
SMOOTH MANIFOLDS AND DE RHAM COHOMOLOGY

CHARLES SHEN

Abstract. This paper gives a quick introduction to smooth manifolds. Then

we introduce de Rham Cohomology and compute some examples.
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1. Manifolds and Smooth Maps

A manifold is a higher-dimensional analogue of a smooth curve or surface. Its
prototype is the Euclidean space Rn, with coordinates r1, . . . , rn. Let U be an open
subset of Rn. A function

f = (f1, . . . , fm) : U → Rm

is smooth on U if the partial derivatives

∂kf

∂rj1 · · · ∂rjk
exist on U for all integers k ≥ 1 and for all choices of indices j1, . . . , jk. In this
paper we use the words “smooth” and C∞ interchangeably.

Definition 1.1 (Locally Euclidean of Dimension n). A topological space M is lo-
cally Euclidean of dimension n if, for every point p ∈M , there is a homeomorphism

φ : U −→ V ⊂ Rn

where U is a neighborhood of p in M , and is open in Rn. Such a pair
(
U,φ

)
is

called a coordinate chart (or simply a chart). If p ∈ U , then we say that (U,φ) is
a chart about p.

Definition 1.2 (Compatibility of Charts, C∞ Atlas). A collection of charts {(Uα, φα)}
is C∞-compatible if, for every α, β, the transition map

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) −→ φα(Uα ∩ Uβ)

1
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is a C∞ function. A C∞ atlas on M is a collection of C∞-compatible charts that
covers M . Such a C∞ atlas is maximal if it contains every chart that is C∞-
compatible with all the charts in the atlas.

Definition 1.3 (Topological Manifold). A topological manifold is a Hausdorff, sec-
ond countable, locally Euclidean topological space. By “second countable,” we
mean that the space has a countable basis of open sets.

Definition 1.4 (Smooth (C∞) Manifold). A smooth or C∞ manifold is a pair
(M, {(Uα, φα)}) whereM is a topological manifold and {(Uα, φα)} is a maximal C∞

atlas on M . In this paper, all manifolds are assumed smooth.

The Hausdorff condition ensures that the topology is not too small (we can
separate points), while second countability ensures it is not too large (it admits a
countable basis). With these two conditions, the topology of a manifold strikes a
useful balance. If one shows a manifold has any C∞ atlas, then by Zorn’s lemma
that atlas is contained in a unique maximal one. Hence it is sufficient in practice
to exhibit some C∞ atlas.

Example 1.1 (S1 ⊂ R2). Consider the circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
Define open sets:

Ux+ = {(x, y) ∈ S1 : x > 0}, Ux− = {(x, y) ∈ S1 : x < 0},

Uy+ = {(x, y) ∈ S1 : y > 0}, Uy− = {(x, y) ∈ S1 : y < 0}.

Figure 1. A C∞ atlas on S1

One checks that the set of charts{
(Ux+ , y), (Ux− , y), (Uy+ , x), (Uy− , x)

}
forms a C∞ atlas on S1. For instance, the transition map from (0, 1) ⊂ R (the

image under x) to (−1, 0) ⊂ R (the image under y) can be given by y = −
√
1− x2,

which is C∞ on (0, 1).

Definition 1.5 (Smooth Map into Rn). A map F : M → Rn on a manifold M is
smooth or C∞ at p ∈M if there is a chart (U,φ) of M about p such that

F ◦ φ−1 : φ(U) ⊂ Rm −→ Rn

is C∞. The map F is smooth on M if it is smooth at every point of M .

Definition 1.6 (Algebra over R). An algebra over R is a vector space A with a
bilinear map µ : A×A→ A (called multiplication) such that A forms a ring under
this multiplication and addition.
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Remark 1.1. The set of all smooth real-valued functions on M , denoted C∞(M),
is naturally an algebra over R via pointwise addition and multiplication.

Definition 1.7 (Smooth Map between Manifolds). A map F : N → M between
two manifolds is smooth or C∞ at p ∈ N if there exist charts (U, ϕ) about p ∈ N
and (V, ψ) about F (p) ∈M such that V ⊃ F (U) and

ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V )

is C∞ at ϕ(p). If F is invertible and both F and its inverse are smooth, then F is
a diffeomorphism. i.e., a smooth map G :M → N such that

F ◦G = 1M and G ◦ F = 1N .

In linear algebra, an m× n matrix typically represents a linear map Rn → Rm.
By analogy, one often writes F : N →M to highlight source and target.

1.1. Tangent Vectors. The derivatives of a function f at a point p in Rn depend
only on the values of f in a small neighborhood of p. To make precise what is meant
by a “small” neighborhood, we introduce the concept of the germ of a function.

Definition 1.8 (Germ of a Function). If f : U → R and g : V → R are smooth
functions defined on neighborhoods U and V of a point p inM , we say f ∼ g at p if
there is a neighborhood W ⊂ U ∩ V of p on which f and g agree. The equivalence
class of such f is called the germ of f at p. Denote by C∞

p (M) the set of all germs
at p.

