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Abstract. This paper provides a proof of Bezout’s theorem using the resul-

tant. As such, it provides relevant background on the resultant, as well as

projective space. A simple proof of the theorem in the case of a conic and
another curve is also included to help the reader visualize what the theorem

states and why it is true.
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1. Introduction

Bezout’s theorem states that two polynomials of degree n and m will have nm
intersections in complex projective space, counted with multiplicity. Bezout’s the-
orem in the case of plane curves was stated in Isaac Newton’s Principia in 1687.
Bezout gave a proof for simpler cases that did not involve projective space and
multiplicity in 1779 [4].

Further progress came in the 20th century, once Serre achieved an algebraic de-
scription of multiplicity.

1.1. Pascal’s Theorem. Due to its characterization of curves in projective space,
Bezout’s theorem is important in algebraic geometry and topology. For example,
Bezout’s theorem has been used to elegantly prove Theorem 1.1, Pascal’s Theorem
[5] [6].

Theorem 1.1. Let ABCDEF be a hexagon inscribed in a conic. Then the inter-
sections X,Y, Z of opposite sides of this hexagon are collinear. See Figure 1 for a
visualization of this statement.
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Figure 1. Examples [5] of Pascal’s theorem applied to hexagons
inscribed in circles. The lines formed by the intersection points of
opposite sides of the hexagon are shown in red.

Proof. We will now sketch the proof of this theorem. For a full proof, see [5] [6].
In the case that all pairs of opposite sides on the hexagon are parallel, the points

of intersection all lie on the line at infinity (see Section 2 for a description of pro-
jective space and the line at infinity, and Figure 2 for a visual).

Figure 2. A regular hexagon inscribed in a circle [22]. Opposite
sides (shown in the same color) are parallel.

Opposite sides of the hexagon in Figure 2 do not intersect in Euclidean space.
However, in projective space parallel lines do intersect (each set or pencil of parallel
lines intersecting at one point at infinity). Therefore, all three intersection points
for the hexagon shown lie on the ”line at infinity”.
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Similarly, if one pair of opposite sides is parallel, then the intersection points of
the other pairs must form a line parallel to the parallel pair of sides, so that this
line contains the point at infinity where the parallel sides intersect [6]. As such,
Pascal’s theorem is true in projective space without exceptions.

From this description, it is obvious that projective space plays a role in Pascal’s
theorem. Similarly, we can define two cubic curves, each defined to vanish on three
of the six lines of our hexagon and containing no opposite or adjacent sides. In
this case, each cubic will contain all six points of the hexagon. Then we can choose
a seventh point on the conic within which the hexagon is inscribed and create a
linear combination of the two cubics that vanishes there [6].

Since both cubics vanish at the six points of the hexagon, this new cubic will
vanish at all of these points as well. Thus, it will have seven points in common
with the conic [6]. However, Bezout’s theorem states that if the cubic and conic
are distinct, then they must have 2 · 3 = 6 (the product of the degrees of the two
curves) points in common. Thus, the curves cannot be distinct, and the cubic must
be the union (product) of the conic and a line (degree one polynomial).

Since the intersections of opposite sides cannot lie on the conic (opposite sides
cannot intersect the conic at the same point), they must lie on this line, and thus
be collinear. With this observation, the proof of Pascal’s theorem is complete.

□

1.2. Singular Points. Bezout’s theorem can also be used to count the singular
points (where the curve crosses over itself or otherwise breaks differentiability [10])
of an irreducible [13] projective curve of degree d [7] [9] [8] in an algebraically closed

field [13]. Specifically, there are no more than

(
d− 1
2

)
singular points for a curve

of degree d.

In order to prove this claim, we can create a curve of degree d − 2 through(
d− 1
2

)
+ d − 2 =

(
d
2

)
− 1 points, and assume that

(
d− 1
2

)
+ 1 of these points

are singular [7] (the other d− 3 points are arbitrary points on the curve). Bezout’s
theorem states that there should be

(d− 2)d = d2 − 2d

intersections between these curves, counted with multiplicity.

However, there are at least

2 ·
((

d− 1
2

)
+ 1

)
+ d− 3 = 2 ·

(
d2 − 3d+ 4

2

)
+ d− 3

points, since singular points must have a multiplicity greater than one. Since
d(d−2)+1 > d(d−2), it follows by Bezout’s theorem that the curve of degree d−2
that we constructed is a factor of the curve of degree d, which is a contradiction
because the curve is given to be irreducible [7].
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1.3. Loops. It can similarly be shown that an irreducible smooth curve of degree

d can have at most

(
d− 1
2

)
+ 1 loops.

