
A HAMILTONIAN PERSPECTIVE ON SHERMAN’S

AREA-CONVEXITY ALGORITHM

JUNFEI SUN

Abstract. This paper aims at two major things: (1) trying to provide a

Hamiltonian and symplectic geometry perspective onto Sherman’s area-complexity
algorithm and serving as a starter for a more general symplectic duality the-

ory. This perspective is based on the construction of an analogy of Fenchel’s
conjugate in terms of symplectic forms and taking it as the Hamiltonian. (2)

Precisely closing the gap between more general optimization methods and

Sherman’s area convexity algorithm and their corresponding results for con-
vergence rate by introducing a variant of dual extrapolation and linking it with

Sherman’s algorithm. We first introduce basic theories regarding Hamiltonian

systems and Liouville’s theorem in Section 2. We then tackle (1) in Section 3
and finally (2) in Section 4.
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1. Introduction

Sherman’s paper has introduced an algorithm that’s based on using an area-
convex regularizer instead of a strongly-convex regularizer. Such softening of the
requirement on the regularizer enables the breaking of l∞-barrier and achieves an
accelerated running time for multi-commodity flow problems. However, this al-
gorithm is presented in a very ad-hoc way. In this paper, we try to unwrap this
algorithm in two ways. Our first goal is to try to interpret this algorithm in terms
of a Hamiltonian perspective. Along the same line, we believe that this algorithm
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potentially points to a duality theory using symplectic geometry for saddle point
problems. Secondly, we want to tackle the ad-hoc nature of this algorithm by intro-
ducing a variant of dual-extrapolation and showing how this algorithm is a specific
case for this variant of dual-extrapolation.

To the stated ends, we will first state theories established for Hamiltonian sys-
tems in Section 2. We begin by giving the definition of Hamiltonian systems and
Hamiltonian vector fields, followed by stating the important property of energy
conservation of the flow of Hamiltonian vector fields in Section 2.1. We will later
show that this property is crucial for the guarantee of Sherman’s area convexity
algorithm and a variant of dual extrapolation in Section 3 and Section 4. We
will then introduce how the stationary principle induces Hamiltonian systems with
Euler-Langrange equations as a mediator in Section 2.2. We close Section 2 by in-
troducing canonical transformations and stating an important equivalent character-
ization of canonical transformations that’s related to Hamiltonian systems. Finally,
we will prove Liouvilles’ theorem using Stoke’s theorem and raise that this proof
can be extended to all vector fields with divergence 0 on a contractible manifold.
Noticeably, we won’t explicitly link Liouvilles’ theorem with Sherman’s algorithm
and dual extrapolation in later sections but we conjecture that Liouvilles’ theorem
should appear when an extensive duality theory based on symplectic conjugate is
developed (which we get started in Section 3).

In Section 3, we first reduce the general bi-linear saddle point problem into a self-
dual saddle point problem. We then introduce Sherman’s algorithm based on area
convexity (Algorithm 1) that finds an approximate solution for a self-dual saddle
point problem in accelerated running time. After that, we construct the symplec-
tic conjugate in analogy to Fenchel’s conjugate and prove a version of conjugate
correspondence between smoothness and area convexity. More generally, this con-
struction can be the key to a symplectic duality theory. Finally, we close Section
3 by posing the crucial observation that Algorithm 1 can be seen as a variation of
the discretization of the Hamiltonian system with the symplectic conjugate as the
Hamiltonian. Additionally, the property of energy conservation of moving along
the flow of the Hamiltonian field suffices to guarantee the convergence rate of Algo-
rithm 1. However, we will show that this variation of discretization doesn’t fall into
a nice category of numerical methods that have nice long-term energy behavior:
symplectic numerical methods.

Finally, in Section 4, we tackle the ad-hoc nature of Algorithm 1 by linking it with
dual-extrapolation as a more general optimization method. We will first see that
Algorithm 1 is exactly a variation of the dual extrapolation. We then turn to the
convergence analysis of this variation of dual extrapolation. This analysis involves
using the concept of relaxed-relative lipschitzness as a generalization of both area-
convexity and relaxed lipschitzness. This relaxation of the condition of the function
introduces a constant factor to the rate of convergence of this variation of dual
extrapolation when compared to that of ordinary dual extrapolation. Finally, we
introduce the same Hamiltonian perspective to a specific case of dual extrapolation
and note that the guarantee of convergence of dual extrapolation can also be seen
as the result of the conservation of energy.
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2. Hamiltonian

2.1. Hamiltonian systems and conservation of energy. In this section, we
introduce a very important system at the root of explaining a lot of mechanical
systems and an important property of such a system. If we are given a C1 map
f : TM → R where M is an n−dimensional submanifold of Rn, we can construct
the vector field Hf on TM as the following:

(2.1) Hf =

n∑
j=1

[
∂f

∂pj

∂

∂qj
− ∂f

∂qj

∂

∂pj
]

where (q, p) refers to the coordinates of TM . Hf is called the Hamiltonian vector
field and f is its Hamiltonian.

Notice that we are writing Hf in the differential operator form, i.e. given a
function g

(2.2) Hfg(x) = lim
h→0

g(Fh
Hf

(x))− g(x)

h

where Fh
Hf

(x) denotes the flow of Hf at time h with starting point at x.

Therefore, for a vector field V (x) =
∑

ai(x)
∂

∂xi
, we have that for any 1 ≤ i ≤ n,

V xi = ai(x). This implies that

(2.3) ai(x) = lim
h→0

(Fh
V (x))i − xi

h
= DiF

0
V (x) = Dix = V (x)i.

Applying this conclusion to the above Hamiltonian vector field, we obtain that

(2.4) Hf (x) =

(
0 I
−I 0

)
Df(x).

Therefore, when we consider the integral curve of Hf , i.e., the solution to the
ODE:

(2.5) ẋ = Hf (x), x(0) = x0,

it can be seen that the integral curve is characterized by the following set of equa-
tions

(2.6)

{
q̇ = Dpf(q, p)
ṗ = −Dqf(q, p)

where we let x = (q, p) and (q(0), p(0)) = (q0, p0) := x0. (2.6) are called the Hamil-
tonian equations. More generally, for Hamiltonian equations, f can also explicitly
depend on time, under which scenario we say that the Hamiltonian equations are
time-dependent. We remark that in physics settings, q is usually considered as
the general position and p the general momentum, and the integral curve of the
Hamiltonian is viewed as the trajectory of the mechanical behavior of the target
object in the phase space of (q, p). We will later see in section 2.2 how Hamiltonian
systems naturally arise out of the stationary variation principle which is considered
axiomatic in Hamiltonian mechanics.

One important property of the integral curve of the Hamiltonian vector field, or
the solution to time-independent Hamiltonian equations, is that it lies on a level
set of f . If we consider f as some notion of ’energy’, the integral curve of the
Hamiltonian preserves energy.
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Proposition 2.7. Given a Hamiltonian vector field Hf , the integral curve x(t) =
(q(t), p(t)) of Hf preserves f , i.e., for any t1, t2, we have that f(x(t1)) = f(x(t2))

Proof. Let E(t) = f(q(t), p(t)). We have that

Ė(t) = Df(q(t), p(t))Dx(t) = Dqf(q, p)q̇(t) +Dpf(q, p)ṗ(t)

= −ṗ(t)q̇(t) + q̇(t)ṗ(t) = 0

which implies that E is preserved. □

Remark 2.8. We will later argue in section 3 and section 4 that this conservation
of energy is actually crucial for the guarantee of the rate of convergence of the
algorithm proposed in Sherman’s paper and also a variation of dual extrapolation
under a specific case.

2.2. Stationary action principle. With the concept of Hamiltonian systems es-
tablished, we’ll now turn our attention to how are these systems generated in
Hamiltonian mechanics. The key is the relationship between the stationary ac-
tion principle and Hamiltonian systems. To make sense of this relationship, we
first give the definition of action:

Definition 2.9. Let M be an n−dimensional submanifold of Rn. Let x, y ∈ M
and P be the family of smooth funtions u : [a, b] → M such that u(a) = x and
u(b) = y. Given a smooth function L : TM × R→ R, we let I : P → R be defined
as:

(2.10) I(u) =

∫ b

a

L(u(t), u̇(t), t)dt

and we call I the action w.r.t L.
We say that the action is stationary if for any smooth family {us} in P with

u0 = u, we have that

(2.11)
d

ds
I(us)|s=0 = 0.

Remark 2.12. An action being stationary suggests I(u + hn(t)) − I(u) = o(h)
where n(t) is some small smooth function that vanishes on t = a, b that depends
on us. Intuitively, this means making any small variation to u won’t change the
action.

