
BOUNDS ON SUMS OF BETTI NUMBERS

JUSTIN WU

Abstract. In this note we survey three different iterations of bounds on sum

of Betti numbers of algebraic varieties. The first is Milnor’s approach using

Morse theory for singular cohomology, then Katz’s approach using the affine
Lefschetz hyperplane theorem in the ℓ-adic setting. Finally we discuss quan-

titative sheaf theory, a theory which “functorially” bounds the sum of Betti

numbers of arbitrary objects A ∈ Db
c(X), . We discuss an application of

quantitative sheaf theory to horizontal equidistribution of exponential sums.

Contents

1. Introduction 1
1.1. Outline of paper 2
1.2. Notation 3
2. Milnor’s bound via Morse theory 3
3. Katz’s bounds in ℓ-adic cohomology 4
4. Quantitative sheaf theory 6
4.1. Complexity 7
4.2. Singular support and characteristic cycles 8
5. Horizontal equidistribution 12
6. Acknowledgements 13
References 14

1. Introduction

Why should one care about bounds on sums of Betti numbers? The perspective
we take is that the Lefschetz trace formula lets one translate bounds on sums of
Betti numbers into useful information on fixed points of endomorphisms. Let us
state two versions of the Lefschetz trace formula.

Theorem 1.1 (Lefschetz-Hopf fixed point theorem). Let X be a compact oriented
manifold and ϕ : X → X an endomorphism with isolated singularities. Then

#Fixed pts of ϕ =
∑
i

(−1)iTr(ϕ∗, H∗(X,R)).

Note that the left side counts fixed points with multiplicities, more precisely it
should be the intersection number ∆X · Γϕ in X × X. In positive characteristic
there is an analagous theorem. Let X0 be a variety over a finite field k = Fq
and denote X := X0 ⊗Fq

Fq. Let F0 be an ℓ-adic sheaf on F0 and denote F the

Date: DEADLINES: Draft AUGUST 14 and Final version AUGUST 28, 2024.

1



2 JUSTIN WU

base change to X. We have the geometric Frobenius on k which induces maps
F : Hi(X,F) → Hi(X,F) and Fx : Fx → Fx for any closed point x ∈ |X0|.

Theorem 1.2 (Grothendieck-Lefschetz trace formula). Let X0 and F0 be as above.
Then ∑

x∈X(Fq)

Tr(Fx,Fx) =
∑
i

(−1)iTr(F,Hi
c(X,F))

Note that if F is the constant sheaf, then the left side is #X(Fq), which are
the fixed points of Frobenius. If F is an Artin-Schreier sheaf (or some variant of
it), then the left side is an exponential sum. So in order to bound the left side, it
suffices to bound the size of the eigenvalues of Frobenius, and control the number
of eigenvalues, i.e the Betti numbers. For ℓ-adic cohomology, the eigenvalues of
Frobenius have been studied by Deligne.

Theorem 1.3 ([5], 3.3.6). Let X0 be a smooth and proper variety over a finite field
k = Fq. If F0 is pure of weight n, then Hi(X,F) is pure of weight n+ i

We recall that pure of weight i means for all field isomorphisms τ : Qℓ ≃ C, all
eigenvalues of geometric Frobenius have complex norm qi/2 under τ . In general,
without smoothness or properness, we still have the following theorem.

Theorem 1.4 ([5], 3.3.1). Let X be a variety over Fq and F an ℓ-adic sheaf on
X, mixed of weight ≤ n. Then Hi

c(X,F) is mixed of weights ≤ n+ i.

Recall that mixed means there exists a filtration whose successive quotients are
pure of some weight. For mixed sheaves we no longer have precise control of the
size of eigenvalues, but the bound is often still useful. We now give an example of
how the Grothendieck-Lefschetz trace formula can be applied to give estimates on
the number of rational points. The following appears in Kat’s appendix to [8].

Theorem 1.5 ([8] Appendix Thm 1). Let N ≥ 1, r ≥ 1 be integers, and d1 . . . dr
an r-tuple of positive integers. Then there exists a constant C(N, d1, . . . dr) so that

for all finite fields k = Fq and complete intersections X ⊂ PN+r
k of dimension N

and multidegree (d1, . . . dr), with singular locus dimension D (set D = −1 for X
smooth over k), we have

|#X(k)−#PN (k)| ≤ C(N, d1, . . . dr)
√
q
N+1+D

.

To prove this, Katz first shows that there exists a bound
∑
i h

i(X ⊗k k,Qℓ) ≤
S(N, d1 . . . dr) for all X as above (no assumption on dimension of the singular
locus). Then Katz computes for i > N + 1 + D, we have Hi(X ⊗k k,Qℓ) =
Qℓ(−i) for i even and 0 for i odd. Combining these two facts along with the
Grothendieck trace formula and the bound from Theorem 1.4, we obtain the result
using C(N, d1 . . . dr) = N + 1 + S(N, d1 . . . dr).

