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Abstract. Lie groups are mathematical structures that unify the properties

of groups with those of smooth manifolds, enriching them with both algebraic

and geometrical traits. Hence, they provide a framework for understanding
continuous symmetry, which has numerous applications in mathematics and

physics. An important theorem on the structure of Lie groups is the Closed

Subgroup Theorem. It states that any closed subgroup of a Lie group is itself
a Lie group, and therefore inherits a smooth manifold structure.
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1. Lie Groups

In this section, we will define Lie groups and describe their basic properties. The
reader is expected to have a grasp of the concepts of manifolds and diffeomorphisms.

Definition 1.1. A Lie group is a smooth manifold G that is also a group in the
algebraic sense, with the additional property that the multiplication map

m : G×G → G, m(g, h) = gh

and the inversion map
i : G → G, i(g) = g−1

are both smooth.

One of the most useful properties of Lie groups is that it is possible to map any
element of the Lie group to any other element by a diffeomorphism.

Definition 1.2. Let G be a Lie group and let g ∈ G be an element. The maps

Lg, Rg : G → G

called left translation and right translation, respectively, are defined by

Lg(h) = gh

Rg(h) = hg.
1
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Theorem 1.3. Let G be a Lie group and let g ∈ G be an element. Left translation
Lg : G → G and right translation Rg : G → G are diffeomorphisms.

Proof. Let G be a Lie group and let g ∈ G be an element. The map Lg can be
expressed as the composition of smooth maps

G
ιg−→ G×G

m−→ G

where ιg(h) = (g, h). As a result, Lg is smooth. Moreover, Lg−1 can be expressed
as the composition of smooth maps

G
ιg−1

−−−→ G×G
m−→ G.

Thus, Lg−1 is also smooth.

A similar argument shows that right translation is a diffeomorphism. □

2. Some Examples

From the definition of a Lie group, we can prove that certain subsets of M(n,R)
are Lie groups.

Proposition 2.1. The set of invertible n × n matrices, called the general linear
group, is a Lie Group.

Proof. We can express the general linear group as

GL(n,R) = {M ∈ M(n,R) | M ∈ det−1(R\{0})}.
The set GL(n,R) is a group under multiplication, since it only consists of invertible
matrices.

The determinant is a continuous function, and R\{0} is open, so det−1(R)\{0}
is also open. The set GL(n,R) ⊂ M(n,R) is an open set in a Euclidean space,
therefore it is also an n2-dimensional manifold.

For any A,B ∈ GL(n,R), matrix multiplication is given by

(AB)ij =

n∑
k=1

aikbkj ,

which is a polynomial of the entries, hence smooth.
Cramer’s rule tells us that matrix inversion is given by

A−1 =
1

det(A)
adj(A),

when det(A) ̸= 0. The entries of the adjugate adj(A) are polynomial functions of
the entries of A, and the determinant is also a polynomial. Since the reciprocal of
a smooth function is smooth on the domain where the function is nonzero, 1

det(A)

is smooth, and so is the inversion map. □

Proposition 2.2. The circle S1 is a Lie group.

Proof. The circle S1 is a one-dimensional manifold. We can embed S1 into GL(2,R)
as

S1 =

{
A(θ) =

(
cos θ − sin θ
sin θ cos θ

)∣∣∣∣ θ ∈ [0, 2π)

}
.

Let’s prove that S1 is a group.
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(1) If A(θ), A(ϕ) ∈ S1, matrix multiplication shows that

A(θ)A(ϕ) = A(θ + ϕ) ∈ S1.

(2) For all θ ∈ [0, 2π),

A(θ)A(0) = A(θ)I2 = A(θ).

(3) Additionally,
A(θ)A(2π − θ) = I2 = A(0).

Since we have already seen that matrix multiplication and inversion are smooth,
this is sufficient to show that S1 is a Lie group. □

Theorem 2.3. The Cartesian product of two Lie groups is a Lie group.

Proof. Let G,H be two Lie groups. Then, there exist two multiplication maps

mG : G×G → G, mG(g, g
′) = gg′

and
mH : H ×H → H, mH(h, h′) = hh′

that are both smooth. Thus, we can define a smooth multiplication map

m : (G×H)× (G×H) → G×H,

given by
m((g, h), (g′, h′)) = (mG(g, g

′),mH(h, h′)).

Similarly, we can define an inversion map

i : G×H → G×H, i((g, h)) = (iG(g), iH(h))

that is the product of the two smooth inversion maps. □

3. Immersions and Embeddings

The fact that Lie groups are smooth manifolds endows them with interesting
geometric properties. In this section, we will see that if an embedded submanifold
of a Lie group is also a group, then it is automatically a Lie subgroup.

