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Abstract. This paper aims to explore the application of Stein’s Method in

various formats. Stein’s Method allows us to understand the tendency of

a collection of random variables towards a normal distribution, even if that
collection is not independent or identically-distributed. After highlighting

probability-related concepts pertinent to this subject, we will establish Stein’s

Method through a Central Limit Theorem proof that utilizes Wasserstein dis-
tances. We will then examine the implementation of Stein’s Method in the

realms of dependency graphs and exchangeable pairs.
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1. Foundational Concepts

The main goals of Stein’s method are to demonstrate a way to prove the Cen-
tral Limit Theorem and to understand the tendency of the average of a collection
of random variables towards a normal distribution, even if that collection is not
independent and identically distributed. This section will highlight fundamental
concepts in classical statistics, providing a base for the paper’s main subject.

First, we will understand the properties of a random variable.

Definition 1.1. In an experiment, X is a random variable which signifies the
outcome of an experiment that is based on a random event. For example, if the
experiment is the roll of a standard die:

• X is the value of the roll, taking on a value from {1, 2, 3, 4, 5, 6}, for which
the respective probabilities are denoted as {p1, p2, . . . , p6}.

In classical statistics, {p1 + p2 + · · ·+ p6 = 1}. {p1, p2, . . . , p6} are fixed, but un-
known. To a statistician, X1+X2+· · ·+Xn are the observations of the experiment–
in this example, independent rolls. Using the values of X1 + X2 + · · · + Xn, it is
their job to predict {p1, p2, . . . , p6}.
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Definition 1.2. A probability space represents three factors of an experiment,
(Ω, F , P) where [1]:

• Ω is the sample space, which represents all possibilities of the experi-
ment. In the aforementioned die experiment, the sample space, Ω, is
{1, 2, 3, 4, 5, 6}. If the experiment was instead rolling two dice, Ω has 36
distinct items: {(1, 1), (1, 2), . . . , (6, 6)}, and if the experiment was the sum
of the two rolls, Ω would be {2, 3, . . . , 12}.

• F represents all the subsets of the sample space, including the empty set
and the full set. In the case of rolling a die, there are 26 many valid subsets
of which we can calculate probabilities of.

• P represents the probability of each subset in F occurring. P(X = 1) is the
probability of the value of the random variable being 1, which is 1

6 . Here,
the subset within F we are considering is {1}.

Thus, utilizing Definitions 1.1 and 1.2, a random variable X : Ω → R (a sample
space containing only real numbers) represents an outcome that we don’t know,
on a probability space (Ω,F ,P). Two types of random variables that we will dis-
cuss in this paper are discrete, with X assuming countable values (such as the
die example), and continuous, where X assumes values on a continuous spectrum
(such as experiments where we observe the heights of people or amounts of rain). A
discrete random variable X is a random variable that takes countably many values
{a1, a2, . . .}.

Definition 1.3. The expectation E of a random variable is the mean of all the
possible outcomes, with those outcomes weighted based on their probabilities of oc-
curring. Generalized formulas exist for calculating the expectation, however those
formulas are not necessary for this exposition. For discrete random variables, ex-
pectation is calculated by the following formula:

E(X) =

∞∑
i=1

aip(ai).

For a fair 6-sided die,

E(X) =

6∑
i=1

i · pi =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5,

where ai = i and p(ai) = 1
6 . For continuous random variables, expectation is

calculated as: ∫ ∞

−∞
xf(x)dx.

This means, if an experiment is repeated n times independently, we can attain an
approximation of the ‘average’ value of the random variable.

Definition 1.4. The variance σ2 of a random variable is how far the possi-
ble outcomes are spread out from the expectation, represented by the formula:
σ2 = V ar(X) = E(X2) − (E(X))2 ≥ 0. Higher values indicate a more spread out
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set from the expectation.

Definition 1.5. For a continuous random variable X, the probability density
function (PDF) is:

P(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

Definition 1.6. For a continuous random variable X, the cumulative density
function (CDF) is:

P(X ≤ b) =

∫ b

−∞
f(x)dx = F (b).

