
THE GALTON-WATSON BRANCHING PROCESS

ADITYA SINGH

Abstract. The Galton-Watson process is a mathematical representation of

the development of a population whose members reproduce or die according

to a probabilistic law. The main goal of this paper is to answer the two key
analytical questions about the long-term behavior of the process – firstly, what

happens in the limit, and secondly, what is the rate of convergence to the limit.

In later sections, we also consider slight variants of the process and examples
of Galton-Watson processes embedded within other stochastic processes. The

emphasis is not on proving the finest limit theorems, but a clear exposition of

the behavior of the process and how it changes based on the exact assumptions
of the model.
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1. Introduction

This paper introduces the Galton-Watson branching process, first proposed by
Francis Galton in 1889 to model the proliferation of family names. It is the simplest
possible model for a random population evolving in time, based on the assumption
that all individuals reproduce independently and all with the same distribution.

Date: August 10, 2024.

1



2 ADITYA SINGH

2. Basic Properties and Extinction Probability

Definition 2.1. A Galton-Watson process is a markov chain {Zn : n = 0, 1, 2, . . .}
on the non-negative integers with transition function

P (i, j) = Pr{Zn+1 = j | Zn = i} =

{
p∗ij if i ≥ 1,

δ0j if i = 0

where {pk}k∈N0
, pk > 0,

∑
k pk = 1 is referred to as the offspring distribution. The

notation ∗i means i-fold convolution, that is, conditioned on Zn = i, Zn+1 is the
sum of i independent random variables with distribution {pk}k∈N0 .

We will typically make the following assumptions:

(1) Z0 = 1
(2) pk < 1,∀k
(3) p0 + p1 < 1
(4) p0 > 0

Hence, we avoid any purely deterministic processes, as well as the uninteresting
case of the single starting individual reproducing one offspring until it eventually
dies. The Galton-Watson process under our assumptions begins with a single in-
dividual in the zeroth generation, then produces Z1 independent Galton-Watson
processes, and so on. Extinction (Zn = 0 for some n) is accessible from any state.

One can visualize the Galton-Watson process via a tree-like structure (hence
the phrase “branching process”) – we start with a single ancestor node in the
zeroth generation (Z0 = 1), and then branch out to Z1 child nodes. These Z1 first
generation nodes then reproduce a sum total of Z2 child nodes, although we don’t
necessarily know how these second generation offspring are allocated amongst the
Z1 first generation nodes:

Figure 1. A tree realization of the Galton-Watson process with
a Binomial(3, 0.4) offspring distribution ([9]).
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To motivate the organization of the paper, we mention a very important historical
example of branching processes: the neutron chain reaction.

The discovery of the neutron itself is due to James Chadwick on February 27,
1932. The following year, on September 12, 1933, the Hungarian physicist Leo
Szilard was one of the very first to propose that neutrons could be responsible for
nuclear chain reactions (nearly a decade later on December 2nd, 1942, Szilard’s
ideas were confirmed under an enormous tent on the University of Chicago’s Stagg
Field, where a team headed by Italian scientist Enrico Fermi engineered the first
controlled nuclear fission chain reaction).

Here is an excerpt from an American Nuclear Society article, showing hints of
a branching process in Szilard’s epiphany: “As Szilard later recounted the story,
when he reached the intersection of Southampton Row and Russell Square a red
light caused him to pause, giving time for his fertile imagination to engage. Then
the idea struck him: If a neutron entered an atomic nucleus, and the subsequent
reaction released two neutrons, it would be possible to produce a chain reaction.
Since neutrons have no charge, each of those newly released neutrons would be able
to travel freely through matter until they struck another nucleus.

If there was a sufficiently large mass, with a sufficient purity of the material
whose nuclei released two neutrons every time it was hit with one neutron, Szilard
realized that there was a distinct potential for industrial-scale power sources. He
recognized immediately that there was also a possibility that the reactions could be
produced in a manner that was rapid enough to cause an explosion of great force
before the material was scattered and the reaction stopped” ([8]).

Note that the branching process Szilard envisions here has an offspring distribu-
tion of p0 = α and p2 = 1− α for some α ≥ 0, as the line “If a neutron entered an
atomic nuclei, and the subsequent reaction released two neutrons...” indicates.

Several important questions are made apparent in Szilard’s thought process.
Firstly is the question of if, once started, the reaction ever stops. After setting
up some basic facts about the process, we address the main questions surrounding
extinction of the process and rates of extinction in Section 2.3, Section 3.1, and
Section 3.2. But Szilard also considers the “possibility that the reactions could be
produced in a manner that was rapid enough to cause an explosion of great force
before the material was scattered and the reaction stopped.” This concerns the
total progeny (Z1+Z2+ . . . ) born over the course of the process, which we address
in Section 4. Indeed, we will see that if we set α = 1/2 in Szilard’s model, then we
have a phenomenon where the process will go extinct with probability one, and yet
the expected number of total progeny is infinite (see Section 4.1)!

We begin our analysis of the Galton-Watson process with what is arguably the
most basic question:

Question 2.1. What happens to the Galton-Watson process in the limit as n tends
to infinity? Does it die out, converge to an equilibrium position, diverge to infinity,
or something else?

2.1. Recursive Structure and Generating Functions. A central tool for our
analysis will be the generating function

f(s) := E[sZ1 ] =

∞∑
j=0

pjs
j

defined for s ∈ [0, 1], and its iterates
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f (n)(s) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(s).

Since the generating function of the sum of i i.i.d. random variables is the generating
function of one raised to the ith power, for any i ∈ N we have

(2.2)

∞∑
j=0

P (i, j)sj =

∞∑
j=0

p∗ij sj = [f(s)]i.

Let Pn(i, j) = Pr{Zn+m = j | Zm = i} denote the n-step transition probability
of the GW process.

Proposition 2.3. Let fn(s) := E[sZn ] =
∑

j Pn(1, j)s
j be the generating function

for Zn. Then fn is the n-fold composition f (n) of the generating function f for Z1.

Proof. This recursion is of the utmost importance, so we give two proofs – one via
the Chapman-Kolmogorov equations, and one via the tower law.

C-K proof: We show fn+1(s) = fn[f(s)] which may then be iterated to obtain
the claim. We have

fn+1(s) =
∑
j

Pn+1(1, j)s
j =

∑
j

(∑
k

Pn(1, k)P (k, j)

)
sj(C-K)

=
∑
k

Pn(1, k)
∑
j

P (k, j)sj =
∑
k

Pn(1, k)[f(s)]
k(using (2.2))

= fn[f(s)].

Tower law proof: We proceed based on the recursive observation that given Zn,

Zn+1 is the sum of Zn independent copies of Z1. The notation X
(i)
j is used when

we have a collection of i.i.d. random variables with distribution Xj . We have

fn+1(s) = E[sZn+1 ] = EE[sZn+1 |Zn] = EE[s
∑Zn

i=1 Z
(i)
1 |Zn]

= E[f(s)Zn ] = fn[f(s)].

