COMPLEX LINEAR REPRESENTATIONS

ADAM STRUPP

ABSTRACT. In this expository paper, we develop necessary definitions and
explain the basic theory of finite dimensional complex representation theory of
compact and especially finite groups. We conclude with a detailed exploration
of the irreducible representations of the symmetric group.
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1. INTRODUCTION TO REPRESENTATION THEORY

1.1. Some Context. Morally, groups are sets of symmetries of objects. Groups
act on these objects by manipulating them according to the symmetry. For example
the cube group Cu is the symmetries of a cube. There is a standard action of the
cube group on the cube itself which rotates the cube in all possible orientation
preserving ways to map the cube back to itself. In this way, a group can be used
to learn about the space it acts on, and a space with a group action can be used to
learn about the group itself. This is useful when one domain or the other is easier
to work with or more understood.
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Representation theory studies the actions of groups on vector spaces. By restrict-
ing the actions to be linear, this allows well developed knowledge of linear algebra
to be applied to the study of groups. We will consider the case of finite dimensional
vector spaces over C. The finite dimensional restriction allows us to break down
large representations into irreducible pieces in a result known as complete reducibil-
ity, which is discussed in the first section. As an algebraically closed field, C is a
natural easy case to start with, but many of the results generalize to other fields.
Complex representations are also of interest for physically motivated problems in
quantum mechanics, as will be discussed in Section 7 on compact groups.

In this expository paper, we develop the necessary definitions and theorems
to gain an understanding of basic representation theory in the finite dimensional
complex case. This will lay the groundwork for future study in representation
theory.

1.2. What Are Representations? A representation is a special type of group
action. A general group action G & X is equivalent to a homomorphism v : G —
Sx to the symmetric group on X. When we restrict our attention to linear actions
on vector spaces, we instead consider group homomorphisms to the general linear

group.

Definition 1.1. For a group G, an F-linear representation is a pair (V, p), where
V is a vector space over the field F', and p is a homomorphism p : G — GL(V).

Convention 1.1. For clarity, we will introduce some shorthand. We may refer
to either p or V individually as a “representation” of GG. It is convenient to work
in an algebraically closed field, in order to take advantage of theorems regarding
diagonalization, so we use “representation” as shorthand for “finite-dimensional
complex representation”. We write pg or just g for p(g) when the context is clear.

There is a notion of when two representations are the same. We call two repre-
sentations isomorphic if there exists a change of basis taking one to the other.

Definition 1.2. For representations (p', V1), (p?, Va), a morphism of representa-
tions between p; and ps is a linear map ¢ : V; — V5 such that the following diagram
commutes.

Vi —2 5V

Vi———— W
Definition 1.3. An isomorphism of representations is an invertible morphism.

In the above diagram, when ¢ is invertible, there is an equivalent formulation.

p2=poprop .

In this sense ps can be thought of as p; under a change of basis.
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1.3. Subrepresentations and Irreducibility. In order to understand large and
complicated representations, one useful strategy is to break them down into smaller
pieces. One would like the way in which the group acts on each piece to be indepen-
dent in some sense from how it acts on the others so that they may be considered
in isolation an then pieced together to create a larger whole. This is precisely what
subrepresentations do for us.

Definition 1.4. A subrepresentation of a representation (p, V) is a subspace W <
V' that is invariant under the action of G.

We might desire to break representations down as far as possible until we reach
a representation that cannot be reduced further. We call these representations
irreducible.

Definition 1.5. A representation is irreducible if it has no proper subrepresenta-
tions.

There are certain representations which are then built up from irreducible rep-
resentations.

Definition 1.6. A representation V' is completely reducible if it is isomorphic to a
direct sum of irreducible representations.

V;W1®...@Wk

Rather than building representations from irreducible parts, we may take an-
other perspective and, given a representation known to be completely reducible,
find its irreducible factors. It turns out a large class of representations are com-
pletely reducible, and so in order to understand these representations, we need only
understand their irreducible representations. We will work toward this result in our
main theorem, Theorem 1.16.

One pitfall one can imagine in factoring a representation into irreducibles is that
when a representation V is factored as V =~ W@®U and W is a subrepresentation, U
may not be a subrepresentation! Here we find a class of representations for which
this pitfall doesn’t happen.

Definition 1.7. A representation is unitarizable if it can be equipped with a her-
mitian, positive definite, inner product ¢, ) with respect to which G acts unitarily:

(v, wy = <pg(v)7 pg(w)>7 Vge G, v,weV.

Lemma 1.8. Let V be a unitarizable representation equipped with an inner product
with respect to which G acts unitarily, and let W be a subrepresentation. Then the
orthogonal complement W is also a subrepresentation.

Proof. W+ is the set {v : (v,w) = 0 Yw € W}. Since W is fixed by G, we have
for any g € G and w e W, w = pg(w’), where w' = p,-1(w) € W. Then for any
ve WL (w,ps(v)) = {pg(w), pg(v)y = (w';v) = 0. The second to last equality
follows from the unitarity of p,. Therefore p,(v) € W. Tt follows that W+ is a
subrepresentation of V. O

Theorem 1.9. (Weyl) Finite dimensional representations of finite groups are
unitarizable.
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Proof. Let (p, V) be a finite dimensional representation of a finite group G. Given
a hermitian, positive definite inner product {-,-) on V, average over the group to
obtain a new inner product.

1
<U7 w>/ = @ Z <ng7 pgw>
geG
The new inner product inherits hermiticity and positive definiteness from the origi-
nal product by linearity. To see invariance, multiply by an arbitrary element h € G.

1
{onv, prw) = @ > {pgpnv, pgpnw)
geG
The sum is invariant under G by the Sudoku Lemma, since multiplication by pj just
permutes the elements of G. Therefore (, ) is fixed by G, and so p is unitarizable.
O

In fact, there is a larger class of representations which are unitarizable and
includes finite group representations.

Definition 1.10. A topological group is a group and also a topological space for
which the group action and inverses are continuous maps. A compact group is a
topological group which is compact.

Example 1.11. Any finite group can be given the discrete topology to make it a
topological group. Compact groups thus include finite groups with discrete topol-

ogy.

Example 1.12. For the classical groups SU2,S03, Uy we consider later, we give
them the subspace topology of the usual topology on GL,,(C).

In order to show unitarizability for compact groups, we require the following
result of Haar, which we cite without proof.

Theorem 1.13. (Haar)[6] For any compact Hausdorff topological group G, there
ezists a unique normalized reqular Borel measure on G that is invariant under left
and right multiplication by elements of G. This measure is called the Haar Measure.

In the examples of compact groups we explore later, we will construct this mea-
sure explicitly.

Lemma 1.14. Finite dimensional representations of compact groups are unitariz-
able.

Proof. Let SG dg denote integration with respect to the Haar measure of G. Then,
following the same logic as the proof of Theorem 1.9, given any inner product {,)
on (G, a unitary inner product can be constructed as

1
(1.15) ww = | oagwrds,
G
where N = {, 1dg is the volume of the group G. By Theorem 1.13, {, )" is translation
invariant, making G unitarizable. (]

We are ready to state the main theorem of the section.

Theorem 1.16. Finite dimensional unitarizable representations are completely re-

ducible.
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Proof. Suppose V is a finite dimensional unitarizable representation of a group G.
If there are no nontrivial subrepresentations, then V is irreducible. Otherwise,
let W be a subrepresentation, and let W' be its orthogonal compliment. Thus
V ~WoWL It follows from Lemma 1.8 that W+ is a subrepresentation of
V. Noting that one dimensional representations are irreducible, it follows from
induction on the number of dimensions that V' is completely reducible. O

Thus we have that representations of compact groups, including finite groups,
are completely reducible: they factor into direct sums of irreducible representations
as in Definition 1.6. All representations of compact groups can be constructed by
taking direct sums of irreducible representations.

One goal of representation theory is to discover all the irreducible representations
of a given group. To this end, in the next section we present a key tool in identifying
irreducible representations: Schur’s Lemma.

1.4. Schur’s Lemma. Schur’s Lemma is a cornerstone of basic representation the-
ory. It formulates a condition for irreducibility in terms of maps from a representa-
tion to itself. We will make continued use of Schur’s Lemma throughout the paper.
First a quick but important definition.

Definition 1.17. For representations (p', V1), (p?, V2), an intertwiner is a linear
map ¢ : Vi — V5 that commutes with the action of G:
Py o =pop,

It makes this diagram commute:

Vi —F—— W

Vlﬁ%

The space of intertwiners is called Homg(Vi, V2). We define Endg (V) = Homg(V, V).
Notice that in this language, isomorphisms of representations are isomorphisms
of vector spaces that are intertwiners; equivalently, bijective intertwiners. Since
intertwiners aren’t necessarily invertible, we don’t view them as conjugates like we
do isomorphisms.

Schur’s lemma gives a powerful restriction on itertwiners of irreducible represen-
tations.

Theorem 1.18. (Schur’s Lemma) Intertwiners ¢ : V.— V on irreducible rep-
resentations are scalar multiples of the identity map.

Proof. Let p be irreducible, and let ¢ be an intertwiner of p. Then, since ¢ is a
linear map between complex vector spaces, it has at least one nonzero eigenspace
E, say with eigenvalue A\. Then for any g € G the eigenspace F is fixed by pg.