For the purposes of this proof, we define an even loop as one whose complement
is split into two disjoint components, an interior and an exterior. In contrast, an
odd loop has only one connected component. See Figure 3 for a visual of such loops
in projective space.

Figure 3. An example of odd and even loops in projective space
[7]. Note that antipodal points are identified with each other, as
shown in the leftmost figure, such that the odd loop shown is indeed
a closed loop.

The identification of antipodal points also implies that the complement of the
odd loop consists of only one connected component, as asserted in the definition of
even and odd loops.

Consider a curve that has been decomposed into distinct loops (see Figure 4).
Since the complement of an odd loop is a disc, it is impossible for the curve to
consist of more than one odd loop, as all loops constructed within a disc have an
interior and an exterior [7].

Specifically, one can consider that the identification of antipodal points can only
be taken advantage of once. There is no way to connect two pairs of antipodal
points in a circle without one line crossing the other, implying that there is no way
to create two disjoint odd loops. Therefore, any curve can have at most one odd
loop. This fact will be utilized in our proof.

The proof will now follow similarly to the proof that a projective curve of degree

d can have no more than

(
d− 1
2

)
singular points. To begin, we construct a curve

through

(
d− 1
2

)
+ 2 points and assume that each point is on a separate loop of

the curve [7].

In this case, there are

(
d− 1
2

)
+ 1 additional points, as an even loop will be

intersected in two points or have an intersection of multiplicity two (we count in-
tersections with multiplicity for Bezout’s theorem). As in the previous proof, we
can choose d−3 additional points on any curve, and show that there are more than
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Figure 4. The decomposition of a cubic curve and two conic
curves into disjoint loops. This decomposition is achieved through
a perturbation of the curves by a small number ϵ [7]. Note that
there is at most one odd loop in the decompositions.

d(d − 2) intersection points [7]. Again, this result contradicts Bezout’s theorem
since the curve of degree d is irreducible.

Bezout’s theorem also has applications in topology, including determining the
genus of a smooth curve in projective space [7] [11] [12]. These examples emphasize
that Bezout’s theorem is applicable to a wide variety of problems. Overall, the
importance of understanding how two curves will intersect encourages the study of
this theorem.

2. Projective Spaces

The proof of Bezout’s theorem will require an understanding of projective spaces,
as alluded to in the introduction.

Definition 2.1. A projective space Pn
R is the set of all lines through the origin in

Rn+1 [2].

This definition is best explained through visuals. We will begin with the simplest
space, P1

R, and consider the lines through the origin in R2. Several such lines are
shown in Figure 5.

Importantly, we can characterize each of these lines by one real number: its
slope. The only exception is the line x = 0. Note that the closer that a line is to
the y-axis, the larger its slope is. As such, we consider this line to have infinite
slope, and allow a point at infinity as a member of P1

R. It follows that P1
R = R1∪{∞}.

This example gives a general feel for how projective spaces work: Pn
R contains

a full copy of Rn. As shown by the additional point at infinity in P1
R, however,
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Figure 5. Selected lines through the origin in the plane R2 [22].
Note that the vertical line (x = 0) is a valid member of P1

R.

equality does not necessarily hold. In other words, while Rn ⊂ Pn
R, it is not true

that Pn
R = Rn.

Our focus for this paper will be P2
R, the set of all lines through the origin in

R3. We can characterize each line by the point where it intersects the plane z = 1.
However, lines that lie in the xy plane are not accounted for by this characteriza-
tion. Each of these lines represents a point at infinity. This observation leads us to
Lemma 2.5.

Definition 2.2. A line in projective space is defined as the set of lines that coincide
with a plane through the origin (see Figure 6). As such, it can be characterized by
the equation of the plane that defines it [19].

For example, in R3, the equation z = 0 characterizes the xy plane. Since the line
in P2

R that this plane delineates contains only points at infinity, we call this line the
line at infinity.

Remark 2.3. Note that all lines through the plane in Figure 6 must be perpen-
dicular to the red vector shown in the figure, because this vector is perpendicular
to the plane itself.

Furthermore, any line perpendicular to the red vector must lie in the plane
shown, because we are working in R3 and can thus form an orthogonal basis using
the red vector and two vectors that are orthogonal to each other and lie in the plane.

Thus, we can also consider a projective line in P2
R as the set of all lines through

the origin that are perpendicular to a given vector.