Dually, we could have observed that given Z1, Zn+1 is the sum of Z1 independent
copies of Zn, so that

fn+1(s) = E[sZn+1 ] = EE[sZn+1 |Z1] = EE[s
∑Z1

i=1 Z(i)
n |Z1]

= E[fn(s)Z1 ] = f [fn(s)].

□

2.2. Moments of the Process. Since f (n) and fn are the same, we will only use
the notation fn from here onwards. The moments of the process can be computed
via the derivatives of the fn at 1:

m
def
= E[Z1] =

∑
j

P (1, j)j = f ′(1),

and
E[Zn] =

∑
j

Pn(1, j)j = f ′
n(1) = f ′

n−1(f(1))f
′(1)

= f ′
n−1(1)f

′(1) = . . . = [f ′(1)]n = mn.
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Remark 2.4. Markov’s inequality gives Pr{Zn ≥ 1} ≤ mn, so that in the case of
m < 1, we see limn→∞ Pr{Zn ≥ 1} = Pr{

⋂
n(Zn ≥ 1)} = 0, that is the process dies

out at some n almost surely. We give a second proof of this fact (and extend it to
the case m = 1) later.

Computing the second moments of the process involves evaluating the second
derivative of the generating function at 1. We have

f ′′
n (1) =

∑
j

j(j − 1)Pn(1, j) =
∑
j

j2Pn(1, j)−
∑
j

jPn(1, j)

= E[Z2
n]− E[Zn],

and hence

E[Z2
n] = f ′′

n (1) + f ′
n(1).

Higher moments can be similarly derived by linear combinations of higher order
derivatives of fn at 1.

Proposition 2.5. Denote σ2 := Var(Z1) = f ′′(1) +m−m2. Then the variance of
Zn is given by

Var(Zn) =

{
σ2mn−1(mn−1)

(m−1) if m ̸= 1,

nσ2 if m = 1
.

Proof. Var(Zn) = E[Z2
n]− E[Zn]

2 = f ′′
n (1) + f ′

n(1)− (f ′
n(1))

2. By the chain rule,

f ′′
n+1(1) = f ′′(1)[f ′

n(1)]
2 + f ′(1)f ′′

n (1) = f ′′(1)m2n +mf ′′
n (1).

Iterating this identity,

f ′′
n (1) = f ′′(1)m2n−2 +mf ′′

n−1(1)

= f ′′(1)m2n−2 +m[f ′′(1)m2n−4 +mf ′′
n−2(1)]

= f ′′(1)m2n−2 + f ′′(1)m2n−3 +m2f ′′
n−2(1)

...

= f ′′(1)m2n−2 + . . .+mn−1f ′′(1)

= f ′′(1)[m2n−2 +m2n−3 + . . .+mn−1].

Hence,

(2.6) Var(Zn) = f ′′(1)[m2n−2 +m2n−3 + . . .+mn−1] +mn −m2n.

For m = 1, the formula clearly holds. If m ̸= 1, then we can factor (2.6) to get

Var(Zn) =
(f ′′(1) +m−m2)mn−1(mn − 1)

m− 1
.

□
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2.3. The Fixed Point Extinction Probability Theorem. As all the informa-
tion about the Zn is contained in the generating functions, the general philosophy
will be to analyze the generating functions as precisely as possible. The following
basic properties are apparent from the definition of f :

Lemma 2.7. (Properties of the generating function) Let t be real.

(1) f is strictly convex and increasing on [0, 1]
(2) f(0) = p0 and f(1) = 1
(3) If m ≤ 1, then f(t) > t for t ∈ [0, 1)
(4) If m > 1 then f(t) = t has a unique solution in [0, 1)

We may summarize as follows:

Proposition 2.8. There exists a smallest positive solution q for the equation f(t) =
t, t ∈ [0, 1]. Furthermore, when m ≤ 1, q = 1, and when m > 1, q < 1.

The situation is illustrated below ([1], pg. 17):

Figure 2. Graphs of the generating function f for m > 1 and m ≤ 1.

We also have the Lamerey diagrams ([1], pg. 17):

Figure 3. Lamerey diagrams of the generating function f .

Figure 3 suggests the following lemma:
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Lemma 2.9. Let q be as in the above proposition.

(1) If t ∈ [0, q), then fn(t) ↑ q as n → ∞
(2) If t ∈ (q, 1), then fn(t) ↓ q as n → ∞
(3) If t = q or t = 1, then fn(t) = t, ∀n.

Proof. If t ∈ [0, q), then

t < f(t) < f(q)

f(t) < f2(t) < f2(q)

f2(t) < f3(t) < f3(q)

...

t < f(t) < f2(t) < · · · < fn(t) < fn(q) = q

for all n. It follows that

lim
n→∞

fn(t) := L ≤ q

Since f is continuous, we have

L = lim
n→∞

fn+1(t) = lim
n→∞

f [fn(t)] = f [ lim
n→∞

fn(t)] = f(L)

But q is the only solution in [0, 1), so q = L.
If t ∈ [q, 1), then q < 1 implies m > 1, so that the graph of f lies below y = x

on (q, 1). Hence

f(q) < f(t) < t

f2(q) < f2(t) < f(t)

f3(q) < f3(t) < f2(t)

...

t > f(t) > f2(t) > · · · > fn(t) > fn(q) = q

for all n. We can now repeat the same argument as in the case t ∈ [0, q) to obtain
the claim.

For t = q or t = 1, the claim is trivial. □

Remark 2.10. Note that on [0, q), the fn converge uniformly to the constant
function q.

We have already done enough work to arrive at an interesting extinction proba-
bility theorem. Since fn(0) ↑ q, we have

lim
n→∞

fn(0) = lim
n→∞

Pr{Zn = 0} = Pr{
⋃
n

(Zn = 0)} = Pr{extinction} = q.

Theorem 2.11. The extinction probability of the Galton-Watson process is the
smallest positive solution of the equation t = f(t). It is 1 if m ≤ 1, and less than 1
if m > 1.

We see that in the subcritical and critical cases (m < 1 and m = 1), there is
only one long-term option – the process dies out almost surely. We now show that
in the supercritical case (m > 1), there are only two long term options.

Lemma 2.12. Let k ∈ N. Then the state k is a transient state of Galton-Watson
process Zn.
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Proof. This is immediate from general markov chain considerations – if a markov
chain Zn has an absorbing state z, and if x is a state such that z is accessible from
x, then x is transient. □

Theorem 2.13. Suppose m > 1. Then with probability one, either Zn = 0, for
some n, or Zn escapes to infinity.

