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Abstract. In this paper, we introduce the idea of a quasifuchsian manifold

in hyperbolic space. We assume little to no background in hyperbolic geome-
try, instead starting from the ground up, providing all the necessary concepts

along the way. We end with the definition of a quasifuchsian group and a few

examples. For the sake of brevity, we do not provide proofs for most results.
However, for the interested reader, we provide references at the end of each

section that go into further depth on each topic.
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1. Hyperbolic Geometry

We will begin with a summary of hyperbolic geometry in two dimensions. There
are several spaces in which hyperbolic geometry can be modeled. One such space
is called the upper half-plane.

Definition 1.1. The upper half-plane is defined as follows:

H2 = {x+ iy ∈ C | y > 0}.
As the name suggests, the upper half-plane is the set of all points above the

x-axis.
Next, we define a metric on this space.

Definition 1.2. The hyperbolic metric is defined in the following way:

ds2 =
dx2 + dy2

y2
.

The hyperbolic length of a path is computed by integrating the path against
the hyperbolic metric, and the hyperbolic distance between two points is the
minimum of the lengths of these paths (the infimum is always attained).
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We see that the hyperbolic metric is defined similarly to the Euclidean one–in
fact, the term in the numerator is precisely the Euclidean metric. The term in the
denominator implies that the hyperbolic distance between points tends to infinity
as the points get close (in the Euclidean sense) to the x-axis, provided that the
x-coordinates stay a bounded distance apart. This remark motivates the following
definition:

Definition 1.3. The Euclidean boundary, or boundary at infinity, is defined
as ∂H2 = R ∪ {∞}.

We now turn our attention to the isometries (distance-preserving maps) of H2.

Definition 1.4. Denote points of H2 by z = x+ iy. A Möbius transformation,
or fractional linear transformation, is a function of the form:

z 7→ az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

We can extend the action of the Möbius transformation to the boundary at
infinity in the following way: for ordinary points on the real line, we simply apply
the function normally. When c ̸= 0, we define −d

c 7→ ∞, and ∞ 7→ a
c . If c = 0,

∞ 7→ ∞.

We note that the Möbius transformations form a group under the operation of
function composition. This is easily verified by identifying Möbius transformations
with 2× 2 matrices in a way we describe now.

Recall that we denote the set of real-valued matrices with determinant 1 as
SL(2,R). As such, we can represent every Möbius transformation by a matrix in

SL(2,R), namely, the matrix

(
a b
c d

)
is associated with the map z 7→ az+b

cz+d . Here,

we note that the reason we may consider only SL(2,R) and not GL(2,R) is that if we
multiply each entry of a matrix by a constant k, then the determinant is multiplied
by k2, but the Möbius transformation remains the same due to cancellation in
the numerator and denominator. Thus, it suffices only to consider matrices with
determinant 1. However, there is still not a one-to-one correspondence between
SL(2,R) and the Möbius transformations: for each matrix A, both A and −A
correspond to the same transformation. As such, we instead define the group
PSL(2,R) as SL(2,R)/±I. In plain English, we treat both A and −A as the same
object in PSL(2,R). By the above remarks, it follows that we have a bijection
between the Möbius transformations and PSL(2,R). We note that a composition of
two Möbius transformations corresponds to the product of the two corresponding
matrices.

In fact, we have an even stronger result.

Theorem 1.5. Isom+(H2) ∼= PSL(2,R), where Isom+(H2) represents the orientation-
preserving isometries of H2.

A consequence of this result provides a more intuitive grasp of the nature of
hyperbolic geometry.

Theorem 1.6. The geodesics (straight lines) in H2 are semicircles and straight
lines orthogonal to the real axis R.

Proof. For proofs of these two theorems, see [1], chapter 1.1-1.3. □
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Figure 1. The same five lines visualized in different models of
hyperbolic space (we will not use the Klein model for our purposes).
Figure borrowed from [2]

It will often be useful to work with another model of hyperbolic space. We
present it here.

Definition 1.7. The Poincaré Disk Model
Let

D = {z ∈ C | |z| < 1},
or simply the open unit disk. Then, the metric on D is

ds2 =
4dz2

(1− |z|2)2
,

and the boundary at infinity is ∂D, or S1.

The straight lines in the Poincaré disk model are arcs of circles which are or-
thogonal to the boundary at both intersection points, as displayed in Figure 1.