(popg)(v) = (pg o p)(v) = pg(Av) = Apy(v) Vv € E
It follows that eigenspaces of ¢ are subrepresentations. Since V is irreducible,

subrepresentations must be trivial, so there is a single eigenspace which is all of
V. O
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The following corollary to Schur’s Lemma allows one to determine whether irre-
ducible representations are isomorphic to each other by the dimension of the space
of isomorphisms between them.

Corollary 1.19. For irreducible representations V, W, the space Homg(V,W) is
1 dimensional and comprised of isomorphisms if V.=~ W (as representations) and
is {0} otherwise.

Proof. The kernel and image of ¢ € Homg(V, W) are subrepresentations of the
irreducible representations V,W, so they must be trivial. Therefore ¢ = 0 or ¢ is an
isomorphism. If 1, s are two nontrivial interwiners, then @1 o @ is an intertwiner
on V and so is a scalar by Schur’s Lemma. Thus elements of Homg(V, W) differ
only by a scalar and so Homg(V, W) is one dimensional. g

This provides a converse to Schur’s Lemma for completely reducible represen-
tations: since each pair of isomorphic copies of irreducible representations have a
one dimensional space of intertwiners between them, representations V' that are not
irreducible (that is, contain multiple irreducible representations) will have elements
of Endg (V) that are not simply scalar multiples of the identity. In fact, Endg(V)
will in general turn out to be a direct sum of matrix algebras, where the individual
matrix entries give the scalars that define scalar maps required by Schur’s Lemma
between each pair of isomorphic representations. This will be fleshed out in the
next section.

Let’s review where we’ve been this section. We started out by introducing the
idea of a representation as a linear group action on a vector space. We then found
that compact groups and in particular finite groups factor (complete reducibility)
into a direct sum of spaces which are fixed by the group action (irreducible rep-
resentations). Finally, we found a criterion for irreducibility and a restriction on
maps between irreducible representations (Schur’s Lemma).

The space of maps between representations can be further understood through
a module-theoretic formulation, culminating in the Artin-Wedderburn Theorem,
which we explore next.

2. MODULE THEORY

We next approach the subject from the point of view of module theory, culmi-
nating in the main theorem which characterizes the structure of complex represen-
tations.

Definition 2.1. For a finite group G, the group algebra C[G] consists of C-linear
combinations of the group elements of G.

By extending linearly in C, a representation p : G — GL(V) defines an algebra
homomorphism p’ : C[G] — End(V). Restricting to G < C[G] gives the inverse.
Since V is an End(V)-module, the extended homomorphism makes V a C[G]-
module. This gives a bijection between C[G]-modules and representations of G.
We therefore want to understand all C[G]-modules.

In this correspondence, irreducible representations correspond to simple C[G]-
modules. In this section, we develop a theorem on the structure of a class of modules
which includes C[G], which will help to understand the structure of C[G] for finite
groups, and therefore the structure of representations of finite groups. We give an
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abbreviated version of some of the module-theoretic proofs and refer reader to [3]
for a more thorough treatment.
In the language of module theory, Schur’s Lemma says the following:

Lemma 2.2. (Schur’s Lemma, module version) A module homomorphism ¢
between simple modules is either an isomorphism or the zero map.

Proof. The kernel and image of a homomorphism are both submodules. (]

The analogue of creating completely reducible representations from irreducible
representations is creating “semisimple modules” from simple modules. We will see
later that for a finite group G, the group algebra C[G] is a semisimple module.
In order to understand the structure of C[G] then it is worthwhle to understand
semisimple modules.

Definition 2.3. A semisimple module is a direct sum of simple modules.

The next lemma is the first step in understanding the structure of semisimple
modules.

Lemma 2.4. The image of a finite dimensional semisimple module under homo-
morphism s semisimple.

Proof. Suppose S = S1 @S2 @ ... ® S, is a semisimple module and ¢ : S - M
is a homomorphism. Then ¢|g, is an isomorphism or 0 by Schur’s Lemma. Since
simple modules have trivial intersections, ¢(S) = @, ¢(S;) where each ¢|g, is 0
or an isomorphism. O

There is a notion of when an algebra is semisimple, and it is heavily related to
the module case.

Definition 2.5. We say a finite dimensional C—algebra A is semisimple if all
A—modules are semisimple.

Proposition 2.6. A finite dimensional C-algebra A is semisimple iff it is semisim-
ple as an A-module.

Proof. If A is semisimple, then all modules over A are semisimple, so A would be
as well. If A is semisimple as an A-module, then for a generating set my,..m,. for
any finitely generated A—module M, the result follows from Lemma 2.4 and the
module homomorphism A”™ — M given by (a1, ..a,) — a1mq + .. + a,m,.. O

Again, later we will see that for finite G, C[G] is a semisimple C-algebra, and
so we are working towards a structure theorem for semisimple algebras in order to
understand the structure of C[G], which tells us the structure of representations of
G.

We can use the constraints on maps between simple modules to understand the
structure of semisimple algebras.

Proposition 2.7. If A= S5,®..@S,, where S; is a simple module, then any simple
A-module is isomorphic to one of the S;.

Proof. For S a simple A module, given v € S, define the homomorphism ¢ : A — S
by ¢(a) = av. Then ¢(A) = S must be isomorphic to one of the S; by Schur’s
lemma and the simplicity of S. (]
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Lemma 2.8. As M,,(C)-modules,
(2.9) M, (C) =~ nC".

Proof. As a sketch of the proof, consider each of the columns of a given matrix
M € M, (C) as an element of one of the copies of C". One can check this is a
module isomorphism. ([

Lemma 2.10. If A is a finite dimensional C-algebra and S a simple A-module,
then Enda(S) = C.

Proof. This is a restatement of Schur’s Lemma. (|

Definition 2.11. For an algebra A, the opposite algebra A°P is the alegbra on the
same set as A but with multiplication operation - defined as a - b := ba where the
second multiplication is carried out in A.

Lemma 2.12. A°? =~ End,(A)

Proof. Define the map ¢ : A°? — Ends(A) by ¢(a)(1) = a. Injectivity is im-
mediate from the definition. Any map 1 € Enda(A) is determined by (1) by
Y(b) = bip(1l). Therefore ¢ is surjective. Next, p(a - b)(1) = (ba)(l) = ba =
bp(a)(1) = (p((b) o v(a))(1), so ¢ is a homomorphism. It follows that ¢ is an
isomorphism. O

Lemma 2.13. If S is simple, then Enda(nS) =~ M, (Enda(S)).

Proof sketch. For the full proof see Lemma 3.6 in [3]. Here we consider just
the special case S = C, A = C[G] which is all we need for representation the-
ory. As A-modules, Enda(S®") := Hom(S®",S®"). Homomorphisms from
direct sums factor as direct sums of homomorphisms, so Hom(S®", SO") ~
@, Hom4(S, S®"). By Schur’s Lemma, Hom 4 (S, S®") =~ C™. Thus Enda(nS) =
nC"™. By Lemma 2.8, we have nC" = M, (C). Letting S = C, A = C[G], we have
Endc[G](C™) = C, so Enda(nS) =~ M, (End(S)) for this case. O

We are prepared to state the main theorem of this section.

Theorem 2.14. (Artin - Wedderburn) [3] Let A be a finite dimensional C-
algebra. Then A is semisimple iff A is isomorphic to a finite direct sum of matriz
algebras over C.

Proof. («<)Suppose A =~ @_, M,,(C). Then by Lemma 2.8, we have A =~ @P_, n,C":.
By restricting the action of A to a single summand, it follows that simplicity of
n;C™ as an M, (C)-module implies simplicity as an A-module. Therefore A is a
direct sum of simple modules and so semisimple.

(=) Let A = n;S; @ ... ® n,.S, be a semisimple C-algebra with S; % S; if
i # j. Then by Lemma 2.12, A°? =~ Ends(A) = Enda(n;S; ® ... ®n,.S;). Since
S;, S; are pairwise nonisomorphic and simple, we have Enda(n;S; ® ... ® n,.S,) =
@;_, Enda(n;S;). By Lemma 2.13, Enda(n;S;) = M,,(End4(S;). By Schur’s
Lemma, Enda(S;) = C. Thus A°? ~ @®]_, M,,(C). Then, A = (P]_, M,,(C))”" =
@._,(M,,(C))°P. Then, the transpose map, sending a matrix A to A’ satisfies the
relation that AT BT = (BA)T, which gives an isomorphism from (M, (C))° to
M,,,(C). Therefore A =~ @;_,(M,,(C))? = @®._, M,,(C) as desired.
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The connection to representation theory is given by Maschke’s Theorem.

Theorem 2.15. (Maschke) For a finite group G, the group ring C[G] is a finite
dimensional semisimple C-algebra.

Proof. From the discussion following Definition 2.1, we identify C[G]—modules as
representations of G. In particular, C[G] is a module over itself. With this in mind,
the decomposition of C[G] into simple modules follows from Complete Reducibility.

O

Putting the previous two theorems together, we arrive at a classification of the
structure of C[G].

Corollary 2.16. As algebras,

C[G] = M,,,(C)®..M,, (C) =~ P EndcV.
Velrr(G)
In the isomorphism, an element g € G is mapped to the linear map p(g) for the
corresponding irreducible representation (p, V') in each factor.