An important result for linking Stationary action and Hamiltonians is that an
action is stationary if and only if it follows the so-called Euler-Lagrange equation:

Theorem 2.13. The action I w.r.t L is stationary if and only if

(2.14) DuL−
d

dt
(Du̇L) = 0.

Proof. Firstly, notice that

d

ds
I(us)|s=0 =

d

ds

∫ b

a

L(us(t), u̇s(t), t)dt|s=0

=

∫ b

a

d

ds
L(us(t), u̇s(t), t)|s=0dt (by smoothness of L and us)

=

∫ b

a

DuL(u(t), u̇(t), t)(
d

ds
us(t)|s=0) +Du̇L(u(t), u̇(t), t)(

d

ds
u̇s(t)|s=0)dt.
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Integrating the last term by parts, we obtain:∫ b

a

Du̇L (
d

ds
u̇s(t)|s=0)dt

=Du̇L (
d

ds
(us(b)− us(a))|s=0)−

∫ b

a

(
d

dt
Du̇L) (

d

ds
us(t)|s=0)dt

=−
∫ b

a

(
d

dt
(Du̇L)) (

d

ds
us(t)|s=0)dt (since us(a) ≡ x, us(b) ≡ y by definition).

Therefore, we have

d

ds
I(us)|s=0 =

∫ b

a

(DuL−
d

dt
(Du̇L)) (

d

ds
us(t)|s=0)dt.

Now, I is stationary if and only if d
dsI(us)|s=0 = 0 for any smooth family of

us, which is equivalent to
∫ b

a
(DuL− d

dt (Du̇L)) (
d
dsus(t)|s=0)dt = 0 for any smooth

family of us. And that is equivalent to DuL − d
dt (Du̇L) = 0, which concludes the

proof.
□

With theorem 2.13 established, we now try to link the stationary action prin-
ciple and Hamiltonians by linking the Euler-Lagrange equation and Hamiltonian
equations.

Proposition 2.15. Let H(q, p, t) be obtained from Legrenge transformation from
L(q, q̇, t), i.e., H(q, p, t) =

∑n
i=1 piq̇i − L(q, q̇, t) where p := Dq̇L, then

DqL−
d

dt
(Dq̇L) = 0 ⇐⇒

{
q̇ = DpH(q, p, t)
ṗ = −DqH(q, p, t)

.

Proof. Notice that q̇ = DpH(q, p, t) follows directly from Legrenge transformation.

Therefore, we only need to show that DqL− d
dt (Dq̇L) = 0 ⇐⇒ ṗ = −DqH(q, p, t).

To see this, we will first show that DqH = −DqL. Notice

dH =

n∑
i=1

pidq̇i + q̇idpi − dL

=

n∑
i=1

pidq̇i + q̇idpi −
n∑

i=1

Dq̇iLdq̇i −
n∑

i=1

DqiLdqi −
∂

∂t
Ldt

=

n∑
i=1

(pi −Dq̇iL)dq̇i +

n∑
i=1

q̇idpi −
n∑

i=1

DqiLdqi −
∂

∂t
Ldt.

Since p = Dq̇L, we have dH =
∑n

i=1 q̇idpi−
∑n

i=1 DqiLdqi− d
dtLdt. In other words,

H is only a function of q, p, t. Then dH = DpHdp+DqHdq +DtHdt. Comparing
this to the calculation above, we have that DqH = −DqL.

Then ṗ = −DqH ⇐⇒ ṗ = DqL ⇐⇒ d
dt (Dq̇L) = DqL, which concludes the

proof.
□

Remark 2.16. Notice that here we assume Dq̇q̇L to be invertible so that (q, p)
can also be considered as local coordinate systems in TM in replacement of (q, q̇)
by inverse function theorem since then the transformation (q, p) = (q,Dq̇L) would



6 JUNFEI SUN

have invertible differentials, which enables us to apply inverse function theorem and
get local smooth inverse functions for the transformation map.

Combining proposition 2.15 and Theorem 2.13, we see that an action I w.r.t L
is stationary if and only if u obeys the Hamiltonian equations of H obtained from
a Legrenge transformation from L.

We end this subsection by remarking that the stationary action principle is the
fundamental axiom with proper L when it comes to Hamiltonian mechanics, which
is why Hamiltonian equations determine the ’correct’ trajectory.

2.3. Canonical transformation and Liouville’s theorem. In this subsection,
we discuss the concept of Canonical transformation, which is closely related to
Hamiltonian systems discussed in the previous function. To begin with, we define
a specific differential 2-form on a 2n−dimensional manifold M .

Definition 2.17. Given M a 2n−dimensional manifold with a coordinate system
(q, p), we define the 2-form ω :

⋃
p∈M TpM × TpM → R to be:

(2.18) ω =

n∑
i=1

dpi ∧ dqi

and we call it a symplectic form.
A general symplectic form on M is any 2−form on M that is closed and non-

degenerate.

Definition 2.19. Given a diffeomorphism F : M →M , we say that F is a canonical
transformation if F ∗ω = ω where F ∗ω refers to the pullback of ω with respect to
F .

Since any canonical transformation is a diffeomorphism, we can take it as a trans-
formation of coordinates: (q, p)→ (Q,P ). We will show that a canonical transfor-
mation is equivalent to a transformation of coordinates that preserves Hamiltonian
equations, i.e., q, p satisfy the Hamiltonian equations generated by H if and only if
Q,P also satisfy the Hamiltonian equations generated by H.

Lemma 2.20. Given a diffeomorphism F (q, p) := (Q(q, p), P (q, p)), F is a canon-
ical transformation if and only if for all 1 ≤ i, j ≤ n

(2.21) {Pi, Pj} = 0, {Qi, Qj} = 0 {Qi, Pj} = δij

where {·} is the Poisson bracket defined as {f, g} =
∑

i
∂f
∂qi

∂g
∂pi
− ∂f

∂pi

∂g
∂qi

when (q, p)

is the coordinate system.

Proof. The proof follows immediately from the following calculation:

(Q,P )∗ω = (
∂Qj

∂qi

∂Pj

∂pi
− ∂Qj

∂pi

∂Pj

∂qi
)dqj ∧ dpj

= {Qj , Pj}dqj ∧ dpj

= ω (iff the transformation is canonical).

□

Lemma 2.22. F (q, p) := (Q(q, p), P (q, p)) is a canonical transformation if and
only if given any f, g : M → R, we have that

(2.23) {f, g}|qp = {f, g}|QP
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Proof.

{f, g}|qp =
∑
i

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

=
∑
i

[(
∑
j

∂f

∂Qj

∂Qj

∂qi
+

∂f

∂Pj

∂Pj

∂qi
)(
∑
k

∂g

∂Qk

∂Qk

∂pi
+

∂g

∂Pk

∂Pk

∂pi
)

− (
∑
j

∂f

∂Qj

∂Qj

∂pi
+

∂f

∂Pj

∂Pj

∂pi
)(
∑
k

∂g

∂Qk

∂Qk

∂qi
+

∂g

∂Pk

∂Pk

∂qi
)]

=
∑
i

∑
j

∑
k

∂f

∂Qj

∂g

∂Pk
{Qj , Pk} −

∂f

∂Pj

∂g

∂Qk
{Pj , Qk}

+
∂f

∂Qj

∂g

∂Qk
{Qj , Qk} −

∂f

∂Pj

∂g

∂Pk
{Pj , Pk}.

On the other hand,

(2.24) {f, g}|QP =
∑
i

∂f

∂Qi

∂g

∂Pi
− ∂f

∂Pi

∂g

∂Qi
.

Therefore, {f, g}|qp = {f, g}|QP for any f, g if and only if

{Pi, Pj} = 0, {Qi, Qj} = 0 {Qi, Pj} = δij

which, by Lemma 2.20 is equivalent to F being a canonical transformation.
□

With these lemmas established, we can finally move to the proposition that links
canonical transformation and preservation of Hamiltonian.

Proposition 2.25. F (q, p) := (Q(q, p), P (q, p)) is a canonical transformation if
and only if whenever x(t) = (q(t), p(t)) satisfies the Hamiltonian equations gener-
ated by a function H under coordinate system (q, p), it also satisfies the Hamilton-
ian equations generated by the same function H under the transformed coordinate
system (Q.P )

Proof. The key observation is that we can rewrite Hamiltonian equations w.r.t H
under coordinate system (q, p) in terms of Poisson brackets:

(2.26) q̇ = {q,H}pq, ṗ = {p,H}pq.