Definition 3.1. An immersion is a map f : S → M between two manifolds S and
M such that, at every point p ∈ S, its differential

dfp : TpS → Tf(p)M

is injective. The manifold S is called an immersed submanifold of M .

Definition 3.2. Let G be a Lie group and let H ⊆ G be a subgroup of G. The
subgroup H is a Lie subgroup of G if it is itself a Lie group and if it is an immersed
submanifold of G.

Definition 3.3. Let M be a k-dimensional manifold, and S ⊂ M a d-dimensional
submanifold of M , where d ≤ k necessarily. The manifold S is an embedded
submanifold of M if the inclusion map

ι : S → M

is a smooth immersion and a homeomorphism onto its image.

We will now see that, if a manifold H is embedded into a Lie group G and not
just immersed, this automatically proves that H is a Lie subgroup without even
needing to show that H is itself a Lie group.
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Proposition 3.4. Let G be a Lie group, and suppose H ⊆ G is a subgroup that is
also an embedded submanifold. Then H is a Lie subgroup.

Proof. We only need to check that H is a Lie group, and thus that multiplication
H × H → H and inversion H → H are smooth maps. We know that G is a Lie
group, thus multiplication is a smooth map from G×G into G. This is also true if
we map H ×H into G. Since H is a subgroup, multiplication maps H ×H into H,
and since H is embedded, this is a smooth map into H.

Similarly, inversion is smooth from G to G, and so is it from H into G. Moreover,
H contains the multiplicative inverse of all its elements, thus inversion maps H
smoothly into H. □

4. One-parameter Subgroups and the Exponential Map

In this section, we will define one-parameter subgroups of GL(n,R), which are
just Lie group homomorphisms from R to G 1. We will also show that there is a one-
to-one correspondence between elements of M(n,R) and one-parameter subgroups
of GL(n,R).

While in this section we will define one-parameter subgroups for GL(n,R), they
can be defined for any Lie group G. In that case, the one-to-one correspondence
will be between the one-parameter subgroups and elements of the tangent space at
the identity called the Lie algebra.

Then, we will define the exponential map, a smooth map from the Lie algebra
into the Lie group. Fundamentally, the exponential map maps tangent vectors at
the identity to one-parameter subgroups of G.

Establishing a local diffeomorphism between the Lie group and one-parameter
subgroups at the identity will be essential in proving the Closed Subgroup Theorem
as it allows us to show that certain subgroups of Lie groups are manifolds.

Definition 4.1. A one-parameter subgroup of a Lie group G is a smooth map
γ : R → G such that:

(1) γ(0) = e, where e is the identity element of G,
(2) γ(t+ s) = γ(t)γ(s) for all t, s ∈ R.

We will restrict our focus of interest to Lie groups that are in GL(n,R). The fol-
lowing map will allow us to construct one-parameter subgroups from R to GL(n,R).

Definition 4.2. For any A ∈ M(n,R), let:

eA =

∞∑
k=0

Ak

k!
= In +A+

1

2
A2 + . . .

Proposition 4.3. For all A ∈ M(n,R), the series

eA =

∞∑
k=0

Ak

k!

converges to an invertible matrix.

Proof. Let A ∈ M(n,R). Matrix multiplication satisfies |AB| ≤ |A||B|. Thus,

|Ak| ≤ |A|k for all k > 0. Moreover, the sequence
∑∞

k=0
|A|k
k! converges, and thus

1To read about the general case, one can consult Introduction to Smooth Manifolds by Lee.
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by the comparison test eA =
∑∞

k=0
Ak

k! also converges. We now want to show that

eA is invertible:

eAe−A =

∞∑
k=0

Ak

k!

∞∑
m=0

(−A)m

m!

=

∞∑
n=0

n∑
k=0

Ak(−A)n−k

k!n− k!
setting n = k +m

=

∞∑
n=0

An
n∑

k=0

(−1)n−k

k!n− k!

=

∞∑
n=0

An

n!

n∑
k=0

(
n
k

)
1k(−1)n−k

=

∞∑
n=0

An

n!
(1− 1)n.

When n ≥ 1, (1− 1)n = 0 and when n = 0, (1− 1)n = 1. Thus, eAe−A = Id, which
proves that eA is invertible.

□

Proposition 4.4. Let A ∈ M(n,R). The function γ : R → GL(n,R) defined by
γ(t) = etA is a one parameter subgroup of GL(n,R).
Proof. Let A ∈ M(n,R). We can derive γ(0) = e0·A = e0 = In, which is the
identity element.