Proof sketch. The first isomorphism follows from Theorem 2.15 and Theorem 2.14.
The second isomorphism follows from Lemma 2.8. The second isomorphism follows
from the identification of {C™} as the unique up to isomorphism simple M, (C)
modules and then M, (C) as EndcV where V = C™. The last statement follows
from viewing V' as a C[G]-module. O

We see that there are r isomorphism classes of simple modules (irreducible rep-
resentations) with dimensions {n;}. For the next result we need a quick definition
which will continue to be of importance in following sections.

Definition 2.17. For a group G, let C1 be the set of conjugacy classes of G. A class
function on G is a function f : Cl — C. Based on context, functions h : G — C
that are constant on conjugacy classes may also be called class functions.

Proposition 2.18. From Corollary 2.16 we can deduce three important results in
finite dimensional complex representation theory. Let G be a finite group.

(1) The regular representation of G decomposes as the direct sum of irreducible
representations with multiplicity equal to their dimension.

(2) ZVGITT‘(G) dzm(V)2 = ‘G‘

(8) The number of irreducible representations of G is the number of conjugacy
classes in G

Proof. To see (1), note that the regular representation is isomorphic to C[G] it-
self, which by Corollary 2.16 is a direct sum over irreducible representations V' of
EndcV. We have Endc(V) = M,(C) =~ nC™ by Lemma 2.8. This gives n copies
of irreducible representation V' where n = dim/(V').

Item (2) follows directly from a dimension count.

For (3), an irreducible representation of G is a simple module of C[G]. Consider-
ing C[G] as the space of complex valued functions on G, for a function ¢ : G — C,
p € Z(C[G]) iff Vo € G, 2p(9) = pa(g). Thus ¢(g) = 2~ pa(g) = p(a~'ga). It
follows that the center Z(C[G]) consists precisely of class functions. A basis of class
functions is given by {y;}, where ¢; is unity on elements of a chosen conjugacy class
and zero elsewhere. Thus the dimension of the space of class functions and thus
Z(C[G])) is the number of conjugacy classes of G.
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By Theorem 2.14, the group algebra decomposes as a direct sum of r matrix

algebras.
CIG] = My, (C)® ... ® M, (C).
Then
ZC[G] = Idy, ®..® Id,,..

Therefore Dim(Z(C[G]) = r. Since each factor M, (C) acts on simple modules
C™, there are exactly r isomorphism classes of irreducible representations.

It follows that the number of isomorphism classes of irreducible representations
is the number of conjugacy classes of G. ]

We can use this result to understand irreducible representations.

Example 2.19. Let G be a finite abelian group, and let (p, V') be a representation
of G. Then elements of p(G) must commute, and are diagonalizable. Diagonal
matrices act on direct sums of one dimensional spaces, so it follows that they are
simultaneously diagonalizable. Therefore by Definition 1.6, V' decomposes as a
direct sum of one dimensional irreducible representations. Seen from the point
of view of Corollary 2.16, the only matrix algebras that are commutative are one
dimensional, so that C[G] =~ C®..® C for which all modules are one dimensional.

Let’s recap where we’ve been. First, we noted that representations of a group
G could be identified with C[G]-modules. We therefore sought to understand the
structure of the group algebra C[G]. Maschke’s Theorem classifies C[G] as what
is called a semisimple algebra. We therefore developed some module theory to
work towards the main theorem, the Artin-Wedderburn Theorem which classifies
the structure of semisimple algebras as direct sums of matrix algebras. We used
this in Corollary 2.16 and Proposition 2.18 to deduce three foundational results in
representation theory of finite groups.

In the next section we will prove these same results from a different angle, and
go further to understand more about the individual irreducible representations of
a group though a lens called character theory.

3. CHARACTER THEORY

In general, group homomorphisms are complicated and messy to keep track of.
It turns out that for representations (p, V') which are completely reducible, the
essential information to list and differentiate the irreducible representations is con-
tained in just the trace of all the linear maps p(g) : ¢ € G. This is called the
character of the representation. In this section, we will use characters to identify
and deduce important properties of irreducible representations of compact groups.
We will develop a toolbox which can be used to catalogue information about com-
pletely reducible representations. We will use these tools on some specific groups
in Section 5 after a brief foray into tensor products in Section 4.

Definition 3.1. For a representation (p, V'), the character of (p, V') is the function
X : G — C given by taking the trace.

xv(9) = trvp(g)
By extending linearly this gives a map C[G] — C.

Next we will deduce a few properties of the character function that make calcu-
lations easier.
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Proposition 3.2. For a representation (p,V) and compact group G and g € G,

(1) x(g71) = x(9).
(2) x(e) = Dim(V')

Proof. (1); Recall that by Lemma 1.14, (p, V) is unitarizable. It follows that
plg™h) = plg) ™ = p(g)".

Then tr(p(g)) = tr(p(g)?) and the proposition (1) follows.
(2) Since p is a homomorphism we have p(e) = Id and tr(Id) = Dim(V). O

This gives an easy way of determining the dimension of a representation. Now,
since tr(A @ B) = tr(A) + tr(B), the character of a completely reducible repre-
sentation is determined by the character of its irreducible factors. Let’s introduce
some lingo.

Definition 3.3. An irreducible character is the character of an irreducible repre-
sentation.

So we know that the decomposition of a representation into irreducible represen-
tations determines its character via irreducible characters. One may ask whether
the converse is true: whether given the character of a representation we may de-
termine its decomposition into irreducibles. The answer is ‘yes’ for an interesting
reason: It will turn out that the irreducible characters form an orthonormal basis
of class functions with respect to an inner product which averages over the group.
Let’s define that inner product.

Definition 3.4. For a finite group G define an inner product on characters of G
by the following;:

(3.5) oty xa) = ﬁ 3 %) - xa(9)

geG
For a compact group G, define an inner product using the Haar Measure.

(3.6) X1y X2) = %L x1(9)x2(9)dg

Proposition 3.7. For a compact or finite group G, the irreducible characters of G
are orthonormal with respect to the inner product (3.5), (3.6) respectively.

Proof. [1] Let (p*,V), (p?,W) be two irreducible representations of G and let
X', x? be their characters. Choose G —invariant inner products on V, W and bases
{vi}, {w;} for V, W, letting the bases agree if V' = W. Then for finite G we have
1 — 1 _
38) ' = @ DX (g) = @22@1,/}1(9) Lo w;, p(9)w;)-
geG .7 G

The last expression can be interpreted as summing over matrix elements of a linear
map f:V — W. The map f restricted to the span of w; and then projected onto
the span of v; is a map f;; = |p'(g) 'viXw;|p?(g). If V = W, then by Schur’s
lemma, f is a scalar multiple of the identity. Therefore f;; = gzg(i{/)) = Diiij{v)‘

Otherwise, f = 0. Summing over matrix elements and group elements cancels the
factors of 1/Dim(V) and 1/|G| to attain:

1 o J1 V=W
(3.9) <X>X>—{0 V2% W
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If G is a compact group, define
1 [ ——— 1 ~
OX =+ L XH(9)X*(9)dg = + ZL@i,pl(g) Loi)wy, p?(g)w;)dg,
i

where IV is the volume of the compact group GG. The same logic as in the finite
case follows here, with the only difference being that integrating over the elements
of G cancels out the factor of 1/N [1]. O

Theorem 3.10. The irreducible characters form an orthonormal basis of the space
of class functions on G with respect to the inner product (3.5), (3.6).

Proof. The characters are class functions because the trace is. The fact that irre-
ducible characters form a spanning set of class functions follows from Proposition
2.18, while orthonormality follows from Proposition 3.7. (]

Let’s review. For a given representation (p, V') we take the trace of each map
p(g) : g € G to get what is called the character. The character is a class function
on G. Think of the characters now as being vectors in the space of class functions
with coordinates indexed by the conjugacy classes of G. The terms in the inner
product Definition 3.4 are constant on conjugacy classes so we may think of the
sum as ranging over the conjugacy classes of G, rather than the elements. Thus
working in the space of class functions we found an inner product with respect to
which the irreducible characters form an orthonormal basis. As we will see next,
this space contains all the information needed to determine whether characters are
the same and whether they are irreducible.

Proposition 3.11. Two representations are isomorphic iff their characters are the
same.

Proof. The preservation of trace under conjugation implies the forward direction.
The reverse follows from linear independence of irreducible characters in Theorem
3.10. 0

Proposition 3.12. A representation x is irreducible iff {x,x) = 1.

Proof. Complete reducibility implies representations decompose as integer combi-
nations of irreducible representations. Therefore the inner product between rep-
resentations takes on integral values. By orthonormality, the multiplicity of an
irreducible representation y; in a representation x is given by {x;, X)- [

This gives an easy way to detect irreducible characters.

Example 3.13. One very useful representation is given by the action of G on
C|[G] given by g - Ah = Agh, and extending linearly. This representation is called
the regular representation and has a number of nice properties.

First notice that the character x,eq(g) is given by the number of elements fixed
by g. The Sudoku Lemma then implies

Xreg (9) = {

From this it follows that for any representation y, we have

<Xregv X> = D'Lm(X)

|G| g=e
0 g#e
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From this we can extract a nice identity:
(314) |G| = <X7‘eg7 Xreg> = Dim(XTeg) = Z<Xregv X1> . DZm(Xl) = ZDZm(XZ)Q

Remark 3.15. The results of the previous example also follow from Corollary 2.16.
To see this, note that the regular representation is isomorphic to C[G] itself as a
C[G]-module. From the decomposition

C[G] = niC" @ ... ® 1, C™,

we see that the multiplicity of each irreducible representation V =~ C™ is n; =
Dim(V') and that

|G| = Dim(C[G]) = ny Dim(C™) + .. + n,Dim(C"") = > n?.

