈ l} be
the first index point where l and η meet. Then l is erased at step i. Namely, by setting
si+1 = max{t : ωt = ωsi} from the loop-erasing procedure, l is erased from LE(ω)i+1.
Therefore, to avoid over-counting, each loop is counted only once as a (rooted) loop with
root i (the first index point). For any j, GAj (ηj , ηj) counts the number of loops that start

and end at ηj and do not intersect {η0, · · · , ηj−1}. Hence
∏k

j=0 GAj
(ηj , ηj) counts the total

number of paths in A whose loop-erasure is η, which gives the first equality.
Recall that Fη(A) = exp{

∑
l⊂A,l∩η ̸=∅ m̃(l)}. By the loop-erasure procedure, we can de-

compose the sum in the previous exponent by the smallest index i such that l intersects ηi.
For any i, we count the loops that intersect ηi and do not intersect {η0, · · · , ηi−1}. Hence,
Fη(A) can be written as the following product:

(1.2) Fη(A) =

k∏
j=0

Fηj (Aj).

To prove the second equality, let us consider GA(η0, η0) first. Let L1 denote the paths from
η0 to η0 that do not return to η0 more than once. Let H∂A1

(η0, η0) denote the boundary
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Poisson kernel of A1 = A \ {η0}. Then

H∂A1
(η0, η0) =

∑
l∈L1

p(l) = p(L1).

Let L2 denote the paths from η0 to η0 that consist of two loops from L1. Namely, suppose
l1, l2 ∈ L2, then l1 ⊕ l2 ∈ L2. Note that p(L2) = p(L1)

2 due to the concatenation process.
Define Lk analogously. Suppose |p(L1)| < 1, then

(1.3) GA(η0, η0) = 1 +

∞∑
k=1

p(L1)
k =

1

1− p(L1)
,

where the extra term 1 comes from the measure of trivial loops. On the other hand, let us
consider the unrooted loop measure on L1:

m(L1) =
∑
l∈L1

p(l)

|l|
=
∑

[ℓ]∈L1

m([ℓ]) =
∑

[ℓ]∈L1

p(ℓ) = p(L1).

Since loops in L1 do not return to η0 until the last step, there are exactly |l| representatives
in the same equivalence class [ℓ] that each l ∈ L1 belongs to. Hence m([ℓ]) = #[ℓ]

|ℓ| p(ℓ) = p(ℓ).

Suppose l1, l2 ∈ L1. Then l1 ⊕ l2 and l2 ⊕ l1 belong to the same unrooted loop equivalence
class. Then the unrooted measure of L2 is obtained from p(L1)

2, with half of the represen-
tatives:

m(L2) =
∑

[ℓ1],[ℓ2]∈L1

m([ℓ1 ⊕ ℓ2]) =
p(L1)

2

2
.

For any k ∈ N, let li ∈ L1 for 1 ≤ i ≤ k. Let σ ∈ Sk be a counterclockwise cyclic permutation
(cyclic shifts of the identity). Then the following concatenations are in the same unrooted
loop equivalence class:

l1 ⊕ · · · ⊕ lk ∼ lσ(1) ⊕ · · · ⊕ lσ(k).

Hence m(Lk) =
p(L1)

k

k . Let L =
⋃∞

k=1 Lk, we have

(1.4) m(L) =
∞∑
k=1

p(L1)
k

k
= log

(
1

1− p(L1)

)
.

Combining (1.3) and (1.4), we have

GA(η0, η0) = em(L) = Fη0(A).

Together with (1.2), we have the second equality.
The last equality is proved using induction. See Proposition 2.9 of [Law22] for a proof

using Cramer’s rule. □

Proposition 1.5. Let A ⊂ Z2 be a bounded domain. Let z = (z1, · · · , zn) ⊂ A and
w = (w1, · · · , wn) ⊂ ∂A. Denote A \ z := DA \ {z1, · · · , zn}. Let H∂(A\z)(z,w) :=
[H∂(A\z)(zi, wj)]

n
i,j=1 denote the n × n matrix of boundary Poisson kernels from points in

z and w. Define GA(z, z) as the n× n matrix of Green’s function among points of z in A.
Then

detH∂(A\z)(z,w) =
detHA(z,w)

detGA(z, z)
.

Note that we can also write the statement as

detH∂(A\z)(z,w)Fz(A) = detHA(z,w).
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Proof. For a given i, j,

H∂(A\z)(zi, wj) =
∑

ω=[ω0=zi,ω1,··· ,ωk+1=wj ]
ωj∩z=∅,1≤j≤k

p(ω)

is the sum of paths from zi to wj that otherwise do not intersect z. Note that the Poisson
kernel from zk to wj can be decomposed into paths from zk to zi for some 1 ≤ i ≤ n and
paths from zi to wj that do not intersect z:

HA(zm, wj) =

n∑
i=1

GA(zk, zi)H∂(A\z)(zi, wj),

which is the row k, column j entry of the matrix product GA(z, z)H∂(A\z)(z,w). The result
follows from taking the determinant. □

1.4. Multiple LERW. A boundary excursion in A is a path ω = [ω0, · · · , ωn] such that
ω0, ωn ∈ ∂A and ωi ∈ A for 1 ≤ i < n. Let p(x, y) denote the transition probability
of a simple random walk from x to y. Let p(ω) :=

∏n
i=1 p(ωi−1, ωi) denote the excursion

measure of ω. Let EA(x, y) denote the set of excursions in A that start at x and end at y. Let

EA =
⋃

x,y∈∂A EA(x, y) denote the union of all excursions in A. Let ÊA(x, y) denote the subset
of EA(x, y) that are self-avoiding. The loop-erased excursion measure of a self-avoiding path
η is given by

p̂(η) :=
∑

ω∈EA,LE(ω)=η

p(ω).

Let A ⊂ Z2. The boundary Poisson kernel H∂A : ∂A × ∂A → [0,∞) is defined as the total
mass of excursion measure between two boundary points:

H∂A(x, y) =
∑

ω∈EA(x,y)

p(ω).