Proof. Observe that Lemma 2.12 implies that for any natural k, Zn equals k in-
finitely often with probability zero. Since the naturals are countable, this means
the event that the sequence {Zn} takes a natural number k as a limit point oc-
curs with probability zero. Hence, the only two remaining options are that the Zn

die out or diverge to infinity, so we may conclude that q = Pr{limn Zn = 0} =
1− Pr{limn Zn = ∞}. □

3. Asymptotic Behavior

Theorem 2.11 and Theorem 2.13 fully answer Question 2.1. But we know next to
nothing about the rates of convergence. Call the cases of m < 1, m = 1, and m > 1
the subcritical, critical and supercritical cases respectively. The next analytical
questions are:

Question 3.1. In the subcritical and critical cases, how fast does the process tend
to extinction?

Question 3.2. In the supercritical case, how fast does the population grow on the
event of non-extinction?

The answer to Question 3.2 simply amounts to looking at the right martingale,
so we begin there.

3.1. The Supercritical Case. Recall that given Zn = i, by definition the pro-
cess {Zn+k : k = 0, 1, 2, . . . } is the sum of i i.i.d. copies of the process {Z0 =
1, Z1, Z2, ...}. Combining this with the Markov property, we obtain

E[Zn+k|Zn, Zn−1, ..., Z0] = E[Zn+k|Zn]

= ZnE[Zk|Z0 = 1] = Znm
k.

Hence, scaling the Zn by m−n gives the following:

Proposition 3.1. Let {Zn}n≥0 be a Galton-Watson branching process with mean
offspring m < ∞. Define the sequence {Wn}n≥0 by Wn = Znm

−n. Let Fn de-
note the natural filtration with respect to {Z1, . . . , Zn}. Then, {Wn,Fn}n≥0 is a
martingale.

Since Wn is a non-negative martingale, and E[W0] = E[Z0] = 1, by the Martin-
gale Convergence Theorem, there exists a random variable W such that

lim
n→∞

Wn = W a.s.

Also note from Fatou’s lemma that

E[W ] ≤ lim inf
n→∞

E[Wn] = 1

so that W is almost surely finite.
It could happen that mn shrinks too fast to observe interesting behavior, and

so W is degenerate, that is Pr{W = 0} = 1 (we know this is always the case for
m ≤ 1). We show this does not happen under an assumption of finite variance:
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Theorem 3.2. If m > 1 and σ2 < ∞, then

(1) E[W ] = 1
(2) Pr{W = 0} = q := Pr{Zn = 0, for some n}

Proof. To prove (1), we show uniform integrability of theWn so we may interchange
limits and the expectation. It suffices to show the second moments of the Wn are
uniformly bounded, which is effortless due to the assumption of finite variance and
the formula for the variance given in Proposition 2.5. Indeed we have

E[W 2
n ] =

E[Z2
n]

m2n
=

Var(Zn)−m2n

m2n
=

σ2mn−1(mn − 1)

(m− 1)m2n
− 1

=
σ2(1 +m−n)

m2 −m
+ 1.

Taking suprema over n,

sup
n

E[W 2
n ] =

σ2

m2 −m
+ 1 < ∞.

To prove (2), set r = Pr{W = 0}. Then E[W ] = 1 implies r < 1. But

r =
∑
k

Pr{W = 0|Z1 = k}Pr{Z1 = k} =
∑
k

pkr
k = f(r)

and in the supercritical case, we know the equation f(s) = s has a unique solution
in (0, 1), so we must have r = q. □

Letting the asymptotic symbol f ∼ g denote limn→∞
f(n)
g(n) = 1, we now obtain:

Theorem 3.3. The Zn grow geometrically like mnW for large n. More precisely,
Zn ∼ Wmn.

Loosely speaking, on the event of non-extinction that W ̸= 0, we can interpret
the constant factor W as the randomness in the first few generations, after which
the population grows geometrically. We can see this via a beautiful visualization
by Nils Berglund of a G-W process with a Binomial(3, 0.4) offspring distribution,
in which the center node is the initial ancestor:

Figure 4. A realization of the Galton-Watson process with a
Binomial(3, 0.4) offspring distribution ([9]).
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Remark 3.4. A much deeper version of Theorem 3.2 known as the Kesten-Stigum
theorem shows that statements 1 and 2 in Theorem 3.2 are both equivalent to
the offspring distribution condition E[L log+ L] < ∞, where L denotes a generic
random variable with the offspring distribution {pk} (see [2], Chapter 14 for a
detailed treatment). Hence, the geometric growth behavior on the event of non-
extinction – which Theorem 3.2 establishes only for the case of finite variance –
actually occurs precisely when this moment assumption is satisfied.

3.2. The Subcritical and Critical Cases. Our analysis so far makes no distinc-
tion between the subcritical and critical cases, since both die out with probability
one. However, in answering Question 3.1, we will see we can distinguish between
the two by the expectation of the extinction time.

Denote the extinction time by

τ := min{n ≥ 1 : Zn = 0}.
We will look at the tail {τ > n} of the extinction time for the cases m < 1 and

m = 1.

Theorem 3.5. Let {Zn}n≥0 be a Galton Watson process with m ≤ 1 and σ2 < ∞.
Then

(1) If m < 1, there exists a C ∈ (0,∞) such that Pr{τ > n} ∼ Cmn

(2) (Kolmogorov’s Probability Decay Rate) If m = 1, then Pr{τ > n} ∼ 2
σ2n

Corollary 3.6. In the subcritical case, the extinction time τ has finite moments
of all order. In the critical case, τ has infinite expectation.

Proof. For any random variable X taking values in [0,∞], if there exists a constant
c > 0 such that the tail {X > n} is O(e−cn), then it has finite moments of all
orders, while the tail being Ω(1/n) implies it has infinite expectation. □

To prove the first part of Theorem 3.5, we will need the following useful method
for doing asymptotics: Suppose an is a sequence of positive numbers going to
infinity, and we want to find a positive function f(n) such that an/f(n) converges
to a positive constant L. By setting bn = an/f(n) and δn = (bn+1/bn) − 1, a
sufficient condition is that

∑∞
n=1 |δn| < ∞ (for a proof see [4], pg. 13).

Proof of Theorem 3.5, part 1. Observe

Pr{τ > n} = Pr{Zn > 0} = 1− Pr{Zn = 0} = 1− fn(0)

so the task is to show

lim
n→∞

1− fn(0)

mn
:= C ∈ (0,∞).

Set δn = 1−fn+1(0)
m(1−fn(0))

− 1; we know that it is sufficient to show
∑∞

n=1 |δn| < ∞.

We will show that δn = O(mn). In the case m < 1, we know fn(0) ↑ 1, so that
O(1 − fn(0)) will be small for large n. Thus we will look at the Taylor expansion
for f about 1 (note that the radius of convergence of f is not necessarily bigger
than 1, but the assumption of finite variance means f is at least twice differentiable
at 1, so we may proceed). From Taylor’s Theorem with Remainder, we have some
ε ∈ (1− h, 1) such that

f(1− h) = f(1) + (−h)f ′(1) +
(−h)2

2
f ′′(ε),
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or

(3.7) f(1− h) = 1 + (−h)m+O(h2).