Lemma 2.4. All projective lines in P2
R except for the line at infinity contain exactly

one point at infinity

Proof. Consider some arbitrary projective line that is not the line at infinity. We
know that the plane defining the projective line contains the point (0, 0, 0). Thus,
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Figure 6. An example [21] of a projective line, visualized as the
set of lines through the origin that coincide with a plane through
the origin (each pair of blue vectors represents a line).

this plane intersects but is not equal to the xy plane. It follows that the planes are
not parallel.

The equations of the planes in R3 will be in three variables [20] [19]. Thus, we
have two equations and three variables. The solution to such a system of equations
cannot be a single point. Knowing that the intersection is nonzero and that the
planes are not equal, we conclude that the intersection of the xy plane and our
plane is a line.

Indeed, the intersection between two planes in R3 that are not parallel or equal
is a single line [20] (see Figure 7). Since this line lies on the xy plane, it is clearly
a point at infinity.

Since this line is the only line on the xy plane that belongs to the plane defining
our projective line, our arbitrary projective line contains one and only one point at
infinity. We conclude that this statement holds for all projective lines in R3, except
for the line at infinity. □

Figure 7. In R3, two nonequal intersecting planes will intersect
in a line [20].
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Lemma 2.5. Any two nonequal lines in P2
R have exactly one shared point.

Proof. We can prove this assertion by the same logic used in Lemma 2.4: the planes
defining any two projective lines have a shared point at the origin. Thus, they are
not parallel. Given also that the planes are not equal, their intersection points will
form a single line.

This line must contain the shared point at the origin. As such, it is a line through
the origin, and thus a point in projective space. This point is our single intersection
point. Note that the point can be a line in the xy plane (a point at infinity).

In this case, the lines are parallel, since they do not converge in R2 (recall that
R2 ⊂ P2

R). As such, we state that parallel lines converge at infinity in projective
space.

□

We must also introduce a convention for projective coordinates. As is common
practice, we will follow the notation described in Construction 2.6.

Construction 2.6. Homogenous coordinates: We denote points in Pn as an equiv-
alence class [x1 : x2 · · · : xn], where [x1 : x2 · · · : xn] ∼ [y1 : y2 · · · : yn] if some
constant c satisfies [c · x1 : c · x2 · · · : c · xn] = [y1 : y2 · · · : yn] [15] [16].

Essentially, since a point in Pn is a line through the origin in Rn+1, we can
represent a point in Pn using any point on the line that defines it. In this way, we
represent points in Pn as equivalence classes of n+ 1-tuples, or points in Rn+1.

We will prove that equivalent points must lie on the same line through the origin
in Theorem 2.7. Note that, due to the nature of projective space, [0 : 0 · · · : 0] is
not a valid point in homogeneous coordinates.

Theorem 2.7. Two points in Pn are equivalent if and only if they lie on the same
line through the origin.

Proof. We will accept without proof that two points are connected by one and only
one line in Rn. If [c · x1 : c · x2 · · · : c · xn] = [y1 : y2 · · · : yn], then we can show that
the line connecting (x1, x2, ..., xn) and (y1, y2, ..., yn) must pass through the origin.
We will consider two distinct points; if the points are equal then they certainly lie
on the same line through the origin.

Specifically, we know that (x1, x2, ..., xn) belongs to this line, and that it points
in the direction of the vector v⃗ between (x1, x2, ..., xn) and (y1, y2, ..., yn), which
can also be written as the vector

v⃗ =


y1 − x1
y2 − x2

...
yn − xn


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centered at the origin.
We can parametrize [1] the line using this point and this vector, as the set of

points p satisfying

p = (t · (y1 − x1) + x1, t · (y2 − x2) + x2, · · · , t · (yn − xn) + xn),

where t is some constant. Note that (x1, x2, ..., xn) and (y1, y2, ..., yn) both satisfy
this condition, for t = 0 and t = 1 respectively.

We now wish to show that 0 belongs to this line. Thus, we substitute each yk
with c · xk to yield

p = (t · (c− 1) · x1 + x1, t · (c− 1) · x2 + x2, · · · , t · (c− 1) · xn + xn).

Thus, we see that for t = 1
1−c , the expression evaluates to 0 as expected

( c−1
1−c = −1). Note that 1

1−c is only undefined for c = 1; the previously men-
tioned trivial case in which the points are equal.

We now wish to prove that if two points (x1, x2, ..., xn) and (y1, y2, ..., yn) lie
on the same line through the origin, then they will be equivalent. Thus, we must
return to the parameterization of a line by a vector and a point.