There are many classical examples of discrete and continuous random variables.
One well-known example is the normal distribution, an important mathematical
concept due to its observed prevalence among many natural phenomena. Precisely,
it is a continuous random variable with the following PDF [4]:

(1.7) P(a ≤ X ≤ b) =

∫ b

a

1√
2π

e
−x2

2 dx,

where variable X has an expectation of 0 and variance of 1. (1.7) was derived since∫∞
−∞

1√
2π

e
−x2

2 dx = 1. If X does not have a distribution as mentioned above, where

X ∼ N(0, 1), then we can adjust the function to still yield a normal distribution
for X ∼ N(µ, σ2) with

f̂(X) =
1√
2πσ2

e
−(X−µ)2

2σ2 .

Now, we will understand how random variables interact with each other. From
these early definitions, we move onto an important topic: convergence. Using the
six-sided die example, the more times we roll the die, the more likely it is that the
average value of all the rolls tends towards E(X) = 3.5. In other words, the more
times the value of random variable X is calculated, the closer the average value of
those rolls will approach the expectation.

We say that a sequence of random variables Xn converges in distribution to X
when

P(Xn ≤ x) → P(X ≤ x),

for all x which are continuity points of the function F (x) := P(X ≤ x). An alter-
native way to check for convergence in distribution is to compute the Wasserstein
distance which is defined as

(1.8) Wass(X,Y ) = sup{|E[g(X)]− E[g(Y )]| : g is 1-Lipschitz},

where 1-Lipschitz functions are the set of all functions g satisfying |g(u)−g(v)| ≤
|u − v| for all {u, v}, and the supremum (sup) is the smallest upper bound of a
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set. The Wasserstein metric quantifies a distance between two probability dis-
tributions, using the notation Wass(W,Z) to denote the quantified closeness in
distribution between distribution W and distribution Z. This is significant because
it enables us to compare how close a distribution may be to a normal distribution.
If Wass(Xn, X) → 0, then a sequence of random variable X converges in distribu-

tion to X, in other words: Xn
d−→ X.

Now, we must understand the concept of independence, which is a property
among some collections of random variables where the outcome/value of one ran-
dom variable does not affect the outcome/value of another.

Definition 1.9. Given a probability space (Ω,F ,P), and a collection of random
variables {X1, X2, . . . , Xn} in that probability space, we say that the collection is
independent if

P(X1 ∈ A1, X2 ∈ A2, Xn ∈ An) = P(X1 ∈ A1) · P(X2 ∈ A2) . . .P(Xn ∈ An),

for all sets A1, A2, · · ·An in F . Furthermore, if all the Xi’s have same distribution,
they we say they are IID variables– independent and identically distributed.

TheCentral Limit Theorem is a specific application of convergence properties
discussed above, and states that as a collection of IID variables with the same
probability distribution are simulated a very large number of times, the distribution
gets closer to a normal distribution. Mathematically, if X1, X2, . . . Xn is an IID
sequence of random variables with mean µ and variance σ2 then

X1 +X2 + · · ·+Xn√
n

d→ X.

For rigorous proofs, refer to An Intermediate Course in Probability by Allan
Gut[2], for a comprehensive visualization, refer to the Essence of Probability series
by 3blue1brown[3].

In this section, we have observed how a normal distribution and Central Limit
Theorem are results of a convergence in distribution that we can make if the collec-
tion of the random variables is independent and identically distributed. However,
what happens if the random variables that we are concerned with analyzing are not
IID when simulated repeatedly? Is there still some way we can identify a meaning-
ful trend towards a normal-like distribution? These are the questions that Stein’s
method seeks to offer a solution to.

2. Stein’s Method

Stein’s Lemma presents the following result: A random variable is normally
distributed, such as variable Z ∼ N(0, 1). Given such a variable,

E[Zf(Z)] = E[f ′(Z)].

The converse also holds, where if the above equation is true for a large class
of functions, then Z is normally distributed. Consequently, supposing we are pre-
sented with a random variable Yn → Z, then we would expect |E[Ynf(Yn)] −
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E[f ′(Yn)]| to be very small as n → ∞. Therefore, for a bounded function g, if

E[g(Yn) − g(Z)] → 0, then Yn
d−→ Z. This means that even if Yn is not an IID

variable, we can identify key behavioral patterns to help us conclude a certain simi-
larity level in distribution to Z which is normally distributed. In (1.8), we observed
the Wasserstein distance formula which connects all these ideas together, and will
be used to compute calculations in later sections.