The regular representation is an example of what is called a permutation repre-
sentation.

Definition 3.16. For an action G C X on a finite set X, define a representation
of G on the complex vector space C[X] with basis {z;} labeled by elements of X.
The action is given by linearly extending the group action. This representation is
called a permutation representation.

Proposition 3.17. The vector (1,1,1...) spans a trivial subrepresentation in any
permutation representation.

Characters can also be used to find the normal subgroups of a group.

Definition 3.18. For a character y, let the kernel of x be the set
kerx :={g: x(g) = x(1)}.

Proposition 3.19. Normal subgroups of G are the arbitrary intersections of kernels
of irreducible characters of G.

Proof. From the regular representation restricted to the cosets G/N, we find x(h) =
0if h ¢ N and x(h) = x(1) if he N. Thus N = kerx := {g: x(9) = x(1)}. The
converse holds, so that any normal subgroup of G can be written as the kernel
of some representation. Next, note that kerp = kery because the only way to
have x(g) = dim(V) with diagonal entries being roots of unity is to have them
all be identically 1. Finally, for any character x = > x;, with x; irreducible,
kery = () kery; follows from the same statement on p. It follows that normal
subgroups are the intersection of arbitrary combinations of the kernels kery; of
irreducible characters. O

Let’s review what we’ve seen in this section. We defined characters, which
are vastly simpler than representations, requiring only knowledge of the traces of
{p(g) : g € G}. Characters encode the dimension of a representation and can be de-
composed into irreducible characters. These irreducible characters, with a cleverly
chosen inner product, form an orthonormal basis for the space of class functions.
Working in this space, we can use the characters to determine which irreducible
representations are factors in a given representation, whether two representations
are isomorphic, whether a representation is irreducible, what the normal subgroups
of the group are, and the dimensions and number of the irreducible representations.
We will use these tools to find all irreducible representations of specific groups in
Section 5 after some preliminaries about tensor products.
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4. TENSOR PRODUCTS

One strategy of constructing irreducible representations takes advantage of an
algebraic construction called a tensor product. In this section, we introduce tensor
products and use them to construct the symmetric and alternating powers of a
space. Tensor products will continue to show up throughout the remainder of the
paper and into more advanced representation theory.

Definition 4.1. Let R be a ring and let M be a right R-module, and N a left R-
module. Define the tensor product M @r N of M and N over R to be the quotient
group of the free group on the symbols m ® n € M x N by the following relations:

(m+m)@n=m®n+m' @n,
mn+n)=mn+men
mr@@n=mern

Thus tensor products are linear in each component and transfer factors of r € R
across components.

Remark 4.2. If R is commutative, then M @z N is an R-module, where R acts
on the right on M or equivilently on the left on N.

Next we see how to define operators on tensor products. They have a particularly
nice matrix form.

Proposition 4.3. [1] Let A € End(V) and B € End(W). Define the operator
A®Be End(VW) by A® B(v®w) = Av® Bw. For bases {e;},{fr} of VW
respectively, there exists a basis {e; ® fr} of V® W in which the matriz of A® B
has the following simple form:

(4.4) (A® B)(i,k)j1) = Aij - Bri

Naturally we can define representations that are tensor products of other tensor
products.

Definition 4.5. Given representations (p, V) and (o, W) of a group G, define the
representation (p ® o,V ® W) to be the representation defined by the following
condition:

(P®0)g(vOW) = pgv® oqw.

Working with characters of tensor product representations is particularly nice
because of the following proposition, which allows characters to easily be calculated
from the decomposition of representations into irreducible representations and ten-
Sors.

Proposition 4.6. Let V and W be representations of a finite group G.

(1) xvew = xv + Xw
(2) XVvew = XV * XW

Proof. This follows directly from the basis decomposition on VW and VW. O
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There is an intuitive representation of the symmetric group on tensor products
of spaces that is given by permuting the factors in the tensor product. This rep-
resentation is related to other important representations so we take some time to
illumniate some of its properties here.

Proposition 4.7. For a representation (p,V), the representation p®" on VO™
given by p?"(vl ®..Qu,) = PgV1 ® .. ® pgvn, commutes with the representation of
S, on VO™ which permutes the factors.

Proof. Since p, is applied to each factor, the action of G is not affected by the
action of S,,. [l

It can be useful to think of all the isomorphic copies of an irreducible represen-
tation that appear in a given representation as a single block.

Definition 4.8. For a completely reducible representation (p, V). V decomposes
as a direct sum V = @)_, V" The blocks V" are called isotypical components.

Proposition 4.9. Let G, H be compact groups and let (p,V') be a representation
of G and (¢, V) a representation of H. If for all h € H, p(h) is an intertwiner of
p, then all isotypical components of p are subrepresentations of .

Proof. Let W™ be an isotypical component of p where W is an irreducible repre-
sentations of G. For any h € H, g € G, @5, commutes with pg, so by Schur’s Lemma,
the restriction of p, to a single summand is 0 on nonisomorphic irreducible repre-
sentations. It follows that ¢, fixes isotypical components of p. O

The following corollary to the proposition allows one to find representations of
an arbitrary group G given representations of S,.

Corollary 4.10. [1] Every S,-isotypical component of V& is a subrepresentation
of G with the action given in Proposition 4.7.

Proof. This follows directly from Proposition 4.9, since the representations of G
and S, commute by Proposition 4.7. O

There are two isotypical components of S, -representations that are of special
interest, called the symmetric and alternating powers respectively.

Definition 4.11. Given a vector space V', define the n-th symmetric power of V,
Sym™ (V) to be the subspace of V®" that is symmetric under interchange of factors.
Define the n-th alternrating power of V, A"V, to be the subspace of VO that is
antisymmetric under interchange of factors.

Proposition 4.12. [1] Given a basis {v1,...,v,} of V, then
a basis for Sym™V is given by

1
{' Z Vky1y @ - @ Uk, ¢ QS 1<k <...<k, <m,
n

" oeS,

and a basis for A"V is given by

1
{n' Z e(0) vk, ) @ - ®U}€U(n)} asl <k <...<k,<m,

" oeS,

where (o) is the sign of o.
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Proof. For the proof see [1]. O

Under the action of S,, permuting the components of V®", the construction of
the bases in Proposition 4.12 illucidates the fact that the elements of Sym™V are
fixed by this action while the elements of A"V are negated by transpositions. In
fact, the space Sym™V is the isotypical component of VO™ associated with the
trivial representation, while A™V is the isotypical component associated with the
sign representation. This allows us to use Corollary 4.10 to attain representations
of any group G on V&,

Let’s review what we covered in this section. We defined the notion of tensor
product, which is a way of building up a larger space out of other spaces by letting
scalars transfer between the factors. We defined representations on tensor products
and found that calculating characters of tensor product spaces to be straightforward
(multiplicative). Next we covered isotypical components, subspaces composed of all
the copies of a given irreducible representation that appear in a completely reducible
representation. We exhibited a basis for two particularly important issotypical
components of S,: Sym"™V and A™V. These spaces and tensor products more
broadly will appear as irreducible representations in specific groups studied later.
We turn next to finding the irreducible characters of a few specific groups.

5. APPLYING CHARACTER THEORY

One useful way of displaying information about irreducible representations of a
group is by constructing its character table. A a character table includes much
of the relevant information about the irreducible representations of a given group,
including their dimensions and their characters. In this table, columns are indexed
by representatives of conjugacy classes (since characters are class functions), with
the size of the conjugacy class given in parentheses. Rows are indexed by irreducible
representation. Every group has the trivial representation y; which always appears
as the first row.

[ Rep e a ([Cu) b (C]) c(Cc]) |
X1 1 1 1 1
x2 Dim(x2) x2(a)  x2(0)  x2(c)
xs Dim(xs) xs(a)  x3(b)  xs(c)
x4 Dim(xa)  xala)  xa(b)  xa(o)

Remark 5.1. When the columns are weighted by +/|C|/|G| , where |C| is the
conjugacy class size, to account for the size of the conjugacy classes, the orthogo-
nality relations of characters implies the rows are orthonormal [1]. It follows that
the columns are also orthonormal and therefore the matrix formed by the weighted
entries of the table is unitary. This is a useful tool in piecing together the character
table.

5.1. Character Table of A;. We will construct the character table of A5 - the
even permutations of 5 items - using some of the previously developed tools. We
start by listing the conjugacy classes of As, of which there are five, represented
by elements e, (12)(34), (123), (12345), (12354). By Proposition 2.18, we are thus
looking for five irreducible representations. We get the trivial representation for
free, with character x; = (1,1,1,1,1). We don’t get the sign representation, since
all elements of A5 have even sign, so it is the same as the trivial representation.
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We will now proceed by examining the action of A; on a few different spaces.
Let’s first consider the permutation representation of A5 on C® given by permut-
ing the coordinates. The trace of a permutation representation is the number of
elements fixed, so it follows that xcs = (5,1,2,0,0).