To simplify our calculations, we will choose our point and vector carefully. Specif-
ically, we choose 0 as our point. Our vector will be centered at the origin and end
at (x1, x2, ..., xn). This line goes through two of our three points, and thus must
contain y since all three are collinear.

The line can also be considered as the set of points p satisfying

p = (t · x1, t · x2, · · · , t · xn)

for some constant t. Since (y1, y2, ..., yn) satisfies this equation, we know that for
some constant c, it must be true that (y1, y2, ..., yn) = (c · x1, c · x2, · · · , c · xn).

Then (y1, y2, ..., yn) ∼ (x1, x2, ..., xn) by definition. Therefore, we conclude that
two points in Pn are equivalent if and only if they lie on the same line through the
origin. □

For this paper, we will be working in complex projective space (see Defini-
tion 2.8).

Definition 2.8. A complex projective space Pn
C is similar to the corresponding

real projective space, except that each coordinate xi of a given point is a complex
number, and can thus have an imaginary component.

Notation 2.9. This paper will now denote Pn
C as Pn, omitting the C subscript.

We now know enough about projective spaces to consider a simple visual proof
as an introduction to Bezout’s theorem.
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3. Visual Proof of Bezout

We will now include a few examples in order to get a feel for the mechanics of
projective space. Rather than a rigorous proof, this section focuses on an intuition
for the theorem. We begin by stating Bezout’s theorem in Theorem 3.1. However,
first we must understand intersection multiplicity.

While a formal definition of intersection multiplicity will not be given in this
work, some sense of the meaning of this term is necessary. By the fundamental
theorem of algebra, a polynomial of degree n has n roots. Thus, any polynomial
can be expressed as

∏
i≤n(x−ai), where each ai represents a root of the polynomial.

However, in some cases ai = aj for some i, j ≤ n such that i ̸= j. In these cases,
the polynomial has n roots but does not have n distinct roots. The root ai is said
to have multiplicity 2. For example, the polynomial x2 = 0 has one root (x = 0)
with multiplicity 2. Similarly, if a root is repeated k times, it has multiplicity k.
With this meaning in mind, we can now address Bezout’s theorem.

Theorem 3.1. Bezout’s theorem: Let P and Q be projective curves of degree n
and m respectively. Then P and Q have nm intersections with multiplicity, given
that we allow complex solutions.

It follows that two conics should have four intersections in projective space. We
will model P2 by the transformation (x, y) → ( x√

x2+y2+1
, y√

x2+y2+1
). This trans-

formation divides by a value strictly larger than the norm of (x, y), keeping all values
within the unit circle (adding one within the radical also prevents division by zero).

Furthermore, antipodal points in this representation are equivalent (the same
line through the origin passes through them). An example of the transformation
applied to a parabola can be seen in Figure 8.

Figure 8. Parabola in our model of projective space [22]. Note
that the legs of the parabola converge at infinity, as the limit of
both slopes is vertical.
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We will also need to consider the decomposition of conics into lines. The graphs
shown in Figure 3 demonstrate this decomposition for a generic homogeneous conic
ax2 + bxy + cy2 = 1 (note that in a homogeneous polynomial, all terms have the
same overall degree). Such a conic will take the form of a hyperbola or an ellipse.

Figure 9. As b increases, we see the unit circle stretch out into
an ellipse, and then into two lines parallel to y = −x. Increasing
further results in a hyperbola [22].

Alterations in a or c sill similarly result in vertical and horizontal lines, respec-
tively, due to a similar ”stretching” of an ellipse along the vertical or horizontal
axes.

We would like to show that such transformations do not change the number of
intersections between two curves. Since we are not in the complex plane, visuals
can be deceptive here. However, for polynomials without complex intersections a
visual will be enlightening. We return to our model of projective space in Figure 10
to support our intuition with visuals.

From this perspective, we can consider the transformation as one from an ellipse
to an ellipse with a major axis ”at infinity”. Since form is still elliptical, and we
have essentially merely dilated one axis, the number of intersections should be pre-
served under this transformation.

This transformation will allow us to prove Bezout’s theorem in the case of a conic.
Consider the intersections of an arbitrary homogeneous polynomial of degree n with
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Figure 10. The transformation of an ellipse into lines, similar to
that shown in Figure 3, now within our model of projective space
[22]. The Euclidean depiction is also included for clarity

the lines shown in Figure 10. We wish to prove that there are 2n such intersections.

In order to do so, we need only apply a linear transformation, and bring one of
the lines to the origin. A translation will certainly not change the number of inter-
sections between the polynomials, nor their degrees. Note that this transformation
is generalizable: any line can be brought to the origin by a rotation and translation
of the plane.