If x ̸= y, we can also write

H∂A(x, y) =
∑

η∈ÊA(x,y)

p̂(η).

Let n ∈ N. Let x1, · · · , xn and y1, · · · , yn be distinct points on ∂A. We define the excursion
measure of n pairs of points (x1, y1), . . . , (xn, yn) as the product measure

p(ω1, . . . , ωn) = p(ω1)× · · · × p(ωn)

on the product space

EA(x,y) := EA(x1, y1)× · · · × EA(xn, yn).

On the analogous space ÊA(x1, y1)× · · · × ÊA(xn, yn) with paths that are individually self-

avoiding, there may be paths that still intersect each other. Let us define ÊA(x,y) to be the
restriction of this product space to the case that all paths are mutually non-intersecting:
i.e., if ηi ∈ ÊA(xi, yi) is a self-avoiding path for each i, then η = (η1, · · · , ηn) ∈ ÊA(x,y) if
and only if ηi ∩ ηj = ∅ for i ̸= j. The non-intersecting self-avoiding excursion measure at
(x,y) is the product measure p̂ × · · · × p̂ restricted to the mutually non-intersecting space

ÊA(x,y). That is,
p̂(η) = p̂(η1)× · · · × p̂(ηn).
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if η = (η1, · · · , ηn) ∈ ÊA(x,y) and zero otherwise. Let Ĥ∂A denote the the total mass of
non-intersecting loop-erased excursion measure:

Ĥ∂A(x,y) :=
∑

η∈ÊA(x,y)

p̂(η).

1.5. Fomin’s Identity. A key lemma that allows us to compute the Poisson kernel of the
LERW using that of a simple random walk is Fomin’s identity. For n = 2, there exists a
bijection between the set of paths from b to 1 that intersect the LERW from a to 0 and
paths from b to 0 that intersect the LERW from a to 1, leading to the following identity.
Let us denote the condition that a path ω starts at x and ends at y as ω : x → y.

Lemma 1.6. Let A ⊂ Z2. Let a, b ∈ ∂eA be two points on the boundary of A. Let K =
A \ [0, 1]. Let ω1, ω2 be simple random walks in K that start and end on the boundary of K.
Then ∑

ω1:a→0

∑
ω2:b→1

LE[ω1]∩ω2=∅

p(ω1)p(ω2)−
∑

ω1:a→1

∑
ω2:b→0

LE[ω1]∩ω2=∅

p(ω1)p(ω2)

=
∑

ω1:a→0

∑
ω2:b→1

p(ω1)p(ω2)−
∑

ω1:a→1

∑
ω2:b→0

p(ω1)p(ω2).

For a general n, Fomin’s identity states that the determinant of the corresponding quan-
tities are the same regardless of the non-intersecting criterion of the walks.

Lemma 1.7. Let A ⊂ Z2. Let x = (x1, · · · , xn),y = (y1, · · · , yn) be two n−tuples of
disjoint points of A. Then∑

σ∈Sn

sgn(σ)Ĥ∂A(x, σ(y)) = det[H∂A(xi, yj)]
n
i,j=1.

See [LL10] for additional references on Fomin’s identity. In particular, if DA is simply
connected, by planarity, there exists only one element of the permutation group Sn such
that the n paths have the non-intersection property. Similarly, for a discrete annulus A (i.e.,
DA ⊂ C is an annulus), let ∂iA (resp. ∂oA) be the part of ∂A contained in the bounded
(resp. unbounded) component of Z2\A. Let z = (z1, · · · , zn) be an n-tuple of distinct points
in ∂iA and w = (w1, · · · , wn) an n-tuple of distinct points in ∂oA. Then the only non-zero
terms are those that have a n-cyclic permutation. Suppose n is odd, then the signs of the
n-cyclic permutations are all positive, and we have the following:∑

σ is n−cyclic

Ĥ∂A(z, σ(w)) = det[H∂A(zi, wj)]
n
i,j=1.

We would like to approximate the determinant of the discrete boundary Poisson kernel
using the continuous boundary Poisson kernel. By Donsker’s Theorem, under appropriate
normalization, the Poisson kernel of the simple random walk converges to the continuous
Poisson kernel. To extend the convergence to the determinant, we need a further bound on
the error terms.

1.6. Complex Weights. Note that when n is even, the sign of an n−cycle is negative, and
Fomin’s identity becomes∑

σ is n-cyclic

sgn(σ)Ĥ∂A(x, σ(y)) = det[H∂A(xi, yj)]
k
i,j=1 ̸=

∑
σ is n−cyclic

Ĥ∂A(z, σ(w)).
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To account for this sign misalignment, we can consider a complex weight on paths. Let
z, w ∈ Z2 be two adjacent points in the integer lattice. Let arg(z), arg(w) be the argument
of the two points with certain branch cut such that arg(w)− arg(z) ∈ [−π

4 ,
π
4 ]. Denote the

directed edge between them as e = [z, w]. Then the q weight on e is defined as

q(e) = 4−1 exp

(
arg(e)

2
i

)
,

where arg(e) = arg(w)− arg(z) ∈ [−π
4 ,

π
4 ] is the continuous change of argument. Note that

if eR is the reverse path [w, z], then q(eR) = q(e).
The q measure on paths is defined as follows. For ω = [ω0, · · · , ωk], define ej = [ωi, ωi−1]

as the edge between two adjacent points in path ω. We have

q(ω) = 4−|w| exp

(
i

2

k∑
i=1

arg(ej)

)
.

The LERW Green’s function and Poisson kernel are defined analogously as in section 1.2.
For n = 2, the complex q weights account for the even and odd winding numbers by
assigning them with positive and negative weights, respectively. See [BLV16] for an example

of negative weights. If ωR = [ωk, ω0] is the reverse path, then again we have q(ωR) = q(ω).
If l is a rooted loop, and N(l) is the winding number, then

q(l) = (−1)N(l)p(l).