Then for each q, p,H, q̇ = {q,H}pq, ṗ = {p,H}pq ⇐⇒ Q̇ = {Q,H}pq, Ṗ =

{P,H}pq. It then follows that all corresponding Q,P satisfies Q̇ = {Q,H}PQ, Ṗ =
{P,H}PQ is equivalent to {·}pq ≡ {·}PQ, which, by Lemma 2.22, is equivalent to
F = (Q,P ) being a canonical transformation. □

Therefore, canonical transformation can be used to transform the coordinates
into such that the corresponding Hamiltonian vector field has better properties. For
example, action-angle coordinates make sure half of the coordinates are invariant
along the trajectory, whereas Hamilton-Jacobi theory aims at finding Hamiltonian
vector fields in which everything is fixed.

We will now revisit the famous result that the flow of any Hamiltonian vector
field preserves volume. Additionally, we will generalize the result to all vector fields
with 0 divergence. Innovatively, we will show that a proof using Stoke’s theorem can
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also be used to show the generalization of the result of not only volume preservation
but also the flow being canonical transformations to all 0 divergence vector fields.

Theorem 2.27. For any Hamiltonian H, the flow of the corresponding Hamilton-
ian vector field at any time t is a canonical transformation.

Proof. To start off, we consider the extended phase space, i.e., TM × R which
contains the phase space in addition to time (q, p, t), and we define a one-form on
this space:

(2.28) σ1 = pdq −Hdt

where H is any Hamiltonian. We will now see that there exists a vector V such
that dσ1⌊V = 0, i.e., dσ1(V, η) = 0 for any η. The V direction is also called vortex
lines. It’s easy to check that the following V works:

V = DpH
∂

∂q
−DqH

∂

∂p
+

∂

∂t
.

Remark 2.29. Notice that the flow generated by this vector field satisfies the
Hamiltonian equations, which means the flows of V are basically just Hamiltonian
flows.

We now consider any arbitrary region in the phase space that is an orientable
manifold and call it C. And consider its Hamiltonian flow along t from t = 0 to
t = τ , causing a transformation gτC. To make it more precise, consider a function
g : TM × R→ TM × R defined as the flowing:

g(x, t) = (F t
H(x), t),

where x ∈ M and F t
H is the hamiltonian flow. Then applying this mapping on all

the points on C from t = 0 to t = τ should give us a ”cylinder”, like the following
[12]:

Now, we recall the generalized Stoke’s theorem:

Theorem 2.30. Let C be an orientable manifold, and ω be a differential form on
that region, we have that ∫

C

dω =

∫
∂C

ω.

One consequence is the integration over a boundary of an exact C2 form is going
to be 0. In particular, we have that∫

∂C

dσ1 =

∫
C

d2σ1 = 0.
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The curves along it are like the graph of the integral curves of the Hamiltonian
field. We can now break the above integration over the whole boundary of the
cylinder into three parts. We first notice that

∫
J∂C

dσ1 = 0. To see this, we look
at a parameterization G : K × [a, b]→ TM × R of this boundary:

(k, t)→ (F t
H(λ(k)), t)

where λ is a parameterization of C from K ⊂ R2n. We then have that
(2.31)
dG

dt
= (

dF t
H(λ(k))q
dt

,
dF t

H(λ(k))p
dt

, 1) = (DpH(λ(k)),−DqH(λ(k)), 1) = V (λ(k)).

Consequently,

(2.32)

∫
J∂C

dσ1 =

∫
K×[a,b]

dσ1(DkG,DtG) = 0

since
∫
dσ1(V, ...) = 0, which gives us the conclusion. (This also gives us a nice

property for σ1, which is that integrating dσ1 over a parameterization that involves
the corresponding integral curve always gives us 0). Consequently integrating dσ1

on the top and both faces of the cylinder C and gτC must give the same result.
Now, integrating over dσ1 on these two surfaces is the same as integrating over

ω = dp ∧ dq since all vectors are perpendicular to ∂
∂t . To put everything together,

we have that: ∫
A

σ =

∫
F t(A)

σ =

∫
A

F t∗σ

for any A in the phase space. This in turn implies that we must have σ = F t∗σ.
□

Corollary 2.33. (Liouville’s theorem) For any Hamiltonian H, the flow of the
corresponding Hamiltonian vector field at any time t preserves the volume form.

Proof. Since the symplectic two-form can be wedged product together and gives the
volume in phase space, we also have that the flow preserves volume in the phase
space since F t∗(σ ∧ ... ∧ σ) = F t∗σ ∧ ... ∧ F t∗σ = σ ∧ ... ∧ σ. □

We will now look at another proof of Liouville’s theorem that can be generalized
to not only flows of Hamiltonian vector fields but also all vector fields with 0
divergence. Notice that any Hamiltonian vector field has 0 divergence:

divHH =
∂

∂p
(−∂H

∂q
) +

∂

∂q
(−∂H

∂p
) ≡ 0.

Inspired by this result, we then make an observation undocumented before: the
flow of any vector field with 0 divergence on a contractible manifold doesn’t only
preserve volume, but is also canonical, using a generalization of the proof using
Stoke’s theorem. To begin with, we first establish the following theorem:

Theorem 2.34. Define V (t) =
∫
F t(D)

dx where D is a bounded, measurable region

in the phase space and F t being the flow for a vector field f : Rn → Rn. Then we
have that

V̇ (t) =

∫
F t(D)

div(f(x))dx.

Remark 2.35. Notice that this directly gives Liouville’s theorem as a corollary
since divHH = 0.
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Now, we dive into the proof of this theorem:

Proof. Notice that V (t0+h) =
∫
F t0+h(D)

dy =
∫
Fh(F t0 (D))

dy =
∫
F t0 (D)

J(Fh(x))dx.

And it suffices to show that J(Fh(x)) = 1 + h · div(f(x)) + o(h).

To see this, we first notice that Fh(x) = x +
∫ h

0
f(F s(x))ds. Then we conse-

quently have thatDFh(x) = I+
∫ h

0
Df(F s(x))ds by Leibniz rule. As a consequence,

this gives us ∂DFh(x)
∂h = Df(Fh(x)). By definition of the derivative, this gives us

(2.36) DFh(x) = I + hDf(x) + o(h).

This consequently gives us the result we want since

J(Fh(x)) = det(I + hDf(x)) + o(h) by continuity of det

= Πn
i=1(1 + h

∂fi
xi

(x)) + o(h)

= 1 + h

n∑
i=1

∂fi
xi

(x) + o(h).

□

Remark 2.37. I want to briefly discuss the intuition for (2.36) above. Given
small h, the left-hand side corresponds to the instantaneous change of displacement
along integral curves in any direction. The right-hand side is roughly the change
of instantaneous velocity times time h along the integral curves by any direction,
plus the difference due to the slight change of x itself. Intuitively, these should be
about the same value.

Finally, with light shed on the generalization of the conclusion, we conclude this
section by seeing how the proof involving Stokes theorem can generalize to all vector
fields with 0 divergence on a contractible manifold.

Theorem 2.38. For any vector field V on a contractible manifold with 0 diver-
gence, the flow of V at any time t is a canonical transformation

Proof. In Stokes’ theorem proof, it involves integrating over a form dσ1 = dp ∧
dq − ∂H

∂q dq ∧ dt − ∂H
∂p dp ∧ dt. And then showing that dσ1(V, ·) ≡ 0 where V =

(∂H∂q ,−
∂H
∂q , 1)

T .

However, notice that for any vector field V , if we talk about the flow induced by
it and construct the same cylinder using that flow, we will get a parameterization
involving dG

dt = (Vq, Vp, 1)
T . And if we consider integrating the boundary of the

cylinder over a similar form ω′ = dp ∧ dq − (−Vp)dq ∧ dt − Vqdp ∧ dt, we can get
that

∫
J∂c

ω′ = 0. Therefore, we have that the flow of V preserves volume if ω′ is
exact (by applying Stoke’s theorem as before).

The crucial observation is that, ω′ is exact iff V has 0 divergence:
Consider dω, we have that

dω′ = −(−∂Vp

∂p
)dp ∧ dq ∧ dt− ∂Vq

∂q
dp ∧ dq ∧ dt

= div(V )dp ∧ dq ∧ dt.