Substituting h = 1− fn(0) into (3.7) gives

(3.8) 1− fn+1(0) = [1− fn(0)]m+O([1− fn(0)]
2),

where the precise remainder form is

(3.9) 1− fn+1(0) = [1− fn(0)]m− [1− fn(0)]
2

2
f ′′(ε)

for some ε ∈ (fn(0), 1).
From (3.9) and convexity of f , we see that the first order Taylor expansion is an

overestimate, and so (3.8) yields a constant C ∈ (0,∞) and N0 such that for every
n ≥ N0,

(3.10) [1− fn(0)]m− C[1− fn(0)]
2 ≤ 1− fn+1(0) ≤ [1− fn(0)]m

and we have the upper bound 1− fn+1(0) ≤ [1− fn(0)]m for all n ≥ 1.
Dividing (3.10) through by [1− fn(0)]m, for all n ≥ N0 we obtain

(3.11) 1− C[1− fn(0)] ≤ δn + 1 ≤ 1

where we have redefined C:=C/m.
Iterating the upper bound 1− fn+1(0) ≤ [1− fn(0)]m gives 1− fn(0) ≤ mn, and

substituting into (3.11), for all n ≥ N0 we have

0 ≤ |δn| ≤ Cmn

so that we obtain convergence of
∑∞

n=1 |δn| by comparison with the convergent
geometric series

∑
n m

n. □

We follow the presentation in [2], chapter 9, for the proof of part 2 of Theorem 3.5.
The method of proof will be a “proof by comparison” (of generating functions).
It proceeds as follows – we will directly verify that the asymptotic holds for a
specific example of a Galton Watson process with geometric offspring distribution,
in which computing the explicit form of the generating functions turns out to be
easy. We then prove an inequality relating the generating functions of an arbitrary
critical Galton Watson process (satisfying the assumptions of Theorem 3.5) to the
geometric offspring Galton Watson process, which then gives the asymptotic for
the arbitrary critical Galton Watson process.

Example 3.12 (Geometric Offspring Galton Watson Process). For p ∈ (0, 1),
define the offspring distribution {pk}k≥0 of a Galton Watson process by

p0 := p := 1− q, pk = q2pk−1, k = 1, 2, . . .

This is not exactly the standard geometric distribution, but in the case of p = 1/2,
we obtain the geometric distribution supported on N0 for the number of failures
before the first success. It is a routine computation to show that E[Z1] = f ′(1) = 1
and σ2 = f ′′(1) = 2p

q (make use of term-by-term differentiation of f(s) on (0, 1)).

The form of the variance is the key flexibility that will make this Galton-Watson
process useful for comparison – based on our choice of p, σ2 can take any value in
(0,∞). We now compute the first explicit example of generating functions which
have been so central to our analysis:
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Proposition 3.13. The generating functions for the geometric offspring Galton
Watson process are linear fractional transformations. They take the form

fn(s) =
np− (np− q)s

q + np− nps

Proof. Induction on n. For n = 1, we have

f(s) =

∞∑
k=0

pks
k = p+

∞∑
k=1

q2pk−1sk = p+
(1− p)2

p

∞∑
k=1

(ps)k

(3.14) = p+
(1− p)2

p
[

ps

1− ps
] = · · · = p− (p− q)s

1− ps

which aligns with the claim. Now suppose the claim holds for fn(s). Then

fn+1(s) = f(fn(s)) = f(
np− (np− q)s

q + np− nps
).

After plugging the input fn(s) into the base case (3.14) and tediously simplifying,
the claim holds. □

Now we verify the asymptotic Pr{τ > n} ∼ 2
σ2n holds for the geometric offspring

GW process (for a particular choice of p to be specified below). We have

nPr{τ > n} = n[1− fn(0)] = n(1− np

q + np
) =

nq

q + np

Sending n to infinity, we see limn→∞ nPr{τ > n} = q
p = 2

σ2 .

The key tool to complete the proof in the general case is the following lemma:

Lemma 3.15 (Spitzer’s Comparison lemma). Suppose that f and g are probability

mass functions on N0, with generating functions f̂(s) =
∑∞

j=0 f(j)s
j and ĝ(s) =∑∞

j=0 g(j)s
j. Assume that

f̂ ′(1) = ĝ′(1) = 1, f ′′(1) < g′′(1) < ∞
Then there exists k,m ∈ N such that

f̂n+k(s) ≤ ĝn+m(s), ∀ s ∈ [0, 1], n = 0, 1, 2, . . .

Proof. In this proof, we use the notation fn (resp. gn) for the n-fold composition
of f (resp. g). Note that all the earlier results about the fn that we developed
in the f ′(1) = 1 case for the Galton-Watson process apply here - Figure 3 is the

picture to look at. We claim f̂ < ĝ on a one-sided neighborhood about 1. For
every s0 ∈ [0, 1], the first order Taylor expansions about 1 give some ε ∈ (s0, 1) and
ϱ ∈ (s0, 1) such that

f̂(s0) = f̂(1) + (1− s0)f̂
′(1) +

1

2
(1− s0)

2f̂ ′′(ε),

ĝ(s0) = ĝ(1) + (1− s0)ĝ
′(1) +

1

2
(1− s0)

2ĝ′′(ϱ).

Since f̂ and ĝ are C2, we may pick s0 so that for all ε ∈ [s0, 1] and all ϱ ∈ [s0, 1],

f̂ ′′(ε) < ĝ′′(ϱ)

and hence

(3.16) f̂(s) < ĝ(s)
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for every s ∈ [s0, 1]. Since f̂ is strictly increasing on [0, 1], we may apply f̂ to both
sides of (3.16) to obtain

(3.17) f̂2(s) < f̂(ĝ(s))

for every s ∈ [s0, 1].
In the case ĝ′(1) = 1, we know ĝ(s) ≥ s for all s ∈ [0, 1], so s ≥ s0 implies

ĝ(s) ≥ s0. Thus we can apply the upper bound (3.16) to continue the inequality in
(3.17) to obtain

f̂2(s) < ĝ2(s)

for all s ∈ [s0, 1]. As the ĝn converge upward (in n) on [0, 1], s ∈ [s0, 1] implies
ĝn(s) ∈ [s0, 1] for all n, so we may iterate the above argument to obtain for any
s ∈ [s0, 1] and for all n,

(3.18) f̂n(s) ≤ ĝn(s).