1.1. Outline of paper. In section 2 we discuss Milnor’s approach to bounding the
cohomology of real affine varieties using Morse theory. In section 3 we discuss Kat’s
approach in the ℓ-adic setting using a Lefschetz hyperplane theorem and highlight
an independence of ℓ corollary. In section 4 we discuss singular support and the
characteristic cycle, and their application to the proof of continuity under the 6
operations in quantitative sheaf theory. In section 5 we discuss an application of
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quantitative sheaf theory to horizontal equidistribution (i.e. taking p → +∞) of
exponential sums.

1.2. Notation. p ̸= ℓ will always be distinct primes. A variety is a reduced,
separated scheme of finite type over a field. In the context of ℓ-adic cohomology,
all functors will be derived unless otherwise noted, e.g. f∗ = Rf∗. For an object
F ∈ Db

c(X), we denote D(F ) for the Verdier dual of F , and tF : X(Fq) → Qℓ for the
trace function. In quantitative sheaf theory, we fix once and for all an isomorphism
ι : Qℓ

∼−→ C. By pure or mixed sheaves we will mean ι-pure (respectively mixed).

2. Milnor’s bound via Morse theory

In this section, Betti numbers are with respect to singular cohomology. We
outline the proof of Milnor’s bound in [14] on the sum of Betti numbers of real
affine algebraic varieties (in terms of the degrees of defining polynomials).

Lemma 2.1. Let X ⊂ Rn be a 0 dimensional variety cut out by polynomials
f1 . . . fn of degree d1 . . . dn. Suppose that the gradient vectors dfi are linearly inde-
pendent at each point of X. Then |X| ≤

∏
i di.

Proof. Perturb the coefficients of the polynomials fi so that they are all alge-
braically independent. If X ′ denotes the variety cut out by the new polynomials,
then X ′

C has exactly
∏
i di points. Then the points of X must be close to a point

of X ′
C, hence the bound we desired. A direct proof using intersection theory can be

found for example in [7, 8.4]. □

Theorem 2.2. Let X ⊂ Rn be a compact nonsingular hypersurface defined a poly-
nomial f of degree 2k. Then the sum of the Betti numbers of X is ≤ 2k(k−1)m−1.

Proof. Consider the map n : X → Sn−1 given by n = gradf/|gradf |. By Sard’s
theorem, the critical values of n have measure 0 so we may rotate the coordi-
nates on Rn (without changing the Betti numbers) and assume that (0, . . . 0,±1)
are not values of n. Given local coordinates u1 . . . um−1 on X, this means that
det(∂ni/∂uj) ̸= 0 on n−1(0, . . . 0,±1).

Define the height function h : X → R by (x1, . . . xm) 7→ xm. We claim that h
has no degenerate critical points (i.e. h is a Morse function). Indeed, if u1 . . . um−1

are local coordinates at a critical point, then

n(u1 . . . um−1) = ±(∂h/∂u1 . . . ∂h/∂um−1,−1)/

√∑
j

∂(h/∂uj)2 + 1.

At a critical point of h, ∂h/∂uj = 0 for all j so ∂ni/∂uj = ±∂2h/∂ui∂uj , hence the
matrix (∂2h/∂ui∂uj) is nonsingular. By the weak Morse inequality [13, Thm 5.2],
the sum of the Betti numbers of X (compact manifold by assumption) is bounded
by the number of critical points of the Morse function h. The critical points of h
are the zeros of the polynomials

∂h/∂x1, . . . ∂h/∂xm−1, f.

So it suffices to show that the m vectors d(∂h/∂x1), . . . ∂d(h/∂xm−1), df are
linearly independent at the critical points of h and apply Lemma 2.1. Indeed, note
that differentiating the equality
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f(u1, . . . um−1, h(u1, . . . um−1)) = 0

twice gives

∂2f

∂xi∂xj
+

∂f

∂xm

∂2h

∂ui∂uj
+

∂2f

∂xj∂xm

∂h

∂ui
.

The third term is zero since we are evaluating at a critical point of h, so we have

the matrix
(

∂2f
∂xi∂xj

)
i,j

is nonsingular. Again since we are at a critical point, df is

nonzero except in the last coordinate, hence the vectors are linearly independent.
□

Theorem 2.3. Let X ⊂ Rm be defined by the zeros of polynomials f1 . . . fn all of
degree ≤ k. Then the sum of Betti numbers of X is ≤ k(2k − 1)n−1.