We note that the upper half-space model and the Poincaré disk model are iso-
metric via the function f : H2 → D,

f(z) =
zi+ 1

z + i
.

Since the models are equivalent, we will use them interchangeably and denote both
simply as H2 for ease of notation. It should be clear from context which model we
are working with.

This section has provided a brief overview of hyperbolic geometry which is needed
for the rest of the paper. However, we have omitted many interesting and important
results. If the reader is interested in learning more and gaining better intuition,
they should consult [3], [4], and [5].

2. Discrete Groups of Isometries and Limit Sets

In this section, we discuss a special type of subgroup of Isom+(H2).

Definition 2.1. A subgroup Γ of Isom(H2) is a discrete group if the induced
subspace topology on Γ is the discrete topology.
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When we discuss the topology on Isom+(H2), we view the elements as points

inside R4 (the matrix

(
a b
c d

)
is identified with the point (a, b, c, d)) and consider

the normal subspace topology there. When discussing Isom(H2) as a whole, we
follow a similar process.

An alternative characterization of a discrete group is that for any sequence An

which converges to the identity I, there exists N > 0 such that for all n ≥ N ,
An = I. It follows that a discrete group has no accumulation points.

Definition 2.2. A Fuchsian group is a discrete subgroup of Isom+(H2).

Definition 2.3. The orbit of a point x under a Fuchsian group Γ is denoted by

Γx = {γx | γ ∈ Γ}

Definition 2.4. Let Γ be a Fuchsian group. Then, the limit set ΛΓ is defined as
the set of limit points of Γx for some x ∈ H2.

Since Γ is discrete, there are no accumulation points in H2, as remarked above.
This implies that ΛΓ ⊂ R ∪ {∞}.

Remark 2.5. The limit set is invariant under the choice of reference point x. To see
this, consider the Poincaré disk model. Suppose that γix → z ∈ S1. Then, consider
any other point y ∈ D. Since γi are all isometries, dH2(γix, γiy) = dH2(x, y) < ∞.
However, we know that any point on the boundary S1 is infinitely far away from
any other point in D by the definition of the hyperbolic metric. Therefore, since
γix is tending to z on the boundary, then both γix and γiy must be converging to
the same point.

The complement of ΛΓ is also a useful concept.

Definition 2.6. Let Γ be a Fuchsian group. Then, ΩΓ = S1 \ ΛΓ is referred to as
the domain of discontinuity.

We now discuss another important feature of Fuchsian groups, the fundamental
region.

Definition 2.7. Let Γ be a Fuchsian group. Then, a region F is called a funda-
mental region for Γ if

(i)
⋃

γ∈Γ γ(F ) = H2;

(ii) F ◦ ∩ γ(F ◦) = ∅ for all γ ̸= id,

where F ◦ is the interior of F .

Let’s look at a couple of examples. First, let’s examine one in the complex plane
for easier visualization.

Example 2.8. Consider Γ = ⟨z+1, z+i⟩, where z+1 represents the transformation
which takes the complex number z to z+1, and ⟨·⟩ represents the group generated
by the elements inside the brackets. Then, Γ consists of all transformations which
move a point to another point on the integer lattice centered at the point. One
fundamental region for this group (there are infinitely many) is the unit square
formed by the vertices (0,0), (1,0), (1,1), and (0,1). Since the square has side
length one, we see that any point in the interior will be moved outside by any
non-identity transformation in Γ. Additionally, since elements in Γ move up/down
and left/right in increments of one unit, we see that the union of all of them will
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Figure 2. A tessellation of the Euclidean plane by squares. The
fundamental region is marked in green, and the translates under Γ
are marked in red (figure made with Desmos Online Graphing Cal-
culator).

Figure 3. We can construct a tessellation of the hyperbolic plane
using half-annuli as depicted in the figure. As above, the green sec-
tion is the fundamental region, and the red regions are the shifted
and scaled copies, doubling or halving the size. We could continue
the process to cover the whole upper half-plane (figure made with
Desmos Online Graphing Calculator; idea taken from [1]).

form a perfect tessellation of C, where the only overlap is on the boundary of each
square. See figure 2.

Example 2.9. Consider now the hyperbolic plane with the group Γ = ⟨2z⟩, where
2z represents the map which sends the complex number z to 2z. Then, a funda-
mental region for this group is a half-annulus whose inner radius is half the length
of the outer radius. See Figure 3.