Let m̃q = |l|−1q(l) denote the rooted loop measure using q weights, and mq(ℓ) =
∑

l∈ℓ m̃
q(l)

denote the unrooted loop measure. Then

mq(ℓ) = (−1)N(ℓ)mp(ℓ).

Note that Fomin’s identity is independent of which weights we use on paths, hence∑
σ n-cycle

sgn(σ)Ĥq
∂A(x, σ(y)) = det[Hq

∂A(xi, yj)]
n
i,j=1.

We use Fomin’s identity to compute the Poisson kernel of n-radial LERW from n boundary
points to n interior points in the unit square. In this paper, we compute explicitly the scaling
exponent of lattice size 1

N in the Poisson kernel of 3-radial LERW in the unit square; see

Proposition 3.17. The exponent is given by the formula n2−1
4 , which yields 2 when n = 3,

times 1
N3 , which comes from the scaling of the interior points. The exponent n2−1

4 coincides
with scaling exponent of n−crossings of disjoint uniform spanning tree branches from one
boundary of the annulus to the other [Ken00].

2. Continuous Poisson kernel

In this section, we will compute the scaling exponent of the determinant of the continuous
boundary Poisson kernel. The following Poisson summation formula will be useful for our
calculation.

Lemma 2.1 (Poisson summation formula). For a Schwartz function f : R → C, let

f̂(m) =

∫ ∞

−∞
f(x)e−2πimxdx.

Then ∑
k∈Z

f(k) =
∑
m∈Z

f̂(m).
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To obtain the n-radial LERW boundary Poisson kernel of the unit square, we can consider
end points on an annulus first. Let A ⊂ C be an annulus with outer radius 1 and inner
radius r. Let z ⊂ ∂oA and w ⊂ ∂iA be n-tuples of points on the outer and inner bounaries
of A, respectively. By sending r to the appropriate scale, the continuous Poisson kernel of
the annulus can be used to approximate the discrete Poisson kernel of the refined lattice of
size 1

N as N → ∞.

Figure 1. 3-radial LERWs on an annulus and a cylinder

2.1. Cylinder Poisson kernel. Since an appropriate conformal map sends the unit disk to
the upper half plane, we can compute the continuous Poisson kernel on a cylinder (infinite
strip) first. The boundary Poisson kernel of the following infinite strip can be computed
explicitly as follows:

Proposition 2.2. Let Cr = {x+ iy ∈ H : 0 < y < r} denote the infinite strip of width r in
the upper half plane. Then the continuous boundary Poisson kernel is the following:

h∂Cr
(0, x+ ir) =

π2

4r2
[cosh(

π

2r
x)]−2.

Proof. Recall that the standard Poisson kernel of the upper half plane H is given by

hH(x, y) =
1

|x− y|2
,

for x, y ∈ R. Note that the map f(z) = e
π
r z maps the infinite strip Cr to H. By the

conformal invariance of the two-dimensional Brownian motion, the boundary Poisson kernel
of Cr is conformally covariant [KL05]:

h∂Cr (0, x+ ir) = |f ′(0)||f ′(x+ ir)|hH(f(0), f(x+ ir))

=
π2

r2
e

π
r xhH(1,−e

π
r x)

=
π2

r2
e

π
r x

(1 + e
π
r x)2

=
π2

r2
1

(e
π
2r x + e−

π
2r x)2

=
π2

4r2
[cosh(

π

2r
x)]−2.

□
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Consider n loop-erased random walk paths from the bottom to the top boundary of
Cr. Denote the initial points of these paths by {(θj , 0)}nj=1 and the terminal points by
{(νk, r)}nk=1, where 0 ≤ θ1 < · · · < θn < 2π and 0 ≤ ν1 < · · · < νn < 2π. If n is odd, define

hc(j, k) := h∂Cr
((θj , 0), (νk, r)) =

∑
m∈Z

π2

4r2
[cosh(

π

2r
(2πm+ νk − θj))]

−2.

If n is even, define

hc(j, k) :=hq
∂Cr

((θj , 0), (νk, r))

=
∑
m∈Z

π2

4r2
[cosh(

π

2r
(2πm+ νk − θj))]

−2 exp

(
2πm+ νk − θj

2
i

)
,

where the weight of paths is given by measure q, which accounts for odd and even winding
numbers.

Motivated by a similar result by [AO19], we obtain the following lemma using the Poisson
summation formula:

Lemma 2.3. If n is odd, then

(2.4) hc(j, k) =
1

2r
+

∑
m∈Z\{0}

m

2 sinh(mr)
eim(νk−θj).

If n is even, then

(2.5) hq
c(j, k) =

∑
m∈Z+ 1

2

m

2 sinh(mr)
ei(m+ 1

2 )(νk−θj).

Proof. Let

f(x) =
π2

4r2
[cosh(

π

2r
(2πx+ νk − θj))]

−2 exp (ξ(2πx+ νk − θj)i) ,

where ξ = 0 when n is odd and ξ = 1
2 when n is even. By the Poisson summation formula,

we have

hc(j, k) =
∑
m∈Z

∫ ∞

−∞
f(x)e−2πmxidx

=
∑
m∈Z

∫ ∞

−∞

π2

4r2
[cosh(

π

2r
(2πx+ νk − θj))]

−2 exp ((2πx+ νk − θj)ξi− 2πmxi)

Substitute u = 2πx+ νk − θj , we have

hc(j, k) =
∑
m∈Z

π

8r
e(νk−θj)mi

∫ ∞

−∞
[cosh(

π

2r
u)]−2 exp (u(ξ −m)i) du

=
∑
m∈Z

m− ξ

2 sinh(r(m− ξ))
eim(νk−θj).