To show that γ is a Lie group homomorphism from R to G, we can prove that

γ(t+ s) = e(t+s)A

=

∞∑
k=0

1

k!
(t+ s)kAk

=

∞∑
k=0

1

k!

k∑
n=0

k!

n!(k − n)!
tnsk−nAk

=

∞∑
k=0

k∑
n=0

1

n!(k − n)!
tnsk−nAk

=

∞∑
n=0

∞∑
m=0

1

n!m!
tnsmAn+m setting m = k − n

= etAesA

= γ(s)γ(t)

for all s, t ∈ R. □

Therefore, for all A ∈ M(n,R), we say that γA(t) = etA is the one-parameter
subgroup generated by A.

Proposition 4.5. Let A ∈ M(n,R) and let γA(t) = etA be a one parameter sub-
group of GL(n,R). Then,

d

dt
γA(t)

∣∣∣∣
t=0

= A
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Proof. We can calculate directly that

d

dt
γA(t)

∣∣∣∣
t=0

= lim
h→0

(
ehA − e0

h

)
= lim

h→0

(
In +Ah+ A2h2

2 + . . .− In

h

)
= A.

□

Definition 4.6. Let G be a Lie group. The Lie algebra g of G is defined to be the
tangent space of G at the identity.

Remark 4.7. The Lie algebra of GL(n,R) is M(n,R). We know that M(n,R) is
a vector space, so the tangent space at any point of M(n,R) is simply M(n,R).
Due to GL(n,R) being an open subset of M(n,R), the tangent space of GL(n,R)
at every point is also M(n,R).

Definition 4.8. Given a Lie group G ∈ GL(n,R) with Lie algebra g, the exponen-
tial map

exp : g → G

is defined by

exp (A) = γA(1),

where γA is the one-parameter subgroup generated by A ∈ g. Thus, for all A ∈
M(n,R),

exp (A) = etA.

Proposition 4.9. Let G be a Lie group and let g = Lie(G). Suppose that X,Y ∈ g
are two commuting elements of the Lie algebra. For any t ∈ R,

(exp (tX)) (exp (tY )) = exp (t(X + Y ))

Proof. Let G be a Lie group and suppose that X,Y ∈ Lie(G) commute. Then, for
all t ∈ R,

(exp (tX)) (exp (tY )) =

∞∑
k=0

tk

k!
Xk

∞∑
n=0

tn

n!
Y n

=

∞∑
m=0

tm

m!

∑
k=0

(
m
k

)
XkY m−k setting m = n+ k

=

∞∑
m=0

tm

m!
(X + Y )m

= exp (t(X + Y )) .

□

Using this result, we can prove by induction that

(4.10) exp (tX)
n
= exp (ntX) .
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5. The Closed Subgroup Theorem

In this section, we prove the Closed Subgroup theorem in GL(n,R), which says
that every topologically closed subgroup of a Lie group G ⊆ GL(n,R) is actually
an embedded Lie subgroup.

Before proving the Closed Subgroup Theorem, we first need to prove a property
about the exponential map that will allow us to define the Lie algebra of any closed
subgroup.

Proposition 5.1. Let G ⊆ GL(n,R) be a Lie group and let g be its Lie algebra.
For any X,Y ∈ g, there exists some ϵ > 0 such that for all t ∈ (−ϵ, ϵ),

(exp (tX)) (exp (tY )) = exp
(
t(X + Y ) +O(t2)

)
.

Proof. We saw in Proposition 4.5 that for all A ∈ M(n,R),

d

dt
exp (tA)

∣∣∣∣
t=0

=
d

dt
γA(t)

∣∣∣∣
t=0

= A.

Therefore,

d exp (0) = In

which is an invertible map. Thus by the inverse function theorem, there exists ϵ > 0
such that the map ϕ : (−ϵ, ϵ) → g defined by

ϕ(t) = exp−1 (exp (tX) exp (tY ))

is smooth. We obviously have

ϕ(0) = 0

Observe that we can write φ as the composition:

R eX ,eY−−−−→ G×G
m−→ G

exp−1

−−−−→ g,

where eX(t) = exp(tX) and eY (t) = exp(tY ).
We now want to show that the derivative dm(e, e) : TeG× TeG → TeG satisfies

dm(e, e)(X,Y ) = X + Y for X,Y ∈ TeG. We can prove that

lim
t→∞

(In + tX) (In + tY )− In
t

= lim
t→∞

tX + tY + t2XY

t
= X + Y.