A natural question to ask is whether all Fuchsian groups have a fundamental
region. The answer turns out to be yes.

Definition 2.10. Let Γ be a Fuchsian group, and p ∈ H2 be not fixed by any
element γ ̸= id. Then we define the Dirichlet region for Γ centered at p as
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follows:
Dp(Γ) = {z ∈ H2 | d(z, p) ≤ d(z, γp) for all γ ∈ Γ}.

Theorem 2.11. If Γ is a Fuchsian group and p is not fixed by any non-identity
element, then the Dirichlet region Dp(Γ) is a connected fundamental region for Γ.

Proof. See [1], theorem 3.2.2. □

We will explore fundamental regions in a little more depth. By rewriting the
definition of the Dirichlet region slightly differently:

Dp(Γ) =
⋂
γ∈Γ

{z ∈ H2 | d(z, p) ≤ d(z, γp)},

we see that Dp(Γ) is the intersection of closed half-planes, and so it is itself a
closed, convex hyperbolic region whose boundary contains at most one segment
from the boundary line of each half-plane. In the two examples we saw above, the
fundamental region was a nice simple polygon. However, this is not always the
case. We present a sufficient criterion for this to hold:

Theorem 2.12. Suppose that Γ is finitely generated. Then, there exists a (polyg-
onal) fundamental region for Γ which has finitely many sides.

Proof. See [1], theorem 4.6.1. □

For a more careful and detailed exploration of Fuchsian groups and fundamental
regions, see [1].

3. Covering Spaces and Hyperbolic Surfaces

We ultimately wish to discuss surfaces and manifolds in hyperbolic space. To do
this, we introduce the idea of a covering space.

Definition 3.1. Let X be a topological space. A covering space of X is a space
X̃ along with a map p : X̃ → X which satisfies the following property: for each
x ∈ X, there exists an open neighborhood Ux ⊂ X such that p−1(Ux) is the union

of disjoint open neighborhoods in X̃. Each of these open neighborhoods must be
mapped homeomorphically onto Ux.

X is called the base space, p is called the covering map or projection, and
p−1(x) is called the fiber over x.

This is a bit of an unintuitive definition at first. The easiest way to grasp the
notion of a covering space is through some simple examples.

Example 3.2. Let X = S1, X̃ = R, and p(x) = (cosx, sinx). We see that
p(x + 2nπ) = p(x) for all x ∈ R and n ∈ N. In this way, we can imagine the real
line as if we took a very long circular coil of wire and unwound it while keeping
track of where each point originated on the coil. In order to go back to the base
space S1, we simply need to roll up R again.

Example 3.3. Let X = [0, 1) × [0, 1) ⊂ R2 and X̃ = R2, and let p be the map
which takes a point and maps it into X via a translation in the integer lattice. In
other words, (3.5, 2.7) 7→ (0.5, 0.7) and (−2,−0.6) 7→ (0, 0.4). In this way, we can
imagine R2 as being a tessellation of unit squares, and the corresponding points of
each square are identified via the covering map. Note that this is in a sense the
inverse of the operation that we discussed in Example 2.8 above.
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We now turn our attention to hyperbolic surfaces.

Definition 3.4. A hyperbolic surface is a set of points S and a metric dS such
that for each x ∈ S, there exists ε > 0 small so that B(x, ε) is isometric to a disk
in H2.

A way to summarize this definition is that locally, a hyperbolic surface “looks
like the hyperbolic plane”. We can also define Euclidean and spherical surfaces
analogously by replacing H2 with R2 and S2, respectively.

Remark 3.5. Often, the term “manifold” is also used to describe a similar concept.
A manifold is essentially the same idea, except it is not restricted to 2 dimensions.
With this in mind, we could also describe a surface as a 2-manifold. However,
we will continue to use “surface” to denote a 2-dimensional manifold to avoid any
confusion. In this paper, the term “manifold” will always refer to an object of
dimension at least 3.

Another note worth mentioning is that there are several different types of mani-
folds (differential, real analytic, complex), each with its own properties, but we will
stick to the above formulation for our purposes.

We now present a deep theorem in geometry:

Theorem 3.6. (Killing-Hopf) Let S be a complete and connected hyperbolic
surface. Then, there exists a Fuchsian group Γ ⊂ Isom+(H2) such that S ∼= H2/Γ.