And by Poincare’s lemma, since the domain is contractible, we have that dω′ =
0 =⇒ ω′ is exact. Therefore, div(V ) = 0 =⇒ ω′ is exact. Conversely, if ω′ is
exact, dω′ = 0, which means that div(V ) = 0. □
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3. Sherman’s Area convexity Algorithm and symplectic conjugate as
Hamiltonian

3.1. Sherman’s Area convexity Algorithm. In this section, we will analyze
the area convexity algorithm proposed in Sherman’s paper. Sherman used this
algorithm to break the l∞−barrier and solved right-stochastic matrix problems,
and consequently multicommodity flow problem in accelerated time. However, this
algorithm is somewhat ad-hoc and requires more examination. One potential di-
rection is to interpret this algorithm in terms of Hamiltonians, which is not made
clear in any literature. Therefore, the goal of this section is to make some connec-
tions between this algorithm and Hamiltonian systems and symplectic structures
and shed some light on this direction.

Before linking the algorithm with symplectic structures and Hamiltonian sys-
tems, we will first set up the problem that the algorithm is targeting, and then
introduce the algorithm formally.

We consider the general bi-affine saddle point problem:

(3.1) min
x∈X

max
y∈Y
⟨y,Ax⟩ − ⟨b, y⟩ − ⟨c, x⟩

where X,Y are compact-convex in real finite-dimensional vector spaces, and A is
a linear operator from X to Y ∗, b, c are linear functionals. We will reduce this
problem to a purely bilinear, self-dual form. By increasing the dimension by 1 and
augmenting X ,Y with constant coordinates, we can turn the above problem into
the purely bilinear form:

(3.2) min
x∈X

max
y∈Y
⟨y,Ax⟩.

Notice that when the duality gap is 0, i.e.

min
x∈X

max
y∈Y
⟨y,Ax⟩ −max

y∈Y
min
x∈X
⟨y,Ax⟩ = 0,

the primal points (x, y) is a solution to the saddle point problem (3.2). This is
because each maxy∈Y minx∈X ⟨y,Ax⟩ is a lower bound to minx∈X maxy∈Y⟨y,Ax⟩.
By the same reason, if we have (x, y), (x′, y′) that make the duality gap only δ > 0,
then ⟨y,Ax⟩ is at most δ away from minx∈X maxy∈Y⟨y,Ax⟩. This is what we call
a δ−approximate solution for (3.2).

We now transform the duality gap as the following:

min
x∈X

max
y∈Y
⟨y,Ax⟩ −max

y′∈Y
min
x′∈X
⟨y′, Ax′⟩

=min
x∈X

max
y∈Y
⟨y,Ax⟩ − (− min

y′∈Y
max
x′∈X
⟨y′,−Ax′⟩)

= min
x∈X ,y′∈Y

max
x′∈X ,y∈Y

⟨y,Ax⟩ − ⟨y′, Ax′⟩.

Now, let C = X ⊕ Y and let J be the linear operator on C to C∗ such that
J(x, y) = (A∗y,−Ax). Notice that J∗ = −J , i.e., J is alternating. To see this, we
have that

⟨(x, y), J∗(x′, y′)⟩ = ⟨(x, y),−J(x′, y′)⟩
= ⟨(x,−A∗y′)⟩+ ⟨(y,Ax′)⟩
= ⟨x′, A∗y⟩+ ⟨y′,−Ax⟩
= ⟨(x′, y′), J(x, y)⟩.
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Now, we can express the above duality gap in terms of J :

min
x∈X ,y′∈Y

max
x′∈X ,y∈Y

⟨y,Ax⟩ − ⟨y′, Ax′⟩

=− min
x∈X ,y′∈Y

max
x′∈X ,y∈Y

⟨x′, A∗y′⟩ − ⟨y,Ax⟩

=− min
x∈X ,y′∈Y

max
x′∈X ,y∈Y

⟨(x′, y), (A∗y′,−Ax)⟩

=− min
x∈X ,y′∈Y

max
x′∈X ,y∈Y

⟨(x′, y), J(x, y′)⟩

=−min
z∈C

max
z′∈C
⟨z′, Jz⟩.

Therefore, the problem of minimizing the duality gap reduces to the problem of

(3.3) min
z∈C

max
z′∈C
⟨z′, Jz⟩.

Additionally, if the original purely bilinear saddle point problem (3.2) has a solution,
then minz∈C maxz′∈C⟨z′, Jz⟩ = 0. Therefore, we’ve turned the bi-affine saddle
point problem into a self-dual saddle point problem with value 0.

We now move to present Sherman’s algorithm to solve this self-dual problem.
Before that, we list some required definitions:

Definition 3.4. Given ϕ : C → R where C ⊂ C, we define the δ−approximate
minimization oracle (δ−AMO) to be a map Φ : C∗ → C such that Φ(a) satisfies

(3.5) ⟨a,Φ(a)⟩ − ϕ(Φ(a)) + δ ≥ ϕ∗(a)

where ϕ∗ is the Fenchel-conjugate of ϕ.

Definition 3.6. We say that a map ϕ : C → R where C is convex to be η−area-
convex with respect to J on convex set C iff for all x, y, z ∈ C

(3.7) η⟨y − z, J(y − x)⟩ ≤ ϕ(x) + ϕ(y) + ϕ(z)− 3ϕ(
x+ y + z

3
).

We are now ready to present the following algorithm:

Algorithm 1 Find Saddle point

Input: ϕ : C → [−ρ, 0], C compact-convex in C, and ϕ (-2)-area-convex with
respect to J ; Φ being a δ−AMO for ϕ; ϵ > 0
Output: a δ + ϵ approximate solution for self-dual saddle point problem (3.3)
over C
z(0)← 0
for 0 ≤ t < ρϵ−1 do

z(t+ 1) = z(t) + Φ(Jz(t) + 2JΦ(Jz(t)))
end for
Return z(⌊ρϵ−1⌋+1)

⌊ρϵ−1⌋+1

Remark 3.8. Notice that we assumed 0 to be in C since z(0) = 0, and this implies

that for all t ∈ N>0, we have that
z(t)
t ∈ C by convexity of C. And this justifies how

the returned value is a valid candidate for a δ+ ϵ approximate solution for self-dual
saddle point problem (3.3) over C.

Theorem 3.9. Algorithm 1 outputs a δ+ϵ approximate solution for self-dual saddle
point problem (3.3)
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Proof. Since the value of problem (3.3) is 0, it suffices to prove that when t = ρϵ−1,

⟨z′, z(t)
t ⟩ ≤ ϵ+ δ for any z′ ∈ C∗. we can define γ(a) := supz∈C⟨a, z⟩. And since ϕ

is non-positive, ϕ∗(a) = supz∈C⟨a, z⟩ − ϕ(z) ≥ γ(a). Therefore, it suffices to bound
ϕ∗ above by δ + ϵ.

And one crucial Lemma to that end is that the update scheme in Algorithm 1
guarantees that ϕ∗ only deviate by δ each step:

Lemma 3.10. For any a ∈ C∗, we have that

(3.11) ϕ∗(a+ JΦ(a+ 2JΦ(a)) ≤ ϕ∗(a) + δ.

Let’s first check how this lemma gives us the theorem. We have that for each t,

(3.12) ϕ∗(Jz(t+ 1)) = ϕ∗(Jz(t) + JΦ(Jz(t) + 2JΦ(Jz(t))) ≤ ϕ∗(Jz(t)) + δ.

Therefore, by induction, we can conclude that ϕ∗(Jz(t)) ≤ ρ + δt. Notice that

γ(at ) =
γ(a)
t . Therefore, γ(Jz(t)t ) = γ(a)

t ≤ ϕ∗(Jz(t))
t ≤ ρ

t + δ. Consequently, when

t = ρϵ−1, we have γ(Jz(t)t ) ≤ δ + ϵ, which concludes the proof.
Now, we prove Lemma 3.10:

Proof. Assume without loss of generality that a = 0 since we can always change
ϕ(x) into ϕ(x)− ⟨a, x⟩. Let x = Φ(0) and y = Φ(0 + 2JΦ(0)) = Φ(2Jx). We want
to show that for any z ∈ C

(3.13) ⟨z, Jy⟩ − ϕ(z) ≤ ϕ∗(0) + δ.

Now, for x, y, z ∈ C, since ϕ is (-2)-area convex with respect to J , we have that
(3.14)

⟨z − y, J(y − x)⟩ ≤ 1

2
(ϕ(x) + ϕ(y) + ϕ(z)− ϕ(

x+ y + z

3
))

≤ 1

2
(ϕ(x) + ϕ(y) + ϕ(z) + 3ϕ∗(0)) (by definition of conjugate)

≤ 1

2
(δ + ϕ(y) + ϕ(z)) + ϕ∗(0)

(since x = Φ(0), we have −ϕ(x) ≥ ϕ∗(0)− δ).

