
THE TORIC CODE

ALICE WANG

Abstract. The toric code is a fundamental model for topologically-encoded

error correction in quantum computation. This paper aims to build up the

mathematical formalisms describing the toric code from both an algebraic and
topological perspective, following the structure of [1]. First we describe the

stabilizer formalism and general principles of homology. Then we discuss the

topological operators that construct the toric code and the key concept of
abelian anyons, quasiparticles which can be used for physically implementing

the toric code. This paper assumes knowledge of linear algebra, as well as

some basic knowledge of logic and abstract algebra.
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1. Introduction

Quantum error correction is a vital step in the realization of quantum comput-
ing. Inherent systematic faults such as decoherence cause unwanted changes in the
physical quantum state and hence alter the stored bits of information. Topological
quantum codes (first described in [6]), which implement quantum bits through op-
erators on a lattice, can detect and correct errors through their inherent topological
properties. Thus, topological codes allow for the realization of universal quantum
computing with inherent fault tolerance [6].

In this paper, we first describe the stabilizer formalism for quantum error cor-
rection. Following this and a discussion of basic homology, we introduce the toric
code, the fundamental topological error-correcting code, and define the anyon, a
quasiparticle critical for physical implementation of the toric code.
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As in the broader field of quantum computing, we use Dirac or ”bra-ket” nota-
tion. A mathematically-rigorous look into Dirac notation is beyond the scope of
this paper.1

1.1. Preliminary definitions. In classical computing, information is constructed
out of bits, which have a value of either 1 or 0. Quantum physics allows us to
describe qubits, or quantum bits, as a superposition of orthornormal basis vectors
|0⟩ and |1⟩. These vectors are called code basis states and correspond physically to
the ground and excited states, respectively [9].

Definition 1.1. The qubit |ψ⟩ is described by the vector |ψ⟩ = α |0⟩+β |1⟩ =
[
α
β

]
,

where α, β ∈ Z such that |α|2 + |β|2 = 1.

Logical qubits should be distinguished from physical qubits. Physical qubits derive
from the physical system and are therefore vulnerable to alteration by errors.2

Logical qubits |ψ⟩L are constructed using a repetition code of physical qubits. For
example, the three-qubit repetition code is given by

|0⟩L = |000⟩ , |1⟩L = |111⟩ , |ψ⟩L = α |0⟩L + β |1⟩L .
The value of a logical qubit is equal to the value of the majority of physical

qubits within it. Hence, logical qubits ignore errors on individual physical qubits
(i.e. under the three-qubit repetition code, |110⟩ would be corrected to |111⟩) [1].

Definition 1.2. The Pauli operators act on single physical qubits and are given
by

(1.3) σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
, I =

[
1 0
0 1

]
.

By inspection, for any Pauli operator σ and its conjugate transpose σ∗:

(1) σ either commutes or anticommutes with other Pauli operators,
(2) σ has eigenvalues of 1 and −1,
(3) σ is self-inverse (σ2 = I) and Hermitian (σ = σ∗). Therefore, σ is unitary

(σσ∗ = I).

The Pauli operators form a basis for the real vector space of {M ∈ Z2x2∥ M =
M∗}, the set of all possible single-qubit operators. Additionally, the set

{±σx,±σy,±σz,±I,±iσx,±iσy,±iσz,±iI}
forms a group under the group operation of matrix multiplication [1]. This can

be shown using the identity

(1.4) σy = iσxσz.

Definition 1.5. The tensor product of n Pauli operators, interpreted as an at-
tachment of a single Pauli operator to each of n qubits (further discussed in section
3.3), is called an n-qubit Pauli operator.

1A more detailed look into Dirac notation can be found in [7].
2As in Definition 1.1, we denote physical qubits by “ket” vectors without subscripts.
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Based on the properties of single Pauli operators, it can be shown that the n-
qubit Pauli operators have properties analogous to (1)-(3). Additionally, if given
prefactors of ±i and ±1, they also form a group under the group operation of matrix
multiplication [1].

2. The stabilizer formalism

The stabilizer formalism defines two sets of operators that act on the quantum
state by matrix multiplication. The first is a set of stabilizer operators that corre-
spond physically to taking measurements of the quantum state [1].

Definition 2.1. Let N be the Hilbert space of all possible physical states of a
quantum code. Suppose N has basis states {|ψj⟩ ∥ j ∈ J}. An n-qubit Pauli
operator Pk is a stabilizer operator if for all j ∈ J , Pk |ψj⟩ = |ψj⟩.