Proof. Let Br be the ball of radius r centered at the origin in Rm. For ϵ, δ > 0,
denote K(ϵ, δ) by the set of points where

f21 + . . . f2n + ϵ2|x|2 ≤ δ2

where |x| is the Euclidean norm. We have K(ϵ, δ) ⊆ Bδ/ϵ hence is compact. For
r ≤ δ/ϵ, we have X ∩Br ⊂ K(ϵ, δ). Note that

∂K(ϵ, δ) =
{
f21 + . . . f2n + ϵ2|x|2 = δ2

}
is a compact algebraic hypersurface of degree ≤ 2k. It is nonsingular if δ2 is a
noncritical value of f21 + . . . f2n + ϵ2|x|2. By Sard’s theorem, for a fixed ϵ, ∂K(ϵ, δ)
is nonsingular for fixed almost all δ. From now on assume that ϵ, δ are chosen so
that this is the case.

By Theorem 2.2, H∗(∂K) has dimension ≤ 2k(2k−1)m−1. By Alexander duality
and the collar neighborhood theorem, we have dim H∗(K) = 1

2dim H∗(∂K) ≤
k(2k − 1)m−1. Choose sequences ϵi, δi so that ϵi decrease monotonically to 0 and
δi/ϵi decreases monotonically to r, and that each K(ϵi, δi) is nonsingular. We have

. . . ⊂ K(ϵ3, δ3) ⊂ K(ϵ2, δ2) ⊂ K(ϵ1, δ1)

with intersection X ∩Br. By the continuity of Cech cohomology [6, X 3.1], we have
dim H∗(X ∩Br) ≤ k(2k− 1)m−1. It thus suffices to take the limit as r → ∞. One
can utilize the fact that X as as a smooth variety has a triangulation (we refer to
[14] for details). □

3. Katz’s bounds in ℓ-adic cohomology

In this section we prove an analagous result on bounds of sums of Betti numbers
in ℓ-adic cohomology due to Katz. One remarkable feature is the independence of
ℓ. In the setting of manifolds, one uses Morse theory to get off the ground. Here
the main tool is the affine (weak) Lefschetz theorem.

Theorem 3.1. Affine Weak Lefschetz Let k be an algebraically closed field, and
X ⊂ ANk a closed local complete intersection of dimension n. Then there exists a
dense open set of hyperplanes H ⊂ An so that for every lisse Qℓ-sheaf F on X, the
restriction maps
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Hi(X,F) → Hi(X ∩H, i∗F )
are isomorphisms for i < d− 1 and injective for i = d− 1.

Proof. Apply [9] Corollary 3.4.1 with V = X, f : X → A1 the 0 map, and π : X →
AN the inclusion. □

Thus in order to bound the sum of Betti numbers of X (which is affine so coho-
mology goes up to dim(X)), we can inductively control the sum of Betti numbers
of X ∩H, and separately bound hd−1 and hd. For this last step one uses bounds on
the Euler characteristic. In [3], Bombieri combining p-adic methods due to Dwork
and results from Deligne’s Weil II proved that for X ⊂ AN a closed subscheme cut
out by f1, . . . fr all of degree ≤ d, then

|χc(X,Qℓ)| ≤ (4(1 + d) + 5)N+r.

Note that by [12], there is no difference between compactly supported Euler char-
acteristic and the usual one. Fix an universal bound |χc(X,Qℓ)| ≤ E(N, r, d), and
define

A(N, r, d) := E(N, r, d) + 2 + 2

N−1∑
n=1

E(n, r, d)

B(N, r, d) := 1 +
∑

S⊂{0,1...r}
S ̸=∅

A (N + 1, 1, d · (#S) + 1) .

We fix an algebraically closed field k and X ⊂ AN a closed subscheme defined by
f1 . . . fr all of degree ≤ d. Fix a prime ℓ ̸= p. Denote

σ(X,Qℓ) :=
∑
i

hi(X,Qℓ)

σc(X,Qℓ) :=
∑
i

hic(X,Qℓ).

We sketch proofs of the following two theorems.

Theorem 3.2. [10, Thm 2] In the above notation, assume either dim(X) = 0 or
X is smooth of dimension n ≥ 1 and connected. Then σc(X,Qℓ) ≤ A(N, r, d).

