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Abstract. In this expository paper, we develop necessary definitions and

explain the basic theory of finite dimensional complex representation theory of

compact and especially finite groups. We conclude with a detailed exploration
of the irreducible representations of the symmetric group.
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1. Introduction to Representation Theory

1.1. Some Context. Morally, groups are sets of symmetries of objects. Groups
act on these objects by manipulating them according to the symmetry. For example
the cube group Cu is the symmetries of a cube. There is a standard action of the
cube group on the cube itself which rotates the cube in all possible orientation
preserving ways to map the cube back to itself. In this way, a group can be used
to learn about the space it acts on, and a space with a group action can be used to
learn about the group itself. This is useful when one domain or the other is easier
to work with or more understood.
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Representation theory studies the actions of groups on vector spaces. By restrict-
ing the actions to be linear, this allows well developed knowledge of linear algebra
to be applied to the study of groups. We will consider the case of finite dimensional
vector spaces over C. The finite dimensional restriction allows us to break down
large representations into irreducible pieces in a result known as complete reducibil-
ity, which is discussed in the first section. As an algebraically closed field, C is a
natural easy case to start with, but many of the results generalize to other fields.
Complex representations are also of interest for physically motivated problems in
quantum mechanics, as will be discussed in Section 7 on compact groups.

In this expository paper, we develop the necessary definitions and theorems
to gain an understanding of basic representation theory in the finite dimensional
complex case. This will lay the groundwork for future study in representation
theory.

1.2. What Are Representations? A representation is a special type of group
action. A general group action G ýX is equivalent to a homomorphism ψ : G Ñ

SX to the symmetric group on X. When we restrict our attention to linear actions
on vector spaces, we instead consider group homomorphisms to the general linear
group.

Definition 1.1. For a group G, an F-linear representation is a pair pV, ρq, where
V is a vector space over the field F , and ρ is a homomorphism ρ : G Ñ GLpV q.

Convention 1.1. For clarity, we will introduce some shorthand. We may refer
to either ρ or V individually as a “representation” of G. It is convenient to work
in an algebraically closed field, in order to take advantage of theorems regarding
diagonalization, so we use “representation” as shorthand for “finite-dimensional
complex representation”. We write ρg or just g for ρpgq when the context is clear.

There is a notion of when two representations are the same. We call two repre-
sentations isomorphic if there exists a change of basis taking one to the other.

Definition 1.2. For representations pρ1, V1q, pρ2, V2q, a morphism of representa-
tions between ρ1 and ρ2 is a linear map φ : V1 Ñ V2 such that the following diagram
commutes.

V1 V2

V1 V2

φ

ρ1 ρ2

φ

Definition 1.3. An isomorphism of representations is an invertible morphism.

In the above diagram, when φ is invertible, there is an equivalent formulation.

ρ2 “ φ ˝ ρ1 ˝ φ´1.

In this sense ρ2 can be thought of as ρ1 under a change of basis.
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1.3. Subrepresentations and Irreducibility. In order to understand large and
complicated representations, one useful strategy is to break them down into smaller
pieces. One would like the way in which the group acts on each piece to be indepen-
dent in some sense from how it acts on the others so that they may be considered
in isolation an then pieced together to create a larger whole. This is precisely what
subrepresentations do for us.

Definition 1.4. A subrepresentation of a representation pρ, V q is a subspace W Ă

V that is invariant under the action of G.

We might desire to break representations down as far as possible until we reach
a representation that cannot be reduced further. We call these representations
irreducible.

Definition 1.5. A representation is irreducible if it has no proper subrepresenta-
tions.

There are certain representations which are then built up from irreducible rep-
resentations.

Definition 1.6. A representation V is completely reducible if it is isomorphic to a
direct sum of irreducible representations.

V – W1 ‘ ...‘Wk

Rather than building representations from irreducible parts, we may take an-
other perspective and, given a representation known to be completely reducible,
find its irreducible factors. It turns out a large class of representations are com-
pletely reducible, and so in order to understand these representations, we need only
understand their irreducible representations. We will work toward this result in our
main theorem, Theorem 1.16.

One pitfall one can imagine in factoring a representation into irreducibles is that
when a representation V is factored as V – W ‘U andW is a subrepresentation, U
may not be a subrepresentation! Here we find a class of representations for which
this pitfall doesn’t happen.

Definition 1.7. A representation is unitarizable if it can be equipped with a her-
mitian, positive definite, inner product x, y with respect to which G acts unitarily:

xv, wy “ xρgpvq, ρgpwqy, @g P G, v,w P V.

Lemma 1.8. Let V be a unitarizable representation equipped with an inner product
with respect to which G acts unitarily, and let W be a subrepresentation. Then the
orthogonal complement WK is also a subrepresentation.

Proof. WK is the set tv : xv, wy “ 0 @w P W u. Since W is fixed by G, we have
for any g P G and w P W , w “ ρgpw1q, where w1 “ ρg´1pwq P W . Then for any

v P WK, xw, ρgpvqy “ xρgpw1q, ρgpvqy “ xw1, vy “ 0. The second to last equality
follows from the unitarity of ρg. Therefore ρgpvq P WK. It follows that WK is a
subrepresentation of V . □

Theorem 1.9. (Weyl) Finite dimensional representations of finite groups are
unitarizable.
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Proof. Let pρ, V q be a finite dimensional representation of a finite group G. Given
a hermitian, positive definite inner product x¨, ¨y on V , average over the group to
obtain a new inner product.

xv, wy1 :“
1

|G|

ÿ

gPG

xρgv, ρgwy

The new inner product inherits hermiticity and positive definiteness from the origi-
nal product by linearity. To see invariance, multiply by an arbitrary element h P G.

xρhv, ρhwy1 “
1

|G|

ÿ

gPG

xρgρhv, ρgρhwy

The sum is invariant under G by the Sudoku Lemma, since multiplication by ρh just
permutes the elements of G. Therefore x, y1 is fixed by G, and so ρ is unitarizable.

□

In fact, there is a larger class of representations which are unitarizable and
includes finite group representations.

Definition 1.10. A topological group is a group and also a topological space for
which the group action and inverses are continuous maps. A compact group is a
topological group which is compact.

Example 1.11. Any finite group can be given the discrete topology to make it a
topological group. Compact groups thus include finite groups with discrete topol-
ogy.

Example 1.12. For the classical groups SU2, SO3, UN we consider later, we give
them the subspace topology of the usual topology on GLnpCq.

In order to show unitarizability for compact groups, we require the following
result of Haar, which we cite without proof.

Theorem 1.13. (Haar)[6] For any compact Hausdorff topological group G, there
exists a unique normalized regular Borel measure on G that is invariant under left
and right multiplication by elements of G. This measure is called the Haar Measure.

In the examples of compact groups we explore later, we will construct this mea-
sure explicitly.

Lemma 1.14. Finite dimensional representations of compact groups are unitariz-
able.

Proof. Let
ş

G
dg denote integration with respect to the Haar measure of G. Then,

following the same logic as the proof of Theorem 1.9, given any inner product x, y
on G, a unitary inner product can be constructed as

(1.15) xv, wy1 :“
1

N

ż

G

xρgv, ρgwydg,

whereN “
ş

G
1dg is the volume of the groupG. By Theorem 1.13, x, y1 is translation

invariant, making G unitarizable. □

We are ready to state the main theorem of the section.

Theorem 1.16. Finite dimensional unitarizable representations are completely re-
ducible.
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Proof. Suppose V is a finite dimensional unitarizable representation of a group G.
If there are no nontrivial subrepresentations, then V is irreducible. Otherwise,
let W be a subrepresentation, and let WK be its orthogonal compliment. Thus
V – W ‘ WK. It follows from Lemma 1.8 that WK is a subrepresentation of
V . Noting that one dimensional representations are irreducible, it follows from
induction on the number of dimensions that V is completely reducible. □

Thus we have that representations of compact groups, including finite groups,
are completely reducible: they factor into direct sums of irreducible representations
as in Definition 1.6. All representations of compact groups can be constructed by
taking direct sums of irreducible representations.

One goal of representation theory is to discover all the irreducible representations
of a given group. To this end, in the next section we present a key tool in identifying
irreducible representations: Schur’s Lemma.

1.4. Schur’s Lemma. Schur’s Lemma is a cornerstone of basic representation the-
ory. It formulates a condition for irreducibility in terms of maps from a representa-
tion to itself. We will make continued use of Schur’s Lemma throughout the paper.
First a quick but important definition.

Definition 1.17. For representations pρ1, V1q, pρ2, V2q, an intertwiner is a linear
map φ : V1 Ñ V2 that commutes with the action of G:

ρ2g ˝ φ “ φ ˝ ρ1g

It makes this diagram commute:

V1 V2

V1 V2

φ

ρ1 ρ2

φ

The space of intertwiners is calledHomGpV1, V2q. We define EndGpV q “ HomGpV, V q.
Notice that in this language, isomorphisms of representations are isomorphisms

of vector spaces that are intertwiners; equivalently, bijective intertwiners. Since
intertwiners aren’t necessarily invertible, we don’t view them as conjugates like we
do isomorphisms.

Schur’s lemma gives a powerful restriction on itertwiners of irreducible represen-
tations.

Theorem 1.18. (Schur’s Lemma) Intertwiners φ : V Ñ V on irreducible rep-
resentations are scalar multiples of the identity map.

Proof. Let ρ be irreducible, and let φ be an intertwiner of ρ. Then, since φ is a
linear map between complex vector spaces, it has at least one nonzero eigenspace
E, say with eigenvalue λ. Then for any g P G the eigenspace E is fixed by ρg.

pφ ˝ ρgqpvq “ pρg ˝ φqpvq “ ρgpλvq “ λρgpvq @v P E

It follows that eigenspaces of φ are subrepresentations. Since V is irreducible,
subrepresentations must be trivial, so there is a single eigenspace which is all of
V . □
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The following corollary to Schur’s Lemma allows one to determine whether irre-
ducible representations are isomorphic to each other by the dimension of the space
of isomorphisms between them.