Noting that the terms in the inner product (3.5) are the same on conjugacy
classes since characters are class functions, for R a system of representatives of
conjugacy classes of G, with sizes |Cy|, we can rewrite (3.5) as

(5.2) o6x) = é D11C XM 9)X (9)-

9eR

We may thus evaluate inner products just on representatives, with the appropriate
weighting. The sizes of the conjugacy classes of A5 are 1,15,20,12, and 12.
Thus we can evaluate {xcs, xcsy given by the inner product (5.2), as

1
<XC5,XC5>=@(1-52+15-12+20-22+12-02+12-02)=2.

From Proposition 3.12 and Theorem 1.16, it follows that ycs is the sum of two ir-
reducible characters. By Proposition 3.17, one of these is the trivial character x1, so
subtracting this we have xcs —x1 = (5,1,2,0,0)—(1,1,1,1,1) = (4,0,1, -1, -1) :=
x2. We call V' the subspace on which x4 acts.

We next consider the action of As on the tensor square V®2.

Lemma 5.3. The character of Sym?V can be calculated from that of V in the
following way:

Xi(9) + xv(g?)

(54) XSmeV(g) = D)

The character of A2V is the following:

x4 (9) — xv(g?)
2

Proof. This follows from counting over the bases defined in Proposition 4.12 [1]. O

(5-5) Xazv(9) =

On the subspace Sym?V therefore we have Xsym2v = (10,2,1,0,0) and on A%V
we have xp2y = (6,—2,0,1,1). We calculate (xsym2v, Xsym2v) = 3, SO XSym2v
is the sum of three irreducible characters, since this is the only way to have a
modulus of 3 when components take integer coefficients. We have (xgym2v,x1) = 1
and (xsym2v,X2) = 1, 50 Xgym2y includes a copy of x2 and xi, which can then
be subtracted out. The difference xgym2v — x1 — x2 = (5,1,—1,0,0) := x3 is
irreducible.

Now, we have (xazv, xazv) = 2, S0 xazy is composed of two irreducible rep-
resentations. We have (xazy,x1) = {xazv,x2) = {xazv,x3) = 0, so the two
irreducible representations summing to x a2y are nonisomorphic to the previously
found irreducible representations, and so are the last two we need to find.

Now, given a representation p, conjugation by 7 € .S,, defines a new representation
p” that acts as p7(g) = p(rg7~!). Conjugation by 7 preserves the conjugacy classes
of As that were already conjugacy classes of S5. However, (12345) and (12354) are
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conjugate in S5 but not As. Let 7 then be the element of S; by which they are
conjugate: 7(12345)771 = (12354). It follows that

p7(12345) = p(7(12345)7~ 1) = p(12354),

and vice versa. Letting p be one of the two irreducible representations that makes up
A%V, it follows that p” is also an irreducible representation. Since it is unaccounted
for elsewhere it must be the other summand of xzy .

We therefore know the following things about p and p”. First, by (3.14 we have
|G| =60 = > d? = 12442 +52+ Dim(p)*>+ Dim(p™)?. The only integer solutions to
this are Dim(p™) = Dim(p) = 3. By the definitions of p, p7, we know that x,, X,
are the same on conjugacy classes e, (12)(34), (123) which are shared conjugacy
classes of S5 and A5 and have swapped values on conjugacy classes (12345), (12354)
which split a class of S5. By construction we also know that x,~ + x, = xazv-
Finally, by 3.10, x,, X, are orthogonal to each other.

All of these conditions combined are enough, with some algebra, to nail down

the final two irreducible representations as x,- = (3, —1,0, 12—‘/3, 1*2—‘/3) and x, =

(3,—1,0, 1’2*/5, ”T*/g) We can thus present the completed character table of As :

H Rep e (12)(34) (123) (12345) (12354) H
vi 1 1 1 1 1
Yo 4 0 1 ~1 -1
s 5 1 1 0 0
Xo 3 1 0 1—2«/5 1+2\/5
Xor 3 - 0 1B 1B

Thus by drawing on the properties of characters developed in previous sections
and considering the action of A® on specific spaces, we were able to find all irre-
ducible characters of A%. This shows the power of character theory in finding the
irreducible representations of finite groups. Before considering additional specific
groups in the last two sections, we next introduce some more abstract results in
representation theory on the topic of how the representations of a group relate to
the representations of its subgroups.

6. INDUCED AND RESTRICTED REPRESENTATIONS

In this section we explore a way to generate representations of a group given
representations of a subgroup, or vice versa. These representations are called the
induced and restricted representations respectively. We introduce these represen-
tations and prove some theorems relating the two.

First, suppose we have a representation of a group GG. This is also a represen-
tation of each subgroup H — G. When we restrict to the subgroup H, we call it
the restricted representation. The same notion works for any homomorphism into
G, so we give the broader definition below.

Definition 6.1. Let (p, V) be a representation of a group G, and let ¢ : H > G
be a homomorphism of groups. Define the restricted representation of G to H to
be the representation (Resg V,V) of H given by the composition

Res8V = po.



COMPLEX LINEAR REPRESENTATIONS 19

The composition is illustrated in the following diagram.

H—* @
P

Resg
\%

This allows us to produce a new representation of a group H given a represen-
tation of G and a group homomorphism from H to G. This is particularly useful
when H is a subgroup of G and the map ¢ is the inclusion of H into G. In this
case the restricted representation reduces to ResZ(h) = py.

Given a representation of a subgroup H < G, a new representation of G and
adjoint functor of Resg is given by the induced representation.

Definition 6.2. Given a representation (p, W) of a subgroup H < G, define the
induced representation Ind%W to be the extension of scalars of the C[H]-module
W to the group ring C[G].

(6.3) Ind§GW = C[G] ®cra W

This defines a representation of G with the action given by right multiplication
on the factor C[G].

Example 6.4. [ nd{Gl}l is the regular representation of G.
This can be seen by considering C[G] ®cig) W = C[G] ®c 1 = C[G]. The left
action of G on C[(] is precisely the regular representation of G.

This may at first appear quite abstract, but in the following few propositions, we
will get a better idea of how [ ndg behaves. First, the following proposition will be
useful in proving later theorems, though for what I believe to be the best intuitive
picture of the induced representation I direct the reader to Propositon 6.9.

The following lemma gives a useful isomorphism between spaces of functions and
tensor products. We will use it in the proof of the next proposition and later.

Lemma 6.5. For finite dimensional vector spaces U,V , there is an isomorphism
of vector spaces,

Hom(U,V)=U*®V

which preserves G—actions.

Proof. Given bases {u;}, {v;} of U,V respectively, identify the linear map L;; sat-
isfying L;;(u;) = v; with uf ® v; and extend linearly in C and to sums of sim-
ple tensors. To see that G-actions are preserved, see that g € G acts on L;; by
gLij(u) = Lij(pgu). Thus gLi;(py  u;) = v;. Similarly, g(uf®vj) := p; luf@uv;. O

Proposition 6.6. For a representation (p,W) of H < G, as G-representations,
Indf[W is isomorphic to the space Homy (G, W) of linear maps ¢ : G — W, which
are H-invariant under the simultaneous right action p(g)-h = ©(gh) and left action

h-p(g) = p(h) - ¢(g).
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Morally this is because C[G] can be thought of as the space of maps ¢ : G — C.
In general for a tensor product A ®g B, factors of r € R transfer across the factors
as ar ®p b = a ® rb. Therefore we should have ar~! @ rb = a ® b. That is,
simultaneous action by r—! on one factor and r on the other cancels out. Here the
action of A=t on p(g) is p(g) - =1 = p(gh).

Proof. Following Lemma 6.5, the space Hom¢ (G, W) is isomorphic to the tensor
product C[G] ® W by the map

0 — Zeg®wg,

geG

where ¢(g) = wy, e4(g9) = 1, and e4(h) = 0 for h # g. Here we are identifying C[G]
with the space of linear maps from G to C.

The left action of H maps e; — egp—1 while the right action of H maps w to
prw. Thus the H-invariance condition reads as

(6.7) Z eg @y = Z egn-1 ® ppwy Yh e H.

geG geG

By extending linearly, we see this is precisely an element of C[G]®c[ W, agreeing
with the tensor product structure of invariance under acting on one factor of the
product with an element ¢ and acting by the inverse g~' on he other factor. To
check G—invariance, we let f : C[G] ®cip) W — Hompy (G, W) be the map taking
gRw to eg @ w. Then we see f(g- > g @w;) = f(X g9 @w;) =Y €91 Quj,
while g - f(- 29 @w;i) = g- Dy, QWi = D €4,0-1 Dw. O

Example 6.8. For (p', W), (p?, Ws) representations of H ¢ G, IndG (W, ®Wy) =
IndSW, @ IndS W,

Proof. Using the construction in Proposition 6.6, Hom (G, W1®W3) =~ Hom(G, W1)®
Hom(G,Ws5), and the linear operator p, = p; (—Dpz acts on the factors Wy, Wy sep-
arately, so that H-invariance is preserved by the isomorphism. O

Though the preceding proposition is correct and useful, and the original defi-
nition is satisfyingly concise, the induced representation Ind%W is perhaps most
intuitively thought of in the following way: for each coset in G/H create a copy
of W. Choose a representative g, for each coset and call the associated copy Wi..
Then an element g € G acts both by permuting the cosets (multiplying ¢ - g, and
checking what coset it is now in) as well as acting on the copy of W by the factor
belonging to H that is left over. As we would desire, action by elements of H agrees
with the representation of H on the copy of W associated to the identity coset. The
following proposition gives the details.
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FIGURE 1. The action of G on the induced representation Ind%W.
(A): For every coset i € G/H, create an isomorphic copy of the
representation W indexed by the cosets as W;. Their direct sum
is the representation Ind%W. (B): The action of G on IndGW
is to permute the factors of W; as well as to linearly transform
each individual W;. For an element g € G, denote the permutation
of {W;} given by the action of g as 0. Then g|w,(W;) = W,().
(C): Let {g;} be a system of representatives of the cosets G/H and
denote W; = g;W. Then gg;W; = g,(s)kgiW where kg; = g;(li)ggi.
Thus ky; acts within the factor W ;.