Theorem 3.3. [10, Thm 1] We have for X as above (no assumption on smooth-
ness), σc(X,Qℓ) ≤ B(N, r, d)

Proof sketch of Theorem 3.2. Since X is smooth we have σ = σc by Poincare du-
ality. For dim(X) = 0 we only have cohomology in degree 0 so σc(X,Qℓ) =
χc(X,Qℓ) ≤ E(N, r, d) ≤ A(N, r, d) as desired. The n = 1 case is also immediate.
Induct on n, and use the affine Lefschetz hyperplane theorem, noting that X ∩H
is smooth and connected in AN−1, again cut out by r equations of degree ≤ d. We
get the inequality

σ(X,Qℓ) ≤ (−1)nχ(X,Qℓ) + (−1)n−1χ(X ∩H,Qℓ) + σ(X ∩H,Qℓ)
which complete the inductive step based on our definition of A(N, r, d). □
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Proof. of Theorem 3.3
Using the excision long exact sequence for compactly supported cohomology on

AN\X ⊂ AN , we get

σc(X,Qℓ) ≤ σc(AN ,Qℓ) + σc(AN\X,Qℓ) = 1 + σ(AN\X,Qℓ)
since AN\X is open in AN hence smooth (so σ = σc). We have AN\X is covered
by D(fi) for i = 1 . . . r, so the Mayer-Vietoris spectral sequence implies that

σ(AN\X,Qℓ) ≤
r∑
p=1

∑
1≤i1...≤ip≤r

σ(Ui1 ∩ . . . Uip ,Qℓ).

The intersection Ui1 ∩ . . . Uip is the non-vanishing locus in AN of fi1 . . . fip , or

equivalently the smooth hypersurface in AN+1 cut out by the single equation
xn+1

∏r
j=1 fij which is of degree ≤ 1 + dp. So by Theorem 3.2 we have σ(Ui1 ∩

. . . Uip ,Qℓ) ≤ A(N + 1, 1, dp+ 1).
□

We now give one application to independence of ℓ.

Theorem 3.4. [10, Thm 5] Let k be an algebraically closed field of characteristic
p, and X/k a variety. Then there exists a constant M(X/k) so that for all ℓ ̸= p,
we have

σ(X,Qℓ) ≤M(X/k).

Proof. By the Mayer-Vietoris spectral sequence we may assume X is affine, and
furthermore reduced and irreducible. By de Jong’s theorem on alterations [4, Thm
4.1], we get a hypercover X· → X where Xn is affine and smooth over k for all n.
We have an associated spectral sequence

Ep,q1 = Hq(Xp,Qℓ) ⇒ Hp+q(X,Qℓ).
Since X is affine, hi(X,Qℓ) = 0 for i > dim(X). So

σ(X,Qℓ) ≤
dim(X)∑
i=0

σ(Xi,Qℓ) =
dim(X)∑
i=0

σc(Xi,Qℓ)

where the last equality is by Poincare duality since Xi is smooth. Each term
σc(Xi,Qℓ) by Theorem 3.3 is bounded by some constant depending on the degree
of equations cutting out Xi (in particular independent of ℓ). So such a constant
M(X/k) independent of ℓ exists.

□

4. Quantitative sheaf theory

In this section we outline the general constructions and properties of quantitative
sheaf theory, developed in [16]. The main technical input is the theory of Beilinson’s
singular support and Saito’s characteristic cycle for ℓ-adic sheaves. In this note we
make a beeline to one of their main results on horizontal equidistribution. We will
blackbox some proofs and refer the interested reader to the original paper [16],
which we found very readable. In the previous sections we obtained bounds on
sums of Betti numbers of constant sheaves. However, often the trace sums we care
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about use more complicated sheaves, and various combinations of the 6 functors
applied to them. The goal of quantitative sheaf theory is to control the sum of
Betti numbers of sheaves under the 6 functors.

The main construction of [16] is to assign a number c(F ) to each complex of
sheaves F , which bounds the sum of Betti numbers of F , and satisfies various
continuity properties under the 6 operations. By continuity, we mean, for example,
the property that c(F ⊗G) ≪ c(F )c(G) for some constant not depending on F,G.
Unfortunately, a definition with the various continuity properties cannot be intrinsic
to a variety X (see [16, Example 6.1]).

The definition of complexity will depend on a varietyX, an object F ∈ Db
c(X,Qℓ),

and a locally closed embedding u : X ↪→ Pn. The definition will turn out to be
cu(F ) := c(u!F ) where c(−) is an intrinsic notion of complexity for projective space.
An embedding into projective space can be thought of as analogous to how in earlier
sections we bounded the sum of Betti numbers of varieties which were presented
as vanishing loci of polynomials with bounded degree. We now give the precise
definition of complexity.

Notation: Throughout the rest of this paper, k will denote an algebraically
closed field unless specified otherwise. Coefficients for the constructible derived
category Db

c(X) will be Qℓ for some prime ℓ relatively prime to the characteristic
of k.

4.1. Complexity. In this section we introduce the notion of complexity, which is
the fundamental construction of QuantitativeSheafTheory. As the name suggests,
to any sheaf we assign a number, measuring how “complex” it is.