Proposition 2.2. The set of all stabilizer operators P is an abelian group under
the group operation of matrix multiplication, called the stabilizer group.

Proof. As previously shown, the set of all n-qubit Pauli operators (with prefactors
±i and ±1) is a group under the group operation of matrix multiplication. Note
that P is a subset of this set.

For any P1, P2 ∈ P and j ∈ J , P1P2 |ψj⟩ = P1 |ψj⟩ = |ψj⟩. Then by Definition
2.1, P1P2 ∈ P , so P is closed under matrix multiplication. Assume for the sake of
contradiction that P1 and P2 do not commute. Then they must anticommute, so
P1P2 = −P2P1. Since P2P1 ∈ P :

∀j ∈ J, P1P2 |ψj⟩ = −P2P1 |ψj⟩ = − |ψj⟩ .
However, this is a contradiction. Hence, P is an abelian group. □

Definition 2.3. A set of stabilizer generators is defined as any G ⊆ P such that
P = ⟨G⟩. Because they are n-qubit Pauli operators, stabilizer generators are self-
inverse, so for any g ∈ P and set of stabilizer generators G = {gj∥ 1 ≤ j ≤ m}:

(2.4) g =

m∏
j=1

g
aj

j , aj ∈ {0, 1}.

Theorem 2.5. If a quantum code includes k logically-encoded qubits, n physical
qubits, and m independent stabilizer generators, then

(2.6) m = n− k.

Proof. Since each qubit encodes a value of either 0 or 1, there are 2n possible
physical states and 2k possible logical states. By (2.4), the order of the stabilizer
group is 2m.

Since the code state can be described by any stabilizer operator combined with
any logical state, 2m2k = 2n. Then m = n− k. □

Definition 2.7. Let |ψ⟩ ∈ N be the state of a quantum code. The syndrome is the
set of eigenvalues for S |ψ⟩, ∀S ∈ P . We call the state error-free if the syndrome is
{1}. If the syndrome contains −1, then an error has been detected [1].

We then define encoded logical operators, n-qubit Pauli operators that act on
single logical qubits analogously to how Pauli operators act on single physical qubits
[1].
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Definition 2.8. The encoded logical X operator X is given by

(2.9) X |ψ⟩L := σx

[
α
β

]
L

=

{
|1⟩L |ψ⟩L = |0⟩L
|0⟩L |ψ⟩L = |1⟩L

.

The encoded logical Z operator Z is given by

(2.10) Z |ψ⟩L := σz

[
α
β

]
L

=

{
− |ψ⟩L |ψ⟩L = ± |1⟩L
|0⟩L |ψ⟩L = |0⟩L

.

By (1.4), the set of all encoded logical operators is defined completely by X and
Z. Encoded logical operators are not unique, since we can add up to 2m distinct
stabilizer operators that yield the same result [1].

Proposition 2.11. Encoded logical operators commute with every element of the
stabilizer group.

Proof. Any encoded logical operator L and stabilizer operator S are both n-qubit
Pauli operators, which either commute or anticommute with each other. Let |ψ⟩
be the quantum code state. Suppose S and L anticommute. Then,

SL |ψ⟩ = −LS |ψ⟩ = −L |ψ⟩ .
Hence, S has the eigenvector L |ψ⟩ with corresponding eigenvalue −1. By Defi-

nition 2.7, the state contains an error—a contradiction. Therefore, S and L must
commute. □

Definition 2.12. The centralizer is the set of all n-qubit Pauli operators that
commute with every element of P [1]. Hence, the centralizer includes all stabilizer
operators and all encoded logical operators.

Let C be an operator in the centralizer. Then for any S ∈ P , given the quantum
code state |ψ⟩ ∈ N ,

SC |ψ⟩ = CS |ψ⟩ = C |ψ⟩ .
The only eigenvalue of S is 1, so centralizer operators are not detectable by

syndrome measurement.

Definition 2.13. The weight of any n-qubit Pauli operator is the number of qubits
it acts non-trivially on (i.e. the number of non-identity factors). The code distance
is the minimum weight of any non-identity encoded logical operator [1].

Once errors are detected, error correction operators can be applied to the code
state. Because of code degeneracy–the property of different errors yielding the
same syndrome–a special algorithm called a decoder is needed to select the best
error correction operator [1].