Now, we can use the fundamental theorem of algebra to state that our curve
of degree n has n zeros, given multiplicity and allowing complex solutions. Thus,
the curve intersects the line mapped to the origin n times. By a similar logic and
transformation, we can conclude that the curve intersects both lines n times.

We thus find a total of 2n intersections between a homogeneous degree two poly-
nomial and an arbitrary homogeneous polynomial of degree n. This simple case
provides an intuition as to what Bezout’s theorem states: in projective space, dis-
tinct lines must intersect once and only once. Thus, if we decompose polynomials
of degree n and m into n and m lines, respectively, these lines will intersect nm
times in projective space.

Another way to address this question is to note that, once homogenized, con-
ics can be expressed as a symmetric bilinear form [16], which satisfies Definition 3.2.

Definition 3.2. Given a vector space V and field K, symmetric bilinear map is
a transformation B : V × V −→ K. This transformation must be symmetric, such
that B(u, v) = B(v, u) [17].

It must also be bilinear, or linear in both u and v. Thus, we can state that
B(u+w, v) = B(u, v)+B(w, v) or B(u, v+w) = B(u, v)+B(u,w) and B(λu, v) =
B(u, λv) = λB(u, v) [17].

In our case, the symmetric bilinear form will be defined by the product of two
vectors u and v with a matrix. In P2, this transformation will be a 3 × 3 matrix,
as the projective coordinates will take the form [X : Y : Z]. See an example below
for clarity.
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Example 3.3. Consider the homogeneous polynomial X2 + Y 2 + 2Y Z. We want
to express the polynomial as vT ·M · u, where

u =

x1y1
z1


and

v =

x2y2
z2


are vectors. Since we specifically want a symmetric bilinear form, we need to make
the given polynomial symmetric and write it in terms of u and v.

Thus, our polynomial becomes

x1x2 + y1y2 + y1z2 + y2z1.

Note that in order to create a symmetric polynomial, 2Y Z is written as y1z2+y2z1,
and the coefficient of 2 vanishes.

It follows that the matrix for this transformation is

1 0 0
0 1 1
0 1 0

, as
[
x2 y2 z2

]
·

1 0 0
0 1 1
0 1 0

 ·

x1y1
z1

 = x1x2 + y1y2 + y1z2 + y2z1.

Note also that in the case of a non-invertible 3 × 3 matrix, the domain of the
transformation must be one degree down from the domain of the given space, since
two columns of the matrix must be linearly dependent. Thus, in this case the conic
represented by the matrix is degenerate.

When we orthogonalize [18] the columns of this matrix, the polynomial takes
the form

ϵ1x
2
1 + ϵ2x

2
2 · · · ϵn + x2n,

where n is the dimension of our vector space [16] (to see why, consider that the
identity matrix represents a polynomial of the form x21 + x22 · · ·+ x2n).

We can now express any nondegenerate conic in P2 as X2 + Y 2 − Z2 = 0 with
the appropriate change of basis (coefficients disappear with a transformation of the
form x1 −→ √

ϵ1x1). This observation is consistent with Figure 8 and Figure 3,
which give a sense of parabolas and hyperbolas in projective space as circles with
points at infinity.

We can further simplify the case of a nondegenerate conic by parameterizing the
equation X2 + Y 2 − Z2 = 0. Let X ′ = Z +X and Z ′ = Z −X [16]. Further let
Y ′ = Y . Then our equation becomes X ′Z ′ = Y ′2 in our new system of coordinates.
We can now consider parameters U and V such thatX ′ = U2 and Z ′ = V 2. By sub-
stitution, Y ′2 = U2V 2. Thus, we can parameterize the equation by (U2 : UV : V 2).
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We can consider (U : V ) as a homogeneous coordinate in P1. Then there is also
an inverse map from the conic to P1: both (X : Y ) and (Y : Z) yield (U : V ), since
we are working in homogeneous coordinates.

We need only one more piece to prove Bezout’s theorem in the case of a nonde-
generate conic. Given a homogeneous polynomialQ = a0U

d+a1U
d−1V +· · ·+adV d,

there exists a corresponding inhomogeneous polynomial q = a0u
d+a1u

d−1 · · ·+ad.
Note that the zeroes of this inhomogeneous polynomial are the points α for which
(u− α) | q. It follows that (U − αV ) | Q, and thus that (α, 1) is a zero of Q.