As above, this result also holds in the Euclidean and spherical case.

Proof. For a great development of this proof, see [6], Chapters 2 and 5. □

Example 3.7. Recalling Examples 2.8 and 3.3 once again, we give one more way to
describe the relationship between R2 and the unit square: R2 is a covering space for
R2/Γ, where Γ is as in Example 2.8. Note that in the quotient operation R2/Γ, two
points p, q are identified if there is an element γ ∈ Γ such that γp = q. Equivalently,
two points are “the same” under the quotient if the covering map p maps them to
the same point inside [0, 1)× [0, 1).

Remark 3.8. The converse to the theorem is not true in general. That is, there
are Fuchsian groups Γ for which H2/Γ is not a surface, but instead is a less nice
object called an orbifold, which may have cone points.

4. Hyperbolic Geometry in 3 Dimensions

In order to discuss quasifuchsian manifolds, which are 3-dimensional objects, we
must first discuss the properties of 3-dimensional hyperbolic space. Fortunately,
most of the concepts carry over quite naturally.

Definition 4.1. Upper Half-Space Model
The upper half-space is defined as

Hn = {(x1, x2, · · · , xn) ∈ Rn | xn > 0}.
Note that this is simply a generalization of the 2-dimensional case.

The metric on the upper half-space is given by:

ds2 =
dx2

1 + dx2
2 + · · ·+ dx2

n

x2
n
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Once again, this is an easy generalization: take the Euclidean metric and divide it
by the last coordinate.

The boundary at infinity ∂Hn is given by the plane xn = 0 and the point ∞.

The geodesics are, as one might expect, semicircles and vertical lines orthogonal
to the xn = 0 plane.

The Poincaré disk model also easily generalizes.

Definition 4.2. Poincaré Ball Model
The Poincaré ball is defined as:

Dn = {x ∈ Rn | |x|E < 1},
where | · |E represents the Euclidean norm. Then, the metric on Dn is given by:

ds2 =
4dx2

(1− |x|2)2
,

and the boundary at infinity is Sn−1.

The geodesics are again arcs of circles which are orthogonal to the boundary at
both intersection points.

As before, we will use Hn to refer to both models, and the usage should be clear
from context.

We now turn our focus to the isometries of H3.

Theorem 4.3. Isom+(H3) ∼= PSL(2,C)
Proof. See [7], section 2.6. □

This is an important result although we will not prove it here. Accepting that
Isom+(H3) is isomorphic to PSL(2,C), let us examine how exactly we can under-
stand the action of these isometries.

Theorem 4.4. In the Poincaré ball model, the action of an orientation-preserving
isometry of H3 is determined solely by its action on the sphere at infinity.

Proof. Suppose that two such isometries A,B have the same action on the boundary
at infinity. Then we must show that A = B on H3. Since A,B act the same way on
S2, we have that AB−1 = id on the boundary. We must extend this to all of H3.
Fix any z ∈ H3. Then, fix any geodesic ℓ that contains z. Let x, y be the endpoints
on the boundary at infinity. Then, we know AB−1x = x,AB−1y = y. Thus,
since isometries send geodesics to geodesics, we know that AB−1ℓ = ℓ. We have
shown that all geodesics are mapped onto themselves. We must now show that the
geodesics are preserved pointwise. Suppose that AB−1 acts on ℓ via a translation,
i.e. points are shifted away from one endpoint and toward the other. Now, choose
any other geodesic ℓ′ which crosses ℓ only at some point p. Then, since AB−1

acts as a translation on ℓ, we have AB−1p ̸= p and hence AB−1p /∈ AB−1ℓ′ = ℓ′

since the two geodesics only intersect once. This is a contradiction because AB−1

preserves geodesics, and p ∈ ℓ′, but AB−1p /∈ ℓ′. □

This insight is extremely valuable to us as it is much easier to consider the action
on the boundary since it is of lower dimension and since we already have a more
intuitive grasp of conformal geometry in two dimensions.

Next, it is also worth noting that concepts of limit set and domain of discontinuity
transfer over unchanged (noting, of course, that the boundary of H3 is S2, not S1).
We also adapt the term “Fuchsian group” into three dimensions.
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Definition 4.5. A Fuchsian group is a subset of Isom+(H3) whose limit set is a
round circle (with respect to the Poincaré model).