Since f̂n(0) ↑ 1, there exists k ∈ N such that s0 < f̂k(0). But ĝn(0) ↑ 1 as well,

so we can find m > k so that f̂k(s0) ≤ ĝm(0). All together now – for s ∈ [0, s0],

s0 ≤ f̂k(0) ≤ f̂k(s) ≤ f̂k(s0) ≤ ĝm(0) ≤ ĝm(s).

Hence we may apply f̂n to both sides of the inequality f̂k(s) ≤ ĝm(s) and then
apply (3.18) to obtain the claim for all s ∈ [0, s0]. Since ĝ is strictly increasing and
we picked m > k, from (3.18) we see the claim also holds on [s0, 1]. □

Remark 3.19. The strongest version of Spitzer’s Comparison Lemma replaces our
assumption f ′′(1) < g′′(1) < ∞ with the slightly weaker f ′′(1−) < g′′(1−) < ∞.
Notably, our proof’s method of second order Taylor approximations is no longer
valid since f and g need not be twice differentiable, and the proof is harder.

Proposition 3.20. Suppose m = 1 and σ2 < ∞. Then

1

n
[

1

1− fn(s)
− 1

1− s
] → σ2

2

uniformly on [0, 1) as n → ∞.

Proof. We have already seens this holds for the geometric offspring distribution
generating functions. We bound f between two suitably chosen such functions.
Fix ϵ > 0. It suffices to show the limit is bounded – uniformly in s – above by

(1+ϵ)σ
2

2 and below by (1−ϵ)σ
2

2 , and then send ϵ → 0. We seek to compare f to the

generating function g(s) = p−(2p−1)s
1−ps of the geometric distribution. Indeed, since

we are free to pick the variance, choose p so that g′′(1) = 2p
1−p = (1+ϵ)σ2 > σ2, and

hence the hypotheses to compare f and g in Spitzer are satisfied. We get k,m ∈ N
such that for any s ∈ [0, 1) and for all n,

[1− fn+k(s)]
−1 ≤ [1− gn+m(s)]−1,

so subtracting off [1− s]−1 from both sides gives

[1− fn+k(s)]
−1]− [1− s]−1 ≤ [1− gn+m(s)]−1]− [1− s]−1

=
(n+m)p

q
= (n+m)(1 + ϵ)

σ2

2
.
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We stress that n is independent of s. Hence,

(3.21) lim
n→∞

1

n
[

1

1− fn(s)
− 1

1− s
] ≤ (1 + ϵ)

σ2

2
.

Now choose p so that the variance of the geometric offspring Galton-Watson
process is (1− ϵ)σ2. From Spitzer we get k′ and m′ such that for all n we have

(k′ + n)(1− ϵ)
σ2

2
≤ [1− fm′+n(s)]

−1 − [1− s]−1,

and hence

(3.22) (1− ϵ)
σ2

2
≤ lim

n→∞

1

n
[

1

1− fn(s)
− 1

1− s
].

Simultaneously sending ϵ → 0 in (3.21) and (3.22) gives the claim. □

Proof of Theorem 3.5 Part 2. Plugging in s = 0 to the above proposition gives

lim
n→∞

1

n[1− fn(0)]
=

σ2

2

which is equivalent to Pr{τ > n} ∼ 2
σ2n . Hence the proof that the tail of the

extinction time decays linearly with n is complete. □

4. Total Progeny

We have seen that both the subcritical and critical Galton-Watson processes die
out almost surely. It follows that with probability one, finitely many individuals are
born in either case. However, there is a subtle difference in that the expectation of
the extinction time is finite in the subcritical case and infinite in the critical case. We
now show we can again distinguish the subcritical and critical case by the property
that the expected number of individuals in the subcritical case is finite, while the
expected number of individuals born in the critical case is infinite. The approach is
a fixed point theorem reminiscent of the proof for the extinction probability fixed
point theorem (Theorem 2.11), and will allow us to compute explicitly the expected
number of individuals born as a function of m.

For convenience, we will count the zero generation ancestor, so that we define
the total progeny of a Galton-Watson process {Zn} at the nth stage to be

Yn = 1 + Z1 + Z2 + · · ·+ Zn

Proposition 4.1. Let gn(s) = E[sYn ] denote the generating function for Yn. Then

gn(s) = sf(gn−1(s)).

Proof. Let n ∈ N. The task is to show

E[sYn ] = sEE[sYn−1 ]Z1 .
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We have

E[sYn ] = sE[sZ1sZ2 . . . sZn ]

= sEE[sZ1sZ2 . . . sZn |Z1]

= sEE[s
∑Z1

i=1 1s
∑Z1

i=1 Z
(i)
1 . . . s

∑Z1
i=1 Z

(i)
n−1 |Z1]

= sEE[s
∑Z1

i=1 1+Z
(i)
1 +···+Z

(i)
n−1 ]|Z1]

= sEE[s
∑Z1

i=1 Yn−1 |Z1]

= sEE[sYn−1 ]Z1

□

For s ∈ (0, 1), as g(s) = sf(s), and f(s) < f(1) < 1, we have g(s) < s. Using
the fact that f is strictly increasing, we see

g2(s) = sf(g1(s)) < sf(s) = g1(s).

We can iterate this argument to see for any n and for any s ∈ (0, 1),

g1(s) > g2(s) > · · · > gn(s),

and hence the gn converge downward to a limit

ρ(s) := lim
n→∞

gn(s).

Then

(4.2) ρ(s) = lim
n→∞

sf [gn−1(s)] = sf [ lim
n→∞

gn−1(s)] = sf [ρ(s)]

so that for fixed s ∈ (0, 1), ρ(s) is a solution to the equation

(4.3) t = sf(t).

Similar to our analysis with the fixed point equation t = f(t), we can show ρ(s)
is the unique solution of (4.3) in (0, 1). That there is a unique such solution is
immediately apparent if one visualizes a vertically scaled down curve of the graph
of f(t) in Figures 1 and 2. A simple geometric argument goes as follows:

Let q be the smallest positive solution of t = f(t) given by Theorem 1. Since the
graph of f(t) is a convex curve, the graph of sf(t) is a convex curve, so that it can
intersect the line y = x at most twice. But for t = 0, t < sf(t), while for t = q and
t = 1, the inequality is reversed (since t = f(t) implies t > sf(t)). Hence, there is
only one solution of (4.3) in (0, 1), and moreover, this unique solution lies in (0, q).
It is clear that this solution is indeed ρ(s) since ρ(s) < 1.

Since the PGFs gn converge pointwise to ρ on (0, 1), by the continuity theorem
for probability generating functions ([3], section XI.6), we know that ρ(s) is equal to∑∞

k=0 p(k)s
k, where the coefficients p(k) are given by p(k) = limn→∞ Pr{Yn = k}.