It is also important to consider the case in which V k | Q, where k is an arbitrary
degree such that 0 < k ≤ d. In this case, the degree of q will be less than the degree
of Q. We thus consider Q as having a zero of multiplicity k at the coordinate (1, 0).
Note that if Ud−kV k were not a term in Q, then Q would be divisible by V k+1.
Thus, q must be a polynomial of degree d− k.

Remark 3.4. By the fundamental theorem of algebra, Q has d total zeros. Specif-
ically, Q is the product V k

∏
i≤d−k(U − αiV ), and each term in this product rep-

resents a zero. Here, 0 ≤ k ≤ d, as we are no longer considering only the case in
which k > 0.

Now, we can use the parameterization (U2 : UV : V 2) for a nondegenerate conic.

As described in Example 5.1, our conic can be represented as Q =M ·

U2

UV
V 2

, where
M is a nonsingular 3× 3 matrix.

We wish to consider the number of intersections of this conic with some arbi-
trary curve G of degree d. Thus, we wish to find the points (X : Y : Z) for which
G(X : Y : Z) = 0 = Q(X : Y : Z). It follows that (X : Y : Z) can be writted as

M ·

U2

UV
V 2

.
Thus, we end up with the degree 2d polynomial G(M ·

U2

UV
V 2

). The zeros of

this polynomial represent the intersections of G and Q. Since this polynomial is
a homogeneous polynomial in P2, it must have 2d zeros, as shown in Remark 3.4.
We thus conclude that there are 2d intersections between G and the conic, proving
Bezout’s theorem in the case of a conic.

With this background, we will now introduce an important tool necessary for a
more rigorous proof of this theorem.
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4. The Resultant

The resultant will allow us to analyze the common zeros of two polynomials,
thus allowing us to prove Bezout’s Theorem more rigorously.

Definition 4.1. If f1 = A · (x − r1) · (x − r2) · · · (x − rn) and f2 = B · (x − s1) ·
(x− s2) · · · (x− sm), then the resultant [3] is the product

Res(f1, f2) = Am ·Bn
n∏

i=1

m∏
j=1

(ri − sj).

Note that the resultant evaluates to 0 if and only if some element (ri − sj) in
the product is zero, unless either A or B is zero, in which case any zero of the
other curve is a common zero between the two curves (whichever curve has a zero
coefficient evaluates to zero everywhere).

In this case, we are guaranteed a common zero by the fundamental theorem
of algebra, as the other curve must have at least one zero if its degree is one or
greater. If both lines are horizontal, they are parallel and will intersect at infinity
in projective space. Thus, they have a common zero at infinity. If both curves have
zero coefficients, they similarly have a common zero everywhere.

Thus, the resultant of two polynomials is 0 if and only if they share a common
zero, though the zero may only exist in complex projective space, as points with
imaginary components and points at infinity are valid intersection points. This
product has several other important properties, including Remark 4.2 and Theo-
rem 4.8, which will be useful for our purposes.

Remark 4.2. Consider two arbitrary polynomials an + an−1 · y + · · · a0 · yn and
bm + bm−1 · y + · · · b0 · ym. The resultant is given by the determinant [14] of the
square matrix with dimension n+m [3]

a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · an 0 0 · · · bm

.
See [3] for a proof of this fact. As an example of this calculation, the resultant of
x+ 1 and 3x+ 2 with respect to y is the determinant of the matrix[

1 2
1 3

]
,

or 3− 2 = 1. It follows that these curves have no shared zeros. Indeed, the lines
intersect exactly once (as we should expect) at the point (−.5, .5), which is not a
zero point.

Lemma 4.3. Let P and Q be polynomials in n variables. Then the resultant of P
and Q can be taken with respect to one of these variables xk. All other variables are
treated as parameters. Thus, we essentially treat P and Q as univariate polynomials
in some variable xk, and take the resultant as previously defined in Definition 4.1.
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Example 4.4. Let P = X2+XY +Z2 and Q = Y 2+ZY +XZ. Then Res(P,Q)
with respect to Z is given by the determinant of the matrix

1 0 0 0
0 1 X + Y 0

X2 +XY 0 Y 2 X + Y
0 X2 +XY 0 Y 2

 .
Note that X and Y are treated like parameters and included in our matrix of
coefficients, while Z is treated like a variable.

Definition 4.5. The weighted degree of a constant is calculated similarly to the
degree of a polynomial in many variables (using the highest degree term). In this
case, however, our variables are the parameters included in our coefficients and
determinant.