The motivation for this definition is that we can imagine a subgroup of PSL(2,R)
acting on the Poincaré disk. The limit set will be contained inside S1. If we then
embed this disk into the 3-dimensional Poincaré ball, i.e. by considering the disk
as the plane {z = 0} within the ball, and consider the group’s action as a subset
of PSL(2,C) in 3 dimensions (we take the same real matrix coefficients but view
them as acting on H3), then the limit set of our Fuchsian group will still lie inside
that circle.

We add one more term to the descriptors of discrete groups of isometries:

Definition 4.6. A Kleinian group is a discrete subgroup of Isom+(H3) whose
domain of discontinuity is nonempty.

Remark 4.7. The term “Kleinian group” is often used in two different ways.
Sometimes it is defined as any discrete subgroup of PSL(2,C), and other times
it is used in the context we have just given. For ease of terminology, we will
stick to Thurston’s convention in [9] by adding the stipulation that the domain of
discontinuity is nonempty.

Lastly, we generalize the idea of a surface to higher dimensions. Roughly speak-
ing, a hyperbolic n-manifold M is an object that locally looks like Hn, just as
a hyperbolic surface locally looks like H2 (there is a more formal way to define
this, but this pseudo-definition will suffice for our purposes). We can express any
hyperbolic n-manifold M as Hn/Γ for a Kleinian group Γ.

For more details on 3-dimensional hyperbolic space, see [7], chapter 2.

5. The Fundamental Group and Quasiconformal Maps

We are close to being able to define a quasifuchsian manifold. There are a few
more preliminary definitions we must establish before we do so. The first is that
of a homotopy. Informally, homotopy is a continuous deformation of one path into
another. We will now put this formally.

Definition 5.1. Let p, q : [0, 1] → S be two (continuous) paths with the same
starting and ending points. Then, a homotopy between p and q is a continuous
function h : [0, 1]× [0, 1] → S such that

(i) h(x,0)=p(x) and h(x,1)=q(x)
(ii) h(0,t)=p(0)=q(0) and h(1,t)=p(1)=q(1)

If such a homotopy exists between p and q, then they are said to be homotopic
to one another.

We can think of the t-coordinate of h as being the “time” parameter which
increases as the path h(x, t) is deformed closer to q from p. See Figure 4.

It is relatively straightforward to see that the relation of paths being homotopic
to one another is an equivalence relation, so we may categorize paths with the same
beginning and ending points up to homotopy. We will denote such an equivalence
class as [p]. We now present a few important properties of homotopies:
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Figure 4. A visualization of a homotopy (borrowed from [6]).

Proposition 5.2. Path Lifting Property
Fix a hyperbolic surface S = H2/Γ. Then, for each path q in S with origin O,

there exists a unique path q̃ with origin Õ (lying over O) such that q = Γq̃. We call

q̃ the lift of q with origin Õ.

Note: when we say that Õ lies over O, we mean that Õ ∈ p−1(O), where p
here represents the covering map. Sometimes, mathematicians will also describe
the covering space as “upstairs” from the base space.

Proposition 5.3. Homotopy Lifting Property
Let paths p1 and p2 have origin O ∈ S. Then, they are homotopic if and only if

their lifts p̃1, p̃2 with origin Õ are homotopic in H2.

Example 5.4. Recall Example 3.2, in which we discussed the covering of a circle
by the real line. We now discuss a similar example in 2 dimensions. Consider a
cylinder of some height. We can use the same type of formulation to cover this
cylinder by a flat sheet. A visualization of this would be unrolling a roll of tin foil.
Two points on the plane fiber over the same point if they are in the same location
after rolling up the flat sheet. However, we can distinguish the two points based on
their homotopy class, as described in Proposition 5.3 and as shown in Figure 5. If
we imagine point A as being at the start of the roll, then, the path p1 is a straight
line across the top of the roll. We can imagine the path p2 as traversing all the way
around the roll and coming to rest at the same point B, but on the second-highest
layer of foil.

In fact, we could continue this process indefinitely (assuming the sheet is infin-
itely long). For each extra trip around the roll, we define a distinct homotopy class
for the paths which all begin at point A and end at point B. Intuitively, what
Proposition 5.3 tells us in this case is that two paths which begin and end at points
A,B, respectively, are homotopic if and only if they traverse around the roll in the
same direction and for the same number of times.