One then sees that
∑∞

k=0 p(k) corresponds to the probability Yn is finite for all n,
which is exactly the probability of extinction q. Thus, ρ(s) is a honest probability
generating function only in the subcritical and critical cases where q = 1. In these
two cases, since we know there is an N at which ZN = 0, limn→∞ Pr{Yn = k}
indeed equals Pr{S = k}, where S = 1 +

∑∞
n=1 Zn denotes the total progeny. The

function ρ(s) now becomes the generating function of the total progeny S.

Theorem 4.4. The expectation of the total progeny S = 1 +
∑∞

n=1 Zn is given by
1

1−m for m < 1 and is infinite in the case m = 1.
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Proof. Differentiating the generating function identity in (4.2) gives

ρ′(1) = f(1) + f ′(1)ρ′(1)

ρ′(1) = 1 +mρ′(1)

and the claim now follows. □

4.1. Example Computation of the Total Progeny Probabilites. As an ap-
plication of the theory of this section, we compute the total progeny probabilites
for a particularly simple critical Galton Watson process, characterized by the off-
spring distribution p0 = 1/2, p2 = 1/2, and pk = 0 for all other k ∈ N. Even for
such a simple process, to compute the total progeny probabilities directly would be
prohibitive labor. The generating function for Z1 is

f(s) =
1

2
+

1

2
s2.

To solve for the generating function g of the total progeny, we solve equation (4.3),
which is the following quadratic in t:

t = s[
1

2
+

1

2
t2].

Upon solving, the only solution in (0, 1) is

g(s) =
1−

√
1− s2

s
.

We may now use the identity
√
1− s2 =

∑∞
n=0

(
1/2
n

)
(−s2)n to see that for odd

naturals k = 2n− 1, n ∈ N,

Pr{S = k} =

(
1/2

n

)
(−1)n+1.

For example, the first few probabilities given by the above formula are Pr{S =
1} = 1/2, Pr{S = 3} = 1/8, and Pr{S = 5} = 1/16, which the reader may directly
verify.

5. Variants

The single-type offspring Galton-Watson process we have been developing so far
is the simplest possible model. In this section, we briefly consider two slightly more
complex models. The first is the multi-type Galton-Watson process, in which we
allow multiple kinds of offspring. The second is the Galton-Watson process with
immigration, in which a random number of individuals who are not offspring of the
previous generation enter the population at each generation, and then reproduce
according to the offspring distribution.

5.1. Multi-Type Galton Watson Process. The Galton-Watson process with
k types proceeds as follows: it begins with a single ancestor individual of any
one of the k types, but now this individual can reproduce any number of each of
the k types, in accordance with its respective offspring distribution. These direct
descendants then reproduce independently according to their respective offspring
distributions.

Notation: Let T ⊆ Rk be all vectors whose components are non-negative integers.
Let {ei}1≤i≤k denote the standard basis of Rk. Let 1n denote the vector of all ones.
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Definition 5.1. The Galton-Watson process with k types is a Markov chain
{Zk}k≥0 on the state space T whose transition law is as follows. Let f (i) de-
note the generating functions for the direct descendants of an individual of type i,
that is

f (i)(s1, . . . , sk) =
∑

(r1,...,rk)∈T

p(i)(r1, . . . , rk)s
r1
1 . . . srkk , 1 ≤ i ≤ k

where p(i)(r1, . . . , rk) is the probability that an individual of type i has r1 descen-
dants of type 1, r2 descendants of type 2, and so on. If Zn = (r1, . . . rk) ∈ T , then
Zn+1 is the sum of r1 + · · · + rk independent random variables, r1 of which have
generating function f (1), r2 of which have generating function f (2), and so on.

We always initialize the process with a single individual, which we denote as
Z0 = ei if that individual is of type i.

Definition 5.2. For Z0 = ei, the generating function of Zn is

f (i)
n (s1, . . . , sk) =

∑
(r1,...,rk)∈T

p(i)n (r1, . . . , rk)s
r1
1 . . . srkk

where p
(i)
n (r1, . . . , rk) is the probability that the nth generation of descendants of a

type i individual are comprised of r1 individuals of type 1, r2 individuals of type 2,
and so on.

Define the vector-valued function fn : Rk → Rk by fn := (f
(1)
n , . . . , f

(k)
n ). The

function f = f1 contains the entire datum of the population. In the single-type
Galton-Watson process, we saw that the generating function fn of the nth gener-
ation descendants was the n-fold composition f◦n of the direct descendants gener-
ating function f . The situation is analogous here:

Proposition 5.3. The function fn is the n-fold composition of the function f .

Proof. It suffices to show fn+1 = f [fn(s)] which may then be iterated to obtain the
claim. Componentwise, this means we must check

f
(i)
n+1(s) = f (i)(f (1)

n (s), . . . , f (k)
n (s)).

Let Z
(i)
n be the number of individuals of type i in the nth generation. By def-

inition, f
(i)
n+1(s) = E{Z0=ei}[s

Z
(1)
n+1

1 . . . s
Z

(k)
n+1

k ], where Z
(j)
n+1 is the number of type j

individuals in the n+ 1 generation. To simplify notation, let sZn be shorthand for

s
Z

(1)
n+1

1 . . . s
Z

(k)
n+1

k .We have

(5.4) f
(i)
n+1(s) = E{Z0=ei}[sZn ] = E{Z0=ei}E[sZn |Z1].

Given Z1 = (Z
(1)
1 , . . . , Z

(k)
1 ), the distribution of Z

(i)
n+1 is that of the random

variable
∑Z

(1)
1

i=1 Z
(i)
n,1+ · · ·+

∑Z
(k)
1

i=1 Z
(i)
n,k, where the notation Z

(i)
n,j denotes the number

of nth generation descendants of type i with initial condition Z0 = ej , 1 ≤ j ≤ k,
and the sums are over i.i.d. copies. Substituting into (5.4) and rearranging terms
gives

f
(i)
n+1(s) = E{Z0=ei}[(E{Z0=e1}sZn)Z

(1)
1 . . . (E{Z0=ek}sZn)Z

(k)
1 ]

= E{Z0=ei}[(f (1)
n (s))Z

(1)
1 . . . (f (k)

n (s))Z
(k)
1 ] = f (i)(f (1)

n (s), . . . , f (k)
n (s))

as desired. □
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In the single-type case, the recursive structure of the generating functions showed
the extinction probability q satisfies the fixed point equation s = f(s). Since the
recursive structure of the multi-type process is the same as the single-type case, we
have the same result in the multi-type case:

Theorem 5.5. Let {Zk}k≥0 be a Galton-Watson process with k types. Then we
have k extinction probabilites q1, . . . , qk for each of the initial conditions Z0 =
e1, . . . , Z0 = ek, which we arrange in the extinction probability vector q = (q1, . . . , qk).
Then q solves the fixed point equation

f(s) = s

where f is the direct sum of the generating functions as defined above.