Example 4.6. For the polynomials in Example 4.4, the coefficient X2 +XY has
weighted degree two. The coefficient is homogeneous, because both of its terms have
weighted degree two. Similarly, X + Y is a homogeneous coefficient of weighted
degree one.

Remark 4.7. Using Definition 4.5 and Lemma 4.3, we can write polynomials
in many variables as polynomials in our chosen variable, with coefficients of a
certain weighted degree. For example, P and Q as defined in Example 4.4 could be
abstracted as

a2 + a0 · Z2 and b2 + b1 · Z,
where an and bn represent coefficients of weighted degree n.

We can still tell that the polynomials are homogeneous, as all terms have a total
degree of two (adding the weighted degree of each coefficient with the degree of the
corresponding term in Z).

Theorem 4.8. Let P be a homogeneous polynomial of degree k in n variables and
Q be a homogeneous polynomial of degree m in n variables. Then the resultant of P
and Q with respect to one variable y (as described in Lemma 4.3) is a homogeneous
polynomial of degree km in n− 1 variables [3].

Proof. We will assume that the univariate forms of P and Q are of the same degree
as the homogeneous forms. In other words, P and Q must contain a term in which
y takes the degree of the homogeneous polynomial. These terms take the form

a0y
k and b0y

m,

respectively. As shown in Example 5.1, any polynomial can be parameterized such
that at least one variable satisfies this requirement. Note that since P and Q are of
degree k and m, respectively, the coefficients a0 and b0 must be of weighted degree
zero, as defined in Definition 4.5. In other words, these coefficients are constants.

As in Definition 4.1, we can state that

Res(P,Q) = Am ·Bk
k∏

i=1

m∏
j=1

(si − tj),
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where the set of all si and the set of all tj represent the roots of P and the roots of
Q as polynomials in y, respectively. We will now work with P , understanding that
the statements we will prove hold for Q as well (with appropriate modifications),
and can be proven by similar logic.

To begin, we note that by the fundamental theorem of algebra, there are k values
si such that (y − si) | P , because we have assumed that P is degree k in y. Then

P = A

k∏
i=1

(y − si)

for some coefficient A. Since A | P , our assumption that P has a coefficient a0 of
weighted degree 0 implies that, of all n variables, none but y can divide A.

Specifically, if some xs | A, then xs | P , and if xs ̸= y and xs | a0 · yk both hold,
then xs | a0, which would imply that a0 is of weighted degree one or greater. Note
that if xs | yk and xs ̸= y, then our variables are not independent, and the equation
is no longer in n variables.

Furthermore, if y | P , we consider (y−0) a term of P . As such, y |
∏k

i=1(y−si),
not y | A, holds in this case. It follows that A must be of weighted degree zero.
By a similar logic, B is of weighted degree zero. Therefore, AmBk is of weighted
degree zero.

We conclude that the degree of the product
∏k

i=1

∏m
j=1(si − tj) is the degree of

the resultant. It is thus important to consider the weighted degree of each si and

tj . Since P is a homogeneous polynomial, we note that the term ak = A ·
∏k

i=1 −si
of P must be of degree k or equal to zero.

In the first case, all si must be of weighted degree one, such that their product
ak is of weighted degree k. Note that no term sq can take the form (y − αxq + c),
where c has weighted degree zero. Otherwise, the term

A · c ·
∏

i≤k|i ̸=q

−si

would be of degree k − 1, and P would not be homogeneous.

We must also consider the case in which ak = 0. In this case, at least one si must
be zero, so yt | P for some t > 0. As such, if some zeros tj of Q are also zero, then

the resultant itself is zero, since 0− 0 is a term in the product
∏k

i=1

∏m
j=1(si − tj).

On the other hand, if all zeros of Q have weighted degree one, the difference −tj
between zero and tj is a degree one polynomial. Furthermore, we note that

A · yt ·
∏

i≤k|−si ̸=0

−si

is a valid nonzero term of P (as it contains only nonzero si).

Since P is homogeneous, A ·
∏

i≤k|−si ̸=0 −si must be of weighted degree k − t.

There are t values of i such that si = 0, so there are k − t values of i such that si



18 ISABEL ZDENA VARGAS-HURLSTON

is nonzero. Therefore, all nonzero si must be of weighted degree one.

Once again, and by similar logic as before, we note that no si or tj can be of
the form (y − αxq + c), where c is of weighted degree zero. It follows that si − tj
for arbitrary i, j must be of weighted degree one or equal to zero, as the difference
between two degree one polynomials with no constant terms.