3. The toric code

Consider the k× k 2-dimensional lattice formed by the cellulation, or division of
a surface into polygonal cells meeting edge-to-edge and corner-to-corner, of squares
on the torus. We call this lattice the primal lattice, and form a dual lattice by
shifting the primal lattice by half a unit-length vertically and horizontally [1]. The
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“hybrid lattice” formed by overlaying the primal and dual lattices, as shown in
Figure 1, forms the foundation for the toric code TOR(k) [6].3

Figure 1. Formation of a 4 × 4 lattice through cellulation of
squares on the torus. The dotted lines denote where the top edge
meets the bottom edge (orange) and the rightmost edge meets the
leftmost edge (green). The dashed lines denote the dual lattice,
while the solid lines denote the primal lattice.

Definition 3.1. In either the primal or dual lattice: a vertex is a point at which a
horizontal and vertical line in the lattice meet. A plaquette is a unit square in the
lattice. An edge is a unit length on a horizontal or vertical line in the lattice [1].

3.1. Homological foundations. Homology is the study of boundaries. Cellular
homology refers to the homology of lattices resulting from cellulations, through
which we describe TOR(k). In particular, we use Z2 homology, which maps each
part of the square lattice to a member of the ring Z2 [1].

Definition 3.2. An n-cell is an n-dimensional object on the lattice (either primal
or dual). On a square lattice, 0-cells are vertices, 1-cells are edges, and 2-cells are
plaquettes [1]. Henceforth, we denote the set of all n-cells on the primal lattice by
Sn := {cj∥ j ∈ Jn}, where Jn is an indexing set.

Definition 3.3. An n-chain c is a finite subset of Sn with the characteristic func-
tion χc : Sn → Z2:

χc(j) :=

{
1 cj ∈ c

0 cj /∈ c
.

Hence, c can equivalently be written as a “coloring” of an element of Z2 to each
j ∈ Jn:

(3.4) c =
∑
j∈Jn

χc(j)cj [4].

The null n-chain 0n is defined as ∅ ⊂ Sn, or

3We will build up gradually to the precise definition, found in the beginning of subsection 3.3.
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0n :=
∑
j∈Jn

0cj [1].

Hence, for n ≥ 0, the set of n-chains Cn is the Z2 vector space over the basis
Sn [4]. By convention, any −1-chain, including the null −1-chain 0−1, is defined as
the “coloring” of 0 to all 0-cells, 1-cells, and 2-cells [1].

Definition 3.5. Let cj ∈ Sn and d be the (n− 1)-chain that is its boundary.4 The
n-boundary map ∂n : Cn → Cn−1 is the group homomorphism given by ∂nc := d.
For any 0-cell c, the 0-boundary map ∂0 is given by ∂0c = 0−1 [1].

Definition 3.6. An n-chain c is an n-cycle if ∂nc = 0n−1 [1].

Proposition 3.7. For any n ∈ N, the set of all n-cycles Zn forms a group under
the group operation of addition (i.e. Zn := ker ∂n).

Proof. Zn ⊂ Cn, so it suffices to show that Zn is closed under addition. Let c1, c2 ∈
Zn. Then ∂n(c1 + c2) = ∂nc1 + ∂nc2 = 0n−1 + 0n−1 = 0n−1, so c1 + c2 ∈ Zn. □

Definition 3.8. An n-chain b is an n-boundary if it is the boundary of an (n+1)-
chain [1].

Proposition 3.9. For any n ∈ N, the set of all n-boundaries Bn forms a group
under the group operation of addition (i.e. Bn := Im ∂n+1).

Proof. Bn ⊂ Cn, so it suffices to show that Bn is closed under addition. Let b1, b2 ∈
Bn. By Definition 3.8, ∃c1, c2 ∈ Cn+1 such that b1 = ∂n+1c1 and b2 = ∂n+1c2. Then
b1 + b2 = ∂n+1c1 + ∂n+1c2 = ∂n+1(c1 + c2). Since c1 + c2 ∈ Cn+1, b1 + b2 ∈ Bn. □

Lemma 3.10. For any n-chain c with n ≥ 1:

∂n−1∂nc = 0n−2.

Proof. Let n ≥ 1. For some j ∈ Jn, let {dk∥ k ∈ Kj} be the set of (n − 1)-cells
such that ∂ncj =

∑
k∈Kj

1dk. Let {el∥ l ∈ Lj} be the set of (n− 2)-cells such that

el ∈ ∂n−1dk for any k ∈ Kj . For each l ∈ Lj , there are exactly two kl1 , kl2 ∈ Kj

such that el ∈ ∂n−1dkl1
∩ ∂n−1dkl2

. Then:

∂n−1∂ncj = ∂n−1

 ∑
k∈Kj

1dk

 =
∑
l∈Lj

(
1 + 1

)
el = 0n−2.