Proof. As f
(i)
n (0) = Pr{Zn = 0|Z0 = ei}, we see limn→∞ f

(i)
n (0) = qi, and hence

limn→∞ fn(0) = q. But then

q = lim
n→∞

fn+1(0) = lim
n→∞

f [fn(0)] = f [ lim
n→∞

fn(0)] = f(q).

□

The mean number of offspring m in the single-type process was used to distin-
guish between the cases of extinction with probability one (m ≤ 1) and a positive
probability of infinite growth (m > 1). For the multi-type process, there is an
analogue of the role the mean m plays for the single-type process under the fol-

lowing condition. If we assume the moment matrix [M ]ij = E[Z(j)
1 |Z0 = ei] is

positive regular, meaning there exists an n such that Mn is strictly positive (each
entry [Mn]ij > 0), then the Perron-Frobenius theorem guarantees the existence
of a maximal eigenvalue ρ. The following theorem, whose proof we omit (see [6],
sections II.6 and II.7), shows ρ replaces the role of m for the multi-type process:

Theorem 5.6. Suppose Zn is a multi-type Galton-Watson process with positive
regular moment matrix M . Also assume the generating function f(s) does not
assume the form f(s) = As, for some n by n matrix A of non-negative elements.
Let ρ be the maximal eigenvalue guaranteed by the Perron-Frobenius theorem.

(1) If ρ ≤ 1, then q = 1n. If ρ > 1, then q < 1n (each component is less than
1).

(2) limn→∞ f(s) = q, ∀s ∈ [0, 1)n

(3) The solution q to the fixed point equation f(s) = s is the unique solution in
[0, 1]n

5.2. Galton-Watson Process with Immigration. We have seen that the stan-
dard Galton-Watson process with one-type is unstable, in that it either blows up
to infinity or dies out, and all states Zn = k are transient, for k ∈ N. However, by
introducing an immigration component into the single-type process in which new
individuals which are not direct offspring can enter the population, the structure of
the process significantly changes as the state Zn = 0 is no longer an absorbing state
(as immigrants entering the (n + 1)th generation can ”revive” the process). In this
section, we show under certain conditions on the offspring distribution and immi-
gration distribution, the Galton-Watson process can have a nontrivial stationary
distribution.

The immigration variant works as follows – the process begins as usual with
Z0 = 1. But then for every generation n ≥ 1, a random number In of individuals
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without parents in the (n - 1)th generation are added, which then reproduce as the
other individuals. The law for the immigration is the same for each generation and
is given by

Pr{In = k} := qk, k = 0, 1, 2, . . .

We denote the generating function of the number of immigrants added as

β(s) =

∞∑
k=0

qks
k.

We let f denote the generating function for the number of direct descendants as
usual, f(s) =

∑∞
k=0 pks

k. The random variable Zn counts the total number of
individuals in the nth generation, that is, the offspring of individuals in the (n−1)th
generation and the immigrants which entered in the nth generation.

Note that the structure of the markov chain Zn has changed – if 0 < β(0) < 1,
then it is possible for Zn to be irreducible and aperiodic. We will prove existence
of a stationary probability distribution for such Zn.

Let Gn be the generating function for Zn. We have the following recursive
formula for the Gn in terms of β and the fn:

Proposition 5.7. Let n ∈ N. Then

Gn(s) = β(s)fn(s)

n−1∏
j=1

β[fj(s)].

Proof. To count all the different sources for individuals in Zn, it will be useful to

consider the random variable Z
(m)
n , which denotes the number of individuals in

the nth generation who are descendants of immigrants who entered the population

in the mth generation. Let H
(m)
n be its generating function. Since given Im,

the distribution of Z
(m)
n is the sum of In independent random variable with the

generating function fn−m for (n−m)th generation offspring, we have

(5.8) H(m)
n (s) = E[sZ

(m)
n ] = EE[sZ

m
n |Im] = E[fn−m(s)Im ] = β[fn−m(s)]

Let us denote the number of nth generation offspring of the original zeroth gener-
ation ancestor as Xn. Then we can decompose the generating function Gn as

Gn(s) = E[sZn ] = E[sXn+Z1
n+···+Z(n−1)

n +In ]

Since everything is independent, the generating functions factor, and combining
with (5.8) we get

Gn(s) = fn(s)β[fn−1(s)] . . . β[f(s)]β[s].

Recalling that fn(s) = f [fn−1(s)], we now see

Gn(s) = β(s)Gn−1[f(s)].

and iterating this identity gives the desired formula for Gn(s). □

Theorem 5.9. Suppose that the Markov chain Zn is irreducible and aperiodic.
Also assume that m =

∑
k kpk < 1 and λ =

∑
k kqk < ∞. Then there exists a

stationary probability distribution {πk}k≥0 for Zn.
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Proof. The first part of the proof follows [7], page 2. By standard markov chain the-
ory, it suffices to show Zn is positive recurrent. It is sufficient to show limn→∞ Gn(0)
converges to a positive limit, since Gn(0) is the n-step transition probability from
state 1 to state 0 of the chain. Plugging in 0 to the formula established in Propo-
sition 5.7,

Gn(0) = β(0)fn(0)

n−1∏
j=1

β[fj(0)].

Note that the assumptions imply β(0) > 0, while we know fn(0) ↑ 1, so that the
Gn(0) converge to a positive limit if and only if

lim
n→∞

n∏
j=1

β[fj(0)]

converges to a positive limit. Taking logarithms and applying first order taylor
expansions, it is sufficient to show

∞∑
j=1

1− β[fj(0)]

converges to a finite limit. By the mean value theorem, 1− β[fj(0)] < λ[1− fj(0)],
so by comparison it suffices to check the convergence of

∞∑
j=1

[1− fj(0)].

But in Theorem 3.5, we established that in the subcritical case [1−fj(0)] is O(mn),
and the result follows. □

6. The Galton-Watson Process in Action

We now consider some applications of the Galton-Watson theory developed in
this paper to certain processes – since the theory is so simple, this is entirely a
matter of properly identifying the Galton-Watson process present.

Example 6.1. The Random Cantor Set - A Galton Watson Process on [0, 1]

We apply supercritical Galton-Watson process theory to verify the existence of
a very interesting class of mathematical objects – random fractals. We will look
at the random Cantor set. The random Cantor set in [0, 1] takes two parameters,
k ∈ N and p ∈ (0, 1), which we denote as

C(k, p) =

∞⋂
n=0

Cn

defined as follows. Define C0 = [0, 1], and divide it into k equal intervals

[0, 1/k], [1/k, 2/k], . . . , [(k − 1)/k, 1].

For each interval, we independently keep it with probability p, and discard it
with probability 1− p. The union of the kept intervals form C1. Let Y1 denote the
number of intervals kept in C1. Split each of these Y1 pieces into k pieces of length
k−2, and again keep each one with probability p, and so on.