Now, since y = Φ(2Jx), we have ⟨y, 2Jx⟩ − ϕ(y) + δ ≥ ⟨z, 2Jx⟩ − ϕ(z), which is
equivalent to

(3.15) ⟨z − y, Jx⟩ − ϕ(z) ≤ 1

2
(δ − ϕ(y)− ϕ(z)).

Combining this with (3.14), we finally have that

⟨z, Jy⟩ − ϕ(z) = ⟨z − y, Jy⟩ − ϕ(z)

= ⟨z − y, J(y − x)⟩+ ⟨z − y, Jx⟩ − ϕ(z)

≤ δ + ϕ∗(0).

□

With the proof of Lemma 3.10, we conclude the proof of Theorem 3.9 □
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3.2. symplectic conjugate and Hamiltonian perspective. In the rest of this
paper, we will tackle two things about this algorithm. Firstly, the update method
chosen in this algorithm seems somewhat mysterious, we will try to introduce a
symplectic and Hamiltonian perspective to the behavior of the algorithm in this
section. Secondly, it’s still unclear how is this algorithm precisely linked to more
general and classical optimization schemes. In Section 4, we will establish a clear
relationship between Algorithm 1 and a variation of dual-extrapolation.

The intuition behind linking Algorithm 1 with symplectic structures is the close
relationship between symplectic form and saddle point problems. We’ve already
seen that every bi-affine saddle point problem can be reduced to a self-dual saddle
point problem (3.3) in which J is alternating. However, notice that there is a nice
correspondence between alternating operators and general symplectic forms, i.e.,
non-degenerate and closed:

Proposition 3.16. For every general symplectic form on finite-dimensional self-
dual C, there exists a unique bijective alternating linear operator J such that

(3.17) ω(x, y) = ⟨y, Jx⟩
for all x.y ∈ C. Conversely, for every bijective alternating linear operator J , there
exists a unique general form that achieves (3.17).

Proof. Consider the map J 7→ (x, y 7→ ⟨y, Jx⟩) from bijective linear operators to
general symplectic forms (Notice (x, y 7→ ⟨y, Jx⟩) is a general symplectic form
whenever J is bijective and alternating). Now, it suffices to show that this map is
bijective.

It’s injective since symplectic forms are non-degenerate. To see that it’s surjec-
tive, for each ω, let J be Jx = (y 7→ ω(x, y)), then (3.17) is satisfied. Finally, we
need to make sure J here is bijective. This can be seen from the fact that ω is
non-degenerate, and dim C = dim C∗ are finite. □

In close examination of the proof of Theorem 3.9, we realize that the control
of the value of ϕ∗(Jz) is crucial for the guarantee of accelerated convergence rate.
Therefore, this relationship we’ve established between symplectic form and bijec-
tive, alternating J inspires us to construct a new type of conjugate using symplectic
forms for ϕ that encodes this information of alternating linear operator naturally.

Definition 3.18. Given ϕ : C → R, let ϕ∗ω : C → R be that

(3.19) ϕ∗ω(y) = sup
x∈C

ω(y, x)− ϕ(x).

This obviously satisfies an inequality analogous to Fenchel inequality for all x, y ∈
C:

(3.20) ϕ(x) + ϕ∗ω(y) ≥ ω(y, x).

At the same time, we define the symplectic subgradient for a function in analogy
with the normal subgradient:

Definition 3.21. Given ϕ : C → R, we define:

(3.22) y ∈ ∂ωϕ(x) ⇐⇒ ϕ(z) ≥ ϕ(x) + ω(y, z − x) for all z ∈ C.

Now, we prove that a function takes exactly those that make the symplectic
Fenchel inequality tight in its symplectic subgradient, i.e.,
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Theorem 3.23. y ∈ ∂ωϕ(x) ⇐⇒ ϕ(x) + ϕ∗ω(y) = ω(y, x).

Proof. We only need to prove y ∈ ∂ωϕ(x) ⇐⇒ ϕ(x) + ϕ∗ω(y) ≤ ω(y, x).
By definition, y ∈ ∂ωϕ(x) ⇐⇒ ϕ(z) ≥ ϕ(x) + ω(y, z − x) for all z ∈ C, The

latter is equivalent to ω(y, x) − ϕ(x) ≥ ω(y, z) − ϕ(z) for all z ∈ C, which is the
same as ω(y, x)− ϕ(x) ≥ ϕ∗ω(y). This concludes the proof. □

Before doing more analysis on symplectic conjugate and subgradient, let’s try to
build the relationship between them and the ordinary conjugate and subgradient
and see how the symplectic conjugate encodes the information of an alternating
linear operator into Fenchel’s conjugate. It’s easy to check the following:

(3.24) y ∈ ∂ωϕ(x) ⇐⇒ J(y) ∈ ∂ϕ(x)

(3.25) ϕ∗ω(x) = ϕ∗(J(x))

(3.26) Φ(Jz) = Φω(z) where Φ represents the 0−AMO

where J is the corresponding linear operator for ω as proposed in Proposition 3.16.
Since d(ϕ∗)(x) = Φ(x), we consequently have that d(ϕ∗ω)(x) = Φω(x)J by the
chain rule.

We now move to an important result that is analogous to the conjugate corre-
spondence between smoothness and strong convexity for Fenchel conjugate. We
similarly have that area-convexity is equivalent to the local smoothness of the sym-
plectic conjugate in terms of the corresponding symplectic form for a twice differ-
entiable ϕ. This doesn’t only shed some light on the nature of area-convexity but
also builds up the reasonability to consider symplectic conjugate as a reasonable
notion of conjugate.

We first put up a Lemma proposed in Sherman’s paper and show some other
preliminary lemmas.

Lemma 3.27. [Sherman 17] Let ϕ be twice differentiable on convex C,
(a) If ϕ is (− 1√

3
)−area convex with respect to J on the interior of C, then

d2ϕ(z) ⪰ ιJ in the interior of C
(b) If d2ϕ(z) ⪰ ιJ for all z ∈ C, then ϕ is − 1

3
√
3
-area convex with respect to J

on C
where we define Q ⪰ ιJ to be

(3.28)

(
Q −J
J Q

)
⪰ 0.

Lemma 3.29. When Q is a positive semi-definite and invertible matrix and alter-
nating matrix J , we have that Q ⪰ ιJ if and only if Q ⪰ J∗QJ

Proof. We notice that(
I 0

−J∗Q−1 I

)(
Q J∗

J Q

)(
I −Q−1J
0 I

)
=

(
Q 0
0 Q− J∗Q−1J

)
.

Since the left and the right matrix on the left side of the equation are all in-

vertible,

(
Q J∗

J Q

)
is positive semi-definite if and only if

(
Q 0
0 Q− J∗Q−1J

)
is

positive semi-definite, which is equivalent to Q − J∗Q−1J ⪰ 0 since Q ⪰ 0, which
concludes the proof. □
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Lemma 3.30. Given twice-differentiable function ϕ with invertible Hessian and an
alternating operator J , we have that (d2(ϕ(z)))−1J is a contraction if and only if
d2(ϕ(z)) ⪰ J∗(d2(ϕ(z)))−1J

Theorem 3.31. Given ϕ : C → R to be twice-differentiable and Φ is bijective
(which is the case when ϕ strictly convex), also assume J to be invertible:

(a) If ϕ is (− 1√
3
)−area-convex w.r.t J , then we have that Φω is locally ((1 + ϵ)

for any ϵ > 0) Lipschitz.
(b) If Φω is locally L−Lipschitz, then ϕ is − 1

3
√
3L
−area-convex w.r.t J .

Before going into the proof, I want to illustrate the analogy between this theorem
and the conjugate correspondence of smoothness and strong convexity. Φω being
Lipschitz is not exactly the same as ϕ∗ω being smooth since dϕ∗ω(x) = Φω(x)J .
It’s stronger than regular smoothness since

||Φω(z0)− Φω(z)|| ≤ L||z0 − z|| =⇒ ||J(Φω(z0)− Φω(z))|| ≤ ||J ||L||z0 − z||.
We now proof the above theorem:

Proof. (a) If ϕ is strictly − 1√
3
−area-convex w.r.t J , by Lemma 3.27, we have that

d2ϕ(z′) ⪰ ιJ for all z′ ∈ C. This is equivalent to J∗(d2ϕ(z′))−1J ⪯ d2ϕ(z′) by
Lemma 3.29. Notice that we can apply Lemma 3.29 here since the area-convexity
of ϕ guarantees the Hessian to be positive semi-definite.