The only case that 2 sinh(r(m − ξ)) = 0 is when m = ξ = 0, which only occurs when n is

odd. Since lim
x→0

x
2 sinh(rx) =

1
2r , we can replace m−ξ

2 sinh(r(m−ξ)) with 1
2r for m = 0. Then

hc(j, k) =


1
2r +

∑
m∈Z\{0}

m
2 sinh(rm)e

im(νk−θj) n is odd,∑
m∈Z+ 1

2

m
2 sinh(rm)e

i(m+ 1
2 )(νk−θj) n is even.
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□

2.2. Punctured disk Poisson kernel. Alternatively, we can compute the continuous Pois-
son kernel on a punctured disk from a boundary point to an interior point:

(2.6) hD(e
−s+iθ, eiν) =

∞∑
k=−∞

s

s2 + (2πk + (ν − θ))2
.

Consider n pairs of points on ∂D and the annulus of radius e−s. Denote the angle term of
the n boundary points by {νk}nk=1, where 0 ≤ νk < 2π. Denote the angle term of n interior
points by {θj}nj=1. Define

hD(j, k) := hq
∂D(e

−s+iθj , eiνk) =
∑
m∈Z

s

s2 + (2πm+ (νk − θj))2
exp[iξ(2πm+ (νk − θj))],

where ξ = 0 for n is odd and ξ = 1
2 for n is even. For odd n, the above Poisson kernel is

defined using the regular p weight, while for even n it is defined using the q weight of the
loop-erased paths. For a fixed pair j, k, let

fj,k(x) :=
s

s2 + (2πx+ (νk − θj))2
exp[iξ(2πx+ (νk − θj))].

Then

f̂j,k(m) =

∫ ∞

−∞

s

s2 + (2πx+ (νk − θj))2
exp[iξ(2πx+ (νk − θj))] exp(−2πimx)dx.

Let u = 2πx+ (νk − θj), we have

f̂j(m) =
1

2π

∫ ∞

−∞

s

s2 + u2
exp(iξu+ ((νk − θj)− u)im)du

=
1

2
eim(νk−θj)

∫ ∞

−∞

s

π(s2 + u2)
exp(i(ξ −m)u)du.

Note that s
π(s2+u2) is the probability density function of the Cauchy distribution. We then

have

E[eiX(ξ−m)] =

∫ ∞

−∞

s

π(s2 + u2)
exp(i(ξ −m)u)du = e−s|ξ−m|,

where X is the random variable with Cauchy distribution. Hence,

f̂j(m) =
1

2
eim(νk−θj)E[eiX(ξ−m)] =

1

2
eim(νk−θj)e−s|ξ−m|.

By the Poisson summation formula, we have

hD(j, i) =
∑
m∈Z

f̂j(m) =


1
2

∑
m∈Z

eim(νk−θj)e−s|m| n is odd,

1
2

∑
m∈Z+ 1

2

ei(m+ 1
2 )(νk−θj)e−s|m| n is even.

Substitute s = − log r,

hD(j, k) =


1
2

∑
m∈Z

eim(νk−θj)r|m| n is odd,

1
2

∑
m∈Z+ 1

2

ei(m+ 1
2 )(νk−θj)r|m| n is even.
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2.3. Determinant of the continuous Poisson kernel in an annulus. In this section,
we compute the determinant of the continuous Poisson kernel of an annulus as a function of
the inner radius. By setting the inner radius to 1

N , we obtain the scaling exponent for the
continuous case, which we later use for an approximation to the discrete Poisson kernel.

We need the following lemma for our preliminary calculation of the determinant. This
result is standard in the discussion of unitary ensembles in the random matrix theory. See
[Meh04] for more on this topic.

Lemma 2.7. Let {mj}nj=1 take the values (−n−1
2 , · · · , n−1

2 ) in ascending order. That is,

let mj = j − n+1
2 . Let θ = (θ1, · · · , θn) ∈ [0, 2π)n. Then,

Φ(θ) := det(eimjθk)nj,k=1 = i
n(n−1)

2

∏
1≤j<k≤n

|eiθk − eiθj | = (2i)
n(n−1)

2

∏
1≤j<k≤n

sin

(
θk − θj

2

)
.

Proof. Suppose θ1 < · · · < θn. Note that if θj < θk, a geometric property (fig. 2) yields the
following:

i · e i
2 (θj+θk) =

eiθk − eiθj

|eiθj − eiθk |
.

Then we can write

Figure 2. A geometric property of the unit circle.

∏
1≤j<k≤n

|eiθk − eiθj | = i
−n(n−1)

2 e−
i(n−1)

2

∑n
j=1 θj

∏
1≤j<k≤n

(eiθk − eiθj ).

The Vandermonde determinant is defined as the following:

∆(eiθ1 , · · · , eiθn) := det[ei(j−1)θk ]nj,k=1 =
∏

1≤j<k≤n

(eiθk − eiθj ).

Then we have ∏
1≤j<k≤n

|eiθk − eiθj | = i
−n(n−1)

2 e−
i(n−1)

2

∑n
j=1 θj∆(eiθ1 , · · · , eiθn)

= i
−n(n−1)

2 det[eimjθk ]nj,k=1.

Rearranging the terms, we have

i
n(n−1)

2

∏
1≤j<k≤n

|eiθk − eiθj | = det[eimjθk ]nj,k=1 = Φ(θ).
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Note that

|eiθk − eiθj | = 2| sin
(
θk − θj

2

)
|.

Since θk − θj ∈ (0, π), we can remove the absolute value on the right hand side. Hence

Φ(θ) = (2i)
n(n−1)

2

∏
1≤j<k≤n

sin

(
θk − θj

2

)
as claimed. □

Similarly, denote −θ = (−θ1, · · · ,−θn) ∈ (−2π, 0]n. Then we have

(2.8) Φ(−θ) = (2i)
n(n−1)

2

∏
1≤j<k≤n

sin

(
θj − θk

2

)
= (−2i)

n(n−1)
2

∏
1≤j<k≤n

sin

(
θk − θj

2

)
.

2.3.1. Odd n. Now we compute the determinant of the continuous Poisson kernel of n paths
for odd n :

det(hD(j, k))
n
j,k=1 =

1

2

∑
σ∈S(n)

sgn(σ)

n∏
j=1

∑
mj∈Z

r|mj |eimj(νσ(j)−θj)

=
1

2

∑
m1,··· ,mn∈Z

r
∑n

j=1 |mj |
∑

σ∈S(n)

sgn(σ)ei
∑n

j=1 mj(νσ(j)−θj).