Corollary 1.19. For irreducible representations V,W , the space HomGpV,W q is
1 dimensional and comprised of isomorphisms if V – W (as representations) and
is t0u otherwise.

Proof. The kernel and image of φ P HomGpV,W q are subrepresentations of the
irreducible representations V,W, so they must be trivial. Therefore φ “ 0 or φ is an
isomorphism. If φ1, φ2 are two nontrivial interwiners, then φ1 ˝φ2 is an intertwiner
on V and so is a scalar by Schur’s Lemma. Thus elements of HomGpV,W q differ
only by a scalar and so HomGpV,W q is one dimensional. □

This provides a converse to Schur’s Lemma for completely reducible represen-
tations: since each pair of isomorphic copies of irreducible representations have a
one dimensional space of intertwiners between them, representations V that are not
irreducible (that is, contain multiple irreducible representations) will have elements
of EndGpV q that are not simply scalar multiples of the identity. In fact, EndGpV q

will in general turn out to be a direct sum of matrix algebras, where the individual
matrix entries give the scalars that define scalar maps required by Schur’s Lemma
between each pair of isomorphic representations. This will be fleshed out in the
next section.

Let’s review where we’ve been this section. We started out by introducing the
idea of a representation as a linear group action on a vector space. We then found
that compact groups and in particular finite groups factor (complete reducibility)
into a direct sum of spaces which are fixed by the group action (irreducible rep-
resentations). Finally, we found a criterion for irreducibility and a restriction on
maps between irreducible representations (Schur’s Lemma).

The space of maps between representations can be further understood through
a module-theoretic formulation, culminating in the Artin-Wedderburn Theorem,
which we explore next.

2. Module Theory

We next approach the subject from the point of view of module theory, culmi-
nating in the main theorem which characterizes the structure of complex represen-
tations.

Definition 2.1. For a finite group G, the group algebra CrGs consists of C-linear
combinations of the group elements of G.

By extending linearly in C, a representation ρ : G Ñ GLpV q defines an algebra
homomorphism ρ1 : CrGs Ñ EndpV q. Restricting to G Ă CrGs gives the inverse.
Since V is an EndpV q-module, the extended homomorphism makes V a CrGs-
module. This gives a bijection between CrGs-modules and representations of G.
We therefore want to understand all CrGs-modules.

In this correspondence, irreducible representations correspond to simple CrGs-
modules. In this section, we develop a theorem on the structure of a class of modules
which includes CrGs, which will help to understand the structure of CrGs for finite
groups, and therefore the structure of representations of finite groups. We give an
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abbreviated version of some of the module-theoretic proofs and refer reader to [3]
for a more thorough treatment.

In the language of module theory, Schur’s Lemma says the following:

Lemma 2.2. (Schur’s Lemma, module version) A module homomorphism ψ
between simple modules is either an isomorphism or the zero map.

Proof. The kernel and image of a homomorphism are both submodules. □

The analogue of creating completely reducible representations from irreducible
representations is creating “semisimple modules” from simple modules. We will see
later that for a finite group G, the group algebra CrGs is a semisimple module.
In order to understand the structure of CrGs then it is worthwhle to understand
semisimple modules.

Definition 2.3. A semisimple module is a direct sum of simple modules.

The next lemma is the first step in understanding the structure of semisimple
modules.

Lemma 2.4. The image of a finite dimensional semisimple module under homo-
morphism is semisimple.

Proof. Suppose S “ S1 ‘ S2 ‘ ... ‘ Sn is a semisimple module and φ : S Ñ M
is a homomorphism. Then φ|Si

is an isomorphism or 0 by Schur’s Lemma. Since
simple modules have trivial intersections, φpSq –

Àn
i“1 φpSiq where each φ|Si

is 0
or an isomorphism. □

There is a notion of when an algebra is semisimple, and it is heavily related to
the module case.

Definition 2.5. We say a finite dimensional C´algebra A is semisimple if all
A´modules are semisimple.

Proposition 2.6. A finite dimensional C-algebra A is semisimple iff it is semisim-
ple as an A-module.

Proof. If A is semisimple, then all modules over A are semisimple, so A would be
as well. If A is semisimple as an A-module, then for a generating set m1, ..mr for
any finitely generated A´module M , the result follows from Lemma 2.4 and the
module homomorphism Ar Ñ M given by pa1, ..arq Ñ a1m1 ` ..` armr. □

Again, later we will see that for finite G, CrGs is a semisimple C-algebra, and
so we are working towards a structure theorem for semisimple algebras in order to
understand the structure of CrGs, which tells us the structure of representations of
G.

We can use the constraints on maps between simple modules to understand the
structure of semisimple algebras.

Proposition 2.7. If A – S1 ‘ ..‘Sn where Si is a simple module, then any simple
A-module is isomorphic to one of the Si.

Proof. For S a simple A module, given v P S, define the homomorphism φ : A Ñ S
by φpaq “ av. Then φpAq “ S must be isomorphic to one of the Si by Schur’s
lemma and the simplicity of S. □
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Lemma 2.8. As MnpCq-modules,

(2.9) MnpCq – nCn.

Proof. As a sketch of the proof, consider each of the columns of a given matrix
M P MnpCq as an element of one of the copies of Cn. One can check this is a
module isomorphism. □

Lemma 2.10. If A is a finite dimensional C-algebra and S a simple A-module,
then EndApSq – C.

Proof. This is a restatement of Schur’s Lemma. □

Definition 2.11. For an algebra A, the opposite algebra Aop is the alegbra on the
same set as A but with multiplication operation ¨ defined as a ¨ b :“ ba where the
second multiplication is carried out in A.

Lemma 2.12. Aop – EndApAq

Proof. Define the map φ : Aop Ñ EndApAq by φpaqp1q “ a. Injectivity is im-
mediate from the definition. Any map ψ P EndApAq is determined by ψp1q by
ψpbq “ bψp1q. Therefore φ is surjective. Next, φpa ¨ bqp1q “ φpbaqp1q “ ba “

bφpaqp1q “ pφpbq ˝ φpaqqp1q, so φ is a homomorphism. It follows that φ is an
isomorphism. □

Lemma 2.13. If S is simple, then EndApnSq – MnpEndApSqq.

Proof sketch. For the full proof see Lemma 3.6 in [3]. Here we consider just
the special case S “ C, A “ CrGs which is all we need for representation the-
ory. As A-modules, EndApS‘nq :“ HomApS‘n, S‘nq. Homomorphisms from
direct sums factor as direct sums of homomorphisms, so HomApS‘n, S‘nq –
Àn

i“1HomApS, S‘nq. By Schur’s Lemma,HomApS, S‘nq – Cn. Thus EndApnSq “

nCn. By Lemma 2.8, we have nCn – MnpCq. Letting S “ C, A “ CrGs, we have
EndCrGspCnq “ C, so EndApnSq – MnpEndApSqq for this case. □

We are prepared to state the main theorem of this section.

Theorem 2.14. (Artin - Wedderburn) [3] Let A be a finite dimensional C-
algebra. Then A is semisimple iff A is isomorphic to a finite direct sum of matrix
algebras over C.

Proof. pðqSupposeA –
Àr

i“1Mni
pCq. Then by Lemma 2.8, we haveA –

Àr
i“1 niCni .

By restricting the action of A to a single summand, it follows that simplicity of
niCni as an Mni

pCq-module implies simplicity as an A-module. Therefore A is a
direct sum of simple modules and so semisimple.

pñq Let A – niSi ‘ ... ‘ nrSr be a semisimple C-algebra with Si fl Sj if
i ‰ j. Then by Lemma 2.12, Aop – EndApAq – EndApniSi ‘ ... ‘ nrSrq. Since
Si, Sj are pairwise nonisomorphic and simple, we have EndApniSi ‘ ... ‘ nrSrq –
Àr

i“1EndApniSiq. By Lemma 2.13, EndApniSiq – Mni
pEndApSiq. By Schur’s

Lemma, EndApSiq – C. ThusAop –
Àr

i“1Mni
pCq. Then, A – p

Àr
i“1Mni

pCqq
op

–
Àr

i“1pMni
pCqqop. Then, the transpose map, sending a matrix A to AT satisfies the

relation that ATBT “ pBAqT , which gives an isomorphism from pMni
pCqqop to

Mni
pCq. Therefore A –

Àr
i“1pMni

pCqqop –
Àr

i“1Mni
pCq as desired. □
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The connection to representation theory is given by Maschke’s Theorem.

Theorem 2.15. (Maschke) For a finite group G, the group ring CrGs is a finite
dimensional semisimple C-algebra.

Proof. From the discussion following Definition 2.1, we identify CrGs´modules as
representations of G. In particular, CrGs is a module over itself. With this in mind,
the decomposition of CrGs into simple modules follows from Complete Reducibility.

□

Putting the previous two theorems together, we arrive at a classification of the
structure of CrGs.

Corollary 2.16. As algebras,

CrGs – Mn1
pCq ‘ ...Mnr

pCq –
à

V PIrrpGq

EndCV.

In the isomorphism, an element g P G is mapped to the linear map ρpgq for the
corresponding irreducible representation pρ, V q in each factor.

Proof sketch. The first isomorphism follows from Theorem 2.15 and Theorem 2.14.
The second isomorphism follows from Lemma 2.8. The second isomorphism follows
from the identification of tCniu as the unique up to isomorphism simple Mni

pCq

modules and then Mni
pCq as EndCV where V – Cni . The last statement follows

from viewing V as a CrGs-module. □

We see that there are r isomorphism classes of simple modules (irreducible rep-
resentations) with dimensions tniu. For the next result we need a quick definition
which will continue to be of importance in following sections.

Definition 2.17. For a group G, let Cl be the set of conjugacy classes of G. A class
function on G is a function f : Cl Ñ C. Based on context, functions h : G Ñ C
that are constant on conjugacy classes may also be called class functions.

Proposition 2.18. From Corollary 2.16 we can deduce three important results in
finite dimensional complex representation theory. Let G be a finite group.