Hence, for any n-chain c given by (3.4):

∂n−1∂nc = ∂n−1∂n

∑
j∈Jn

χc(j)cj

 =
∑
j∈Jn

∂n−1∂nχc(j)cj =
∑
j∈Jn

0n−2 = 0n−2.

□

Theorem 3.11. Every n-boundary is an n-cycle.

4The boundary of a set is defined as the closure minus the interior. Hence, the boundary of a
2-cell is the surrounding 1-cells, the boundary of a 1-cell is the adjacent 0-cells, and the boundary

of a 0-cell is the empty set.
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Proof. Let b ∈ Bn. By Definition 3.8, ∃c ∈ Cn+1 such that b = ∂n+1c. By Lemma
3.10, ∂nb = ∂n∂n+1c = 0n−1, so b ∈ Zn. □

Definition 3.12. Two n-chains c and d are homologically equivalent if c = d + b,
where b ∈ Bn [1].

Definition 3.13. The nth homology group Hn is the quotient group

Hn := Zn/Bn.

Thus, members of the nth homology group define various homological equiva-
lence classes on the primal lattice [1].

3.2. Cohomology. Cohomology uses dual vector spaces to generalize the previous
subsection to the dual lattice. Similarly to Definition 3.3, an n-cochain is a (not
necessarily finite) subset of Sn with an associated characteristic function and equiv-
alent “coloring” definition as in (3.4), so the set of n-cochains Cn is a Z2 vector
space over Sn [4]. Then the null n-cochain 0n is equivalent to 0n, and by convention,
any 3-cochain, including the null 3-cochain 03, is equivalent to the −1-chain.

Definition 3.14. Let c =
∑

j∈Jn
χc(j)cj be an n-chain and p =

∑
j∈Jn

χp(j)cj be
an n-cochain. The Kronecker pairing <,>: Cn × Cn → Z2 between c and p is the
bilinear map given by

⟨p, c⟩ :=
∑
cj∈c

χp(j) =
∑
cj∈p

χc(j) =
∑
j∈Jn

χp(j)χc(j) [4].

Cn and Cn are related in the following way:

Proposition 3.15. For p ∈ Cn, the map p→ ⟨p, ⟩ is an isomorphism between Cn

and hom (Cn,Z2).

Proof. Let p ∈ Cn. For j ∈ Jn, ⟨p, cj⟩ = 1 if and only if cj ∈ p, and ⟨p, cj⟩ = 0
otherwise. Hence, p→ ⟨p, ⟩ is injective.

Let h ∈ hom (Cn,Z2). Define a ∈ Cn by

a := {cj ∈ Sn∥ h(cj) = 1}.
For any j ∈ Jn, ⟨a, cj⟩ = h(cj), so h = ⟨a, ⟩. Then p→ ⟨p, ⟩ is surjective, so it is

a bijection. Hence, it is also an isomorphism between Cn and hom (Cn,Z2). □

Definition 3.16. Let p be an n-cochain. The n-coboundary map ∂̃n : Cn → Cn+1

is the group homomorphism given by

(3.17) ⟨∂̃np, c⟩ = ⟨p, ∂n+1c⟩,
where c is any (n+ 1)-chain [1].

For analogous reasoning to Lemma 3.10, by Proposition 3.15, given any n-cochain
p with n ≤ 1, ∂̃n+1∂̃np = 0n+2 [4].

As with Definitions 3.6 and 3.8, an n-cochain p is an n-cocycle if ∂̃np = 0n+1 and
an n-coboundary if it is the coboundary of some (n− 1)-cochain [1]. For analogous

reasoning as Propositions 3.7 and 3.9, the set of all n-cocycles Zn := ker ∂̃n and
the set of all n-coboundaries Bn := Im ∂̃n−1 are groups under addition.
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A useful visualization for the dual relationship between homology and cohomol-
ogy is shown in Figure 2: for any n-cell on the primal lattice, there is a correspond-
ing (2 − n)-cell on the dual lattice. Then any n-chain c on the primal lattice has
a corresponding (2− n)-chain on the dual lattice—equivalent to the corresponding
n-cochain c̃ under Proposition 3.15 [1].5

Figure 2. n-cells on the primal lattice and their corresponding
(2 − n)-cells on the dual lattice. Green: primal 2-cell and cor-
responding dual 0-cell. Orange: primal 1-cell and corresponding
dual 1-cell. Purple: primal 0-cell and corresponding dual 2-cell.