Definition 4.1. Let k be a field, and 0 ≤ m ≤ n be integers. Let Mn+1,m+1
k

denote the variety over k of (n + 1) × (m + 1) matrices of maximal rank. For an

extension k′/k and a point a ∈Mn+1,m+1
k (k′), denote la : Pmk′ → Pnk′ the associated

linear map.

We can now define complexity for sheaves on projective space.

Definition 4.2. Let k be a field and n ≥ 0 an integer. For each 0 ≤ m ≤ n, let
am be a geometric generic point of Mn+1,m+1

k defined over an algebraically closed

field k′. For an object F ∈ Db
c(Pnk ), define the complexity c(F ) to be

c(F ) := max
1≤m≤n

∑
i∈Z

hi(P′m
k , l∗am

F ).

The notion of complexity interpolates between the sum of Betti numbers (m = n)
and the sum of the generic ranks of the cohomology sheaves (m = 0). Note that
Betti numbers are invariant under base change of algebraically closed fields, so the
choice of k′ does not matter. As mentioned above, we can now define complexity for
arbitrary quasi-projective varieties with a given embedding into projective space.

Definition 4.3. Let X be a variety over a field k and u : X → Pnk a locally closed
embedding for some n ≥ 0. Define the complexity of an object F ∈ Db

c(X) relative
to u to be

cu(F ) := c(u!F ).

We also define the complexity of the locally closed embedding u to be
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c(u) := cu(Qℓ).

One can also extend the notion of complexity to morphisms between quasi-
projective varieties.

Definition 4.4 ([16] Def 6.6). Let f : X → Y be a morphism of quasi-projective
varieties over k, and u : X → Pnk , v : Y → Pmk locally closed embeddings. For
integers 0 ≤ p ≤ n and 0 ≤ q ≤ m, let ap, bq be geometric generic points of

Mn+1,p+1
k and Mm+1,q+1

k respectively, defined over an algebraically closed field k′.
Then define the complexity of f relative to u, v to be

cu,v(f) := max
0≤p≤n

max
0≤q≤n

∑
i∈Z

hic(Xk′ , u
∗lap∗Qℓ ⊗ f∗v∗lbq∗Qℓ).

This notion of complexity of a morphism will play a role in the fundamental
result of [16] on continuity of complexity under the 6 operations (see Theorem
4.12).

In order to prove the continuity of the 6 operations, the key one is the tensor
product property.

cu(A⊗B) ≪ cu(A)cu(B).

All other parts of the continuity theorem follow from formal arguments. The
proof of this result takes up the bulk of the first half of [16] and we only briefly
give an idea of the proof. As mentioned earlier, the key technical input is the
characteristic cycle.

4.2. Singular support and characteristic cycles. In this section we recall the
basic properties of singular support due to Beilinson [2] and characteristic cycle due
to Saito [15]. We omit the somewhat technical definitions.

Remark 4.5. Beilinson and Saito work with finite coefficients. The characteristic
cycle was extended to Qℓ coefficients in [17], while singular support for Qℓ coeffi-
cients was defined recently in [1]. In particular, we have an intrinsic definition of
singular support for rational coefficients, and we don’t need to choose an integral
model of our sheaves. There is always a good integral model so that the singular
support of its reduction in the sense of Beilinson agrees with the singular support
for ℓ-adic sheaves as defined by Barrett.

Let k be a field of characteristic p > 0, and let X be a smooth k-scheme of
dimension n. The singular support SS(F ) of an object F ∈ Db

c(X) is a closed
conical subset SS(F ) ⊆ T ∗X where T ∗X is the cotangent bundle of X viewed as
a scheme. Conical means invariant under the Gm scaling action on T ∗X. The
characteristic cycle CC(F ) is an algebraic cycle

CC(F ) =
∑
i

mi[Ci]

where the Ci are the irreducible components of SS(F ), and mi ∈ Z are integers.
Intuitively, one can think of the singular support SS(F ) as measuring where F
fails to be a local system. The characteristic cycle CC(F ) will be useful to us in
controlling the Euler characteristic of F . We have the following formula for the
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Euler characteristic as the intersection number of the characteristic cycle with the
0-section:

χ(X,F ) = CC(F ) · [T ∗
XX].

Example 4.6. Let X be a curve, and D ⊂ X a divisor. Let G be a local system
on X\D. Let j : X\D ↪→ X be the inclusion, and set F := j!G. Then SS(F ) is the
union of the 0 section T ∗

XX and the vertical fibers T ∗
xX for each x ∈ D (note that

x ∈ D are exactly the points where F fails to be a local system). The characteristic
cycle in this case is

CC(F ) = −

(
rank ·G[T ∗

XX] +
∑
x∈D

(rank G+ swanxG) · [T ∗
xX]

)
.