(2.9)

If mj = mk for j ̸= k, then each term from the above is canceled by its counterpart with a
transposition of j and k. Hence we can rewrite the sum in the following form:

det(hD(j, k))
n
j,k=1

=
1

2

∑
m1<···<mn∈Z

r
∑n

j=1 |mj |
∑

σ,τ∈S(n)

1

n!
(sgn(σ ◦ τ)ei

∑n
j=1 mjνσ◦τ(j))(sgn(τ)e−i

∑n
j=1 mjθτ(j))

=
1

2n!

∑
m1<···<mn∈Z

r
∑n

j=1 |mj |
∑

τ∈S(n)

(sgn(τ)e−i
∑n

j=1 mjθτ(j))(
∑

σ∈S(n)

sgn(σ ◦ τ)ei
∑n

j=1 mjνσ◦τ(j))

=
1

2n!

∑
m1<···<mn∈Z

r
∑n

j=1 |mj | det(eimjνk)nj,k=1 det(e
−imjθk)nj,k=1.

Since r < 1, the sum
∑

m1<···<mn∈Z
r
∑n

j=1 |mj | is maximized by the following values:

(2.10) (m1, · · · ,mn) =

(
−n− 1

2
, · · · , 0, · · · , n− 1

2

)
.

In fact, we will show that this set of values for mj is the dominating term. With the above
values, we have

n∑
j=1

|mj | =
n2 − 1

4
.

Note that the set of values of mj can be rearranged into a set of m′
j , where m

′
1 = inf

1≤j≤n
|mj |,

and m′
l = inf

|mj |≥m′
l−1

|mj | is the lth smallest absolute value. By symmetry, we have |m′
2| ≥
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|m′
1|, |m′

3| ≥ 1 + |m′
1|. In general, |m′

j | ≥ ⌈ j−2
2 ⌉+ |m′

1|. Then∑
m1<···<mn∈Z

r
∑n

j=1 |mj |

=
∑
m′

1∈Z

∑
|m′

2|≥1+|m′
1|

· · ·
∑

|m′
n|≥

n−1
2 +|m′

1|

rn|m
′
1|+

∑n
j=2(|m

′
j |−|m′

1|)

= r
n2−1

4 [(1 +
∑
k∈N

rk) + rn(
∑
k∈N

rk + · · · )]

= r
n2−1

4 (1 +O(r)),

as r → 0. Since the set of values in (2.10) contributes to the dominating term r
n2−1

4 ,
it suffices to consider det(eimjνk)nj,k=1 det(e

−imjθk)nj,k=1 for this set of values. From the

definition in Lemma 2.7, this is Φ(ν)Φ(−θ). As r → 0,

(2.11) det(hD(j, k))
n
j,k=1 =

1

2n!
r

n2−1
4 Φ(ν)Φ(−θ)(1 +O(r|Φ(ν)Φ(−θ)|−1)).

Example 2.12 (n = 3). Let us consider the case for n = 3. From Lemma 2.7, we have

Φ(ν) = (2i)3 sin

(
ν2 − ν1

2

)
sin

(
ν3 − ν2

2

)
sin

(
ν3 − ν1

2

)
.

Note that since ν ∈ [0, 2π)3 and ν1 < ν2 < ν3, the product of the sine functions is always
positive. Using the product-to-sum formula for trigonometric functions, we have

Φ(ν) =
(2i)3

2
[cos

(
2ν2 − ν1 − ν3

2

)
− cos

(
ν3 − ν1

2

)
] sin

(
ν3 − ν1

2

)
=
(2i)3

4
[sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)− sin(0)]

=− 2i[sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)].

Similarly, from (2.8), we have

Φ(−θ) = 2i[sin(θ2 − θ1) + sin(θ3 − θ2)− sin(θ3 − θ1)].

As r → 0,

det(hD(j, k))
3
j,k=1 =

1

3
r2[sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)]

× [sin(θ2 − θ1) + sin(θ3 − θ2)− sin(θ3 − θ1)] +O(r3).
(2.13)

3. Comparison between the continuous and discrete Poisson kernels

3.1. Discrete Poisson kernel in the unit square. Let KN,d = {(x1, · · · , xd) ∈ Zd|1 ≤
xi ≤ N − 1} be a d−dimensional cube with positive coordinates. We have the following
proposition for the discrete Poisson kernel in K2,d [LL10].

Proposition 3.1. Suppose (x, y) ∈ KN,2 and (N, ỹ) ∈ ∂KN,2. The discrete Poisson kernel
of KN,2 is given by

HN (x+ iy,N + iỹ) =
2

N

N−1∑
z=1

sinh(αzπx
N )

sinh(αzπ)
sin(

zyπ

N
) sin(

zỹπ

N
),
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where αz is the unique positive solution to

cosh(
αzπ

N
) + cosh(

zπ

N
) = 2.

Proof. Define

f(x, y) = sinh(
αzπx

N
) sin(

zπy

N
).

Then we can check that f is a discrete harmonic function:∑
d((x′,y′),(x,y))=1

f(x′, y′) = sinh(
αzπ

N
(x+ 1)) sin(

zπy

N
) + sinh(

αzπ

N
(x− 1)) sin(

zπy

N
)

+ sinh(
αzπ

N
x) sin(

zπ

N
(y + 1)) + sinh(

αzπ

N
x) sin(

zπ

N
(y − 1))

= 2 sinh(
αzπ

N
x) sin(

αzπ

N
y)[cosh(

αzπ

N
) + cos(

αzπ

N
)]

= 4 sinh(
αzπ

N
x) sin(

αzπ

N
y)

= 4f(x, y).

For a fixed z, we can define a new function f̂z(y) on KN,1 :

f̂z(y) =
( 2
N )

1
2

sinh(αzπ)
f(N, y) =

√
2

N
sin(

zπy

N
).