Given a function g such that E[g(Z)] < ∞ and Z ∼ N(0, 1), Stein’s lemma gives
us a function f that satisfies the equation

(2.1) f ′(x)− xf(x) = g(x)− E[g(Z)].

Through a process of integration, we find the function f that is an absolute,
continuous solution of the above equation is

(2.2) f(x) = e
x2

2

∫ x

−∞
e

−y2

2 (g(y)− Eg(Z))dy.

Importantly, from this precise description of f , we can deduce further properties
of f : |f(X)| ≤ 1, |f ′(X)| ≤

√
2π, |f ′′(X)| ≤ 2, given g is 1-Lipschitz. By increasing

this class we obtain the following inequality:

(2.3) Wass(W,Z) ≤ sup{|E(f ′(W )−Wf(W ))| : |f | ≤ 1, |f ′| ≤
√
2π, |f ′′| ≤ 2}.

(2.3) will be the starting point in future sections when we calculate results for
our examples. When the collection of random variables is IID, we can obtain a
quantitative version of the Central Limit Theorem using the following theorem:

Theorem 2.4 (Stein’s method for IID samples [5]). Suppose X1, X2, X3, . . . are
IID random variables with a mean of 0, variance of 1, and a finite 3rd moment
(E(X3) is a finite number). We have

(2.5) Wass(

∑n
i=1 Xi√
n

,Z) ≤ 3

n
3
2

n∑
i=1

E|Xi|3,

where Z ∼ N(0, 1).

Proof of Theorem 2.4. Let us expand E[Wf(W )] as follows:

E[Wf(W )] =
1√
n
(E[Xif(W )].

Wi = W − Xi√
n
, which then makes Wi independent of Xi. Then, we reach

E[Xif(Wi)] = E[Xi]E[f(Wi)] = 0.

In the next step, we now see that

E(Xif(W )) = E(Xi(f(W )− f(Wi))) =

E(Xi(f(W )− f(Wi)− (W −Wi)f
′(Wi))) + E[Xi(W −Wi)f

′(Wi)].

Here, we note that W − Wi = Xi√
n
. In light of the above equation, and using

Taylor expansion, we get
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|E[Xi(f(W )− f(Wi)− f ′(Wi)
Xi√
n
)]| ≤ E|Xi|3

n
.

Using the fact that E(Xi)
2 = 1,

E[Xi(W −Wi)f
′(Wi)] =

1√
n
Ef ′(Wi).

Using the above two calculations,

|E(W (f(W ))− 1

n

∑
E(f ′(Wi))| ≤

E|Xi|3

n
3
2

.

Finally, using the bounds established in (2.3) we also observe that

| 1
n

∑
E[f ′(Wi)− f ′(W )]| ≤ |f ′′|

n

n∑
i=1

E[Wi −W ] ≤ 2

n
3
2

n∑
i=1

E|Xi|3.

By combining the above terms, we complete our proof, and thus derive a bound
for our Wasserstein distance.

□

In the next two sections, we will apply the concepts discussed in the first sec-
tion, and the equations derived in this section, to implement Stein’s Method across
different examples of random variables that model real-world scenarios.

3. Dependency Graphs

W is a large graph with vertices {X1, . . . , Xn} that may or may not demonstrate
a relationship to one another through an edge, where

W =
X1 + . . .+Xn√

n
.

Wi are the parts of W not influenced by Xi, where W − Wi is thought to be
small since in a large field, one vertex Xi may influence others around it, but when
considering the total field at large the impact is presumed be small. This can be
contextualized to a population group where you are attempting to chart out re-
lationships among people. While one individual may be impactful to a group of
connections around them, that person has a minimal effect on W , thereby making
Wi rather large. Importantly, however, because of this influence that one vertex
may have on others in the form of a connected edge, {X1, X2, . . . , Xn} are identi-
cally distributed but not independent.