Definition 3.18. Analogous to Definition 3.13, the nth cohomology group is the
quotient group

Hn := Zn/Bn.

Thus, like the nth homology group on the primal lattice, members of the nth
cohomology group define homological equivalence classes on the dual lattice [1].
H1 and H1 are of particular importance to the toric code. Representative mem-

bers of their equivalence classes are shown in Figure 3.

Figure 3. Representatives of the four equivalence classes for H1

(blue) and H1 (red). The far left shows cz2 and cx1
, and the center

left shows cz1 and cx2
. The center right shows contractible loops.

The far right shows cz1 + cz2 and cx1 + cx2 .

5This more antiquated way of conceptualizing cohomology is used most often in discussing the
toric code and is depicted in all of the figures.
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3.3. Topological operators. Now we can characterize the toric code more pre-
cisely. We denote the Hilbert space of TOR(k)’s all possible quantum states by N
[6]. Each element of S1 is a physical qubit, so there are 2k2 physical qubits in total.
Any 2k2-qubit Pauli operator is given by the assignment of some Pauli operator σ
to each j ∈ J1, denoted by the superscript σj .6 TOR(k) is the non-abelian group
formed by these 2k2-qubit Pauli operators.

Definition 3.19. Let s be a 0-cell on the primal lattice and Cs = {cj , j ∈ J1∥ s ∈
∂1cj}. The corresponding vertex operator As is the 2k2-qubit Pauli operator

(3.20) As :=
⊗

cj∈Cs

σj
x

⊗
cj∈S1\Cs

Ij .

Let p be a 2-cell on the primal lattice and Cp = {cj , j ∈ J1∥ cj ∈ ∂2p}. The
corresponding plaquette operator Bp is the 2k2-qubit Pauli operator

(3.21) Bp :=
⊗

cj∈Cp

σj
z

⊗
cj∈S1\Cp

Ij [6].

The constructions of the sets Cs and Cp are shown in Figure 4.

Figure 4. Primal vertex s and 1-chain Cs as in (3.20) for defin-
ing As (red). Primal plaquette p and 1-chain Cp as in (3.21) for
defining Bp (blue).

Definition 3.22. The protected subspace L of TOR(k) is defined as

L := {|ξ⟩ ∈ N∥ ∀s ∈ S0,∀p ∈ S2 : As |ξ⟩ = |ξ⟩ , Bp |ξ⟩ = |ξ⟩}.
Thus, As and Bp are stabilizer operators of TOR(k). Then for |ξ⟩ ∈ N , the

syndrome measurement of a vertex s or plaquette p is given by the eigenvalues of
As |ξ⟩ or Bp |ξ⟩, respectively. We denote the stabilizer group of TOR(k) by F [6].

Proposition 3.23. TOR(k) has 2k2 − 2 independent stabilizer generators.

Proof. The lattice of TOR(k) has k2 vertices and k2 plaquettes, so there are 2k2

distinct stabilizer operators that generate F . However:

6This is the tensor product described in Definition 1.5.
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∏
s∈S0

As =
⊗
j∈J1

(
σ2
x

)j
=

⊗
j∈J1

Ij ,
∏
p∈S2

Bp =
⊗
j∈J1

(
σ2
z

)j
=

⊗
j∈J1

Ij .

Then to maintain independence, we must choose all but one As, s ∈ S0 and
Bp, p ∈ S2. Then the total number of independent generators is 2k2 − 2. □

For a more complete picture of the protected subspace, we must consider the
algebra L(L) of all linear operators on L [6].

Lemma 3.24. Let G ⊆ L(L) be the centralizer of TOR(k) and E ⊆ L(L) be the
group generated by As − 1 and Bp − 1, where 1 =

⊗
j∈J1

Ij. Then E ⊂ G and

L(L) ∼= G/E .

Proof. For any s ∈ S0, p ∈ S2, and F ∈ F :

(As − 1) (Bp − 1) = AsBp−Bp−As+1 = BpAs−As−Bp+1 = (Bp − 1) (As − 1) ,

(As − 1)F = AsF − F = FAs − F = F (As − 1) ,

(Bp − 1)F = BpF − F = FBp − F = F (Bp − 1) .

Then any operator generated by As−1 and Bp−1 commutes with F , so E ⊂ G.
By the proof of Proposition 2.11, L(L) ⊆ G. Let α : G → N be the homo-

morphism given by α(G) = G |ψ⟩ for |ψ⟩ ∈ N . Then E = kerα. Each L ∈ L(L)
corresponds to a unique L |ψ⟩ for |ψ⟩ ∈ N . Then under the identity homomorphism,
L(L) ∼= G/E . □

Now, we consider the construction of L(L) using the four equivalence classes in
H1 and H1.