Thus, we have

φ′(0) = (d exp)−1
0

(
eX0 (0) + eY0 (0)

)
= X + Y.

Therefore, Taylor’s theorem yields

φ(t) = ϕ(0) + tϕ′(0) +O(t2) = t(X + Y ) +O(t2)

for t ∈ (−ϵ, ϵ). □

Proposition 5.2. Let G ⊆ GL(n,R) be a Lie group and let g be its Lie algebra.
For any X,Y ∈ g and for any t ∈ R,

lim
n→∞

(
exp

(
t

n
X

)
exp

(
t

n
Y

))n

= exp (t(X + Y )) .
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Proof. Let G be a Lie group and suppose that X,Y ∈ Lie(G) and t ∈ R. Since

lim
n→∞

t

n
= 0,

lim
n→∞

(
exp

(
t

n
X

)
exp

(
t

n
Y

))n

= lim
n→∞

exp

(
t

n
(X + Y ) +O

(
t2

n2

))n

.

= lim
n→∞

exp

(
n
t

n
(X + Y ) + nO

(
t2

n2

))n

from Identity (4.10)

= lim
n→∞

exp

(
t

n
n(X + Y ) +O

(
t2

n

))
= exp (t(X + Y )) .

□

Thus, suppose that G is a closed Lie group whose Lie algebra is g. This last
proposition shows that if we have a closed subgroup such thatX,Y ∈ G are elements
of the Lie algebra, and thus correspond to a one-parameter subgroup of G, then
X + Y is also an element of the Lie algebra and corresponds to a one-parameter
subgroup of G. This is only possible if G is closed. For this reason, as its name
indicates, the Closed Subgroup Theorem is only applicable to closed subgroups.

Theorem 5.3. (Closed Subgroup Theorem) Suppose G ⊆ GL(n,R) is a Lie
group and H ⊆ G is a subgroup that is also a closed subset of G. Then H is an
embedded Lie subgroup of G.

Proof. By Proposition 3.4, it is enough to prove that H is an embedded submani-
fold.

Let d = dim(G). Suppose that g is the Lie algebra of G. Then, g is a d-dimensional
vector space. The map

exp : g → G

maps elements from the Lie algebra to the Lie group. We saw in Proposition 4.5
that for all A ∈ M(n,R),

d

dt
exp (tA)

∣∣∣∣
t=0

=
d

dt
γA(t)

∣∣∣∣
t=0

= A.

Therefore,

d exp (0) = In

which is an invertible map.
Thus, by the Inverse Function Theorem, there exist two neighborhoods U ⊆ g

of the 0 element and V ⊆ G of the identity matrix such that

exp : U → V

is a diffeomorphism.
Now let H ⊆ G and define

h = {X ∈ g| etX ∈ H for all t ∈ R}.

We can see from the definition of h that if X ∈ h, then for any scalar c ∈ R, cX
will also be in X. Thus, h is closed under scalar multiplication.
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Now suppose X and Y are in h. Then, for all n ∈ N and t ∈ R, exp
(
t
nX
)
and

exp
(
t
nY
)
are in H, and because H is a closed subset,

lim
n→∞

((
exp

(
t

n
X

))(
exp

(
t

n
Y

)))n

is also in H. Let t ∈ R. Proposition 5.2 tells us that

lim
n→∞

((
exp

(
t

n
X

))(
exp

(
t

n
Y

)))n

= exp (t(X + Y )) ,

therefore X + Y ∈ h.
This shows that h ⊆ g is a vector subspace.

Suppose that m = dim (h) ≤ d. The open set H ∩ h ⊆ g is diffeomorphic to an
open set in Rm. At In ∈ H ⊆ G, there exists an open neighborhood V ∩H such
that

exp : H ∩ h → V ∩H

is a diffeomorphism.
For all g ∈ H, Theorem 1.3 shows that left translation

Lg : H → H

is a diffeomorhpism from H to itself. Thus, for all g ∈ H, there exists an open
neighborhood Vg ∩H ⊆ H of g, where

Vg = {X ∈ G | Lg
−1(X) ∈ V }

such that
(Lg ◦ exp) : U ∩ h → Vg ∩H

is a diffeomorphism.

Rm oo //
OO

��

Vg ∩H
OO
Lg

��
U ∩ h oo

exp
// V ∩H

Figure 1. Commuting diagram illustrating the diffeomorphic re-
lations linking the set Rm with an open neighborhood of any ele-
ment of the Lie group G.

As shown in Figure 1, we obtain a diffeomorphism between Rm and an open neigh-
borhood in H of any element contained in H, showing that H is an m-dimensional
manifold.