Theorem 3.1 (Dependency Graph Method [5]). With E(Xi) = 0, σ2 = V ar(
∑

Xi),
D representing the most connected vertex (1 + max degree) and Z representing a
normal distribution:

(3.2) Wass(W,Z) ≤ 4√
πσ2

√
D3

∑
E|Xi|4 +

D2

σ3

∑
E|Xi|3.
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Proof of Theorem 3.1. Using any function f that is within the bounds established
in (2.3),

E[Wf(W )] =
1

σ

n∑
i=1

E[Xi(f(W )− f(Wi))] =

1

σ

∑
E[Xi(f(W )− f(Wi)− (W −Wi)f

′(W )]

+
1

σ

∑
E[Xi(W −Wi)f

′(W )].

Ni is considered the neighborhood of dependence, the vertices that are influenced
by Xi. If j is not in Ni then Xj is independent of Xi, and W − Wi, is equal to
1
σ

∑
j /∈Ni

Xj . From this, using Lagrangian bounds, we derive

1

σ

∑
E[Xi(f(W )− f(Wi)− (W −Wi)f

′(W )] ≤ 1

σ

∑ 1

2
E|Xi(W −Wi)

2||f ′′|

≤ 1

σ3

∑
E|Xi(

∑
j∈Ni

Xj)
2| and 1

σ

∑
E[Xi(W −Wi)f

′(W )] =

1

σ

∑
EXi(

∑
j∈Ni

Xjf(W )) = E(f ′(W )[
1

σ2

∑
Xi(

∑
j∈Ni

Xj)]).

Developing our proof further,

T =
1

σ2

∑
Xi(

∑
j∈Ni

Xj) =
1

σ
E
∑

Xi(W −Wi) =
1

σ
E
∑

XiW = E(W 2) = 1.

Reincorporating T back into the equation above,

| 1
σ

∑
E[Xi(W −Wi)f

′(W )]− f ′(W )| = |E(f ′(W )(T − 1)| ≤√
2

π

√
E(T − 1)2 =

√
2

π

√
V ar(T ).

Now, we will expand T to its long form, and substitute it into the Wasserstein
bound equation:

|E(Wf(W )− Ef ′(W )| ≤
√

2

π

√
V ar(

1

σ2

∑
Xi(

∑
j∈Ni

Xj))

+
1

σ3

∑
E|Xi(

∑
j∈Ni

Xj)
2| ≤ 1

σ3

∑
i

∑
j,k∈Ni

E|XiXjXk|

≤ 1

σ3

∑
i

∑
j,k∈Ni

1

3
(E|Xi|3 + E|Xi|3 + E|Xi|3) ≤

D2

σ3

∑
E|Xi|3.

Thus, we have determined the second term in the right-hand side of (3.2). When
substituting in both the respective terms, our proof is completed. We will now
calculate the first term through the following operation:
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V ar(
∑

i,j∈Ni

XiXj) ≤ 2D2
∑
i∼j

V ar(XiXj) ≤ 2D3
∑

E(X4
i ).

□

We can now apply this concept to a relationship triangle. Consider a graph with
n nodes {1, 2, 3, . . . , n} where each edge is present with probability p independently.
These are called Erdos-Renyi random graphs. We would like to prove the Cen-
tral Limit Theorem for triangles in this random graph as n → ∞, keeping in mind
that the probability of having a triangle with {1, 2, 3} vertices and with {1, 2, 4}
vertices are not independent.

Figure 1. Erdos-Renyi random graph [6].

Theorem 3.3 (Triangle Central Limit Theorem). Let W be the number of triangles
in an Erdos-Renyi random graph with probability parameter p ∈ (0, 1). There exists
a constant C > 0 depending on p such that

(3.4) Wass(W,Z) ≤ C

n
,

where Z is a standard normal random variable.

Proof of Theorem 3.3. Given edges i and j, Xi,j = 1 if i and j are connected, and
equals 0 if not. Further, P(Xi,j = 1) = p and P(Xi,j = 0) = 1−p. The total number
of triangles that exist in a given field of edges is thus:

∑
1≤i<j<k≤n Xi,jXj,kXk,i.

This concept can be used to illustrate a variety of real-world interactions such as
friend groups and their potential connections to surrounding people. Because the
probability of an edge forming is independent, the expectation E[Xi,jXj,kXk,i] = p3

and the variance is E[Xi,jXj,kXk,i]− (E[Xi,jXj,kXk,i])
2 = p3(1− p3).