Proposition 6.9. Let (p, W) be a representation of a subgroup H of a finite group
G. Then for a system of represenatatives R = {g,} of the cosets G/H,

IndGW =~ P W,.
reR

Each W, is isomorphic to W and for any g € G and g, € R we have

99r = Gr R
for g € R and h, € H, so the action of G is well defined as

(610) g- (‘B W, = C—B p(hr)Wr’-
reR reR

Proof. We will show this form agrees with the form Hompg (G, W) from Proposi-
tion 6.6. From the H— invariance condition (6.7) it follows that we have ppw, =
wyp-1 Yh,g € H,G. Therefore given the image Ind$ W (g) of any element g of
the coset gH, the invariance condition specifies the map on the entire coset. Let
W, be the space of maps in Hompg (G, W) that vanish on all but the single coset
containing 7. We then have an isomorphism f : W — W,. given by

f(w) = 2 €gh @p;l(w).

heH

(6.11)

This satisfies the H —invariance condition (6.7) because w = w, and so p, ' (w,) =
wyp,. In particular, we can define the C[G]-module homomorphism ¢ : Homg(W,G) —
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C_B’I‘GR WT by
@(Z €g ®wq) = Z Z €rh ®p;1wr~
geG reR he H
Bijectivity is given by the fact that cosets partition a group, so ¢ is an isomorphism.

O

Having constructed the induced representation and having found an intuitive
way to think of it, we turn next to the question of computing the characters of
induced representations. For this a preliminary definition will be useful.

Definition 6.12. Let ¥ be a class function on G, and let R be a system of repre-
sentatives of cosets G/H. The induced function Ind$ is given by

IndGb(g) = D eonp(rgr).
r€R
Here € is an indicator function which is 0 on G — H and 1 on H.

Proposition 6.13. Let H ¢ G and let (p, V) be a representation of H with char-
acter x. Then the character of IndgV is the induced function Ind$%x.

Proof. By the decomposition in Proposition 6.9, the character x, will have nonzero
contribution from the blocks W, which are fixed by the action of g. We have
W, = W, iff g9, = g,k for k € H. Thus g = g.kg. '. Following (6.11, for those
blocks W, which are fixed, g acts as

g- Z €g.h @pglw = Z €g.h ®p;1kw.
heH heH

It follows that if g lgg, = k € H, the action of g on W, corresponds to the action
of k = g-tgg, on W. If g-'gr ¢ H, the block W, contributes zero to the trace. The
proposition follows from summing over blocks W, which are fixed. Summing over
only fixed blocks mirrors the role of the indicator function € in Definition 6.12. [

Lemma 6.14. For completely reducible representations (p, V)and (p',U) of a group
G, write (V,U)q for the inner product {xv,xvy over G. Then {V,U)q is the di-
mension of HomG(V, U), the space of G-invariant linear maps, or intertwiners,
from V to U.

Proof. We will prove this in three steps.

First, we show that the statement holds when U,V are irreducible. Second, we
show that both (V,U)g and Hom®(V,U) are linear in each argument. Finally, we
recall complete reducibility. The third step allows us to write

VUye=V1®..0V,,U1®...0Unc,
where U;, V; are irreducible. Then the second step gives
WVN@®.eoV,U1®8..8U»e =V1,Upe +V1,U)g + ... + Vo, Unda-
Then step 1 gives
WV, UDa+ V1, UG+ 4+ Vi, Unda = dim(Hom (Vi, Up))+...4+dim(Hom® (V,,, Uy,)).
Then finally step 2 again gives
dim(Hom®(Vi,U0)) + ... + dim(Hom® (V,,, Up,)) = dim(Hom® (V,U)),

and the proposition follows.
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So lets prove these three things. First, suppose U, V irreducible. Then<{V,U)q =
1if V = U and 0 otherwise. Schur’s Lemma gives the same values for dim(Hom% (V,U)).
For the second step, let Uy, Us, V' be irreducible representations. Then
UL @Usz, V)e = Xu, + XUz, XV)s

and then we have

<XU1 + XU»» XV> = <XU1 s XV> + <XU2 ’ XV>
by linearity of the character inner product per Proposition 4.6. By the vector space
isomorphism
Hom(A® B,C) = Hom(A,C)@® Hom(B, (),
Hom(Uy @ Uy, V) decomposes as Hom (U1, V) @ Hom(Usz, V') and a vector is G-
invariant in Hom(U; @ U, V) iff its image is so in Hom(Uy,V) @ Hom(Uy, V).
Therefore we can write

Hom((Uy @ U2, V) = Hom(U1,V) @® Hom(Us, V).

The claim on dimension follows. This same argument works for the right hand
factor as well so we have both Hom® and {, ) are linear in each argument as
desired. The third step is just to use the definition of complete reducibility. O

Induced representations and restricted representations are connected via the fol-
lowing theorem.

Theorem 6.15 (Frobenius Reciprocity).
HomC (Ind$W,V) =~ Hom™ (W, Res2V)

Proof. By the Definition 6.2 of induced representation, we have

Hom®(V, IndGW) = Hom® (V,C[G] ®c W).
By Lemma 6.5, we have

Hom®(V,C[G] ®cpm W) = (V* ® C[G] ®cp W)©,

where the superscript G denotes vectors invariant under the action of G on V* and
C[G]. We further have

(V* @ C[G] ¢y W)€ = (V*®C[G]@ W) H
where the superscript H denotes vectors invariant under the simultaneous right
multiplication of H on C[G] and left action on W. With G, H acting the same, we
permute the order of the tensor product to have

(V*QC[Gl@W)4H ~ (C[G]@ V@ W)H.

The G-invariance restriction determines all invariant vectors in C[G] ® V* @ W
given its restriction to e ® V* ® W by the condition

g-e@v*®w=e®p;11}*®w

for a G-invariant vector. Therefore the dimension of (C[G] ® V* ® W)&H is the
same as the dimension of (e ® V* ® W) which is the same as (V* ® W) given
that the notion of H-invariance is well defined on V* ® W.

Indeed, in the map f : (C[G]®@V* @ W)Y — V¥ Q@ W, a vector ¢ € (C[G] ®
V*®W)Y is H invariant when for any simple tensor ¢ = e ® v* @ w, ¢ is invariant
under the action of H as hg = h ® v* ® ppw. The G-invariance condition gives
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hqg = e®(h™'v)* ®hw. Thus H invariance implies invariance under the action of H
on V* and on W, and thus passes to the desired notion of H-invariance in V*QW.
By Lemma 6.5 we can then identify (V* @ W)# ~ Hom (ResZV,W). O

Remark 6.16. Frobenius Reciprocity is the statement that the functors [ nd% :
Repy — Repg and Resg : Repg — Repy are adjoint functors. Here Repg is the
category of G-representations where morphisms are G-intertwiners, and Reppy is
the analogue for the subgroup H. The functor ResZ maps a representation (p, V)
of G to a representation (p|m, V) of H. It acts as the identity on morphisms since
G-invariance implies H-invariance. The functor I ndg maps a representation W to
IndGWw.

Corollary 6.17. By counting dimensions in the above, we have
V, IndGWHg = (ResBV, Wy

6.1. Mackey Theory. We will develop a tool to determine if a representation is
irreducible through a relation between its induced and restricted representations.

Theorem 6.18 (Mackey’s Restriction Formula). For H a subgroup of G, Let S ¢ G
be a set of representatives for the double coset space H\G/H. For each s € S, define

H,:=sHs '~ H.

For a representation (p, W) of H, a representation (p*, Ws) of Hs is defined by
p°(z) = p(s~tas), where W, = W. Then,

Res& Ind§;(W) = P Ind (W)
seS

Proof sketch. For the full proof see [4] (p. 58-59). We give an instructive and
abridged version here.

The space V := Indg(W) is a direct sum of the spaces g,.W where g, € R; for Ry
a system of representatives for G/H. It is a fact that double cosets are partitioned
by cosets, so we may group together all the cosets that sit inside the same double
cosets to make the space V (s). The space V (s) is formally defined as the subspace
of V' generated by the images g, W for g, € HsH.

The approach is to show that V(s) is isomorphic as an H-representation to the
summand [ ndgs (Ws). To do so, we need only check the characters are the same.