For this example, the above formula for the Euler characteristic recovers the Grothendieck-
Ogg-Shafarevich formula. In general one has CC(F [n]) = (−1)nCC(F ). Here, F [1]
is perverse and CC(F [1]) is effective. In general, for F perverse, CC(F ) is effective.

Recall that for proving things about complexity, we are primarily interested in
the case X = Pn. If V is a vector bundle on a scheme X, let V denote the projective
bundle P(V +OX) over X. For F ∈ Db

c(X), let CC(F ) denote the closure of CC(F )
in T ∗X.

Definition 4.7 ([16] Definition 2.4). There is an isomorphism CH∗(Pn) → CHn(T ∗Pn)
given by

(ai) 7→
∑
i

p∗aih
i

where h is the first Chern class of the dual of the universal line bundle, and p :
T ∗Pn → Pn is the projection map. For an object F ∈ Db

c(X), we define the

characteristic class cc(F ) ∈ CH∗(Pn) ≃ Zn+1 to be the inverse image of CC(F )
under the above isomorphism.

Note that the isomorphism CH∗(Pn) ≃ Zn+1 comes from the basis of CH∗(Pn)
given by linear subspaces of dimensions 0 to n. The group Zn+1 inherits the inter-
section pairing on CHn(T ∗Pn). Now, recall that we want to control the complexity
of a tensor product of sheaves, and the first step is to control the Euler character-
istic of a tensor product. We can do this under sufficient transversality, which is
why a modification by a generic automorphism will show up. One can later work
to remove the generic automorphism via a “double induction” argument (see [16]
§5).

Theorem 4.8 ([16] Corollary 3.14). Let A,B be objects of Db
c(Pnk ). For every

geometric generic point ðofGLn+1,k over an algebraically closed field k′, we have

χ(Pnk′ , A⊗ l∗gB) = (−1)ncc(A) · cc(B).

We will also need the following lemma, which shows that restriction of sheaves to
a generic linear codimension 1 subspace gives a linear function on the characteristic
class.

Lemma 4.9 ([16] Lemma 3.15). There exists a linear function fn : Zn+1 → Zn so

that for every perverse sheaf A ∈ Db
c(Pnk ), and every geometric point b of Mn+1,n

k ,
we have
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cc(l∗bA) = fn(cc(A)).

Strictly speaking I don’t believe the perverse condition is necessary. However
we will only be applying this lemma to perverse sheaves. We defer the proofs
of the above two results to [16]. We can now prove the main result of [16, §3]
which will be useful in controlling the complexity of a tensor product. We include
the proof as it is similar to arguments in Section 3, where we used the Lefschetz
hyperplane argument to inductively control cohomology in degree < n− 1 and the
Euler characteristic to control the remaining cohomology. Here, we use perversity
to inductively control cohomology in all degrees except −n, and Euler characteristic
to control h−n.

Proposition 4.10 ([16] Proposition 3.17). Let fn : Zn+1 → Zn be the linear
function as above. We define a bilinear form

bn : Zn+1 × Zn+1 → Z
inductively using the formula b0(x, y) = xy for x, y ∈ Z, and

bn(x, y) = x · y + 4bn−1(fn(x), fn(y)).

Recall that · is the intersection pairing on CHn(T ∗X) ≃ Zn+1. Then for any
perverse sheaves A,B ∈ Db

c(Pnk ), and any geometric generic point g of GLn+1,k

over an algebraically closed field k′, we have∑
i∈Z

hi(Pnk′ , A⊗ l∗gB) ≤ bn(cc(A), cc(B)).

Proof. We induct on n. For n = 0, A,B are just vector spaces (since they are
perverse), the characteristic class is their dimension, and the Euler characteristic is
the product of the dimensions.

Now let n > 0. By [16] Lem 3.11, A⊗ l∗gB[−n] is perverse. Let

σ :=
∑
i∈Z

hi(Pnk′ , A⊗ l∗gB)

be the quantity we are estimating. By definition of Euler characteristic, we have

σ ≤ 2
∑
i<−n

hi(Pnk′ , A⊗ l∗gB) + (−1)nχ(Pnk′ , A⊗ l∗gB) + 2
∑
i>−n

hi(Pnk′ , A⊗ l∗gB).