Then we have
N−1∑
z=1

f̂z(y)f̂z(ỹ) =

{
0 y ̸= ỹ,

1 y = ỹ.

This forms an orthonormal basis for functions on KN,1. For any function g(x) on KN,1, we
have

g(x) =

N−1∑
y=1

cz(y)f̂z(x),

where

cz(y) =

N−1∑
z=1

f̂z(y)g(y)

Then the delta function at y is given by

δy(x) =

N−1∑
z=1

f̂z(y)f̂z(x).

Then for each ỹ ∈ KN,1,

(x, y) →
N−1∑
z=1

sinh(αzπx
N )

sinh(αzπ)
f̂z(y)f̂z(ỹ) =

2

N

N−1∑
z=1

sinh(αzπx
N )

sinh(αzπ)
sin(

zyπ

N
) sin(

zỹπ

N
)

is a harmonic function and takes the value δ(N,ỹ) when restricted to x = N. By the uniqueness

of the solution to the Dirichlet problem on a bounded, simply connected set A ⊂ Z2, the
right-hand side above is the Poisson kernel. □

The above result is set in a square in the first quadrant. We now want to map it to the
unit square. By first scaling KN,2 to length 2N − 1 and translating it to the center, we

obtain the discrete Poisson kernel for the discrete unit square SN = S ∩ ( Z
N + iZ

N ) of lattice

size 1
N .



N-RADIAL PARTITION FUNCTION OF LOOP-ERASED RANDOM WALK 15

Corollary 3.2. Let (x, y) ∈ SN , (1, ỹ) ∈ ∂SN . Then the Poisson kernel of SN between these
two points is given by:

(3.3) HSN
(x+ iy, 1 + iỹ) =

1

N

2N−1∑
m=1

sinh(βmπ(x+1)
2 )

sinh(βmπ)
sin(

mπ(y + 1)

2
) sin(

mπ(ỹ + 1)

2
),

where βm is the unique positive solution to

cosh(
βmπ

2N
) + cos(

mπ

2N
) = 2.

3.2. Error Estimate Between Discrete and Continuous Poisson kernels. Recall
that S is the unit square. Let (x, y) ∈ S and (1, ỹ) ∈ ∂S. Then the continuous Poisson
kernel between these two points in S is given by the following:

(3.4) hS(x, y, ỹ) := hS((x, y), (1, ỹ)) =

∞∑
m=1

sinh(mπ 1+x
2 )

sinh(mπ)
sinh(

1 + y

2
) sin(

1 + ỹ

2
),

whose derivation is similar to the above using separation of variables. To compare hS(x, y, ỹ)
with HSN

(x, y, ỹ), first note that

ecosh
−1(2−cos(t)) = 2− cos(t) +

√
(2− cos(t))2 − 1.

Hence

βm =
2N

π
cosh−1(2− cos(

mπ

2N
)) =

2N

π
log(2− cosh(

mπ

2N
) +

√
(2− cosh(

mπ

2N
))2 − 1)

=
2N

π
[
mπ

2N
− 1

12
(
mπ

2N
)3 +

1

96
(
mπ

2N
)5 +O(

m7

N7
)]

(3.5) = m[1− π2

48
(
m

N
)2 +

π4

1536
(
m

N
)4 +O(

m

N
)6],

as m
N → 0.
The following lemma and its corollary relate βm and m when plugged inside hyperbolic

functions, which will be useful in comparing the discrete and the continuous Poisson kernel.

Lemma 3.6. Let α2 = −π2

48 , α4 = π4

1536 . As m3

N2 → 0, the following holds with error term
uniform over u ∈ (0, π] :

sinh(βmu) = sinh(mu)[1+α2u coth(mu)(
m3

N2
)+(

α2
2

2
u2+

α4

m
u coth(mu))(

m3

N2
)2+O((

m3

N2
)3)].

Proof. Substitute α2, α4 for the constants in (3.5), we have

(βm −m) = m[α2(
m

N
)2 + α4(

m

N
)4 +O(

m

N
)6].

The Taylor series of sinh(x) at x = mu is

sinh(x) = sinh(mu) + cosh(mu)(x−mu) +
sinh(mu)

2
(x−mu)2 +O(cosh(mu)(x−mu)3).

Now substitute βmu for x, we have

sinh(βmu)

sinh(mu)
=1 + u coth(mu)[α2

m3

N2
+ α4

m5

N4
+O(

m7

N6
)]

+
u2

2
[α2

m3

N2
+ α4

m5

N4
+O(

m7

N6
)]2 +O(coth(mu)u3(

m3

N2
)3).
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Note that coth(mu) is uniformly bounded over positive integers m and u ∈ (0, π]. As m3

N2 →
∞, we have

sinh(βmu)

sinh(mu)
= 1 + u coth(mu)α2(

m3

N2
) + [

α2
2u

2

2
+

α4u

m
coth(mu)](

m3

N2
)2 +O((

m3

N2
)3).

Rearranging the terms, we have the result in the statement. □

Corollary 3.7. As m3

N2 → 0, for x ∈ (−1, 1),

sinh(βmπ 1+x
2 )

sinh(βmπ)
=
sinh(mπ 1+x

2 )

sinh(mπ)
{1 + (

m3

N2
)α2π[

1 + x

2
coth(mπ

1 + x

2
)− coth(mπ)]

+ (
m3

N4
)2[

α2
2π

2

2
(
(1 + x)2

4
− 1− (1 + x) coth(

1 + x

2
m) coth(mπ) + 2 coth2(mπ))

+
α4π

m
(
1 + x

2
coth(m

1 + x

2
)− coth(mπ)] +O((

m3

N2
)3}.

Proof. As x → 0,

1 + c1x+ c2x
2 +O(x3)

1 + d1x+ d2x2 +O(x3)
=1 +

(c1 − d1)x+ (c2 − d2)x
2 +O(x3)

1 + d1x+ d2x2 +O(x3)

=1 + (c1 − d1)x+ (c2 − d2 − c1d1 + d21)x
2 +O(x3).