Definition 3.25. A string is a 1-chain or 1-cochain that is not a closed path. For
t ∈ C1 or t′ ∈ C1, string operators are defined as the following 2k2-qubit Pauli
operators:

(3.26) Sz(t) :=
⊗
cj∈t

σj
z

⊗
cj∈S1\t

Ij , Sx(t′) :=
⊗
cj∈t′

σj
x

⊗
cj∈S1\t′

Ij .

Definition 3.27. For non-contractible loops cz1 , cz2 ∈ H1 and cx1
, cx2

∈ H1 (such
as the examples shown in Figure 3), define the following 2k2-qubit Pauli operators:

(3.28) Z1 := Sz(cz1), Z2 := Sz(cz2),

(3.29) X1 := Sx(cx1
), X2 := Sx(cx2

).

Theorem 3.30. {Z1, Z2, X1, X2} is a generating set for L(L).

Proof. Let Cs and Cp be defined as in Definition 3.19. Any L ∈ L(L) can be written
as the product of string operators. However, for any vertex s such that for some
c ∈ C1, s ∈ ∂1c:

(3.31) Sz(c)As =
⊗

cj∈c\Cs

σj
z

⊗
cj∈Cs\c

σj
x

⊗
cj∈c∩Cs

(σzσx)
j

⊗
cj∈S1\c∪Cs

Ij
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= −
⊗

cj∈c\Cs

σj
z

⊗
cj∈Cs\c

σj
x

⊗
cj∈c∩Cs

(σxσz)
j

⊗
cj∈S1\c∪Cs

Ij = −AsS
z(c).

Similarly, for any plaquette p such that for some c′ ∈ C1, p ∈ ∂1c′:

(3.32) Sx(c′)Bp =
⊗

cj∈c′\Cp

σj
x

⊗
cj∈Cp\c′

σj
z

⊗
cj∈c′∩Cp

(σxσz)
j

⊗
cj∈S1\c′∪Cp

Ij

= −
⊗

cj∈c′\Cp

σj
x

⊗
cj∈Cp\c′

σj
z

⊗
cj∈c′∩Cp

(σzσx)
j

⊗
cj∈S1\c′∪Cp

Ij = −BpS
x(c′).

Then Sz(c) and Sx(c′) can only generate L(L) if ∂1c = 00 and ∂1c′ = 02. Hence,
we consider only c ∈ H1 and c′ ∈ H1.

If c and c′ are contractible7 (i.e. in the third homological equivalence class shown
in Figure 3), Sz(c) = Bp1Bp2 for some p1, p2 ∈ S2, and S

x(c′) = As1As2 for some
s1, s2 ∈ S0 [6].

Instead, if c and c′ are non-contractible, then they must be given by c = cz1 or
c = cz2 and c′ = cx1

or c′ = cx2
, as in Definition 3.27. By (3.28) and (3.29), this

defines Z1, Z2, X1, and X2.
Let c ∈ H1 and c′ ∈ H1 be in the fourth homological equivalence class shown in

Figure 3. Then there are some cz1 , cz2 ∈ H1, cx1 , cx2 ∈ H1 as in Definition 3.27 such
that Sz(c) = Z1Z2 = Z2Z1 and Sx(c′) = X1X2 = X2X1. Hence, {Z1, Z2, X1, X2}
is a generating set for L(L). □

Corollary 3.33. dimL = 4 over {Z1, Z2, X1, X2}.

Proof. Most directly, by Theorem 3.30, since there are four elements in the gener-
ating set of L(L), dimL = 4.

Another proof follows from the stabilizer formalism. There are 2k2 physical
qubits and 2k2 − 2 independent stabilizer generators by Proposition 3.23. Then by
Theorem 2.5, there are 2k2 −

(
2k2 − 2

)
= 2 logical qubits. Since each logical qubit

has two possible states, dimL = 22 = 4. □

We can interpret the second proof of Corollary 3.33 as a k2-qubit repetition code,
with the first qubit |ψ⟩L1 constructed from horizontal edges on the lattice and the
second qubit |ψ⟩L2 constructed from vertical edges on the lattice.