Let a ∈ Mn+1,n
k be a geometric generic point defined over k′. Since affine

morphisms are perverse t-exact, the compactly supported cohomology of perverse
sheaves on An vanish in degrees < 0. Since A⊗ l∗gB[−n] is perverse, excision shows
that the canonical map

Hi(Pnk′ , A⊗ l∗gB) → Hi(Pn−1
k′ , l∗a(A⊗ l∗gB))

is an isomorphism for i < −n. Since duality exchanges l∗a and l!a and preserves
perversity, the map

Hi(Pn−1
k′ , l!a(A⊗ l∗gB)) → Hi(Pnk′ , A⊗ l∗gB)

is an isomorphism for i > −n. So we have the estimate
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σ ≤ 2
∑
i∈Z

Hi(Pn−1
k′ , l∗a(A⊗l∗gB))+(−1)nχ(Pnk′ , A⊗l∗gB)+2

∑
i∈Z

Hi(Pn−1
k′ , l!a(A⊗l∗gB)).

By [16] Lemma 3.12, the functors l∗a and l!a agree up to shift and Tate twist, so

σ ≤ 4
∑
i∈Z

Hi(Pn−1
k′ , l∗a(A⊗ l∗gB)) + (−1)nχ(Pnk′ , A⊗ l∗gB).

Let h be a geometric generic point of GLn,k(a,g), and set b = gah−1. By [16]
Lemma 3.7, h is generic over k(a,b). We can write l∗a(A ⊗ l∗gB) = l∗aA ⊗ l∗hl

∗
b. So

by the inductive hypothesis and Proposition 4.10,

∑
i∈Z

Hi(Pn−1
k′ , l∗a(A⊗ l∗gB)) ≤ bn−1(cc(l

∗
aA), cc(l

∗
b)) = bn−1(fn(cc(A)), fn(cc(B))).

By 4.9, we are done. □

We now sketch the proof of the following result. One of the key ingredients which
we have omitted is the theory of test sheaves in [16] §4. They allow us to bound
how “big” cc(A) is in terms of the complexity c(A).

Theorem 4.11 ([16] Corollary 5.3). Let A,B be objects of Db
c(Pnk ). Then

c(A⊗B) ≪ c(A)c(B)

where the implicit constant only depends on n.

Proof. We sketch the proof. One first notes that by unraveling the definition of
complexity, and using the fact that the intersection of a generic linear subspace of
dimensionm and dimensionm′ is a generic linear subspace of dimensionm+m′−n,
the proof reduces to showing∑

i∈Z
hi(Pnk , A⊗B) ≪ c(A)c(B).

By a double induction argument, one further reduces to replacing A ⊗ B with
A ⊗ l∗gB for a geometric generic point g of GLn+1,k. Using the spectral sequence
associated to the perverse filtrations on A and B, we can apply Proposition 4.10
to bound the

∑
i∈Z h

i(Pnk , A ⊗ l∗gB) in terms of the characteristic classes (and the
bilinear form bn which only depends on n). Then the theory of test sheaves allows
us to get to the complexity. We refer to [16] §4, 5 for more details. □

We can now state the main theorem of complexity, which is the continuity of
the 6 operations. We recall the following notation: D(−) denotes the Verdier
dual Hom(−, ωX), and ⊗! is defined to be A ⊗! B := ∆!(A ⊠ B), which satisfies
D(A⊗! B) = D(A)⊗D(B).

Theorem 4.12 ([16] Theorem 6.8). Let X,Y be quasiprojective varieties over k,
and u : X → Pnk , v : Y → Pmk locally closed embeddings, and f : X → Y a
morphism. For objects A,B ∈ Db

c(X) and C ∈ Db
c(Y ), we have:
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(1) cu(D(A)) ≪ c(u)cu(A)
(2) cu(A⊗B) ≪ cu(A)cu(B)
(3) cu(A⊗! B) ≪ cu(A)

3cu(A)cu(B)
(4) cu(H om(A,B)) ≪ c(u)cu(A)cu(B)
(5) cu(f

∗C) ≪ cu,v(f)cv(C)
(6) cv(f!A) ≪ cu,v(f)cv(A)
(7) cu(f

!C) ≪ c(u)c(v)cu,v(f)cv(C)
(8) cu(f∗A) ≪ c(u)c(v)cu,v(f)cv(A)

where constants only depend on n,m.

The proof of the above theorem follows from Theorem 4.11 using formal prop-
erties of ℓ-adic cohomology (e.g. projection formula, Verdier duality, etc.) and the
definition of complexity. The non-formal fact that l∗a = l!a up to shift and Tate
twist for a a geometric generic point of Mn+1,m+1 is again used.

5. Horizontal equidistribution

In this section we highlight an application of complexity to a horizontal equidis-
tribution result. The meaning of “horizontal equidistribution” is that the result
will be about distributions of exponential sums as p → ∞, instead of studying
tn : X(Fnp ) → C at a fixed prime p and taking n → ∞ which one could call
“vertical”. We first record a preliminary result.