Now, J∗(d2ϕ(z′))−1J ⪯ d2ϕ(z′) in turn is equivalent to (d2ϕ(z′))−1J being a
contraction according to Lemma 3.30.

By second-order duality theory, we can show that d2ϕ∗(Jz) = (d2ϕ(z′))−1 where
z′ = Φ(Jz). Notice that this is always possible since Φ is bijective. Along with
the fact that J is invertible, this implies d2ϕ∗(Jz)J = dΦ(Jz)J = d(Φ ◦ J)(z) =
dΦω(z) = (d2ϕ(z′))−1J .

For any z0 ∈ C, by Taylor’s theorem, we have that

Φω(z0) = Φω(z) + dΦω(z)(z0 − z) +
1

2
⟨(z − z0), h2(z0)(z − z0)⟩

where h2(z0)→ 0 as z0 → z. Therefore, we have that

||Φω(z0)− Φω(z)|| = ||dΦω(z)(z0 − z) +
1

2
⟨(z − z0), h2(z0)(z − z0)⟩||

≤ ||dΦω(z)(z0 − z)||+ 1

2
||h2(z0)(z − z0)||||z − z0||

< ||z0 − z||+ 1

2
||h2(z0)(z − z0)||||z − z0|| since dΦω(z) is a contraction.

Notice, if we pick z0 close enough to z, we have that ||h2(z0)(z−z0)||||z−z0||
2k||z0−z|| goes

to 0 for any k > 0, which implies that we can pick a neighborhood of z such that
1
2 ||h2(z0)(z− z0)||||z− z0|| ≤ k||z0− z||, which shows that Φω is locally Lipschitz at
z. Since Φ is bijective, this shows that Φω is locally (1+ ϵ)-Lipschitz for any ϵ > 0.

(b) Conversely, if Φω is locally L−Lipschitz. Then for any z ∈ C, there exists δ
such that for any z0 such that ||z0 − z|| ≤ δ, we have

||Φω(z0)− Φω(z)|| ≤ L||z0 − z||.
By the Taylor expansion, we have that

||dΦω(z)(z0 − z)|| − 1

2
||h2(z0)(z − z0)||||z − z0|| ≤ L||z0 − z||



HAMILTONIAN, SHERMAN’S ALGORITHM, AND DUAL EXTRAPOLATION 17

and if we pick δ′ to be small enough, it follows that

||dΦω(z)(z0 − z)|| ≤ L||z0 − z|| for all z0 ∈ Nδ′(z).

In other words,

1

L
d(Φ ◦ J)(z) = d(Φ ◦ J

L
)(z) is a contraction in the δ′ neighborhood of z

But since d(Φ ◦ J
L )(z) is linear, this means it’s a global contraction. And by

what’s established above, this is equivalent to d2ϕ(z′) ⪰ ι JL where z′ = Φ(Jz).

Notice that (Φ ◦ J) is bijective since both Φ and J are, which implies d2ϕ(z′) ⪰ ι JL
on all z′ ∈ C. By Lemma 3.27, we finally conclude that ϕ is − 1

3
√
3L
−area-convex

w.r.t J .
□

With this symplectic conjugate being established, we make the key observation
that we can view Algorithm 1 as a variational way of following the integral curve of
a particular Hamiltonian field with a controlled deviation from the integral curve
in terms of energy.

Consider a naive version of the update step in Algorithm 1 when Φ is the
0−AMO:

(3.32) z(t+ 1) = z(t) + Φ(Jz(t)).

This is the normal explicit Euler discretization of the following continuous dy-
namic system:

(3.33)
dz

dt
= Φ(Jz(t)) = Φω(z(t)), z(0) = 0.

This points us to the direction of taking the Hamiltonian to be H(z) = ϕ∗ω(z).

Since we do have that dH(z)
dz = dϕ∗ω(z)

z = dϕ∗(J(z))
dz = Φ(J(z))J = Φω(z(t))J , (3.33)

can be re-written as:

(3.34)
dz

dt
J =

dH(z)

dz
.

But since J is alternating, we have that (dzdt J)
T = −J(dzdt )

T . Therefore, if we

consider dz
dt and dH(z)

dz as column vectors, the above is the same as:

(3.35) −J(dz
dt

) =
dH(z)

dz

which is a generalized form of Hamiltonian equations. Consider the case in which

J =

(
0 I
−I 0

)
, then J−1 = −J . So we recover the typical Hamiltionian equations:

(dzdt ) = J dH(z)
dz =

(
0 I
−I 0

)
dH(z)
dz . And we can see that energy conservation holds

for the more general form of Hamiltonian equations as well:

dH(z(t))

dt
=

dH(z)

dz

dz

dt
=

dz

dt
J
dz

dt
= 0.

Notice that in the proof of Theorem 3.9, guaranteeing (3.12) suffices to give
us the final conclusion. However, notice that this is equivalent to ensuring that
Hamiltonian defined as symplectic conjugate doesn’t increase up to a δ. And this
is ensured when this Hamiltonian is conserved.
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In other words, if we have access to the solution of the above generalized Hamil-
tonian system (3.35), then following this solution would be an update step that
grants the same convergence rate in Theorem 3.9. Let’s rewrite the update step in
Algorithm 1 in terms of symplectic conjugate:

(3.36) z(t+ 1) = z(t) + Φω(z(t) + 2Φω(z(t))).

With what we’ve established, we can think of the position at which we access the
symplectic conjugate oracle at each step: z(t) + 2Φω(z(t)) to be established this
way to make sure although we might not be able to strictly conserve Φω, we can
ensure that it doesn’t increase.

With the observation that the guarantee of convergence rate is a result of the nice
energy conservation behavior of the update scheme, we end this section by proving
that the update scheme (3.36) of Algorithm 1 is not a type of scheme which is
well-known to be having nice long-time energy conservation behavior (introducing
only a constant deviation of energy): symplectic methods, i.e., numerical methods
with each step of update being a canonical transformation.

We first define a type of numerical method called the Runge-Kutta methods and
make the observation that the method in Algorithm 1 falls into this category:

Definition 3.37. Let aij , bi (i, j = 1, ..., s) be real numbers and let ci =
∑s

j=1 aij .
An s−stage Runge-Kutta method on y is given by:

(3.38)

ki = f(t0 + cih, y0 + h

s∑
j=1

aijkj)

y1 = y0 + h

s∑
i=1

biki.

If we let f = Φω = Φ◦J , and let a1j = 0 for any j which gives us k1 = Φω(z(t)).
And let h = 1, a21 = 2, we have that k2 = Φω(z(t) + 2k1) = Φω(z(t) + 2Φω(z(t))).
Finally, we let bi = 1, we recover z(t+1) = z(t)+ k1 = z(t)+Φω(z(t)+ 2Φω(z(t)))
which is precisely (3.36). Therefore, this update scheme is indeed a 2−stage Runge-
Kutta method with a11 = a12 = 0, a21 = 2, a22 = 0, and b1 = b2 = 1.

We will now list some results regarding the Runge-Kutta methods:

Definition 3.39. An s−stage Runge-Kutta method is called irreducible if for the
set of all trees T , we have that the s×∞matrixM has full rank s whereMiτ = gi(τ)
and gi(τ) as defined in Hairer III1.13

Theorem 3.40. An irreducible s−stage Runge-Kutta method is symplectic if and
only if

(3.41) biaij + bjaji = bibj for all i, j = 1, ..., s.

Notice that there exists a tree τ with order 3 such that gi(τ) =
∑

j,k aijaik. In

our case, we have that g1(τ) = 0 but g2(τ) = 4. This implies that the two rows
of M are linearly independent, which implies that the method in Algorithm 1 is
irreducible.

Along twith the fact that for i = 2, j = 1, we have

(3.42) b2a21 + b1a12 = 2 + 0 = 2 ̸= 1 = b1b2.

Therefore, we conclude that (3.36) is not symplectic.
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4. Area Convexity Algorithm and Dual extrapolation

The goal of this section is to target the ad-hoc nature of the discussion concern-
ing Algorithm 1. It’s unclear how Algorithm 1 links to more popular and typical
optimization methods. In this section, we will close this gap precisely between Algo-
rithm 1 and the method of dual extrapolation. We will also see the correspondence
of the Hamiltonian perspective for a special case of dual extrapolation.

4.1. Linking Sherman’s Algorithm with dual extrapolation. Recall that
Algorithm 1 requires a δ−AMO Φ for ϕ, and performs the following update:

(4.1) z(t+ 1) = z(t) + Φ(Jz(t) + 2JΦ(Jz(t))).