For 1 ≤ i ≤ k, let ciz1 denote the ith cz1 -equivalent 1-chain, c
i
z2 denote the ith cz2 -

equivalent 1-chain, cix1
denote the ith cx1-equivalent 1-cochain, and c

i
x2

denote the

ith cx2
-equivalent 1-cochain. Let Z1i := Sz(ciz1), Z2i := Sz(ciz2), X1i := Sx(cix1

),

and X2i := Sx(cix2
). Define the following 2k2-qubit Pauli operators:

(3.34) Z1 =
∏

1≤i≤k

Z1i, Z2 =
∏

1≤i≤k

Z2i,

(3.35) X1 =
∏

1≤i≤k

X1i, X2 =
∏

1≤i≤k

X2i.

Then:

7Meaning they can be continuously deformed to a single point.
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Z |ψ⟩L1 =

{
− |ψ⟩L1 |ψ⟩L1 = ± |1⟩L1

|0⟩L1 |ψ⟩L1 = |0⟩L1

, X |ψ⟩L1 =

{
|1⟩L1 |ψ⟩L1 = |0⟩L1

|0⟩L1 |ψ⟩L1 = |1⟩L1

, and

Z |ψ⟩L2 =

{
− |ψ⟩L2 |ψ⟩L2 = ± |1⟩L2

|0⟩L2 |ψ⟩L2 = |0⟩L2

, X |ψ⟩L2 =

{
|1⟩L2 |ψ⟩L2 = |0⟩L2

|0⟩L2 |ψ⟩L2 = |1⟩L2

.

Hence, by Definition 2.8, Z1, Z2, X1, and X2 are encoded logical operators for
TOR(k), so the topological construction of TOR(k) leads naturally to the stabilizer
formalism!

To determine TOR(k)’s error detection and correction capabilities, consider the
generic n-qubit error represented by the following 2k2-qubit Pauli operator:

(3.36) E = σ(α1, ..., αn;β1, ..., βn) =

n⊗
i=1

(
(σx)

αi (σz)
βi

)ji ⊗
j∈J1\J′

Ij ,

1 ≤ i ≤ n : αi, βi ∈ {0, 1}, J ′ := {ji∥ 1 ≤ i ≤ n} ⊂ J1.

Theorem 3.37. The code distance of TOR(k) is k.

Proof. Let E ∈ G \ F . Then E is non-trivial but undetectable by syndrome mea-
surements. By the proof of Theorem 3.30, E must be the product of some Sz(c)
and Sx(c′), where c or c′ are non-contractible. Hence, if E is given by (3.36),

Supp(E) := n ({1 ≤ i ≤ n∥ αi = 1 or βi = 1}) ≥ k.

Then the code distance, which is the minimum weight of an undetectable error,
is k [1]. □

Thus, TOR(k) will be more error-tolerant for larger lattice sizes [1]. TOR(k) can
detect k−1 errors and correct ⌊k−1

2 ⌋ errors [6].8 For any error E, the decoder must
find a corresponding error correction operator CE ∈ L(L) such that CEE ∈ F [1].

By the proof of Theorem 3.37, since Z1, Z2, Z1Z2 ∈ G \ F , if E is given by
(3.36), then E, Z1E, Z2E, and Z1Z2E = Z2Z1E are “homologically inequivalent”
operators that yield the same syndrome measurements, as shown in Figure 5. This
is a manifestation of code degeneracy.

3.4. Abelian anyons. To perform error correction, we use quasiparticles corre-
sponding to real-world phenomena in solid-state systems [6].

Definition 3.38. Let |ξ⟩ ∈ N . An elementary excitation or particle occurs at a
vertex s or plaquette p if either As |ξ⟩ ≠ |ξ⟩ or Bp |ξ⟩ ≠ |ξ⟩ [6]. We conceive of such
s or p as quasiparticles because they raise the physical energy levels of the ground
states of associated qubits [5].

Theorem 3.39. For t ∈ C1, S
z(t) commutes with all Bp and all As except for

s ∈ ∂1t. Similarly, for t′ ∈ C1, Sx(t′) commutes with all As and all Bp except for

p ∈ ∂̃1t′.

8This is a result of the Hamming distance, an information theory concept beyond the scope of
this paper.
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Figure 5. Examples of homologically-inequivalent errors with
identical syndrome measurements: 1-cells shaded black correspond
to I, 1-cells shaded green correspond to σz, and 0-cells shaded blue
denote the presence of −1 eigenvalues. Far left: E. Center left:
Z1E. Center right: Z2E. Far right: Z1Z2E = Z2Z1E.