Observe that the number of intervals in each generation is a Galton-Watson
process with offspring distribution Binomial(k, p). One might wish to consider
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standard fractal geometry questions about the set C(k, p) such as computing its
Hausdorff dimension. The first order of business is to check that the set is not
always the empty set, else the dimension is trivially 0 with probability one. If we
choose kp > 1, then we know there is a positive probability that we obtain at least
one nested sequence of non-empty compacts and so C(k, p) ̸= ∅. In this case, it can

be shown that the Hausdorff dimension is log kp
log k (for a proof, see [4], Chapter 4).

For example, the natural random analog of the classical ternary Cantor set would
be given by the process ”split in to three subintervals, keep two on average.” This
would be a C(3, 2/3) random Cantor set, which on the event of being non-empty,

has dimension log 2
log 3 in accordance with the classical ternary Cantor set.

Example 6.2. There’s a Galton Watson Process in my Random Walk! ([5], Prob-
lem 5)

We give a proof of the familiar fact that simple random walk on the integers is null
recurrent via Galton-Watson process theory (assuming Polya’s theorem which states
that it is recurrent). We also prove a scaling law for the maximum displacement of
simple random walk on the integers.

Since null recurrence is a class property, it suffices to show the expected number
of steps to go from position 1 to position 0 is infinite.

Let Sn be simple random walk on the integers starting at position 1 (S0 = 1).
We denote the time of the first return to the origin (or equivalently, the number of
steps taken to go from position 1 to position 0) by

T = min{n ∈ N : Sn = 0}.
Random walk is recurrent in one dimension, so we know with probability one T is
finite. Let Z0 := 1, and

Zk :=

T−1∑
n=0

1{Sn = k, Sn+1 = k + 1}.

That is, Zk is the number of times the random walker steps from k to k+ 1 before
returning to the origin. We claim {Zk}k≥0 is a Galton-Watson process. That it is
a Markov chain is clear. To verify

P (i, j) = Pr{Zn+1 = j | Zn = i} =

{
p∗ij if i ≥ 1,

δ0j if i = 0

note that if Zn = 0, the random walker never cross from n to n+1 before returning
to the origin, which implies it never crossed from n + 1 to n + 2. Now suppose
Zn = i for i ≥ 1. Then the random walker crossed from n to n + 1 i many times,
which gives i copies of the process of the random walker at n+ 1 with the chance
to cross from n+ 1 to n+ 2 any number of times before returning to n. Hence,

Pr{Zn+1 = j | Zn = i} = iPr{Z1 = j} = p∗ij .

We have p0 = 1/2, since this is the prob the RW steps left to go back to the
origin from 1. Similarly, p1 = 1/4, since for the event {Z1 = 1} to occur, we first
require the random walker to go right to position 2 from position 1, and then once
it returns to position 1 with prob. one, to go left from position 1 to the origin. It
is easy to see that pn = ( 12 )

n+1, which we recognize the as the geometric offspring
distribution (Example 3.12) with p = 1/2. Hence, Zn is a critical Galton-Watson
process.
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Observe that T = 2
∑

k≥0 Zk. Recall from the section on total progeny that for

a critical Galton-Watson process, the expectation of the total progeny
∑

k≥0 Zk is

infinite, and so we see that E[T ] = ∞, that is, the expected number of steps to go
from 1 to 0 is infinite.

Now let τ denote the stopping time of Zn, and let M denote the maximum
displacement from the origin obtained by the random walker before its first return
to the origin.

From Theorem 3.5 Part 1, one can obtain the following scaling law for the stop-
ping time of critical Galton Watson processes: for all x > 1, we have

(6.3) lim
n→∞

Pr{τ > nx|τ > n} =
1

x
.

Indeed,

lim
n→∞

Pr{τ > nx|τ > n} = lim
n→∞

Pr{τ > nx ∩ τ > n}
Pr{τ > n}

= lim
n→∞

Pr{τ > nx}
Pr{τ > n}

=
1

x
lim
n→∞

nxPr{τ > nx}
nPr{τ > n}

=
1

x

But the stopping time τ of the Galton-Watson process Zn is the maximum
displacement M obtained by the random walker from the origin before its first
return! Indeed, the event {τ = n} occurs if and only if Zn = 0 and Zn−1 > 0, that
is, the random walker went from n−1 to n at least once, but never from n to n+1.
Thus we get the scaling law (6.3) for M .

Example 6.4. Waiting Times ([3], pg. 299)

We can apply Galton-Watson process theory to a queuing problem. Suppose
there is a server, which can serve one customer at a time. The duration of service
is given by the distribution {βk}k≥0, where βk = Pr{service duration is k}. To
not overburden the word ”time,” call points on the time-axis epochs. At epoch 0,
the queuing process begins with a single customer at the server, and no customers
in line. While the customer is being served, other customers arrive in line. Our
model is that customers can arrive only at integral-valued epochs, and can arrive
only one at a time. The distribution of customers arriving at an epoch is given by
Bernoulli(p), for p ∈ (0, 1). Suppose the original customer’s service duration is m.
This means that for epochs 0, 1, . . . ,m − 1, they are being served. At the end of
epoch m − 1, their service terminates. At epoch m, if there is a customer in line,
then their service immediately begins at this epoch. If there are no customers in
line at epoch m, we say the service is interrupted at epoch m. Call the duration of
uninterrupted service commencing at epoch 0 the busy period. We use the Galton-
Watson process to analyze the duration of the busy period.

We identify a Galton-Watson process as follows: the original customer whose
service begins at epoch 0 is the Z0 ancestor. If they are served up to and including
epoch m, then the customers that arrive at epochs 1, . . . ,m + 1 are counted as
direct descendants of this customer. These individuals comprise the Z1 generation,
and so on. Let f be the generating function of Z1. If N is the duration of ser-
vice of the original customer, then f(s) is determined by X1 + · · · + XN , where
Xi ∼ Bernoulli(p), that is, the probability of k direct descendants given the orig-
inal customer is served for n epochs is given by the corresponding Binomial(n, p)
probability, for k ≤ n. Let β be the generating function for the service duration,



THE GALTON-WATSON BRANCHING PROCESS 23

β(s) =
∑

k βks
k. We claim

(6.5) f(s) = β(ps+ q)

where q := 1− p. We have

f(s) =
∑
k

pks
k =

∑
k

∞∑
n=k

βn

(
n

k

)
pkqn−k =

∑
n

βn

n∑
k=0

(
n

k

)
(ps)kqn−k

=
∑
n

βn(q + ps)n = β(q + ps).

Differentiating both sides of (6.5) gives m = pσ, where σ =
∑

k kβk is the expec-
tation of the service duration. Hence, the busy period terminates with probability
one if and only if pσ ≤ 1, and for pσ < 1, the expectation of the total number
of customers during the busy period is 1

1−pσ . Clearly the only feasible queues are

those with pσ well below 1, else congestion will be the order of the day.
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