On the other hand, the dual extrapolation step proposed by Nesterov is of the
following form:

(4.2) (x, y, s+) ⇐⇒

 x = Tβ(x, s)
y = Tβ(x,−λg(x))
s+ = s− λg(y)

where

(4.3) Tβ(z, s) = argmax
x
{⟨s, x− z⟩ − βω(z, x)}

and ω is the Bregman distance, β, λ are coefficients.
The goal of this section is to close the gap between these two methods and shed

some light on how (4.1) closely follows (4.2), which is not documented anywhere.
To do this, we let x be such that ∇ϕ(x) = Φ(x) = 0 (assuming this is possible)
where Φ is the 0−AMO and let β = 1, λ = −2 , g to be J , and implicitly we’ve
chosen d (this is involved in the definition of ω) to be ϕ.

Firstly, we claim the following lemma:

Lemma 4.4. If we choose β = 1, we have that

(4.5) Tβ(z, s) = Φ(s+∇ϕ(z)).

Proof.

Tβ(z, s) = argmax
x
{⟨s, x− z⟩ − ω(z, x)}

= argmax
x
{⟨s, x− z⟩ − ϕ(x) + ϕ(z) + ⟨∇ϕ(z), x− z⟩}

= argmax
x
{⟨s+∇ϕ(z), x− z⟩ − ϕ(x) + ϕ(z)}

= argmax
x
{⟨s+∇ϕ(z), x⟩ − ϕ(x)}

= Φ(s+∇ϕ(z)).
□

Therefore, as an immediate result, we have that x = Φ(s +∇ϕ(x)) = Φ(s) and
y = Φ(−λg(x)+∇ϕ(x)) = Φ(2Jx+∇ϕ(x)). Now, we let s = Jz(t), which leads us
to the following:

(4.6) s+ = Jzt + 2JΦ(2JΦ(Jzt) +∇ϕ(Φ(Jzt)).
We now take a closer look at ∇ϕ(Φ(Jzt):

Lemma 4.7.

∇ϕ(Φ(Jzt) = Jzt.
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Proof. We begin by noticing that

(4.8) ϕ∗(Jzt) = ⟨Jzt,Φ(Jzt)⟩ − ϕ(Φ(Jzt)).

By Danskin’s theorem, we have that ∇ϕ∗(Jzt) = Φ(Jzt)
TJ . On the other hand,

from (4.8), we have that

∇ϕ∗(Jzt) = (ΦT (Jzt) + JT zTt DΦ(Jzt))J −∇ϕ(Φ(Jzt))TDΦ(Jzt)J.

Therefore, we can conclude

Φ(Jzt)
TJ = (ΦT (Jzt) + JT zTt DΦ(Jzt))J −∇ϕ(Φ(Jzt))TDΦ(Jzt)J.

If we assume J to be invertible, we can have

Φ(Jzt)
T = ΦT (Jzt) + zTt J

TDΦ(Jzt)−∇ϕ(Φ(Jzt))TDΦ(Jzt)

∇ϕ(Φ(Jzt))TDΦ(Jzt) = zTt J
TDΦ(Jzt)

∇ϕ(Φ(Jzt))T = zTt J
T (assuming DΦ(Jzt)) is invertible).

□

All in all, we have that

(4.9) S+ = Jzt + 2JΦ(2JΦ(Jzt) + Jzt).

If we let S+ = Jzt+1, the above is equivalent to

(4.10) z(t+ 1) = z(t) + 2Φ(Jz(t) + 2JΦ(Jz(t)))

which only differs from (4.1) by a factor 2. This factor difference motivates us to
introduce a variant of the dual extrapolation:

(4.11) (x, y, s+) ⇐⇒

 x = Proxϕ
x(s)

y = Proxϕ
x(λg(x))

s+ = s+ λ
2 g(y)

where

Proxϕ
z (s) := argmin

x
⟨s, x⟩+ ωϕ(z, x).

To justify why (4.1) is a special case for (4.11), the following observation is
crucial:

Lemma 4.12. Tϕ
1 (z,−s) = Proxϕ

z (s).

Proof. It’s shown in Lemma 4.4 that T1(z,−s) = Φ(∇ϕ(z) − s), we only have to
verify that the right-hand side is the same thing.

Proxϕ
z (s) = argmin

x
{⟨s, x⟩+ ωϕ(z, x)}

= argmin
x
{⟨s, x⟩+ ϕ(x)− ϕ(z)− ⟨∇ϕ(z), x− z⟩}

= argmin
x
{⟨s−∇ϕ(z), x⟩+ ϕ(x)

= argmax
x
{⟨∇ϕ(z)− s, x⟩ − ϕ(x)

= Φ(∇ϕ(z)− s).

□
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Therefore, if we pick st to be −Jzt and everything else stays the same, we will
obtain the following recursive relationship:

(4.13) −z(t+ 1) = −z(t)− Φ(Jz(t) + 2JΦ(Jz(t)))

which is exactly Algorithm 1.

4.2. Convergence analysis for modified dual extrapolation. We will try to
accomplish two things in this section. Firstly, we will introduce relaxed relative
lipschitzness as a generalization of area-convexity and see how relaxed relative lip-
schitzness gives us a guarantee of the convergence rate of (4.11). Secondly, we will
see how that is linked to the conclusion of the Theorem 3.9.

Definition 4.14. We say that the an operator J : C → C∗ is 1
η -relaxed relatively

lipschitz with respect to ϕ : C → R if for all a, b, c ∈ C, we have

(4.15) η⟨J(b− a), b− c⟩ ≤ ωϕ(a, b) + ωϕ(b, c) + ωϕ(a, c).

This is a generalization of both relative lipschitzness and area convexity. Relative
lipschitzness is defined as follows:

Definition 4.16. We say that the an operator J : C → C∗ is 1
η relatively lipschitz

with respect to ϕ : C → R if for all a, b, c ∈ C, we have

(4.17) η⟨J(b− a), b− c⟩ ≤ ωϕ(a, b) + ωϕ(b, c).

Since Bregman’s divergence is always non-negative, we can see that being 1
η -

relative Lipschitz implies being 1
η -relaxed relative Lipschitz. The fact that Area-

convexity implies relaxed relative lipschitzness follows from the following observa-
tion:

ϕ(a) + ϕ(b) + ϕ(c)− 3ϕ(
a+ b+ c

3
) = ωϕ(a, b) + ωϕ(a, c)− 3ωϕ(a,

a+ b+ c

3
)

≤ ωϕ(a, b) + ωϕ(a, c).

After establishing this generalization of both relative lipschitzness and area con-
vexity, we can see how using this generalization in place of relative lipschitzness
grants a similar guarantee for the rate of convergence for our introduced variant of
dual extrapolation (4.11) and therefore Algorithm 1.

Proposition 4.18. (Rate of convergence) If g is 1
λ -relaxed relatively Lipschitz with

respect to ϕ, then we have the following guarantee on the convergence rate of (4.11):
For all u ∈ C, we have that

(4.19)
∑

0≤t<T

⟨g(yt), yt − u⟩ ≤ 2

λ
ωϕ(x, u).

To prove this, we start with a well-known lemma:

Lemma 4.20. For ω = Proxr
z(g),∀u ∈ C, ⟨g, w − u⟩ ≤ ωr(z, u) − ωr(w, u) −

ωr(z, w).

Now we proceed with the proof of the proposition:

Proof. We first show that for each t,

(4.21)
λ

2
⟨g(yt), yt − x⟩ ≤ ⟨st+1, xt+1 − x⟩+ ωϕ(x, xt+1)− ⟨st, xt − x⟩ − ωϕ(x, xt).
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To see this, we first apply the above lemma to the two proxy steps in the algo-
rithm and get:

⟨st, xt − xt+1⟩ ≤ ωϕ(x, xt+1)− ωϕ(xt, xt+1)− ωϕ(x, xt)

λ

2
⟨g(xt), yt − xt+1⟩ ≤

ωϕ(xt, xt+1)− ωϕ(xt, yt)− ωϕ(yt, xt+1)

2
.

Additionally, by 1
λ−relaxed relative Lipschitzness, we have:

λ

2
⟨g(yt)− g(xt), yt − xt+1⟩ ≤

ωϕ(yt, xt+1) + ωϕ(xt, yt) + ωϕ(xt, xt+1)

2
.

Now, if we add the three equations together, we get that

⟨st, xt − xt+1⟩+
λ

2
⟨g(yt), yt − xt+1⟩ ≤ ωϕ(x, xt+1)− ωϕ(x, xt).