(1) The regular representation of G decomposes as the direct sum of irreducible
representations with multiplicity equal to their dimension.

(2)
ř

V PIrrpGq dimpV q2 “ |G|

(3) The number of irreducible representations of G is the number of conjugacy
classes in G

Proof. To see (1), note that the regular representation is isomorphic to CrGs it-
self, which by Corollary 2.16 is a direct sum over irreducible representations V of
EndCV . We have EndCpV q – MnpCq – nCn by Lemma 2.8. This gives n copies
of irreducible representation V where n “ dimpV q.

Item (2) follows directly from a dimension count.
For (3), an irreducible representation of G is a simple module of CrGs. Consider-

ing CrGs as the space of complex valued functions on G, for a function φ : G Ñ C,
φ P ZpCrGsq iff @x P G, xφpgq “ φxpgq. Thus φpgq “ x´1φxpgq “ φpx´1gxq. It
follows that the center ZpCrGsq consists precisely of class functions. A basis of class
functions is given by tφiu, where φi is unity on elements of a chosen conjugacy class
and zero elsewhere. Thus the dimension of the space of class functions and thus
ZpCrGsq is the number of conjugacy classes of G.
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By Theorem 2.14, the group algebra decomposes as a direct sum of r matrix
algebras.

CrGs – Mn1pCq ‘ ...‘Mnr pCq.

Then
ZCrGs “ Idn1

‘ ..‘ Idnr
.

Therefore DimpZpCrGsq “ r. Since each factor MnipCq acts on simple modules
Cni , there are exactly r isomorphism classes of irreducible representations.

It follows that the number of isomorphism classes of irreducible representations
is the number of conjugacy classes of G. □

We can use this result to understand irreducible representations.

Example 2.19. Let G be a finite abelian group, and let pρ, V q be a representation
of G. Then elements of ρpGq must commute, and are diagonalizable. Diagonal
matrices act on direct sums of one dimensional spaces, so it follows that they are
simultaneously diagonalizable. Therefore by Definition 1.6, V decomposes as a
direct sum of one dimensional irreducible representations. Seen from the point
of view of Corollary 2.16, the only matrix algebras that are commutative are one
dimensional, so that CrGs – C ‘ ..‘ C for which all modules are one dimensional.

Let’s recap where we’ve been. First, we noted that representations of a group
G could be identified with CrGs-modules. We therefore sought to understand the
structure of the group algebra CrGs. Maschke’s Theorem classifies CrGs as what
is called a semisimple algebra. We therefore developed some module theory to
work towards the main theorem, the Artin-Wedderburn Theorem which classifies
the structure of semisimple algebras as direct sums of matrix algebras. We used
this in Corollary 2.16 and Proposition 2.18 to deduce three foundational results in
representation theory of finite groups.

In the next section we will prove these same results from a different angle, and
go further to understand more about the individual irreducible representations of
a group though a lens called character theory.

3. Character Theory

In general, group homomorphisms are complicated and messy to keep track of.
It turns out that for representations pρ, V q which are completely reducible, the
essential information to list and differentiate the irreducible representations is con-
tained in just the trace of all the linear maps ρpgq : g P G. This is called the
character of the representation. In this section, we will use characters to identify
and deduce important properties of irreducible representations of compact groups.
We will develop a toolbox which can be used to catalogue information about com-
pletely reducible representations. We will use these tools on some specific groups
in Section 5 after a brief foray into tensor products in Section 4.

Definition 3.1. For a representation pρ, V q, the character of pρ, V q is the function
χ : G Ñ C given by taking the trace.

χV pgq “ trV ρpgq

By extending linearly this gives a map CrGs Ñ C.

Next we will deduce a few properties of the character function that make calcu-
lations easier.
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Proposition 3.2. For a representation pρ, V q and compact group G and g P G,

(1) χpg´1q “ χpgq.
(2) χpeq “ DimpV q

Proof. (1); Recall that by Lemma 1.14, pρ, V q is unitarizable. It follows that

ρpg´1q “ ρpgq´1 “ ρpgq:.

Then trpρpgqq “ trpρpgq:q and the proposition (1) follows.
(2) Since ρ is a homomorphism we have ρpeq “ Id and trpIdq = DimpV q. □

This gives an easy way of determining the dimension of a representation. Now,
since trpA ‘ Bq “ trpAq ` trpBq, the character of a completely reducible repre-
sentation is determined by the character of its irreducible factors. Let’s introduce
some lingo.

Definition 3.3. An irreducible character is the character of an irreducible repre-
sentation.

So we know that the decomposition of a representation into irreducible represen-
tations determines its character via irreducible characters. One may ask whether
the converse is true: whether given the character of a representation we may de-
termine its decomposition into irreducibles. The answer is ‘yes’ for an interesting
reason: It will turn out that the irreducible characters form an orthonormal basis
of class functions with respect to an inner product which averages over the group.
Let’s define that inner product.

Definition 3.4. For a finite group G define an inner product on characters of G
by the following:

(3.5) xχ1, χ2y “
1

|G|

ÿ

gPG

χ1pgq ¨ χ2pgq

For a compact group G, define an inner product using the Haar Measure.

(3.6) xχ1, χ2y –
1

N

ż

G

χ1pgqχ2pgqdg

Proposition 3.7. For a compact or finite group G, the irreducible characters of G
are orthonormal with respect to the inner product (3.5), (3.6) respectively.

Proof. [1] Let pρ1, V q, pρ2,W q be two irreducible representations of G and let
χ1, χ2 be their characters. Choose G´invariant inner products on V,W and bases
tviu, twju for V,W , letting the bases agree if V – W . Then for finite G we have

(3.8) xχ1, χ2y “
1

|G|

ÿ

gPG

χ1pgqχ2pgq “
1

|G|

ÿ

i,j

ÿ

G

xvi, ρ
1pgq´1viyxwj , ρ

2pgqwjy.

The last expression can be interpreted as summing over matrix elements of a linear
map f : V Ñ W . The map f restricted to the span of wj and then projected onto
the span of vi is a map fij “ |ρ1pgq´1viyxwj |ρ2pgq. If V – W , then by Schur’s

lemma, f is a scalar multiple of the identity. Therefore fij “
Trpfijq

DimpV q
“

δij
DimpV q

.

Otherwise, f “ 0. Summing over matrix elements and group elements cancels the
factors of 1{DimpV q and 1{|G| to attain:

(3.9) xχ1, χ2y “

#

1 V – W

0 V fl W.



12 ADAM STRUPP

If G is a compact group, define

xχ1, χ2y “
1

N

ż

G

χ1pgqχ2pgqdg “
1

N

ÿ

i,j

ż

G

xvi, ρ
1pgq´1viyxwj , ρ

2pgqwjydg,

where N is the volume of the compact group G. The same logic as in the finite
case follows here, with the only difference being that integrating over the elements
of G cancels out the factor of 1{N [1]. □

Theorem 3.10. The irreducible characters form an orthonormal basis of the space
of class functions on G with respect to the inner product (3.5), (3.6).

Proof. The characters are class functions because the trace is. The fact that irre-
ducible characters form a spanning set of class functions follows from Proposition
2.18, while orthonormality follows from Proposition 3.7. □

Let’s review. For a given representation pρ, V q we take the trace of each map
ρpgq : g P G to get what is called the character. The character is a class function
on G. Think of the characters now as being vectors in the space of class functions
with coordinates indexed by the conjugacy classes of G. The terms in the inner
product Definition 3.4 are constant on conjugacy classes so we may think of the
sum as ranging over the conjugacy classes of G, rather than the elements. Thus
working in the space of class functions we found an inner product with respect to
which the irreducible characters form an orthonormal basis. As we will see next,
this space contains all the information needed to determine whether characters are
the same and whether they are irreducible.

Proposition 3.11. Two representations are isomorphic iff their characters are the
same.

Proof. The preservation of trace under conjugation implies the forward direction.
The reverse follows from linear independence of irreducible characters in Theorem
3.10. □

Proposition 3.12. A representation χ is irreducible iff xχ, χy “ 1.

Proof. Complete reducibility implies representations decompose as integer combi-
nations of irreducible representations. Therefore the inner product between rep-
resentations takes on integral values. By orthonormality, the multiplicity of an
irreducible representation χi in a representation χ is given by xχi, χy. □

This gives an easy way to detect irreducible characters.

Example 3.13. One very useful representation is given by the action of G on
CrGs given by g ¨ λh “ λgh, and extending linearly. This representation is called
the regular representation and has a number of nice properties.

First notice that the character χregpgq is given by the number of elements fixed
by g. The Sudoku Lemma then implies

χregpgq “

#

|G| g “ e

0 g ‰ e

From this it follows that for any representation χ, we have

xχreg, χy “ Dimpχq
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From this we can extract a nice identity:

(3.14) |G| “ xχreg, χregy “ Dimpχregq “
ÿ

i

xχreg, χiy ¨Dimpχiq “
ÿ

Dimpχiq
2

Remark 3.15. The results of the previous example also follow from Corollary 2.16.
To see this, note that the regular representation is isomorphic to CrGs itself as a
CrGs-module. From the decomposition

CrGs “ n1Cn1 ‘ ...‘ nrCnr ,

we see that the multiplicity of each irreducible representation V – Cni is ni “

DimpV q and that

|G| “ DimpCrGsq “ n1DimpCn1q ` ..` nrDimpCnr q “
ÿ

n2i .

The regular representation is an example of what is called a permutation repre-
sentation.

Definition 3.16. For an action G ýX on a finite set X, define a representation
of G on the complex vector space CrXs with basis txiu labeled by elements of X.
The action is given by linearly extending the group action. This representation is
called a permutation representation.

Proposition 3.17. The vector p1, 1, 1...q spans a trivial subrepresentation in any
permutation representation.

Characters can also be used to find the normal subgroups of a group.

Definition 3.18. For a character χ, let the kernel of χ be the set

kerχ :“ tg : χpgq “ χp1qu.