Let

x =
m3

N2
, c1 = α2π

1 + x

2
coth(mπ

1 + x

2
), c2 = (

α2
2

2
(π

1 + x

2
)2 +

α4

m
π
1 + x

2
coth(mπ

1 + x

2
))

d1 = π coth(mπ)α2, d2 =
α2
2π

2

2
+

α4π

m
coth(mπ).

The statement follows from substitution. □

Now we want to write the discrete Poisson kernel of the unit square of lattice size 1
N in

terms of the continuous Poisson kernel. Recall that hS(x, y, ỹ) := hS(x + iy, 1 + iỹ) is the
continuous Poisson kernel from an interior point to the right vertical boundary of the unit
square.

Proposition 3.8. As N → ∞,

HSN
(x, y, ỹ) =

1

N
[hS(x, y, ỹ) +

1

N2
h2(x, y, ỹ) +

1

N4
h4(x, y, ỹ) +O(

1

N6
)],

where

h2(x, y, ỹ) =
∑
m∈N

fm(x, y, ỹ)α2m
3[
1 + x

2
coth(

1 + x

2
mπ)− coth(mπ)],

h4(x, y, ỹ) =
∑
m∈N

fm(x, y, ỹ)m6

× {α
2
2π

2

2
[
x2 + 2x− 3

4
− (1 + x) coth(

1 + x

2
m) coth(mπ) + 2 coth2(mπ)]

+
α4

m
[
1 + x

2
coth(m

1 + x

2
)− coth(mπ)]},

and

fm(x, y, ỹ) =
sinh(mπ 1+x

2 )

sinh(mπ)
sin(mπ

1 + y

2
) sin(mπ

1 + ỹ

2
).

The error term is uniform over x ∈ (−1 + ϵ, 1− ϵ).
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Proof. Let x, x̃ ∈ (−1 + ϵ, 1− ϵ). As m → ∞,

sinh(mπ 1+x
2 )

sinh(mπ)
∼ emπ x−1

2 .

Then fm(x, y, ỹ) has exponential decay in m. Then there exists c1 > 0 such that

(3.9)
∑
m∈N

fm(x, y, ỹ) =

c1 logN∑
m=1

fm(x, y, ỹ) +O(
1

N6
).

Note that βm is strictly increasing in m when m
N ∈ (0, 2), and βm < cosh−1(3). Let

f̃m(x, y, ỹ) =
sinh(βmπ 1+x

2 )

sinh(βmπ)
sin(mπ

1 + y

2
) sin(mπ

1 + ỹ

2
).

From (3.5), we have that as m
N → 0, βm

m → 1. Then there exists c2 > 0 such that

(3.10)
∑
m∈N

f̃m(x, y, ỹ) =

c2 logN∑
m=1

f̃m(x, y, ỹ) +O(
1

N6
),

as m
N → 0.

Choose c large such that both (3.9) and (3.10) hold. For m ≤ c logN, m3

N2 → 0 as N → ∞.
From Corollary 3.7, we have

f̃m(x, y, ỹ) = fm(x, y, ỹ){1 + (
m3

N2
)α2π[

1 + x

2
coth(mπ

1 + x

2
)− coth(mπ)]

+ (
m3

N2
)2
α2
2π

2

2
[
x2 + 2x− 3

4
− (1 + x) coth(

1 + x

2
m) coth(mπ) + 2 coth2(mπ)]

+O((
m3

N2
)3)}.

Then

c logN∑
m=1

f̃m(x, y, ỹ) =

c logN∑
m=1

fm(x, y, ỹ) +
1

N2
h2fm(x, y, ỹ) +

1

N4
h4fm(x, y, ỹ) +O(

1

N6
).

Recalling the explicit formula for the discrete and continuous Poisson kernel from (3.3) and
(3.4), we have

HSN
(x, y, ỹ) =

1

N
[hS(x, y, ỹ) +

1

N2
h2(x, y, ỹ) +

1

N4
h4(x, y, ỹ) +O(

1

N6
)]

as claimed. □

3.3. Conformal mapping between the unit square and the unit disk. We have
obtained the estimate for the discrete Poisson kernel using the continuous Poisson kernel in
the unit square. To relate that to the result of the scaling exponent of the determinant in
Section 2.3, we need to compare the continuous Poisson kernel in the unit square S and the
unit disk D. The continuous Poisson kernel is dependent on the radius of the interior points.
It is useful to consider where the interior points in S are mapped to in D. The following
lemma is a consequence of standard complex analysis results [Rud87].
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Lemma 3.11. Let f : D → S be a conformal map with f(0) = 0, f ′(0) > 0, as provided by
the Riemann mapping theorem. Let f(z) =

∑∞
n=1 cnz

n be its power series expansion. Then
for any z ∈ D,

(3.12) |f(z)| = |c1z|+O(|z|5)

as z → 0.

Proof. Let g : C → C be the map such that g(z) = iz. Since g is a conformal map,
h := g−1 ◦f ◦g is a conformal map from D → S with h(0) = f(0) = 0 and h′(0) = f ′(0) > 0.
By uniqueness of the map designated by the Riemann mapping theorem, we must have
h = f. Hence f(iz) = if(z), for any z ∈ D. Let

u(z) : =

∞∑
m=1

(i+ 1)c4m−2z
4m−2 +

∞∑
m=1

2ic4m−1z
4m−1 +

∞∑
m=1

(i− 1)c4mz4m,

which is holomorphic in an open disk Ω at centered at 0. Note that u(z) = f(iz)− if(z) = 0
on Ω, which contains an accumulation point. Hence u(z) ≡ 0 is constant. Thus we conclude
that cn ̸= 0 only if n ≡ 1 mod 4. Then

f(z) =

∞∑
m=0

c4m+1z
4m+1 = c1z + c5z

5 + c9z
9 + · · ·

Letting z → 0, we have (3.12). □

3.4. Example: n = 3. The following lemma is useful when computing the determinant of
the discrete Poisson kernel in the unit square.