Proof. This follows from the proof of Theorem 3.30. Let t ∈ C1 and t′ ∈ C1. By
(3.31), Sz(t) and As anticommute if and only if s ∈ ∂1t. By (3.32), Sx(t) and Bp

anticommute if and only if p ∈ ∂̃1t′. □

For t ∈ C1, the primal 0-cells in ∂1t are called z-type particles or electric charges.
For t′ ∈ C1, the dual 0-cells9 in ∂̃1t′ are called x-type particles or magnetic vortices
[6]. String operators can be interpreted physically as moving a particle from one
endpoint of the chain or cochain to the other [5].

Proposition 3.40. Let |ξ⟩ ∈ N . For t ∈ C1, let E = Sz(t) be an error operator.
Then if and only if t′ ∈ C1 such that ∂1t

′ = ∂1t and t ∩ t′ = ∅:

Sz (t′)E |ξ⟩ = |ξ⟩ .
Similarly, for t ∈ C1 and error operator E = Sx (t), then if and only if t′ ∈ C1

such that ∂̃1t′ = ∂̃1t and t ∩ t′ = ∅:

Sx (t′)E |ξ⟩ = |ξ⟩ .

Proof. Let t, t′ ∈ C1 such that ∂1t
′ = ∂1t and t ∩ t′ = ∅. If E = Sz(t):

Sz(t′)E =
⊗

cj∈t+t′

σj
z

⊗
cj∈S1\t+t′

Ij .

Since ∂1(t + t′) = 00, S
z(t′)E ∈ F by the proof of Theorem 3.30. Then for

|ξ⟩ ∈ N , Sz(t′)E |ξ⟩ = |ξ⟩.
The proof for the second part of Proposition 3.40 follows analogously. □

As a result of code degeneracy, the decoder must find distinct error correction
operators for errors in the four homological equivalence classes, as shown in Figure
5, to avoid overlapping with the 1-chain or 1-cochain associated with the error [1].

For any t1, t2 ∈ C1, S
z(t1) and S

z(t2) commute, and for any t1, t2 ∈ C1, Sx(t1)
and Sx(t2) commute [5]. On the other hand, consider when both Sz and Sx oper-
ators are applied, such as when an electric charge is “moved around” the magnetic
vortex or vice versa, as shown in Figure 6.

9Equivalent to primal 2-cells, as previously discussed.
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Figure 6. Left: x-type particle moving through q ∈ C1 (red)
including contractible loop c ∈ H1 (dashed red) around z-type
particle moving through t ∈ C1 (blue). Right: z-type particle
moving through q ∈ C1 (red) including contractible loop c ∈ H1

(dashed red) around x-type particle moving through t ∈ C1 (blue).

Theorem 3.41. As shown in Figure 6, let t ∈ C1 and q ∈ C1 (or t ∈ C1 and
q ∈ C1) such that q forms a contractible loop c around a particle on t. If the initial
state of the code is |ψi⟩, then the final state |ψf ⟩ after moving one particle in a loop
around another differently-typed particle is |ψf ⟩ = − |ψi⟩.

Proof. Let t ∈ C1, q ∈ C1 with q forming the loop c ∈ Z1 as described. Sx(c) and
Sz(t) anticommute because they share exactly one j∗ ∈ J1 such that cj∗ ∈ t ∩ c:

Sx(c)Sz(t) =

 ⊗
cj∈t\cj∗

σj
z

⊗
cj∈c\cj∗

σj
x

⊗
cj∈S1\t∪c

Ij

⊗ (σxσz)
j∗

= −

 ⊗
cj∈t\cj∗

σj
z

⊗
cj∈c\cj∗

σj
x

⊗
cj∈S1\t∪c

Ij

⊗ (σzσx)
j∗

= −Sz(t)Sx(c).

Then if |ψ⟩ is the originally-unaltered quantum state:

|ψi⟩ = Sz(t)Sx(q − c) |ψ⟩ ,

|ψf ⟩ = Sx(c)Sz(t)Sx(q − c) |ψ⟩ = −Sz(t)Sx(c)Sx(q − c) |ψ⟩

= −Sz(t)Sx(q − c) |ψ⟩ = − |ψi⟩ .
Let q ∈ C1, t ∈ C1 such that q forms a loop c ∈ Z1 as described. Then for

analogous reasoning, |ψf ⟩ = − |ψi⟩. □

In physics, electric charges and magnetic vortices are called anyons, which have
this unique sign-flipping property when moving one particle around a differently-
typed particle [6]. An anyon has 0-charge if its associated syndrome measurement
is 1 and +1-charge if its associated syndrome measurement is −1. Thus, errors
create +1-charge particles, and error correction operators annihilate them [1].
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