Proposition 3.19. Normal subgroups of G are the arbitrary intersections of kernels
of irreducible characters of G.

Proof. From the regular representation restricted to the cosets G{N , we find χphq “

0 if h R N and χphq “ χp1q if h P N . Thus N “ kerχ :“ tg : χpgq “ χp1qu. The
converse holds, so that any normal subgroup of G can be written as the kernel
of some representation. Next, note that kerρ = kerχ because the only way to
have χpgq “ dimpV q with diagonal entries being roots of unity is to have them
all be identically 1. Finally, for any character χ “

ř

χi, with χi irreducible,
kerχ “

Ş

kerχi follows from the same statement on ρ. It follows that normal
subgroups are the intersection of arbitrary combinations of the kernels kerχi of
irreducible characters. □

Let’s review what we’ve seen in this section. We defined characters, which
are vastly simpler than representations, requiring only knowledge of the traces of
tρpgq : g P Gu. Characters encode the dimension of a representation and can be de-
composed into irreducible characters. These irreducible characters, with a cleverly
chosen inner product, form an orthonormal basis for the space of class functions.
Working in this space, we can use the characters to determine which irreducible
representations are factors in a given representation, whether two representations
are isomorphic, whether a representation is irreducible, what the normal subgroups
of the group are, and the dimensions and number of the irreducible representations.
We will use these tools to find all irreducible representations of specific groups in
Section 5 after some preliminaries about tensor products.
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4. Tensor Products

One strategy of constructing irreducible representations takes advantage of an
algebraic construction called a tensor product. In this section, we introduce tensor
products and use them to construct the symmetric and alternating powers of a
space. Tensor products will continue to show up throughout the remainder of the
paper and into more advanced representation theory.

Definition 4.1. Let R be a ring and let M be a right R-module, and N a left R-
module. Define the tensor product M bRN of M and N over R to be the quotient
group of the free group on the symbols mb n P M ˆN by the following relations:

pm`m1q b n “ mb n`m1 b n,

mb pn` n1q “ mb n`mb n1

mr b n “ mb rn

Thus tensor products are linear in each component and transfer factors of r P R
across components.

Remark 4.2. If R is commutative, then M bR N is an R-module, where R acts
on the right on M or equivilently on the left on N .

Next we see how to define operators on tensor products. They have a particularly
nice matrix form.

Proposition 4.3. [1] Let A P EndpV q and B P EndpW q. Define the operator
A b B P EndpV b W q by A b Bpv b wq “ Av b Bw. For bases teiu, tfku of V,W
respectively, there exists a basis tei b fku of V b W in which the matrix of A b B
has the following simple form:

(4.4) pAbBqpi,kqpj,lq “ Aij ¨Bkl

Naturally we can define representations that are tensor products of other tensor
products.

Definition 4.5. Given representations pρ, V q and pσ,W q of a group G, define the
representation pρ b σ, V b W q to be the representation defined by the following
condition:

pρb σqgpv b wq “ ρgv b σgw.

Working with characters of tensor product representations is particularly nice
because of the following proposition, which allows characters to easily be calculated
from the decomposition of representations into irreducible representations and ten-
sors.

Proposition 4.6. Let V and W be representations of a finite group G.

(1) χV ‘W “ χV ` χW

(2) χV bW “ χV ¨ χW

Proof. This follows directly from the basis decomposition on V ‘W and V bW . □
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There is an intuitive representation of the symmetric group on tensor products
of spaces that is given by permuting the factors in the tensor product. This rep-
resentation is related to other important representations so we take some time to
illumniate some of its properties here.

Proposition 4.7. For a representation pρ, V q, the representation ρbn on V bn

given by ρbn
g pv1 b ...b vnq “ ρgv1 b ..b ρgvn commutes with the representation of

Sn on V bn which permutes the factors.

Proof. Since ρg is applied to each factor, the action of G is not affected by the
action of Sn. □

It can be useful to think of all the isomorphic copies of an irreducible represen-
tation that appear in a given representation as a single block.

Definition 4.8. For a completely reducible representation pρ, V q. V decomposes
as a direct sum V –

Àr
i“1 V

‘ni
i . The blocks V ‘ni

i are called isotypical components.

Proposition 4.9. Let G,H be compact groups and let pρ, V q be a representation
of G and pφ, V q a representation of H. If for all h P H, φphq is an intertwiner of
ρ, then all isotypical components of ρ are subrepresentations of φ.

Proof. Let Wn be an isotypical component of ρ where W is an irreducible repre-
sentations of G. For any h P H, g P G, φh commutes with ρg, so by Schur’s Lemma,
the restriction of ρg to a single summand is 0 on nonisomorphic irreducible repre-
sentations. It follows that φh fixes isotypical components of ρ. □

The following corollary to the proposition allows one to find representations of
an arbitrary group G given representations of Sn.

Corollary 4.10. [1] Every Sn-isotypical component of V bn is a subrepresentation
of G with the action given in Proposition 4.7.

Proof. This follows directly from Proposition 4.9, since the representations of G
and Sn commute by Proposition 4.7. □

There are two isotypical components of Sn-representations that are of special
interest, called the symmetric and alternating powers respectively.

Definition 4.11. Given a vector space V , define the n-th symmetric power of V ,
SymnpV q to be the subspace of V bn that is symmetric under interchange of factors.
Define the n-th alternrating power of V , ΛnV , to be the subspace of V bn that is
antisymmetric under interchange of factors.

Proposition 4.12. [1] Given a basis tv1, ..., vnu of V , then
a basis for SymnV is given by

#

1

n!

ÿ

σPSn

vkσp1q
b ...b vkσpnq

+

as 1 ď k1 ď ... ď kn ď m,

and a basis for ΛnV is given by
#

1

n!

ÿ

σPSn

εpσqvkσp1q
b ...b vkσpnq

+

as 1 ď k1 ă ... ă kn ď m,

where εpσq is the sign of σ.
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Proof. For the proof see [1]. □

Under the action of Sn permuting the components of V bn, the construction of
the bases in Proposition 4.12 illucidates the fact that the elements of SymnV are
fixed by this action while the elements of ΛnV are negated by transpositions. In
fact, the space SymnV is the isotypical component of V bn associated with the
trivial representation, while ΛnV is the isotypical component associated with the
sign representation. This allows us to use Corollary 4.10 to attain representations
of any group G on V bn.

Let’s review what we covered in this section. We defined the notion of tensor
product, which is a way of building up a larger space out of other spaces by letting
scalars transfer between the factors. We defined representations on tensor products
and found that calculating characters of tensor product spaces to be straightforward
(multiplicative). Next we covered isotypical components, subspaces composed of all
the copies of a given irreducible representation that appear in a completely reducible
representation. We exhibited a basis for two particularly important issotypical
components of Sn: SymnV and ΛnV . These spaces and tensor products more
broadly will appear as irreducible representations in specific groups studied later.
We turn next to finding the irreducible characters of a few specific groups.

5. Applying Character Theory

One useful way of displaying information about irreducible representations of a
group is by constructing its character table. A a character table includes much
of the relevant information about the irreducible representations of a given group,
including their dimensions and their characters. In this table, columns are indexed
by representatives of conjugacy classes (since characters are class functions), with
the size of the conjugacy class given in parentheses. Rows are indexed by irreducible
representation. Every group has the trivial representation χ1 which always appears
as the first row.

Rep e a p|Ca|q b p|Cb|q c p|Cc|q

χ1 1 1 1 1
χ2 Dim(χ2) χ2paq χ2pbq χ2pcq
χ3 Dim(χ3) χ3paq χ3pbq χ3pcq
χ4 Dim(χ4) χ4paq χ4pbq χ4pcq

Remark 5.1. When the columns are weighted by
a

|C|{|G| , where |C| is the
conjugacy class size, to account for the size of the conjugacy classes, the orthogo-
nality relations of characters implies the rows are orthonormal [1]. It follows that
the columns are also orthonormal and therefore the matrix formed by the weighted
entries of the table is unitary. This is a useful tool in piecing together the character
table.

5.1. Character Table of A5. We will construct the character table of A5 - the
even permutations of 5 items - using some of the previously developed tools. We
start by listing the conjugacy classes of A5, of which there are five, represented
by elements e, p12qp34q, p123q, p12345q, p12354q. By Proposition 2.18, we are thus
looking for five irreducible representations. We get the trivial representation for
free, with character χ1 “ p1, 1, 1, 1, 1q. We don’t get the sign representation, since
all elements of A5 have even sign, so it is the same as the trivial representation.
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We will now proceed by examining the action of A5 on a few different spaces.
Let’s first consider the permutation representation of A5 on C5 given by permut-
ing the coordinates. The trace of a permutation representation is the number of
elements fixed, so it follows that χC5 “ p5, 1, 2, 0, 0q.

Noting that the terms in the inner product (3.5) are the same on conjugacy
classes since characters are class functions, for R a system of representatives of
conjugacy classes of G, with sizes |Cg|, we can rewrite (3.5) as

(5.2) xχ, χ1y “
1

|G|

ÿ

gPR

|Cg| ¨ χ´1pgqχ1pgq.

We may thus evaluate inner products just on representatives, with the appropriate
weighting. The sizes of the conjugacy classes of A5 are 1, 15, 20, 12, and 12.

Thus we can evaluate xχC5 , χC5y given by the inner product (5.2), as

xχC5 , χC5y “
1

60

`

1 ¨ 52 ` 15 ¨ 12 ` 20 ¨ 22 ` 12 ¨ 02 ` 12 ¨ 02
˘

“ 2.

From Proposition 3.12 and Theorem 1.16, it follows that χC5 is the sum of two ir-
reducible characters. By Proposition 3.17, one of these is the trivial character χ1, so
subtracting this we have χC5 ´χ1 “ p5, 1, 2, 0, 0q´p1, 1, 1, 1, 1q “ p4, 0, 1,´1,´1q :“
χ2. We call V the subspace on which χ2 acts.

We next consider the action of A5 on the tensor square V b2.