Let Ry be a system of representatives for H/Hs. Then by Proposition 6.13 the
character of Indf} (W) is given by

(IndH Z Z (herHyaYx*(r~thr),
heH reRsy

where e(h € rHy,r~—') = 1 when h € rHyr~! and 0 otherwise. Recalling the definition
of p*, we have x*(h) = (s"'hs). An element of 7 H,r~! can be written as rsh’s =171
for h' € H. When this element is in H, it is included in the sum, so we may write

Z Z (herHya )\ (r thr) = Z Z (R e rHar Hx(s 1r 1h'rs).
heH reR, WeH reR;

On the other hand, the character of Resf Ind% (W) is given as

2 Z (he aHa™')x(a" ha),

heH aeR3
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where Rj is the subset of R; that is contained in the double coset represented by
s. The trick is the realize that elements of R3 are in bijection with elements of Ry
by mapping r to rs. To see this, consider r(sHs~') € R3. Multiplying by s gives
r(sHs™')s = rsH. This is an element of the double coset HsH. It also represents
a unique coset in G/H because rs € G. We can thus write

Z Z e(heaHa ')x(a tha) = Z Z e(hersHs 'r=)x(s tr thrs).

heH acR3nH heH reRs

Since this matches our equation for the character of ndgs (Ws) above we conclude
X(Rest Ind§;(W)) = x(Indf, (W,).

This implies the two are isomorphic, and since this follows for every s € Ry, we

have the entire isomorphism as desired.
O

Theorem 6.19 (Mackey’s Irreducibility Criterion). Indgis irreducible iff W is
irreducible and Vs € S — H, the representations Wy and ResgsW are disjoint.

Proof. From a direct application of Mackey’s Restriction Formula and Frobenius
reciprocity we have

(6.20) {IndGW, Ind$WHe = (ResB IndGW, W)y =
D ndff Wo, Wyg = > (W, Indfy Woym = Y (Resi W, Wom, .

Since inner products of characters take integral values, I ndi is irreducible iff all
terms but one in the last sum are zero, and the one nonzero term has the value 1.
Indeed, there is a single coset for which H, = H (s € H), which contributes the
term (ResEW, W)y = (W, W)y to the sum. If W is irreducible, this takes value
1, while if all other pairs are disjoint, their inner products vanish as desired. ([l

In this chapter, we defined the induced and restricted representations and showed
a few ways in which they can be related. We turn next to the representation theory
of compact groups, exemplified by the classical groups.

7. CLAsSICAL GROUPS

In this section we show how to use representation theory and character theory
when the groups in question are not finite. We consider a few important compact
groups known as classical groups for their historic use as easy cases. In the rep-
resentation theory of compact groups GG, we restrict our attention to continuous
group homomorphisms p : G — GL(V).

7.1. U(1). Perhaps the simplest compact group is U(1), the group of unitary 1 x 1
complex matrices: that is x € C s.t. & = 1. It can be identified with the unit
circle S' in the complex plane.

Proposition 7.1. A continuous irreducible representation of U(1) has the form
p(z) = 2™ for integer n.
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proof sketch. We will exhibit all one dimensional, and thus irreducible, representa-
tions of U(1).

A one dimensional representation of U(1) is a continuous group homomorphism
p: U(1) > C*. Consider the kernel of p.

In general, the kernel of a continuous group homomorphism is a closed subgroup.
The closed proper subgroups of U(1) are cyclic subgroups C,, of nth roots of unity.
Therefore

Kerp=C,
for some n € N. It follows
Next let a € C)y,,, be an mnth root of unity. Then (a™)" = 1, so a™ € C,,. Since p
is a homomorphism, p(a)™ = p(a™) = 1, so p(a™) € Cy,. Thus p(Cpm) < Ciy, 80 p
maps mn-th roots of unity to m-th roots of unity ¥m € Z in an order preserving
way. This condition, along with continuity, is enough to imply that p(z) = 2"
precisely. For the detailed proof see [1]. O

Though the Haar Measure implies the existence of a G-invariant inner product
on all compact groups with respect to which irreducible characters are orthonormal,
in general it is hard to find this product from first principles. Instead, in this as well
as future examples, we will exhibit an inner product derived from the geometric
intuition present in the structure of the groups, and then check orthonormality of
characters and G-invariance.

Proposition 7.2. There is a normalized hermitian inner product on characters of
U(1) given by

1 27
(73) G = 5 | X@OV @8,
™ Jo
where x,,(0) is interpreted as e™?. With respect to this inner product, the irreducible
characters x, := 2" are orthonormal.

In the finite case, we found the characters to be a basis for class functions.
We obtain a similar result here. Since U(1) is abelian, each element is its own
conjugacy class. Since (7.3) is only well defined when it converges, our statement
about irreducible characters being a basis on class functions must take this into
account.

Theorem 7.4 (Fourier). The functions z™ form an orthonormal basis for L(U(1)),
the Hilbert space of square integrable complex function on U(1).

Proof. Tt is a famous theorem of Fourier [7] that any f € Ly(S') has a fourier series
expansion as

40
(7.5) FO) =) fu-e™.

The fourier coefficients f,, are given by the inner product of characters using the
inner product (7.3).

1

27 )
f= () = 5 L ¢~ £(0)db
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Definition 7.6. Laurent polynomials are polynomials in z and 2z~ *.
7.2. SU(2).

Definition 7.7. Let the quaternion algebra H be the algebra generated by elements
1,7, k with the relations

ij=—ji=k
jk=—kj =i
ki = —ik = j

it =j2 =k =-1
The quaternion algebra H is naturally embedded in M5(C) via the following map
v :H — My(C):
0
=

0
—1
1
1 0
0 ¢
Physicists will recognize the quaternions as the Pauli matrices, up to a factor of
i. These matrices are used to analyze the group SU(2) which is the state space for
a Spin-1/2 particle.

The image ¥(H) < M2(C) generates the subspace of unit determinant unitary
matrices, called SU(2).

(1) = [1

P(i) =
P(j) =

[
K

Definition 7.8. The group SU(2) is the group of determinant 1 unitary 2 x 2
complex matrices.

SU(2) = {p _ [_b 2] . a,be C; det(P) = 1}

A matrix P € SU(2) can be given in coordinates (zg,x1,x2,23) by defining
P = xol + x1i + x9j + z3k with the restriction that z3 + 27 + 23 + 23 = 1.
Geometrically SU(2) can be identified with the unit sphere S® in R*.

Proposition 7.9. The following facts will prove useful in analyzing SU(2). Let
P,P' e SU(2).

(1) The eigenvalues of P are z,Z : 2z = 1.

(2) P = cosOI + sinfA where trA = 0.

(3) P, P’ are conjugate iff tr(P) = tr(p).

Proof. Fact (1) follows from the diagonalizability of complex matrices and the re-
quirement that det(P) = 1. Fact (2) folows from the decomposition x1i + z2j +
x3k := A and the normalization condition. Fact (3) follows directly from fact (1).
For a detailed proof see [2]. O
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Following the geometric intuition granted by fact (3), the conjugacy classes are
called latitudes and are indexed by the value of 8. In particular, the set of traceless
elements is called the equator E. For a fixed traceless element A € E, the set
of elements {cosfI + sinfA} is called a longitude. A quick computation (A)(cI +
sA)(A7Y) = el +sA’AA™! | where ¢? +s% = 1, shows that longitudes are conjugate
subgroups of SU(2), since all traceless matrices are conjugate by fact (3).

Proposition 7.10. The map f : SU(2) — S given by f(cosOI + sinfA) = e
gives a homeomorphism from latitudes in SU(2) to the circle St. The latitudes are

given the quotient topology in SU(2). The map is invariant under the interchange
0— —6.

Therefore any continuous class function on SU(2) is a function on the eigenvalue
z = ¢ that is invariant under the interchange z — z~!. Since a representation of
SU(2) restricts to a representation of U(1) by the homomorphism mapping cosfI +
sinfA to €', it follows that characters of SU(2) are Laurent polynomials.

By viewing SU(2) as topologically the sphere S3 € R*, one can arrive at an
invariant integration measure.

Proposition 7.11 (Weyl integration Formula). The following is a SU(2)-invariant
inner product on continuous class functions on SU(2) with regard to which the
irreducible characters are orthonormal.

{p,¥) = lf me(e) sin0 do

™ Jo
Proof. For the proof see [8]. O

Theorem 7.12. The irreducible characters of SU(2) are given by xn(z) = 2™ +
22 4+ 27" where z = €9 parametrizes the conjugacy classes of SU(2).

Proof. For the full proof see [1]. Here we check orthogonality using Proposition
7.11.

The conjugacy classes of SU(2) are latitudes parametrized by angle . Thus let
z=¢e". Let

Xn=2" 42724+ 427"
and let
Xm = 2™+ 2™ 4 2™

This simplifies to
sin((m + 1)0)

Xn(6) = sind
n(8) = sm((;n—; 1)9).

Carrying out the integration we have

(s X)) = % fo ’ sm((;?n; 1)6) sm(g;n; 1)0)

- sin*(0) do

-1 J% sin((m + 1)6) - sin((n + 1)8) d6
T Jo
= % L % (cos((m —n)@) — cos((m +n + 2)0)) = dpmn.
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It follows that the characters x, form an orthonormal set with repect to the inner
product in Proposition 7.11. (]

Remark 7.13. Notice that in keeping with Proposition 7.10, the irreducible rep-
resentations of SU(2) are Laurent polynomials that are preserved under the inter-
change z — —z.

Proposition 7.14. As SU(2)-representations, Sym™(C?) = P,, the space of ho-
mogeneous polynomials of degree n in two complex variables.