We now want to show that H is an embedded submanifold. Consider the inclu-
sion map i : H → G. The differential of i at any point h ∈ H is given by

dhι : ThH → ThG.

The sets H and G are both smooth manifolds, thus the inclusion map ι is a smooth
map. Consider the differential dιh : ThH → ThG. Since H is a submanifold of G,
thus at every point h ∈ H, ThH is a subspace of ThG. Thus, for all v ∈ ThH,
dιh(v) = v, shows that dιh is injective, hence ι is a smooth immersion.
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Additionally since H is closed in G, the topology induced on H by G matches
the manifold topology of H, making ι a homeomorphism onto its image.

This is enough to show that H is a Lie subgroup of G, proving the Closed
Subgroup Theorem.

□

6. Applications

We can now use the Closed Subgroup Theorem to prove that the following subsets
of GL(n,R) are Lie groups.

Definition 6.1. The orthogonal group O(n) is defined as the set of all matrices in
GL(n,R) such that for all Q ∈ O(n), QTQ = In.

Theorem 6.2. The orthogonal group is a Lie group.

Proof. First we can prove closure over multiplication. If Q1, Q2 ∈ O(n), then

(Q1Q2)
T (Q1Q2) = Q2

TQ1
TQ1Q2 = Q2

TQ2 = In.

We can also prove closure under inversion. Let Q ∈ O(n), then

(Q−1)TQ−1 = (QT )−1Q−1 = (QTQ)−1 = In
−1 = In.

Hence, Q−1 ∈ O(n).

We can prove that O(n) is closed in GL(n,R). The map

f : GL(n,R) → GL(n,R), f(Q) = QTQ

is continuous because it involves poylnomial entries of Q. We can express O(n) as
f−1(In), and since In is a closed set, O(n) is also a closed set.

We have successfully proved that O(n) is a closed set and that it is a subgroup
of GL(n,R). Therefore, by the Closed Subgroup Theorem it is a Lie group. □

Definition 6.3. The special orthogonal group SO(n) is the set of matrices in O(n)
whose determinant equals 1.

Theorem 6.4. The special orthogonal group is a Lie group.

Proof. We have already shown that O(n) is a Lie group. Let’s do it for SO(n).

(1) If Q1, Q2 ∈ SO(n), then Q1Q2 ∈ O(n), and det(Q1) = det(Q2) = 1. Since
det(Q1Q2) = det(Q1) det(Q2) = 1, we can deduce that Q1Q2 ∈ SO(n).

(2) If Q ∈ SO(n), then Q−1 ∈ O(n). Since det(QQ−1) = det(In) = 1, then
det(Q−1) det(Q) = det(Q−1) · 1 = 1. This shows that det(Q−1) = 1.

Finally, SO(n) = det−1(1), which shows that SO(n) is closed in O(n). By the
Closed Subgroup Theorem, SO(n) is a Lie group. □

Definition 6.5. For any positive integer n, the n-dimensional torus is defined as
the product space

Tn = S1 × . . .× S1.

The two-dimensional torus is the Cartesian product of two circles. In the proof
to Proposition 2.2, we saw that we can embed S1 into GL(n,R2) as

S1 =

{(
cos θ − sin θ
sin θ cos θ

)∣∣∣∣ θ ∈ [0, 2π)

}
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Thus, we can embed T 2 = S1 × S1 into GL(4,R) as

T 2 =



cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ


∣∣∣∣∣∣∣∣ θ, ϕ ∈ [0, 2π)

 .

Theorem 6.6. The two-dimensional torus T 2 is a Lie group.

Proof. We first want to show that T 2 is a subgroup. Define

A(θ, ϕ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ

 .

(1) To prove closure under matrix multiplication, it can be shown that

A(θ, ϕ)A(θ′, ϕ′) = A(θ + θ′, ϕ+ ϕ′) ∈ T 2

(2) The set T 2 contains I4, which corresponds to θ, ϕ = 0, thus I4 is the
multiplicative identity.

(3) Finally, A(θ, ϕ)A(2π − θ, 2π − ϕ) = I4, so every element of T 2 has a multi-
plicative inverse in T 2.

The set S1 is closed, and since the Cartesian product of two closed sets is closed, we
can deduce that T 2 = S1 × S1 is closed. Hence, by the Closed Subgroup Theorem,
T 2 is a Lie group. □

Another way of proving that T 2 is a Lie group would be to have noticed that,
since S1 is a Lie group, Theorem 2.3 tells us that S1 × S1 is a Lie group. This
theorem also allows us to show that for any positive integer n, the n-dimensional
torus Tn is a Lie group.
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