Lemma 5.3. The character of Sym2V can be calculated from that of V in the
following way:

(5.4) χSym2V pgq “
χ2
V pgq ` χV pg2q

2
.

The character of Λ2V is the following:

(5.5) χΛ2V pgq “
χ2
V pgq ´ χV pg2q

2

Proof. This follows from counting over the bases defined in Proposition 4.12 [1]. □

On the subspace Sym2V therefore we have χSym2V “ p10, 2, 1, 0, 0q and on Λ2V
we have χΛ2V “ p6,´2, 0, 1, 1q. We calculate xχSym2V , χSym2V y “ 3, so χSym2V

is the sum of three irreducible characters, since this is the only way to have a
modulus of 3 when components take integer coefficients. We have xχSym2V , χ1y “ 1
and xχSym2V , χ2y “ 1, so χSym2V includes a copy of χ2 and χ1, which can then
be subtracted out. The difference χSym2V ´ χ1 ´ χ2 “ p5, 1,´1, 0, 0q :“ χ3 is
irreducible.

Now, we have xχΛ2V , χΛ2V y “ 2, so χΛ2V is composed of two irreducible rep-
resentations. We have xχΛ2V , χ1y “ xχΛ2V , χ2y “ xχΛ2V , χ3y “ 0, so the two
irreducible representations summing to χΛ2V are nonisomorphic to the previously
found irreducible representations, and so are the last two we need to find.

Now, given a representation ρ, conjugation by τ P Sn defines a new representation
ρτ that acts as ρτ pgq “ ρpτgτ´1q. Conjugation by τ preserves the conjugacy classes
of A5 that were already conjugacy classes of S5. However, p12345q and p12354q are
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conjugate in S5 but not A5. Let τ then be the element of S5 by which they are
conjugate: τp12345qτ´1 “ p12354q. It follows that

ρτ p12345q “ ρpτp12345qτ´1q “ ρp12354q,

and vice versa. Letting ρ be one of the two irreducible representations that makes up
Λ2V , it follows that ρτ is also an irreducible representation. Since it is unaccounted
for elsewhere it must be the other summand of χΛ2V .

We therefore know the following things about ρ and ρτ . First, by (3.14 we have
|G| “ 60 “

ř

d2i “ 12`42`52`Dimpρq2`Dimpρτ q2. The only integer solutions to
this are Dimpρτ q “ Dimpρq “ 3. By the definitions of ρ, ρτ , we know that χρ, χρτ

are the same on conjugacy classes e, p12qp34q, p123q which are shared conjugacy
classes of S5 and A5 and have swapped values on conjugacy classes p12345q, p12354q

which split a class of S5. By construction we also know that χρτ ` χρ “ χΛ2V .
Finally, by 3.10, χρτ , χρ are orthogonal to each other.

All of these conditions combined are enough, with some algebra, to nail down

the final two irreducible representations as χρτ “ p3,´1, 0, 1`
?
5

2 , 1´
?
5

2 q and χρ “

p3,´1, 0, 1´
?
5

2 , 1`
?
5

2 q. We can thus present the completed character table of A5 :

Rep e (12)(34) (123) (12345) (12354)

χ1 1 1 1 1 1
χ2 4 0 1 ´1 -1
χ3 5 1 -1 0 0

χρ 3 -1 0 1´
?
5

2
1`

?
5

2

χρτ 3 -1 0 1`
?
5

2
1´

?
5

2

Thus by drawing on the properties of characters developed in previous sections
and considering the action of A5 on specific spaces, we were able to find all irre-
ducible characters of A5. This shows the power of character theory in finding the
irreducible representations of finite groups. Before considering additional specific
groups in the last two sections, we next introduce some more abstract results in
representation theory on the topic of how the representations of a group relate to
the representations of its subgroups.

6. Induced and Restricted Representations

In this section we explore a way to generate representations of a group given
representations of a subgroup, or vice versa. These representations are called the
induced and restricted representations respectively. We introduce these represen-
tations and prove some theorems relating the two.

First, suppose we have a representation of a group G. This is also a represen-
tation of each subgroup H Ă G. When we restrict to the subgroup H, we call it
the restricted representation. The same notion works for any homomorphism into
G, so we give the broader definition below.

Definition 6.1. Let pρ, V q be a representation of a group G, and let φ : H Ñ G
be a homomorphism of groups. Define the restricted representation of G to H to
be the representation pResHGV, V q of H given by the composition

ResHGV “ ρ ˝ φ.
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The composition is illustrated in the following diagram.

H G

V

φ

ResHG

ρ

This allows us to produce a new representation of a group H given a represen-
tation of G and a group homomorphism from H to G. This is particularly useful
when H is a subgroup of G and the map φ is the inclusion of H into G. In this
case the restricted representation reduces to ResHG phq “ ρh.

Given a representation of a subgroup H Ă G, a new representation of G and
adjoint functor of ResHG is given by the induced representation.

Definition 6.2. Given a representation pρ,W q of a subgroup H Ă G, define the
induced representation IndGHW to be the extension of scalars of the CrHs-module
W to the group ring CrGs.

(6.3) IndGHW :“ CrGs bCrHs W

This defines a representation of G with the action given by right multiplication
on the factor CrGs.

Example 6.4. IndG
t1u

1 is the regular representation of G.

This can be seen by considering CrGs bCrHs W “ CrGs bC 1 – CrGs. The left
action of G on CrGs is precisely the regular representation of G.

This may at first appear quite abstract, but in the following few propositions, we
will get a better idea of how IndGH behaves. First, the following proposition will be
useful in proving later theorems, though for what I believe to be the best intuitive
picture of the induced representation I direct the reader to Propositon 6.9.

The following lemma gives a useful isomorphism between spaces of functions and
tensor products. We will use it in the proof of the next proposition and later.

Lemma 6.5. For finite dimensional vector spaces U, V , there is an isomorphism
of vector spaces,

HompU, V q – U˚ b V

which preserves G´actions.

Proof. Given bases tuiu, tviu of U, V respectively, identify the linear map Lij sat-
isfying Lijpuiq “ vj with u˚

i b vj and extend linearly in C and to sums of sim-
ple tensors. To see that G-actions are preserved, see that g P G acts on Lij by
gLijpuq “ Lijpρguq. Thus gLijpρ´1

g uiq “ vj . Similarly, gpu˚
i bvjq :“ ρ´1

g u˚
i bvj . □

Proposition 6.6. For a representation pρ,W q of H Ă G, as G-representations,
IndGHW is isomorphic to the space HomHpG,W q of linear maps φ : G Ñ W , which
are H-invariant under the simultaneous right action φpgq¨h “ φpghq and left action
h ¨ φpgq “ ρphq ¨ φpgq.
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Morally this is because CrGs can be thought of as the space of maps φ : G Ñ C.
In general for a tensor product AbR B, factors of r P R transfer across the factors
as ar bR b “ a b rb. Therefore we should have ar´1 bR rb “ a b b. That is,
simultaneous action by r´1 on one factor and r on the other cancels out. Here the
action of h´1 on φpgq is φpgq ¨ h´1 “ φpghq.

Proof. Following Lemma 6.5, the space HomCpG,W q is isomorphic to the tensor
product CrGs bW by the map

φ Ñ
ÿ

gPG

eg b wg,

where φpgq “ wg, egpgq “ 1, and egphq “ 0 for h ‰ g. Here we are identifying CrGs

with the space of linear maps from G to C.
The left action of H maps eg Ñ egh´1 while the right action of H maps w to

ρhw. Thus the H-invariance condition reads as

(6.7)
ÿ

gPG

eg b wg “
ÿ

gPG

egh´1 b ρhwg @h P H.

By extending linearly, we see this is precisely an element of CrGsbCrHsW , agreeing
with the tensor product structure of invariance under acting on one factor of the
product with an element g and acting by the inverse g´1 on he other factor. To
check G´invariance, we let f : CrGs bCrHs W Ñ HomHpG,W q be the map taking

g b w to eg b w. Then we see fpg ¨
ř

gi b wiq “ fp
ř

gig
´1 b wiq “

ř

egig´1 b wi,
while g ¨ fp¨

ř

gi b wiq “ g ¨
ř

egi b wi “
ř

egig´1 b wi. □

Example 6.8. For pρ1,W1q, pρ2,W2q representations of H Ă G, IndGHpW1‘W2q –

IndGHW1 ‘ IndGHW2.

Proof. Using the construction in Proposition 6.6,HompG,W1‘W2q – HompG,W1q‘

HompG,W2q, and the linear operator ρg “ ρ1g ‘ ρ2g acts on the factors W1, W2 sep-
arately, so that H-invariance is preserved by the isomorphism. □

Though the preceding proposition is correct and useful, and the original defi-
nition is satisfyingly concise, the induced representation IndGHW is perhaps most
intuitively thought of in the following way: for each coset in G{H create a copy
of W . Choose a representative gr for each coset and call the associated copy Wr.
Then an element g P G acts both by permuting the cosets (multiplying g ¨ gr and
checking what coset it is now in) as well as acting on the copy of W by the factor
belonging to H that is left over. As we would desire, action by elements of H agrees
with the representation of H on the copy ofW associated to the identity coset. The
following proposition gives the details.
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W0 Wσp0q

... ... kgi “ g´1
σpiqggi

W Wi Wσpiq

... ...

Wn Wσpnq

‘ ‘

‘ ‘

(C)

(A)

(B)

g

‘ ‘

‘ ‘

Figure 1. The action of G on the induced representation IndGHW .
(A): For every coset i P G{H, create an isomorphic copy of the
representation W indexed by the cosets as Wi. Their direct sum
is the representation IndGHW . (B): The action of G on IndGHW
is to permute the factors of Wi as well as to linearly transform
each individual Wi. For an element g P G, denote the permutation
of tWiu given by the action of g as σ. Then g|Wi

pWiq “ Wσpiq.
(C): Let tgiu be a system of representatives of the cosets G{H and
denote Wi “ giW . Then ggiWi “ gσpiqkgiW where kgi “ g´1

σpiqggi.