Proposition 5.1 ([16] Proposition 6.33). Let G ⊂ GLn be a reductive algebraic
group with finite center, and let Std denote the standard n-dimensional representa-
tion. If ρ : G→ GL(V ) is an irreducible representation, then ρ is a subrepresenta-
tion of Std⊗a for some a ≥ 0.

By applying (2) of the continuity theorem, if u : X → Pnk is an embedding of a
quasiprojective variety X/k, then any A ∈ Db

c(X) satisfies cu(ρ(A)) ≪ cu(A)
a for

a constant a only depending on ρ.
Now we introduce some notation for the equidistribution theorem. Let n ≥ 1 be

an integer, and d ≥ 1 an odd integer. Let P (n, d) denote the space of polynomials of
degree d in n variables, and P (n, d, odd) the polynomials only containing monomials
of odd degree. Let D(n, d) ⊂ P (n, d) denote the dense open of Deligne polynomials,
i.e. where the homogeneous part of largest degree defines a smooth hypersurface
in Pn−1, and similarly D(n, d, odd. The schemes D(n, d), D(n, d, odd) are smooth
over Spec(Z). For any prime number p and f ∈ P (n, d)(Fp), set

S(f, p) :=
1

w(f)

∑
x∈An(Fp)

exp

(
f(x)

p

)
where w(f) is the smallest integer so that Hi

c(AnFp
,Lψ(f)) = 0 for all i > w(f).

Here, we have fixed a nontrivial additive character ψ : Fp → Q×
ℓ ≃ C×, and set

Lψ(f) to be the pullback of the Artin-Schreier sheaf along the map f : An → A1.

More generally, if An ×D(n, d, ) → A1 is the evaluation map sending x, f 7→ f(x),
then define Lψ(f(x)) to be the pullback of the Artin-Schreier sheaf.

Theorem 5.2. Let n ≥ 1 be an integer, and d ≥ 1 an odd integer. For n odd, set
Kn,odd = U(d−1)n(C) ∩ Sp(d−1)n(C), and for n even, set Kn = O(d−1)n(C). Then
the families (S(f, p))f∈P (n,d,odd)(Fp

are equidistributed as p→ ∞ under the trace of
the probability Haar measure on Kn,odd.
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Remark 5.3. This theorem is interesting because, as explained in [11, Sections
12.5, 12.6], there exist analogs of Kummer sheaves over Spec(Z) which allow one to
prove horizontal equidistribution results, but there is no analogue for Artin-Schreier
sheaves over Spec(Z).

Proof. The case of d = 1 is immediate, since exponential sums of linear polynomials
vanish, and (d − 1)n = 0, so Kn,odd is trivial. For d ≥ 3, since the complexity of
Artin-Schreier sheaves are constant as p varies, the Riemann hypothesis implies
that |S(f, p)| is bounded as f, p varies. Since D(n, d, odd) ⊂ P (n, d, odd) is dense,
it suffices to prove equidistribution for D(n, d, odd). Now, consider the projection
to the second factor

π2 : An ×D(n, d, odd) → D(n, d, odd).

Define Dp := π2,!Lψ(f(x))[n](n/2), so that by construction,

S(f, p) = (−1)ntDp
(f)

since shriek pushforward on the level of trace functions implements summing over
the fiber. By [11, Cor 3.5.11, 3.5.12] this object of Db

c(D(n, d, odd)) is actually a
local system of rank (d− 1)n and pure of weight 0 for each prime p ∤ d. For p ≥ 7
and p ∤ d, the geometric and arithmetic monodromy groups agree, and are Sp(d−1)n

for n odd and O(d−1)n for n even [11, Theorem 12.6.3]. So by definition, Kn,odd is
a maximal compact subgroup of the monodromy group of Dp.

Using (5) and (6) along with the facts that the Artin-Schreier sheafs have
bounded complexity as p varies, and that complexities of morphisms are bounded
in families (by constructibility), we deduce that c(Dp) is bounded as p → ∞. To
show equidistribution, we now need to check the Weyl equidistribution theorem,
namely that

lim
p→∞

1

|D(n, d, odd)|
∑
x∈Fn

p

tρ(Dp)(x) = 0

for every nontrivial irreducible representation ρ of Kn,odd. By the remark follow-
ing Proposition 5.1, since we showed c(Dp) is bounded, so is c(ρ(Dp)). Again by
Proposition 5.1, the sheaf ρ(Dp) is pure of weight 0 since it is a subhseaf of D⊗a

p .
Finally, applying the Lang-Weil bound, the Riemann hypothesis, and the geometric
irreducibility and non-triviality of ρ(Dp), we deduce that

1

|D(n, d, odd)|
∑
x∈Fn

p

tρ(Dp)(x) ≪ cu(ρ(Dp))p−1/2

hence the limit as p→ ∞ is zero. □
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