Given a triangle (edges i, j, k are all connected to each other), the maximum
number of triangles that share an edge to that triangle is 3(n − 3) which is our
D. Consider an example of 4 vertices in which 3 edges connect with each other to
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form a triangle. Then, the 1 remaining vertex can at maximum connect with the 3
other vertices, forming 3 guaranteed triangles given we know the other vertices are
already connected to each other. Thus, our D value here is 3(4− 3) = 3.

Standardizing the distribution of the scenario above gives us

W =

∑
1≤i<j<k≤n Xĩj̃Xj̃k̃Xk̃ĩ

σ
,

where Xĩj̃Xj̃k̃Xk̃ĩ = Xi,jXj,kXk,i − p3 in order to center the expectation. The
Wasserstein distance between W and Z is thus

Wass(W,Z) ≤ 4√
π

√
D3

∑
i,j,k E[|Xĩj̃Xj̃k̃Xk̃ĩ|4]

σ2
+

D2

σ3

∑
1≤i<j<k≤n

E[|Xĩj̃Xj̃k̃Xk̃ĩ|
3].

(3.5)

To simplify the inequality, we can calculate the order of each variable, since that
will help us establish the degree of significance that our Wasserstein distance is less
than or equal to, giving us a good idea of the distribution’s proximity to a normal
distribution even if we do not arrive at an exact answer. D is to the order of n;
as mentioned earlier D = 3(n − 3) while σ is to the order of n2. The order of
expectation E is derived from the sum of

(
n
3

)
many random variables, which equals

n(n−1)(n−2)
6 and thus has a power of n3. Simplifying the above expression, both

terms amount to the order of C
n where C is some constant. This completes the

proof.
□

The above theorem illustrates that even though the dependency graph question
may involve neighborhoods that make the variable not necessarily IID, the above
method allows to understand how close an observable of interest is to a normal
distribution. In fact, with further computation one can even find Wass(W,Z) ≤
C0

np
9
2
where the constant C0 can be chosen free of p.

4. Exchangeable Pairs

One limitation of the dependency graph is that if a random variable is dependent
on a large collection of other random variables (if the D value is large), the method
is no longer suitable to use, given that the nature of the problem we considered
above is when the effect of one vertex on the total population group is, while no-
ticeable and thus not independent, minimal.

There are real-world instances, as we will see below, where each individual ver-
tex is dependent on every other vertex, yet the dependency itself, while there,
is minimal. Essentially, while dependency graphs focus on a minimal number of
strong relationships, the exchangeable pairs method focuses on a large quantity
of weaker relationships. Given how weak those relationships may be, we still can
prove Central Limit Theorem.
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Theorem 4.1 (Exchangeable Pairs Method [5]). W ′ is a random variable with the
same distribution as W. Suppose

E[W ] = 0,

E[W 2] = V ar(W ) = 1,

E[W ′ −W |W ] = −λW,

where λ is some small positive number. We then have the following bound on the
Wasserstein distance:

(4.2) Wass(W,Z) ≤
√

2

π
V ar(

1

2λ
E[W ′ −W |W ]) +

1

3λ
E|W ′ −W |3,

where Z again denotes a standard normal random variable.

Proof of Theorem 4.1. Using our above definitions of W and W ′,

E(W −W ′)2 = 2λ = E[W ′2 +W 2 − 2W ′W ] = E[2W 2 − 2W ′W ] =

E[2W (W −W ′)] = E[2WE(W −W ′|W )] = E[2λW 2] = 2λ.

Instead of working with f , we can work with F (x) =
∫ x

0
f(y)dy so that F ′ = f .

Then,

0 = E[(W ′ −W )f ′(W )] +
1

2
E[(W −′ W )2f ′′(W )] + E[remainder].

Utilizing Taylor Series properties given the bounds established in (2.3),

|remainder| ≤ 1

6
|W −W ′|3|f ′′| ≤ 1

3
|W −W ′|3.