Hopefully the previous example has shed some light on the use and importance of
homotopies and covering spaces. Building on the theory of homotopies that we’ve
developed so far, we now introduce the idea of the fundamental group.
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Figure 5. A visualization of the differences in homotopy classes
of paths with the same origin and terminus (borrowed from [6]).

Definition 5.5. Let S be a hyperbolic surface. Then, we define the fundamental
group of S π1(S) to be the group of homotopy classes of closed paths (i.e. paths
where the origin and terminus are the same) with origin O. The group operation
is the concatenation [p1][p2] = [p1p2], where [p1p2] represents the path p1 followed
by p2, namely:

(p1p2)(x) =

{
p1(2x) 0 ≤ x ≤ 1/2,

p2(2x− 1) 1/2 ≤ x ≤ 1.

Remark 5.6. More generally, the fundamental group may be defined in the same
way for any topological space and origin (in general, the origin is referred to as the
base point).

It is relatively straightforward to show that this does actually define a group.
We now present an important theorem:

Theorem 5.7. If S = H2/Γ, then π1(S) ∼= Γ.

This theorem, and the study of fundamental groups and homotopies, is quite
important in the study of algebraic topology. Given that the fundamental group is
isomorphic to the Fuchsian group, it would not have been necessary for us to even
introduce fundamental groups–we could have simply spoken in terms of the Fuchsian
group. However, given the importance of the fundamental group in topology, I felt
it pedagogically important to introduce the concept here.

Next, we turn our attention to a special kind of map: the quasiconformal map.

Definition 5.8. A conformal map is a homeomorphism that preserves angles.
A quasiconformalmap is a homeomorphism that somewhat preserves the angle

structure while allowing some distortion in a controlled way. That is, similarly to
how conformal maps send infinitesimally small circles to circles, quasiconformal
maps send infinitesimally small circles to ellipses in which the ratio between the
major and minor axes is not too large

There are more precise ways to formulate these definitions, but they are a bit
too technical to be useful for our purposes. The intuitive definitions will suffice.

Lastly, we introduce the concept of conjugacy between groups. Recall that in a
group G, elements g1, g2 ∈ G are said to be conjugate if there exists h ∈ G such
that g2 = hg1h

−1. When dealing with group actions, the definition takes a similar
form.
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Definition 5.9. Suppose that we have two Fuchsian groups, Γ,∆ acting on the
hyperbolic plane to produce surfaces SΓ = H2/Γ, S∆ = H2/∆. Then, we say
that Γ,∆ are quasiconformally conjugate if there exists a quasiconformal map
f : H2 → H2 such that for all γ ∈ Γ, we have

f ◦ γ ◦ f−1 = δ

for some δ ∈ ∆.
Expanding this notion to talk about 3-manifolds, suppose we have two Kleinian

groups, Γ,∆ acting on 3-D hyperbolic space to produce hyperbolic 3-manifolds
MΓ = H3/Γ, M∆ = H3/∆. Then, we say that Γ,∆ are quasiconformally conju-
gate if there exists a quasiconformal map f : S2 → S2 such that for all γ ∈ Γ, we
have

f ◦ γ|S2 ◦ f−1 = δ|S2

for some δ ∈ ∆.
Here, we use our above characterization of the action PSL(2,C) so that we may

only consider the action on the boundary at infinity.

The usefulness of this concept is that we have a convenient way to describe
Fuchsian and Kleinian groups that are similar to one another in a particular sense.
That is, the surfaces which they produce are quasiconformally equivalent (quasi-
conformal equivalence is an equivalence relation), and the groups themselves have
a similar structure in that the quasiconformal map induces a conjugation between
the elements of both.

For more information on homotopies and the fundamental group, see [6]. For
more details on quasiconformal maps, see [8].

6. Quasifuchsian Groups

After much discussion, we are finally ready to discuss quasifuchsian groups.

Definition 6.1. A quasifuchsian group is a Kleinian group that is quasiconfor-
mally conjugate to a Fuchsian group.