Lemma 3.13. Let v1 = ( 1
N , 0), v2 = (0, 1

N ), v3 = (0,− 1
N ) be three points on SN . Let

ϕ : S → D be a conformal map with ϕ(0) = 0. Then

|ϕ(v1)| = |ϕ(v2)| = |ϕ(v3)| = a1
1

N
+O(

1

N5
),

where a1 ∈ R is a constant independent on the choice of ϕ, and

|ϕ′(vi)| = a1 +O(
1

N4
),

for i = 1, 2, 3.

Proof. Suppose ϕ(z) =
∑∞

n=1 cnz
n. Similar to result in Section 3.3, we have ϕ(iz) = iϕ(z)

and ϕ(z) = c1z+O(|z|5). Note that we have iv1 = v2 and iv3 = v1. Hence ϕ(v2) = iϕ(v1) =
−ϕ(v3). In other words, these three points are mapped to the same circle. Moreover, for
i = 1, 2, 3,

|ϕ(vi)| = |c1vi|+O(|vi|5)

= |c1|
1

N
+O(

1

N5
),

as N → ∞.
Let a1 = |c1|. Note that a1 does not depend on the choice of ϕ since all admissible choices

differ only by rotations. We have

ϕ′(vi) = c1 + 5c5v
4
i ,

which gives the lemma. □
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Figure 3. Three points in S and their image in D under a conformal map

Remark 3.14. See figure 3 for an illustration of a conformal map. Note that the dashed
grey circle in the two graphs do not have the same radius. The constant a1 can be computed
explicitly by an exact formula given by the Schwarz–Christoffel transformation, which in-
volves Jacobi elliptic equations. The power 1

N5 is also not optimal, but it suffices for our
purpose.

Proposition 3.15. Fix z1 = 1, z2 = i, z3 = −i and let w1, w2, w3 ∈ ∂S. As N → ∞, we
have

dethS(
zi
N

,wσ(i)) = O(
1

N2
).

Proof. From Lemma 3.13, we have

|ϕ( zi
N

)| = a1
1

N
+O(

1

N5
),

|ϕ′(
zi
N

)| = a1 +O(
1

N4
).

Let r = |ϕ( ziN )|, arg(zi) = θi, and arg(wi) = νi. From (2.13), the determinant of the
continuous Poisson kernel in D is given by

det(hD(
zi
N

,wσ(i)))
3
i=1

=
1

3
r2[sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)][sin(θ2 − θ1) + sin(θ3 − θ2)− sin(θ3 − θ1)] +O(r3)

=
2

3
r2[sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)]

=
2

3
[sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)]a

2
1

1

N2
+O(

1

N6
).

By conformal covariance of the Poisson kernel, we have

dethS(
zi
N

,wσ(i))
3
i=1 =

3∏
i=1

|ϕ′(
zi
N

)|dethD(
zi
N

,wσ(i))
3
i=1

=
2a51
3

[sin(ν2 − ν1) + sin(ν3 − ν2)− sin(ν3 − ν1)]
1

N2
+O(

1

N6
).

□
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Remark 3.16. The exponent n2−1
4 , which yields 2 when n = 3, coincides with the scaling

exponent of 3−crossings (3 disjoint tree branches running from one boundary to the other)
of a uniform spanning tree on an annulus [Ken00].

Proposition 3.17. Let z1, z2, z3 ∈ S and w1, w2, w3 ∈ ∂S. As N → ∞,

det(HSN
(
zj
N

,wk))
3
j,k=1 = O(

1

N5
).

Proof. Note that

det(HSN
(
zj
N

,wk))
n
1 =

∑
σ∈Sn

sgn(σ)

n∏
i=1

HSN
(
zi
N

,wσ(i)).

From Proposition 3.8 and the formula of the determinant, we have∑
σ∈Sn

sgn(σ)

n∏
i=1

HSN
(
zi
N

,wσ(i)) =
∑
σ∈Sn

sgn(σ)
1

Nn

n∏
i=1

[hS(
zi
N

,wσ(i))+
1

N2
h2(

zi
N

,wσ(i))+O(
1

N4
)]

=
1

Nn
[
∑
σ∈Sn

sgn(σ)

n∏
i=1

hS(
zi
N

,wσ(i))+
1

N2

n∑
k=1

∑
σ∈Sn

sgn(σ)
h2(

zk
N , wσ(k))

hS(
zk
N , wσ(k))

n∏
i=1

hS(
zi
N

,wσ(i))+O(
1

N4
)].

From Corollary 3.15, we have∑
σ∈S3

sgn(σ)

3∏
i=1

hS(
zi
N

,wσ(i)) = dethS(
zi
N

,wσ(i))
3
i=1 = O(

1

N2
).

Thus, it suffices to show that

(3.18)

n∑
k=1

∑
σ∈Sn

sgn(σ)
h2(

zk
N , wσ(k))

hS(
zk
N , wσ(k))

n∏
i=1

hS(
zi
N

,wσ(i)) = O(1).

Let zk = x+ iy, wσ(k) = 1 + iỹ, we have

h2(
zk
N , wσ(k))

hS(
zk
N , wσ(k))

=

∑
m∈N fm( x

N , y
N , ỹ)α2πm

3[
1+ x

N

2 coth(
1+ x

N

2 mπ)− coth(mπ)]∑
m∈N fm( x

N , y
N , ỹ)

.

Note that

α2πm
3[
1 + x

N

2
coth(

1 + x
N

2
mπ)− coth(mπ)]

is uniformly bounded over m and N, and fm( x
N , y

N , ỹ) decreases exponentially in N . There-

fore,
h2(

zk
N ,wσ(k))

hS(
zk
N ,wσ(k))

is uniformly bounded over k and σ. Since
∏n

i=1 hS(
zi
N , wσ(i)) is uniformly

bounded as well, we have (3.18). For n = 3, we have

det(HSN
(
zj
N

,wk))
3
1 = O(

1

N5
).

as claimed. □
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