Proof. The isomorphism is constructed my mapping e! eg to the symmetrization of

e2'®eS7. This commutes with the action of SU(2) as [ aB 2] [21] = [ al—)eel —:_bgz ]
- 2 —bey 2

In this section we found the irreducible characters for the groups U (1) and SU(2),
which are simple cases of infinite compact groups. We found the precise form of the
inner product (3.5) for these groups by starting with the geometric interpretation
of the groups as a circle and a sphere respectively. In the next section, we turn to
the irreducible characters of the symmetric group.

8. Su

We will now use the tools we have developed to find the irreducible representa-
tions of the symmetric group S,,. The following result is of interest in its own right,
and also has connections to the representations of U(1) through a notion called
Schur-Weyl Duality, which is discussed in [1].

Two immediate representations of S,, for any n are the trivial representation and
the sign representation, which maps o to sign(o)-Id. However there are in general
many more. They are indexed by partitions of n and can be listed and studied by
Young diagrams, which make apparent the essential features of a partition.

Definition 8.1. A partition \ of [1,n] := {1,2,.n} is a set \; = ... = Mg s.t.
> Ai = n. The set of partitions of n is denoted P,.

A partition A divides [1,n] into blocks I; = [A1 + .. + A\i—1, A1 + ... + N;]. We
define a special polynomial Ay in the following way:

k
(8.2) Ay = H n (z1 — z5)

i=11l<jel;

Thus Ay contains all antisymmetric factors (x; —x;) for pairs ¢, j in the same block
I. Define Sy < S,, to be permutations which preserve the blocks I;. Then we will
show that functions that are antisymmetric under Sy necessarily contain a factor
of Ay. First, a short proposition.

Proposition 8.3. Ay consists of homogeneous polynomials of degree d = Zf=1 w
We will need this later.
Let C[x1,..2,] := A be complex polynomials in n variables. Then S,, acts on

A by permuting the variables. Let AT < A denote Sj-invariant polynomials. Let

A~ c A denote S)-anti-invariant polynomials.

Theorem 8.4. As an AT-module, A= = AT - Aj.
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Proof. Let f € A-. Then for any transposition (i,j) € Sy : i # j, we have
(i,5)f = —f. It follows that f|,,—,;, = 0. Thus f contains a factor of (z; — x;).
Since this holds for all distinct pairs i, j, which are coprime, f contains a factor of
A)\. So let f =h- A)\. Then (Z,j)f = —f = (Z,j)h (’L,])A)\ = (Z,j)h : —A)\. It
follows that h € A*. Thus any f € A~ is of the form f =h-Aj for he A™. O

Next for our main result.
Definition 8.5. For A € P, let V(\) be the C-span of the set {sAy : s€ S,}.
Remark 8.6. The space V() is S, stable.

Theorem 8.7. The spaces V(\) as A ranges over all partitions Py, are all the
irreducible representations of S,,.

Proof. To prove this theorem we need to show three things.

(1) V(X) are irreducible.
(2) V(X) are distinct for distinct partitions.
(3) Any irreducble representation is one of the V().

Given (1) and (2), item (3) follows immediately from Proposition 2.18, considering
that both the representations V(\) and conjugacy classes of S,, are indexed by
partitions of n, in the latter case to determine cycle type. Thus it remains to show
(1) and then (2). Item (1) will be given by Corollary 8.9 below and item (2) will
be given by Proposition 8.13 below. d

Lemma 8.8. Let F': V(X)) — V(A) be an intertwiner of Sy-representations. Then
F is a scalar multiple of the identity.

Proof. For s € Sy, by assumption we have F((s(Ay)) = s(F(Ay)). Let F(Ay) := D.
Then Im(F) is the C-span of {sD : s € S,}. Furthermore, since Ay € A~, for
se S*, we have

sD = F(SA)\) = F(ESA,\) = &‘SD,
where ¢, is the sign of s. It follows that D € A~. Therefore by Theorem 8.4, D
contains a factor of Ay or F' = 0. Since A, is a degree d) polynomial, the degree
of D requires that D is a scalar multiple cAy of Ay. It follows that for s € S™,

F(sAy) = sD = scAy = c(sA)),
so that F' is a scalar function. O

Corollary 8.9. V() is irreducible for any X € P,

Proof. By Schur’s Lemma and the discussion following its corrolary, a completely
reducible representation V is irreducible iff all G-intertwiners are scalar multiples
of the identity. This condition is precisely what Lemma 8.8 showed. ([

We have thus shown item (1). It remains to show (2). Before doing so, we
introduce a new way of visualizing partitions which will be used in the proof.
To every partition \ there is assigned a Young diagram D()).

Definition 8.10. For A € P,, the Young diagram D()) of X\ is an array with \;
cells in column 1.

A Young diagram is a nice visual way to understand a partition. It also offers
a geometric way of constructing a new, related partition from any given partition.
This partition is called the transposed partition.
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FIGURE 2. The Young diagram associated with the partition (5, 3, 2).

Definition 8.11. For a partition A € P, and its associated Young diagram D()),
define a new Young diagram D(AT) by reflecting D()) over the diagonal. Then
D(AT) defines a partition A7

FIGURE 3. The transposed Young diagram D(AT) associated with
the partition (5,3,2)7 = (3,3,2,1,1).

Proposition 8.12. Notice that the number of cells in row i of D(AT), or equiva-
lently AL, is the number of rows of D(\) that have at least i cells. The definition
also shows that for A\, € Pp, NI = T = X\ = p.

Now we are prepared to prove (2).

Proposition 8.13. The representations V(X) : X\ € Py, are pairwise nonisomor-
phic.
Proof. We wish to show that

V) = V(i) = = A

To do this, we introduce new notation. Define v(n) to be the tuple (1,2,...n). Sim-
ilarly, for A = (A1, .. ) € Pn, let v(A) = (v(A1), .., v(Ag)) = (1,2, .01, 1,2, o0y Ag),
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Mn

and denote v(\); the j-th entry. Then let zv) := x’lj(/\)l ccrxzp ™. For an n-tuple

. Vs Vs(n
v and a permutation s € Sy, let %V = z; W ey,

Now, the Leibniz formula for the Vandermonde determinant says

A, = _ Z e(s) - ™).

L1 .. Tp scS
n

A generalization of this formula shows that

(8.14) Ay — 1 PO

1 .. Ty N

For a tuple v, let m;(v) be the number of times j appears in v. Then from
Proposition 8.12, we see m;(v(\)) = Ai. Now suppose V(A) = V(u). It follows
that Ay € V(u), and so the monomial **) which appears in the formula for Ay in
(8.14 must appear in as some monomial in sA(u) for some s € S,,. It follows that
v = g5 for some s’ € S,,. Therefore v(\) = ss'v(p).

Now, since m;(v) counts the instances of j, ignoring order, it is permutation
invariant, and so

T

m;(v(A)) = m;(ss'v(p)) = m;(v(w).
From this it follows that A} = % Vj > 0 and thus by Proposition 8.12, X = p as
desired. 0

Young diagrams give us a useful way to visualize partitions and they also are
useful in understanding the representations V(\), as the following Theorem shows.

Definition 8.15. Given a Young diagram D()), a standard Young diagram of A
is a way of assigning numbers to the cells of D(\) such that any cell has a higher
value than those to the left or above it.

Visually, the standard Young diagrams index the different ways a Young diagram
could be constructed by placing one cell at a time which was forced into the top
left corner of the array.

FIGURE 4. The two standard Young diagrams of the partition (2, 2).

Theorem 8.16. [9] For an irreducible representation V(X\) of Sy, the dimension
of V/(N\) is given by the number of standard Young diagrams of A.

For any n, there exists the partition Ay = (n), which results in a totally anti-
symmetric polynomial Ay, which yields the sign representation. There also exists
the partition A2 = (1,1,1,.....1) which has Ay, = 1, which yields the trivial repre-
sentation. The Young tableaus associated to these representations can be seen in
both Figure 4 and Figure 5.
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Example 8.17 (S3). For the case n = 3, there is one other partition which is
A3 = (2,1). By Theorem 8.16, the dimension of V(A3) is 2. Using z,y, z for the
three variables, by inspection we see that Ay = (z—y). In general polynomials in n
variables are hard to visualize, but in this case where they are of degree 1 they can
be understood as coordinates in C3. Under the action of S3, V' (A3) is then defined to
be the C-span of the polynomials {\3 = (z2—y), (x—2), (z—v), (y—x), (y—=2), (z—x)},
which span the plane x+y+2 = 0. In this plane S35 acts by permuting the coordinate
axes, and so V(A3) can be seen to be the regular representation of Ss which acts
on a triangle in the plane.

Sign Trivial Regular
11213 1 112
2 3
> 1 3
2

FIGURE 5. Standard Young diagrams associated to irreducible rep-
resentations of Ss.

Example 8.18 (S;). The standard Young diagrams associated with the irreducible
representations of Sy are given below. There are the usual sign and trivial repre-
sentations. Identifying S; with the symmetries of the tetrahedron, the irreducible
representations also include the standard representation as well as the tensor prod-
uct of the standard representation with the sign representation. Finally there is
a 2-dimensional representation, which corresponds to the regular representation of
the copy of S5 in Sy. Visualizing S4 as the symmetries of a cube, the three pairs of
opposite faces are permuted, giving a copy of S3 in Sy.
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