We note that “Fuchsian group” in this case refers to the 3-dimensional gen-
eralization of the term. Recognizing that we have introduced a large number of
definitions in this paper, we will break down term by term what, precisely, this def-
inition means. First, a quasifuchsian group is a Kleinian group, meaning that it is
a discrete group of orientation-preserving isometries in H3 with non-empty domain
of discontinuity. Second, we recall that a Fuchsian group has a limit set which is
a circle. Lastly, a quasifuchsian group is quasiconformally conjugate to a Fuchsian
group. As we discussed at the end of section 5, this means that the actions of the
quasifuchsian and Fuchsian groups on H3 are related by a homeomorphism on the
boundary at infinity which somewhat preserves angle structure, and that this same
homeomorphism relates the elements of the two groups to one another in a specific
way.

This definition is a little tricky to wrap one’s head around. We now present a
simpler, yet equivalent, formulation.

Definition 6.2. A quasifuchsian group is a Kleinian group whose limit set is
topologically S1.
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Figure 6. A deformation of S1 under a quasiconformal map (bor-
rowed from [9]).

It is not immediately obvious why these definitions are equivalent, although one
implication is simple enough. A Fuchsian group has a circle as its limit set. There-
fore, when we apply a quasiconformal map (which is a reasonably well-behaved
homeomorphism) to the surface, the limit set still retains the same structure. For
a visual interpretation of this, see Figure 6. When the homeomorphism has many
points where it is not differentiable as illustrated in the figure, we end up with a
fractal circle. For the other direction of implication, the author needs to study the
topic deeper to find a rigorous explanation.

We conclude with two examples of quasifuchsian groups that open the door to
a rich discussion and exploration.

Example 6.3. Fix a hyperbolic surface S = H2/Γ. Then, consider the inclusion
map ι : PSL(2,R) ↪→ PSL(2,C). This map takes 2 x 2 matrices with real coefficients
and considers them inside PSL(2,C), still as 2 x 2 matrices with real coefficients.
Then, Γ′ = ι(Γ) is a quasifuchsian group with a very special property. Consider the
3-manifold M = (H3 ∪ ΩΓ′)/Γ′. There exists a homeomorphism between M and
int(S)× [0, 1].

For emphasis, we can imagine int(S) × [0, 1] as being the result if we took the
hyperbolic surface S and stacked it on itself like a stack of pancakes. This object is
deeply connected with the 3-manifold generated by the quasifuchsian group given
by the inclusion of Γ into PSL(2,C).

We can take the example one step deeper. Fix a hyperbolic surface S = H2/Γ.
Now, take any representation ρ : π1(S) → Isom+(H3) (recall that π1(S) ∼= Γ) such
that Γ′ = ρ(π1(S)) is quasifuchsian. We denote the set of all such representations
by QF (S). For any ρ ∈ QF (S), the corresponding Γ′ satisfies the same property
as above, namely that there exists a homeomorphism between M = (H3 ∪ ΩΓ′)/Γ′

and int(S)× [0, 1].
We could go even further in this example, but we would need to discuss Te-

ichmüller theory in order to do so, and that is beyond the scope of this paper. See
[8] for more details.

Example 6.4. Consider a 2-holed hyperbolic surface such as the one in Figure 7.
We will deform the corresponding Fuchsian group by bending the surface along a
closed path γ by an angle π/2. If the length of γ is sufficiently short, then this
process will give rise to a quasifuchsian group. The interesting result occurs when
we consider the limit set of this quasifuchsian group. We can visualize the limit set
by considering the lifts of γ into the hyperbolic plane (viewed as the plane {z = 0}
in H3) and then bending the plane in H3 by an angle of π/2 along each one of the
lifts, like creases on a paper. The result is a limit set which Thurston described
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Figure 7. A 2-holed surface with a short closed geodesic γ (bor-
rowed from [9]).

Figure 8. The limit set of the quasifuchsian group described in
Example 6.4 is visualized by the boundary of the image above. It
looks like an outline of Mickey Mouse! (borrowed from [9]).

in [9] as looking like Mickey Mouse (see Figure 8). It is worth noting that we can
see that the limit set is topologically the same as S1: if we trace the outside of the
limit set, we would get a deformed circle with many bulges.

As we can see from this example, the study of quasifuchsian groups is closely
connected to the study of fractal sets in the plane. There is a rich area of exploration
to be done and discoveries to be made, and we have only scratched the surface in
this paper. I hope that this paper has helped to explain some applications of
hyperbolic geometry and interest readers in the subject.
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