Thus kgi acts within the factor Wσpiq.

Proposition 6.9. Let pρ,W q be a representation of a subgroup H of a finite group
G. Then for a system of represenatatives R “ tgru of the cosets G{H,

IndGHW –
à

rPR

Wr.

Each Wr is isomorphic to W and for any g P G and gr P R we have

ggr “ gr1hr

for gr1 P R and hr P H, so the action of G is well defined as

(6.10) g ¨
à

rPR

Wr “
à

rPR

ρphrqWr1 .

Proof. We will show this form agrees with the form HomHpG,W q from Proposi-
tion 6.6. From the H´ invariance condition (6.7) it follows that we have ρhwg “

wgh´1 @h, g P H,G. Therefore given the image IndGHW pgq of any element g of
the coset gH, the invariance condition specifies the map on the entire coset. Let
Wr be the space of maps in HomHpG,W q that vanish on all but the single coset
containing r. We then have an isomorphism f :W Ñ Wr given by

(6.11) fpwq “
ÿ

hPH

egh b ρ´1
h pwq.

This satisfies the H´invariance condition (6.7) because w “ wr and so ρ´1
h pwrq “

wrh. In particular, we can define the CrGs-module homomorphism φ : HomHpW,Gq Ñ
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À

rPRWr by

φp
ÿ

gPG

eg b wgq “
ÿ

rPR

ÿ

hPH

erh b ρ´1
h wr.

Bijectivity is given by the fact that cosets partition a group, so φ is an isomorphism.
□

Having constructed the induced representation and having found an intuitive
way to think of it, we turn next to the question of computing the characters of
induced representations. For this a preliminary definition will be useful.

Definition 6.12. Let ψ be a class function on G, and let R be a system of repre-
sentatives of cosets G{H. The induced function IndGHψ is given by

IndGHψpgq “
ÿ

rPR

ε ˝ ψpr´1grq.

Here ε is an indicator function which is 0 on G´H and 1 on H.

Proposition 6.13. Let H Ă G and let pρ, V q be a representation of H with char-
acter χ. Then the character of IndGHV is the induced function IndGHχ.

Proof. By the decomposition in Proposition 6.9, the character χg will have nonzero
contribution from the blocks Wr which are fixed by the action of g. We have
Wr “ Wr1 iff ggr “ grk for k P H. Thus g “ grkg

´1
r . Following (6.11, for those

blocks Wr which are fixed, g acts as

g ¨
ÿ

hPH

egrh b ρ´1
h w “

ÿ

hPH

egrh b ρ´1
h kw.

It follows that if g´1
r ggr “ k P H, the action of g on Wr corresponds to the action

of k “ g´1
r ggr onW . If g´1

r gr R H, the blockWr contributes zero to the trace. The
proposition follows from summing over blocks Wr which are fixed. Summing over
only fixed blocks mirrors the role of the indicator function ε in Definition 6.12. □

Lemma 6.14. For completely reducible representations pρ, V qand pρ1, Uq of a group
G, write xV,UyG for the inner product xχV , χU y over G. Then xV,UyG is the di-
mension of HomGpV,Uq, the space of G-invariant linear maps, or intertwiners,
from V to U .

Proof. We will prove this in three steps.
First, we show that the statement holds when U, V are irreducible. Second, we

show that both xV,UyG and HomGpV,Uq are linear in each argument. Finally, we
recall complete reducibility. The third step allows us to write

xV,UyG “ xV1 ‘ ...‘ Vn, U1 ‘ ...‘ UmyG,

where Ui, Vi are irreducible. Then the second step gives

xV1 ‘ ...‘ Vn, U1 ‘ ...‘ UmyG “ xV1, U1yG ` xV1, U2yG ` ...` xVn, UmyG.

Then step 1 gives

xV1, U1yG`xV1, U2yG`...`xVn, UmyG “ dimpHomGpV1, U1qq`...`dimpHomGpVn, Umqq.

Then finally step 2 again gives

dimpHomGpV1, U1qq ` ...` dimpHomGpVn, Umqq “ dimpHomGpV,Uqq,

and the proposition follows.
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So lets prove these three things. First, suppose U, V irreducible. Then xV,UyG “

1 if V – U and 0 otherwise. Schur’s Lemma gives the same values for dimpHomGpV,Uqq.
For the second step, let U1, U2, V be irreducible representations. Then

xU1 ‘ U2, V yG “ xχU1
` χU2

, χV y,

and then we have

xχU1
` χU2

, χV y “ xχU1
, χV y ` xχU2

, χV y

by linearity of the character inner product per Proposition 4.6. By the vector space
isomorphism

HompA‘B,Cq – HompA,Cq ‘HompB,Cq,

HompU1 ‘ U2, V q decomposes as HompU1, V q ‘ HompU2, V q and a vector is G-
invariant in HompU1 ‘ U2, V q iff its image is so in HompU1, V q ‘ HompU2, V q.
Therefore we can write

HompU1 ‘ U2, V q – HompU1, V q ‘HompU2, V q.

The claim on dimension follows. This same argument works for the right hand
factor as well so we have both HomG and x, yG are linear in each argument as
desired. The third step is just to use the definition of complete reducibility. □

Induced representations and restricted representations are connected via the fol-
lowing theorem.

Theorem 6.15 (Frobenius Reciprocity).

HomGpIndGHW,V q – HomHpW,ResHGV q

Proof. By the Definition 6.2 of induced representation, we have

HomGpV, IndGHW q “ HomGpV,CrGs bCrHs W q.

By Lemma 6.5, we have

HomGpV,CrGs bCrHs W q – pV ˚ b CrGs bCrHs W qG,

where the superscript G denotes vectors invariant under the action of G on V ˚ and
CrGs. We further have

pV ˚ b CrGs bCrHs W qG – pV ˚ b CrGs bW qG,H

where the superscript H denotes vectors invariant under the simultaneous right
multiplication of H on CrGs and left action on W . With G,H acting the same, we
permute the order of the tensor product to have

pV ˚ b CrGs bW qG,H – pCrGs b V ˚ bW qG,H .

The G-invariance restriction determines all invariant vectors in CrGs b V ˚ b W
given its restriction to eb V ˚ bW by the condition

g ¨ eb v˚ b w “ eb ρ´1
g v˚ b w

for a G-invariant vector. Therefore the dimension of pCrGs b V ˚ b W qG,H is the
same as the dimension of pe b V ˚ b W qH , which is the same as pV ˚ b W qH given
that the notion of H-invariance is well defined on V ˚ bW .

Indeed, in the map f : pCrGs b V ˚ b W qG Ñ V ˚ b W , a vector φ P pCrGs b

V ˚ bW qG is H invariant when for any simple tensor q “ eb v˚ bw, q is invariant
under the action of H as hq “ h b v˚ b ρhw. The G-invariance condition gives
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hq “ ebph´1vq˚ bhw. Thus H invariance implies invariance under the action of H
on V ˚ and on W , and thus passes to the desired notion of H-invariance in V ˚ bW .
By Lemma 6.5 we can then identify pV ˚ bW qH – HomHpResHGV,W q. □

Remark 6.16. Frobenius Reciprocity is the statement that the functors IndGH :
RepH Ñ RepG and ResHG : RepG Ñ RepH are adjoint functors. Here RepG is the
category of G-representations where morphisms are G-intertwiners, and RepH is
the analogue for the subgroup H. The functor ResHG maps a representation pρ, V q

of G to a representation pρ|H , V q of H. It acts as the identity on morphisms since
G-invariance implies H-invariance. The functor IndGH maps a representation W to
IndGHW .

Corollary 6.17. By counting dimensions in the above, we have

xV, IndGHW yG “ xResHGV,W yH .

6.1. Mackey Theory. We will develop a tool to determine if a representation is
irreducible through a relation between its induced and restricted representations.

Theorem 6.18 (Mackey’s Restriction Formula). For H a subgroup of G, Let S Ă G
be a set of representatives for the double coset space H\G{H. For each s P S, define

Hs :“ sHs´1 XH.

For a representation pρ,W q of H, a representation pρs,Wsq of Hs is defined by
ρspxq “ ρps´1xsq, where Ws “ W . Then,

ResHG Ind
G
HpW q –

à

sPS

IndHHs
pWsq.

Proof sketch. For the full proof see [4] (p. 58-59). We give an instructive and
abridged version here.

The space V :“ IndGHpW q is a direct sum of the spaces grW where gr P R1 for R1

a system of representatives for G{H. It is a fact that double cosets are partitioned
by cosets, so we may group together all the cosets that sit inside the same double
cosets to make the space V psq. The space V psq is formally defined as the subspace
of V generated by the images grW for gr P HsH.

The approach is to show that V psq is isomorphic as an H-representation to the
summand IndHHs

pWsq. To do so, we need only check the characters are the same.
Let R2 be a system of representatives for H{Hs. Then by Proposition 6.13 the

character of IndHHs
pWsq is given by

χpIndHHs
pWsqq “

ÿ

hPH

ÿ

rPR2

εph P rHsr
´1qχspr´1hrq,

where εph P rHsr
´1q “ 1 when h P rHsr

´1 and 0 otherwise. Recalling the definition
of ρs, we have χsphq “ ps´1hsq. An element of rHsr

´1 can be written as rsh1s´1r´1

for h1 P H. When this element is in H, it is included in the sum, so we may write
ÿ

hPH

ÿ

rPR2

εph P rHsr
´1qχspr´1hrq “

ÿ

h1PH

ÿ

rPR2

εph1 P rHsr
´1qχps´1r´1h1rsq.

On the other hand, the character of ResHG Ind
G
HpW q is given as

ÿ

hPH

ÿ

aPR3

εph P aHa´1qχpa´1haq,
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where R3 is the subset of R1 that is contained in the double coset represented by
s. The trick is the realize that elements of R3 are in bijection with elements of R1

by mapping r to rs. To see this, consider rpsHs´1q P R3. Multiplying by s gives
rpsHs´1qs “ rsH. This is an element of the double coset HsH. It also represents
a unique coset in G{H because rs P G. We can thus write

ÿ

hPH

ÿ

aPR3XH

εph P aHa´1qχpa´1haq “
ÿ

hPH

ÿ

rPR2

εph P rsHs´1r´1qχps´1r´1hrsq.