With our algorithm updating s: st+1 = st +
λ
2 g(yt), we can see that:

λ

2
⟨g(yt), yt − x⟩ ≤ ⟨st+1, xt+1 − x⟩+ ωϕ(x, xt+1)− ⟨st, xt − x⟩ − ωϕ(x, xt)

which is what we want to see.
Now, an immediate result of this is that

(4.22) At =
λ

2

t−1∑
k=0

⟨g(yk), yk − x⟩ − ⟨st, xt − x⟩ − ωϕ(x, xt)

is non-increasing in t by considering the difference between At and At−1.
We are now ready to prove the proposition: For any u ∈ C∑

0≤t<T

⟨g(yt), yt − u⟩ =
∑

0≤t<T

⟨g(yt), yt − x⟩+
∑

0≤t<T

⟨g(yt), x− u⟩+ (
2

λ
ωϕ(x, u)− 2

λ
ωϕ(x, u))

≤
∑

0≤t<T

⟨g(yt), yt − x⟩+
∑

0≤t<T

⟨g(yt), x− xT ⟩+ (
2

λ
ωϕ(x, u)− 2

λ
ωϕ(x, xT ))

(by the definition of xT )

=
2

λ
AT +

2

λ
ωϕ(x, u)

≤ 2

λ
A0 +

2

λ
ωϕ(x, u)

= ωϕ(x, u) (Notice that x0 = Proxϕ
x(0) = x).

□

Remark 4.23. From this, we can see that moving from relative Lipschitzness to
relaxed relative Lipschitzness poses a factor 2 difference to the dual extrapolation
algorithm (which corresponds to taking 2 steps in the inner part of the update in
Algorithm 1), and also a factor 2 to the rate of convergence.

We now move to try to understand this result in relation to the result in Sher-
man’s paper. We first need to try to understand what is the

∑
0≤t<T g(yt). This

can be made clear by a very straightforward observation:

(4.24) sT = s0 +
λ

2

∑
0≤t<T

g(yt) =
λ

2

∑
0≤t<T

g(yt)
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when we set s0 = 0. Therefore, when we let g = J to be self-dual, we can restate
Proposition 4.18 as:

(4.25) ⟨sT ,−u⟩ ≤ ωϕ(x, u) = ϕ(u)− ϕ(x)− ⟨∇ϕ(x), u− x⟩,
which serves as a bridge between the conclusion in Sherman’s paper and this general
claim of the rate of convergence of dual extrapolation.

We can reframe the conclusion of Theorem 3.9 to be (if Φ is a 0−AMO):

(4.26) ϕ∗(−sT ) ≤ ϕ∗(0),

i.e., for all u ∈ C,

(4.27) ⟨sT ,−u⟩ ≤ ϕ(u)− ϕ∗(0).

Notice if we assume ∇ϕ(x) = 0, then the conclusion in Sherman is stronger than
that for Proposition 4.18.

Using this analogy, we hope that we can modify dual extrapolation in such a
way that uses not the oracle of 0−AMO but a δ−AMO. Before this, we establish
the following lemma:

Lemma 4.28. Given k := Φ(∇ϕ(z) − g) where Φ is a δ − AMO for a convex
ϕ, w = Proxϕ

z (g) and assume that for all z, g, ∀u ∈ C, we have that ⟨∇ϕ(w) −
∇ϕ(k), u− k⟩ ≤ 0, we then have that ∀u ∈ C

(4.29) ⟨g, k − u⟩ ≤ ωϕ(z, u)− ωϕ(k, u)− ωϕ(z, k) + δ.

Proof. By definition of k and δ−AMO, we have that

(4.30) ⟨∇ϕ(z)− g, k⟩ − ϕ(k) + ϕ(w) + δ ≥ ⟨∇ϕ(z)− g, w⟩.
Similar to the proof of Lemma 4.20, we begin by considering the first-order

optimality condition for ⟨g, w⟩+ ωϕ(z, w): ∀u ∈ C

⟨g +∇(ωϕ(z, w)), u− w⟩ ≥ 0

⟨g +∇ϕ(w)−∇ϕ(z), u− w⟩ ≥ 0

⟨∇ϕ(z)− g, w − u⟩+ ⟨∇ϕ(w), u− w⟩ ≥ 0

⟨∇ϕ(z)− g, k − u⟩ − ϕ(k) + ϕ(w) + δ + ⟨∇ϕ(w), u− w⟩ ≥ 0 (by (3.26))

⟨∇ϕ(z)− g, k − u⟩ − (ϕ(w) + ⟨∇ϕ(w), k − w⟩) + ϕ(w) + δ + ⟨∇ϕ(w), u− w⟩ ≥ 0 (by convexity of ϕ)

⟨∇ϕ(z)− g, k − u⟩+ ⟨∇ϕ(w), u− k⟩+ δ ≥ 0

⟨g +∇(ωϕ(z, k)), u− k⟩+ ⟨∇ϕ(w)−∇ϕ(k), u− k⟩+ δ ≥ 0

⟨g +∇(ωϕ(z, k)), u− k⟩+ δ ≥ 0 (by the assumption of the lemma).

Therefore, we have that ⟨g, k−u⟩ ≤ ⟨−∇(ωϕ(z, k)), k−u⟩+ δ which implies the
lemma by Bregman distance cosine rule. □

With this lemma, we can control At up to an uncertainty of O(δ), precisely

Lemma 4.31. If we have that for all z, g, ∀u ∈ C, it holds that ⟨∇ϕ(w)−∇ϕ(k), u−
k⟩ ≤ 0, ϕ is convex, and g is 1

λ relatively Lipschitz with respect to ϕ, then updating
according to (4.11) but replaced with Φ being a δ−AMO gives us

(4.32) At ≤ At−1 +
3

2
δ.
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Proof. Apply an identical proof that’s presented for Proposition 4.18, we have that

⟨st, xt − xt+1⟩+
λ

2
⟨g(yt), yt − xt+1⟩ ≤ ωϕ(x, xt+1)− ωϕ(x, xt) +

3

2
δ

which yields what we want. □

A direct result of this, without surprise, is that this updated version of dual
extrapolation achieves an ϵ+ 3

2δ approximate solution in O(ϵ−1) time.

Proposition 4.33. With the same assumption as Lemma 4.28, then

∑
0≤t<T

⟨g(yt), yt − u⟩ ≤ 2

λ
ωϕ(x, u) +

3T

2
δ.

4.3. Energy conservation perspective. Similarly to the Hamiltonian perspec-
tive of Algorithm 1, we want to close this section by identifying a candidate for
the ”Hamiltonian” in dual extrapolation. The idea is that it suffices to make this
Hamiltonian conserved to guarantee the rate of convergence.

A natural candidate for such would be At from (4.22) since in the proof, we
can easily see that if At is controlled to be not increased when updating, we have
the guarantee of the rate of convergence. We will see how this is linked to the
Hamiltonian H(z) = ϕ∗(Jz) = ϕω(z) proposed in Section 3.

Let’s take a look at At, when we set g = J and ∇ϕ(x) = 0, we have that

At =
λ

2

t−1∑
k=0

⟨g(yk), yk − x⟩ − ⟨st, xt − x⟩ − ωϕ(x, xt)

= ⟨st,−x⟩ − ⟨st, xt − x⟩ − ϕ(xt) + ϕ(x) + ⟨∇ϕ(x), xt − x⟩
= ⟨st,−xt⟩ − ϕ(xt) + ϕ(x).

On the other hand,

H(st) = ϕ∗(−st)
= ⟨−st,Φ(−st)⟩ − ϕ(Φ(−st))
= ⟨st,−xt⟩ − ϕ(xt).

This is essentially the same as At, which serves as a good indication that we might
be able to view At or some variant of At as the Hamiltonian for dual extrapolation.
If g is set to be a self-dual J , then it makes sense to make the Hamiltonian to be
exactly the symplectic conjugate of ϕ in terms of J as that in Section 3. However,
if g is more generalized, we would have to deal with the term λ

2

∑t−1
k=0⟨g(yk), yk⟩,

and this is not easy to deal with, and it’s even hard to assign it with a continuous
correspondence. Therefore, we can now only claim that when we are dealing with
g that satisfies ⟨g(x), x⟩ = 0 (for example, under the self-dual case), we can let
H defined as the symplectic conjugate be the hamiltonian and the dual extrapo-
lation is just a discretization of the corresponding Hamiltonian system. Moreover,
the conservation of Hamiltonian directly leads to the guarantee of the accelerated
convergence rate.
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