Specifically, the difference cannot be a nonzero constant, and certainly cannot
be of a higher degree than si and tj , leaving these two options. The same logic
holds if y | Q and all si are nonzero, or indeed if all si and tj are nonzero (in which
case we again deal with differences si − tj between degree one polynomials). Thus,
Res(P,Q) is either the product of degree one polynomials or is zero.

It follows that any nonzero resultant of two such polynomials will be of weighted
degree km, as the product of km degree one terms. Furthermore, y is not included
in our resultant. If y | si for some si, then (y − si) = c · y for some constant c, and
si = 0. Thus, as asserted, the polynomial is in n− 1 variables.

To prove that the polynomial is homogeneous, consider that all of its terms are
given by the choice of one degree one element from each of km terms. For example,
the resultant of (x− y)(2x+ y) and (2x− y)(x+ y) in y is

(x+ x)(2x+ 2x)(x+ 2x)(2x+ x).

Each term of this resultant will take the form (for some n ≤ 4)

n∏
i=1

2x ·
4−n∏
i=1

x.

Thus, each term is degree four in x. Any resultant of homogeneous polynomials in
any number of variables should behave similarly, since the individual terms are still
of degree one and there are still km of them.

□

5. Rigorous Proof of Bezout

Let us consider two homogeneous polynomials P and Q, of degree n and m
respectively. Note that the intersection points of these curves are zeros of these
polynomials.

As in our simpler proof, we will consider these polynomials as polynomials in
one variable. Specifically, we again create a construction∑

0≤i≤n

an−iy
i,

where we treat y as a variable of degree i and an−i as a parameter or constant of
degree n− i.

We will perform a linear transformation such that no zeros are points at infinity
and no zeros have the same x coordinate [4] (these changes will make it easier to
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identify zeros and their multiplicities). The second goal can be achieved by a rota-
tion, which will not change the number or multiplicity of intersections.

The first can be achieved by a parametrization such that at least one variable
x1 takes the degree of the polynomial in at least one term (for example, xd1 as a
term in a degree d polynomial), followed by the selection of a variable satisfying
this requirement.

If we do so, the resulting polynomial in x1 will also be of degree d, and thus have
d zeros in the complex plane. It follows that no zeros are points at infinity. This
parametrization occurs as shown in Example 5.1. See also the parameterization of
a conic in the simple proof.

Example 5.1. We are given the homogeneous polynomial XY , and we want a
symmetric bilinear form. Thus, we rewrite the polynomial as

F (x⃗, y⃗) = X1Y2 +X2Y1

for x⃗ =

[
X1

Y1

]
and y⃗ =

[
X2

Y2

]
.

This form is symmetric, as Y1X2 + Y2X1 = X1Y2 + X2Y1. It is also bilinear,

because for w⃗ =

[
W1

W2

]
we find that

F (x⃗+ w⃗, y⃗) = (X1 +W1)Y2 +X2(W2 + Y1),

which after distributing becomes

X1Y2 +X2Y1 +W1Y2 +W2X2 or F (x⃗, y⃗) + F (w⃗, y⃗).

Furthermore,

F (α · x⃗, y⃗) = α ·X1Y2 + α ·X2Y1 = α · F (x⃗, y⃗)
if α is a constant. The other cases (F (x⃗, α · y⃗) and F (x⃗, y⃗ + w⃗)) follow similarly,
and must by the symmetry of the form.

Now, we will consider the vectors w⃗ = (1,−1) and v⃗ = (1, 1). As we will show,
parameterizing F using these vectors will yield a homogeneous conic that takes
degree two in at least one term.

Since F (w⃗, v⃗) = 0 and we have a symmetric bilinear form,

F (λ1v⃗ + ψ1w⃗, λ2v⃗ + ψ2w⃗) = λ1λ2(v⃗, v⃗) + ψ1ψ2(w⃗, w⃗).

Thus, the conic becomes 2λ1λ2 − 2ψ1ψ2. Through this parameterization, then, we
rewrite the conic as 2X2 − 2Y 2, a homogeneous conic of degree two in both X and
Y .

As stated in Theorem 4.8, the resultant of these polynomials must be a homo-
geneous polynomial of degree nm, since P and Q are homogeneous polynomials of
degrees n and m respectively. Thus, the fundamental theorem of algebra states
that this resultant polynomial has nm zeros (with multiplicity and allowing com-
plex solutions).
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Since the resultant of two polynomials evaluates to zero only when they have
a common zero, each of these zeros represents a shared point of P and Q [4]. It
follows that there are exactly nm points of intersection between P and Q.
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