Since this matches our equation for the character of IndHHs
pWsq above we conclude

χpResHG Ind
G
HpW qq “ χpIndHHs

pWsq.

This implies the two are isomorphic, and since this follows for every s P R1, we
have the entire isomorphism as desired.

□

Theorem 6.19 (Mackey’s Irreducibility Criterion). IndGH is irreducible iff W is

irreducible and @s P S ´H, the representations Ws and ResHs

H W are disjoint.

Proof. From a direct application of Mackey’s Restriction Formula and Frobenius
reciprocity we have

(6.20) xIndGHW, Ind
G
HW yG “ xResHG Ind

G
HW,W yH “

ÿ

s

xIndHHs
Ws,W yH “

ÿ

s

xW, IndHHs
WsyH “

ÿ

s

xResHs

H W,WsyHs .

Since inner products of characters take integral values, IndGHW is irreducible iff all
terms but one in the last sum are zero, and the one nonzero term has the value 1.
Indeed, there is a single coset for which Hs “ H ps P Hq, which contributes the
term xResHHW,W yH “ xW,W yH to the sum. If W is irreducible, this takes value
1, while if all other pairs are disjoint, their inner products vanish as desired. □

In this chapter, we defined the induced and restricted representations and showed
a few ways in which they can be related. We turn next to the representation theory
of compact groups, exemplified by the classical groups.

7. Classical Groups

In this section we show how to use representation theory and character theory
when the groups in question are not finite. We consider a few important compact
groups known as classical groups for their historic use as easy cases. In the rep-
resentation theory of compact groups G, we restrict our attention to continuous
group homomorphisms ρ : G Ñ GLpV q.

7.1. U(1). Perhaps the simplest compact group is Up1q, the group of unitary 1ˆ1
complex matrices: that is x P C s.t. xx̄ “ 1. It can be identified with the unit
circle S1 in the complex plane.

Proposition 7.1. A continuous irreducible representation of Up1q has the form
ρpzq “ zn for integer n.



26 ADAM STRUPP

proof sketch. We will exhibit all one dimensional, and thus irreducible, representa-
tions of Up1q.

A one dimensional representation of Up1q is a continuous group homomorphism
ρ : Up1q Ñ Cˆ. Consider the kernel of ρ.

In general, the kernel of a continuous group homomorphism is a closed subgroup.
The closed proper subgroups of Up1q are cyclic subgroups Cn of nth roots of unity.
Therefore

Ker ρ “ Cn

for some n P N. It follows
ρpCnq “ 1.

Next let a P Cmn be an mnth root of unity. Then pamqn “ 1, so am P Cn. Since ρ
is a homomorphism, ρpaqm “ ρpamq “ 1, so ρpamq P Cn. Thus ρpCnmq Ă Cm, so ρ
maps mn-th roots of unity to m-th roots of unity @m P Z` in an order preserving
way. This condition, along with continuity, is enough to imply that ρpzq “ zn

precisely. For the detailed proof see [1]. □

Though the Haar Measure implies the existence of a G-invariant inner product
on all compact groups with respect to which irreducible characters are orthonormal,
in general it is hard to find this product from first principles. Instead, in this as well
as future examples, we will exhibit an inner product derived from the geometric
intuition present in the structure of the groups, and then check orthonormality of
characters and G-invariance.

Proposition 7.2. There is a normalized hermitian inner product on characters of
Up1q given by

(7.3) xχ, χ1y “
1

2π

ż 2π

0

χpθqχ1pθqdθ,

where χnpθq is interpreted as einθ. With respect to this inner product, the irreducible
characters χn :“ zn are orthonormal.

In the finite case, we found the characters to be a basis for class functions.
We obtain a similar result here. Since Up1q is abelian, each element is its own
conjugacy class. Since (7.3) is only well defined when it converges, our statement
about irreducible characters being a basis on class functions must take this into
account.

Theorem 7.4 (Fourier). The functions zn form an orthonormal basis for L2pUp1qq,
the Hilbert space of square integrable complex function on Up1q.

Proof. It is a famous theorem of Fourier [7] that any f P L2pS1q has a fourier series
expansion as

(7.5) fpθq “

`8
ÿ

´8

fn ¨ einθ.

The fourier coefficients fn are given by the inner product of characters using the
inner product (7.3).

fn “ xzn, fy “
1

2π

ż 2π

0

e´inθfpθqdθ
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□

Definition 7.6. Laurent polynomials are polynomials in z and z´1.

7.2. SUp2q.

Definition 7.7. Let the quaternion algebra H be the algebra generated by elements
i, j, k with the relations

ij “ ´ji “ k

jk “ ´kj “ i

ki “ ´ik “ j

i2 “ j2 “ k2 “ ´1

The quaternion algebra H is naturally embedded inM2pCq via the following map
φ : H Ñ M2pCq:

ψp1q “

„

1 0
0 1

ȷ

:“ I

ψpiq “

„

i 0
0 ´i

ȷ

ψpjq “

„

0 1
´1 0

ȷ

ψpkq “

„

0 i
i 0

ȷ

Physicists will recognize the quaternions as the Pauli matrices, up to a factor of
i. These matrices are used to analyze the group SUp2q which is the state space for
a Spin-1/2 particle.

The image ψpHq Ă M2pCq generates the subspace of unit determinant unitary
matrices, called SUp2q.

Definition 7.8. The group SUp2q is the group of determinant 1 unitary 2 ˆ 2
complex matrices.

SUp2q :“

"

P “

„

a b
´b̄ ā

ȷ

; a, b P C ; detpP q “ 1

*

A matrix P P SUp2q can be given in coordinates px0, x1, x2, x3q by defining
P “ x0I ` x1i ` x2j ` x3k with the restriction that x20 ` x21 ` x22 ` x23 “ 1.
Geometrically SUp2q can be identified with the unit sphere S3 in R4.

Proposition 7.9. The following facts will prove useful in analyzing SUp2q. Let
P, P 1 P SUp2q.

(1) The eigenvalues of P are z, z̄ : zz̄ “ 1.
(2) P “ cosθI ` sinθA where trA “ 0.
(3) P, P 1 are conjugate iff trpP q “ trpp1q.

Proof. Fact (1) follows from the diagonalizability of complex matrices and the re-
quirement that detpP q “ 1. Fact (2) folows from the decomposition x1i ` x2j `

x3k :“ A and the normalization condition. Fact (3) follows directly from fact (1).
For a detailed proof see [2]. □
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Following the geometric intuition granted by fact (3), the conjugacy classes are
called latitudes and are indexed by the value of θ. In particular, the set of traceless
elements is called the equator E. For a fixed traceless element A P E, the set
of elements tcosθI ` sinθAu is called a longitude. A quick computation pA1qpcI `

sAqpA1´1q “ cI`sA1AA1´1 , where c2`s2 “ 1, shows that longitudes are conjugate
subgroups of SUp2q, since all traceless matrices are conjugate by fact (3).

Proposition 7.10. The map f : SUp2q Ñ S1 given by fpcosθI ` sinθAq “ eiθ

gives a homeomorphism from latitudes in SUp2q to the circle S1. The latitudes are
given the quotient topology in SUp2q. The map is invariant under the interchange
θ Ñ ´θ.

Therefore any continuous class function on SUp2q is a function on the eigenvalue
z “ eiθ that is invariant under the interchange z Ñ z´1. Since a representation of
SUp2q restricts to a representation of Up1q by the homomorphism mapping cosθI`

sinθA to eiθ, it follows that characters of SUp2q are Laurent polynomials.
By viewing SUp2q as topologically the sphere S3 P R4, one can arrive at an

invariant integration measure.

Proposition 7.11 (Weyl integration Formula). The following is a SUp2q-invariant
inner product on continuous class functions on SUp2q with regard to which the
irreducible characters are orthonormal.

xφ,ψy “
1

π

ż 2π

0

φpθqψpθq sin2θ dθ

Proof. For the proof see [8]. □

Theorem 7.12. The irreducible characters of SUp2q are given by χnpzq “ zn `

zn´2 ` ...` z´n where z “ eiθ parametrizes the conjugacy classes of SUp2q.

Proof. For the full proof see [1]. Here we check orthogonality using Proposition
7.11.

The conjugacy classes of SUp2q are latitudes parametrized by angle θ. Thus let
z “ eiθ. Let

χn “ zn ` zn´2 ` ...` z´n

and let
χm “ zm ` zm´2 ` ...` z´m.

This simplifies to

χnpθq “
sinppm` 1qθq

sinθ

χnpθq “
sinppn` 1qθq

sinθ
.

Carrying out the integration we have

xχn, χmy “
1

π

ż 2π

0

sinppm` 1qθq

sinθ
¨
sinppn` 1qθq

sinθ
¨ sin2pθq dθ

“
1

π

ż 2π

0

sinppm` 1qθq ¨ sinppn` 1qθq dθ

“
1

π

ż 2π

0

1

2
pcosppm´ nqθq ´ cosppm` n` 2qθqq “ δmn.



COMPLEX LINEAR REPRESENTATIONS 29

It follows that the characters χn form an orthonormal set with repect to the inner
product in Proposition 7.11. □

Remark 7.13. Notice that in keeping with Proposition 7.10, the irreducible rep-
resentations of SUp2q are Laurent polynomials that are preserved under the inter-
change z Ñ ´z.

Proposition 7.14. As SUp2q-representations, SymnpC2q – Pn, the space of ho-
mogeneous polynomials of degree n in two complex variables.

Proof. The isomorphism is constructed my mapping ei1e
j
2 to the symmetrization of

ebi
1 bebj

2 . This commutes with the action of SUp2q as

„

a b
´b̄ ā

ȷ „

e1
e2

ȷ

“

„

ae1 ` be2
´b̄e1 ` āe2

ȷ

.