The calculation of the first-term of (4.2) is,

−λE[Wf(W )] = E[(W ′ −W )f(W )] = −E[
1

2
(W −W ′)2f ′(W ) + remainder]

= −E[
1

2
E[(W −W ′)2|W ]f ′(W )] + E[remainder].

In the final step, we combine the results to derive an upper bound for the Wasser-
stein distance, calculated as

E|[Wf(W )− f ′(W )]| = |E[f ′(W )(E(
(W −W ′)2|W

2λ
− 1))]|+ 1

3λ
E|W −W ′|3 ≤√

2

π
V ar(E[| (W −W ′)2|W

2λ
− 1|]) + 1

3λ
E[|W −W ′|3].

□

We will now try to understand how to apply this method to an Ising Model.
Let us envision a scenario where we have a magnetic charge consisting of n spins
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X1, . . . , Xn that are either a +1 or −1. We consider the following probability
distribution on the spins:

P(X1 = x1, . . . , Xn = xn) ∝ exp(

n−1∑
i=1

xixi+1).

The above probability distribution is quite natural in the sense that similar charges
attract one another, meaning that there is a higher probability that xixi+1 = 1
since both +1 and −1 multiplied by itself is 1. This is why the variable we are
concerned with is not IID; the positive or negative tilt of a magnetic charge affects
the next one and so on so forth. However, Stein’s method is still applicable for the
average spin under this setup.

↓ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↓ · · · ↓
i = 1 2 3 4 5 6 7 8 9 · · · n

xi = −1 −1 −1 1 1 −1 −1 1 −1 · · · −1

Figure 2. 1 dimension Ising Model where the influence of xi on
xi+1 is determined by some probability p [7].

Theorem 4.3 (1D Ising model). Consider the above Ising model. We then have

Wass(
X1 +X2 + · · ·+Xn

σ
, Z) ≤ 8

3
√
n
,

where σ2 = V ar(X1+X2+ · · ·+Xn) and Z is a standard normal random variable.

Proof of Theorem 4.3. Given the properties of W and W ′ discussed earlier, W =
1
σ

∑n
i=1 Xi and σ2 = V ar(

∑n
i=1 Xi). W

′−W =
X′

I−XI

σ where I is uniformly picked
from 1, . . . , n. Taking the expectation with respect to I,

X ′
1 −X1

σ
∗ 1

n
+

X ′
2 −X2

σ
∗ 1

n
+ . . .+

X ′
n −Xn

σ
∗ 1

n

=
1

nσ
(

n∑
i=1

X ′
i −

n∑
i=1

Xi) =
1

nσ

n∑
i=1

X ′
i −

W

n
.

We now can arrive to a precise definition for λ by calculating that

E[W ′ −W |W ] =
1

nσ

n∑
i=1

E[Xi]−
W

n
= −W

n
.

Thus, using the earlier equation E[W ′ −W |W ] = −λW , λ = 1
n . Calculating σ2:
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σ2 = V ar(
∑

Xi) = E((
n∑

Xi)
2) = E[

n∑
i=1

n∑
j=1

XiXj ] =

n∑
i=1

n∑
j=1

E[XiXj ] =

n∑
i=1

E[X2
i ] +

∑∑
i ̸=j

E[XiXj ] ≥ n.

Now that we have reached a value for λ and for σ2 that only involve n which
designates the number of trials we are running of said random variable, we can plug
in those values into the original Wasserstein equation.

1

3λ
E[|W −W ′|3] = n

3
∗ E|XI −X ′

I |3

σ3
≤ 8n

3n
3
2

≤ 8

3
√
n
.

Now we will figure out the first term of (4.2) by calculating the value of the
expectation, where

E[(W ′ −W )2|W ] =
1

σ2
E[(X ′

I −XI)
2|W ] =

1

nσ2
E[

n∑
i=1

X ′
i −Xi)

2|W ] =

1

nσ

n∑
i=1

E[X2
i +X2

i − 2X ′
iXi|W ] = 2− 2E[X ′

iXi|W ] =
2

σ
.

Thus, E[ 1
2λ (W

′−W )2|W ] = n
σ . When plugging this in to the original Wasserstein

equation, the variance of n
σ is 0, and the full term that comes under the square

root gets eliminated. Therefore, Wass(W,Z) ≤ 8
3
√
n
, which decreases in value as

the number of experiments n increases. Therefore, as more trials of this random
variable are conducted, the random variable comes closer and closer to a normal
distribution, thereby validating initial beliefs of W being close to normal despite
not being an independent, identically distributed variable.
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