□

In this section we found the irreducible characters for the groups Up1q and SUp2q,
which are simple cases of infinite compact groups. We found the precise form of the
inner product (3.5) for these groups by starting with the geometric interpretation
of the groups as a circle and a sphere respectively. In the next section, we turn to
the irreducible characters of the symmetric group.

8. Sn

We will now use the tools we have developed to find the irreducible representa-
tions of the symmetric group Sn. The following result is of interest in its own right,
and also has connections to the representations of Up1q through a notion called
Schur-Weyl Duality, which is discussed in [1].

Two immediate representations of Sn for any n are the trivial representation and
the sign representation, which maps σ to signpσq ¨ Id. However there are in general
many more. They are indexed by partitions of n and can be listed and studied by
Young diagrams, which make apparent the essential features of a partition.

Definition 8.1. A partition λ of r1, ns :“ t1, 2, ..nu is a set λ1 ě ... ě λk s.t.
ř

i λi “ n. The set of partitions of n is denoted Pn.

A partition λ divides r1, ns into blocks Ii “ rλ1 ` .. ` λi´1, λ1 ` ... ` λis. We
define a special polynomial ∆λ in the following way:

(8.2) ∆λ “

k
ź

i“1

ź

lăjPIi

pxl ´ xjq

Thus ∆λ contains all antisymmetric factors pxi ´xjq for pairs i, j in the same block
I. Define Sλ Ă Sn to be permutations which preserve the blocks Ii. Then we will
show that functions that are antisymmetric under Sλ necessarily contain a factor
of ∆λ. First, a short proposition.

Proposition 8.3. ∆λ consists of homogeneous polynomials of degree dλ “
řk

i“1
λipλi´1q

2 .

We will need this later.
Let Crx1, ..xns :“ A be complex polynomials in n variables. Then Sn acts on

A by permuting the variables. Let A` Ă A denote Sλ-invariant polynomials. Let
A´ Ă A denote Sλ-anti-invariant polynomials.

Theorem 8.4. As an A`-module, A´ “ A` ¨ ∆λ.
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Proof. Let f P A´. Then for any transposition pi, jq P Sλ : i ‰ j, we have
pi, jqf “ ´f . It follows that f |xi“xj “ 0. Thus f contains a factor of pxi ´ xjq.
Since this holds for all distinct pairs i, j, which are coprime, f contains a factor of
∆λ. So let f “ h ¨ ∆λ. Then pi, jqf “ ´f “ pi, jqh ¨ pi, jq∆λ “ pi, jqh ¨ ´∆λ. It
follows that h P A`. Thus any f P A´ is of the form f “ h ¨ ∆λ for h P A`. □

Next for our main result.

Definition 8.5. For λ P Pn, let V pλq be the C-span of the set ts∆λ : s P Snu.

Remark 8.6. The space V pλq is Sn stable.

Theorem 8.7. The spaces V pλq as λ ranges over all partitions Pn, are all the
irreducible representations of Sn.

Proof. To prove this theorem we need to show three things.

(1) V pλq are irreducible.
(2) V pλq are distinct for distinct partitions.
(3) Any irreducble representation is one of the V pλq.

Given (1) and (2), item (3) follows immediately from Proposition 2.18, considering
that both the representations V pλq and conjugacy classes of Sn are indexed by
partitions of n, in the latter case to determine cycle type. Thus it remains to show
(1) and then (2). Item (1) will be given by Corollary 8.9 below and item (2) will
be given by Proposition 8.13 below. □

Lemma 8.8. Let F : V pλq Ñ V pλq be an intertwiner of Sn-representations. Then
F is a scalar multiple of the identity.

Proof. For s P Sn, by assumption we have F psp∆λqq “ spF p∆λqq. Let F p∆λq :“ D.
Then ImpF q is the C-span of tsD : s P Snu. Furthermore, since ∆λ P A´, for
s P Sλ, we have

sD “ F ps∆λq “ F pεs∆λq “ εsD,

where εs is the sign of s. It follows that D P A´. Therefore by Theorem 8.4, D
contains a factor of ∆λ or F “ 0. Since ∆λ is a degree dλ polynomial, the degree
of D requires that D is a scalar multiple c∆λ of ∆λ. It follows that for s P Sn,

F ps∆λq “ sD “ sc∆λ “ cps∆λq,

so that F is a scalar function. □

Corollary 8.9. V pλq is irreducible for any λ P Pn

Proof. By Schur’s Lemma and the discussion following its corrolary, a completely
reducible representation V is irreducible iff all G-intertwiners are scalar multiples
of the identity. This condition is precisely what Lemma 8.8 showed. □

We have thus shown item (1). It remains to show (2). Before doing so, we
introduce a new way of visualizing partitions which will be used in the proof.

To every partition λ there is assigned a Young diagram Dpλq.

Definition 8.10. For λ P Pn, the Young diagram Dpλq of λ is an array with λi
cells in column i.

A Young diagram is a nice visual way to understand a partition. It also offers
a geometric way of constructing a new, related partition from any given partition.
This partition is called the transposed partition.
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Figure 2. The Young diagram associated with the partition p5, 3, 2q.

Definition 8.11. For a partition λ P Pn and its associated Young diagram Dpλq,
define a new Young diagram DpλT q by reflecting Dpλq over the diagonal. Then
DpλT q defines a partition λT .

Figure 3. The transposed Young diagram DpλT q associated with
the partition p5, 3, 2qT “ p3, 3, 2, 1, 1q.

Proposition 8.12. Notice that the number of cells in row i of DpλT q, or equiva-
lently λTi , is the number of rows of Dpλq that have at least i cells. The definition
also shows that for λ, µ P Pn, λ

T “ µT ñ λ “ µ.

Now we are prepared to prove (2).

Proposition 8.13. The representations V pλq : λ P Pn, are pairwise nonisomor-
phic.

Proof. We wish to show that

V pλq “ V pµq ñ µ “ λ.

To do this, we introduce new notation. Define vpnq to be the tuple p1, 2, ...nq. Sim-
ilarly, for λ “ pλ1, ..λkq P Pn, let vpλq “ pvpλ1q, .., vpλkqq “ p1, 2, ...λ1, 1, 2, ....., λkq,
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and denote vpλqj the j-th entry. Then let xvpλq :“ x
vpλq1
1 ¨ ... ¨x

vpλqn
n . For an n-tuple

v and a permutation s P Sn, let x
sv “ x

vsp1q

1 ¨ .. ¨ s
vspnq

n .

Now, the Leibniz formula for the Vandermonde determinant says

∆n “
1

x1 ¨ .. ¨ xn

ÿ

sPSn

εpsq ¨ xsvpnq.

A generalization of this formula shows that

(8.14) ∆λ “
1

x1 ¨ .. ¨ xn

ÿ

sPSλ

εpsq ¨ xsvpλq.

For a tuple v, let mjpvq be the number of times j appears in v. Then from
Proposition 8.12, we see mjpvpλqq “ λtj . Now suppose V pλq “ V pµq. It follows

that ∆λ P V pµq, and so the monomial xvpλq which appears in the formula for ∆λ in
(8.14 must appear in as some monomial in s∆pµq for some s P Sn. It follows that

xvpλq “ sxs
1vpµq for some s1 P Sn. Therefore vpλq “ ss1vpµq.

Now, since mjpvq counts the instances of j, ignoring order, it is permutation
invariant, and so

mjpvpλqq “ mjpss1vpµqq “ mjpvpµqq.

From this it follows that λtj “ µt
j @j ą 0 and thus by Proposition 8.12, λ “ µ as

desired. □

Young diagrams give us a useful way to visualize partitions and they also are
useful in understanding the representations V pλq, as the following Theorem shows.

Definition 8.15. Given a Young diagram Dpλq, a standard Young diagram of λ
is a way of assigning numbers to the cells of Dpλq such that any cell has a higher
value than those to the left or above it.

Visually, the standard Young diagrams index the different ways a Young diagram
could be constructed by placing one cell at a time which was forced into the top
left corner of the array.

1

44 2

32

3

1

Figure 4. The two standard Young diagrams of the partition p2, 2q.

Theorem 8.16. [9] For an irreducible representation V pλq of Sn, the dimension
of V pλq is given by the number of standard Young diagrams of λ.

For any n, there exists the partition λ1 “ pnq, which results in a totally anti-
symmetric polynomial ∆λ1 , which yields the sign representation. There also exists
the partition λ2 “ p1, 1, 1, .....1q which has ∆λ2 “ 1, which yields the trivial repre-
sentation. The Young tableaus associated to these representations can be seen in
both Figure 4 and Figure 5.
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Example 8.17 (S3). For the case n “ 3, there is one other partition which is
λ3 “ p2, 1q. By Theorem 8.16, the dimension of V pλ3q is 2. Using x, y, z for the
three variables, by inspection we see that ∆λ “ pz´yq. In general polynomials in n
variables are hard to visualize, but in this case where they are of degree 1 they can
be understood as coordinates in C3. Under the action of S3, V pλ3q is then defined to
be the C-span of the polynomials tλ3 “ pz´yq, px´zq, px´yq, py´xq, py´zq, pz´xqu,
which span the plane x`y`z “ 0. In this plane S3 acts by permuting the coordinate
axes, and so V pλ3q can be seen to be the regular representation of S3 which acts
on a triangle in the plane.

1

2

3

2

3

1

1

2

1 2 3

3

TrivialSign Regular

Figure 5. Standard Young diagrams associated to irreducible rep-
resentations of S3.

Example 8.18 (S4). The standard Young diagrams associated with the irreducible
representations of S4 are given below. There are the usual sign and trivial repre-
sentations. Identifying S4 with the symmetries of the tetrahedron, the irreducible
representations also include the standard representation as well as the tensor prod-
uct of the standard representation with the sign representation. Finally there is
a 2-dimensional representation, which corresponds to the regular representation of
the copy of S3 in S4. Visualizing S4 as the symmetries of a cube, the three pairs of
opposite faces are permuted, giving a copy of S3 in S4.
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