Remark 1.2. Addition, multiplication, and scalar multiplication of germs are well-
defined, so C∞

p (M) is an algebra over R.

Definition 1.9 (Derivation, Tangent Space). A derivation at p is a linear map
D : C∞

p (M) → R satisfying the Leibniz rule:

D(fg) = (Df) g(p) + f(p) (Dg) for all f, g ∈ C∞
p (M).

Such a derivation is also called a tangent vector at p. The set of all tangent vectors
at p forms a vector space TpM , called the tangent space of M at p.

Example 1.2 (Partial Derivatives in Rn). ForM = Rn, the familiar partial deriva-
tives

∂

∂r1

∣∣∣
p
, . . . ,

∂

∂rn

∣∣∣
p

are elements of Tp(Rn). They form a basis of the tangent space.

Definition 1.10 (Coordinate Vectors). At a point p in a coordinate chart (U,φ) =
(U, x1, . . . , xn), where

xi = ri ◦ φ,
we define the coordinate vectors

∂

∂xi

∣∣∣∣
p

∈ TpM

by
∂f

∂xi

∣∣∣∣
p

=
∂(f ◦ φ−1)

∂ri

∣∣∣∣
φ(p)

for any f ∈ C∞
p (M).
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Definition 1.11 (Differential of a Smooth Map). If F : N →M is a smooth map
and p ∈ N , its differential at p

is the linear map defined by

F∗,p : TpN −→ TF (p)M

(1.2) F ∗
p : TpN → TF (p)M, (F ∗

pXp)(h) = Xp(h ◦ F )
for Xp ∈ TpN and h ∈ C∞(M). Usually the point p is clear from the context and
we write F ∗ instead of F ∗

p . We can verify that if

F : N →M and G :M → P

are C∞ maps, then for any p ∈ N

(G ◦ F )∗, p = G∗, F (p) ◦ F ∗
p , (G ◦ F )∗ = G∗ ◦ F ∗.

Or, suppressing the points,

(G ◦ F )∗ = G∗ ◦ F∗.

Remark 1.3. If F : N → M and G : M → P are smooth, then (G ◦ F )∗,p =
G∗,F (p) ◦ F∗,p. In coordinates, this is the chain rule in multivariable calculus.

Definition 1.12 (Vector Field). A vector field onM is the assignment of a tangent
vector Xp ∈ TpM to each point p ∈M . At every p in a chart (U, x1, . . . , xn), since
the coordinate vectors

∂

∂xi

∣∣∣∣
p

form a basis of the tangent space TpM , the vector Xp can be written as a linear
combination

Xp =
∑
i

ai(p)
∂

∂xi

∣∣∣∣
p

,

with ai(p) ∈ R. As p varies over U , the coefficients ai(p) become functions on U .

Definition 1.13. A frame of vector fields on an open set U ⊂M is a collection of
vector fields

X1, . . . , Xn

on U such that at each point p ∈ U , the vectors

(X1)p, . . . , (Xn)p

form a basis for the tangent space TpM .

For example, in a coordinate chart (U, x1, . . . , xn), the coordinate vector fields

∂

∂x1
, . . . ,

∂

∂xn

form a frame of vector fields on U .
If f : N →M is a C∞ map, its differential

f∗,p : TpN → Tf(p)M

pushes forward a tangent vector at a point in N to a tangent vector inM . It should
be noted, however, that in general there is no push-forward map

f∗ : X(N) → X(M)
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for vector fields. For example, when f is not one-to-one, say f(p) = f(q) for p ̸= q
in N , it may happen that for some

X ∈ X(N),

we have

f∗,pXp ̸= f∗,qXq;

in this case, there is no way to define f∗X so that

(f∗X)(f(p)) = f∗,pXp

for all p ∈ N . Similarly, if f : N →M is not onto, then there is no natural way to
define f∗X at a point of M not in the image of f . Of course, if f : N → M is a
diffeomorphism, then

f∗ : X(N) → X(M)

is well defined.

1.2. Differential Forms.

Definition 1.14. For k ≥ 1, a k-form or a form of degree k onM is the assignment
to each p ∈M of an alternating k-linear function

ωp : TpM × · · · × TpM → R.

Here “alternating” means that for every permutation σ of {1, 2, . . . , k} and for
all

v1, . . . , vk ∈ TpM,

we have

ωp(vσ(1), . . . , vσ(k)) = (sgnσ)ωp(v1, . . . , vk),

where sgnσ, the sign of the permutation σ, is ±1 depending on whether σ is even
or odd. We define a 0-form to be the assignment of a real number to each p ∈M ; in
other words, a 0-form onM is simply a real-valued function onM . When k = 1, the
condition of being alternating is vacuous. Thus, a 1-form on M is the assignment
of a linear function

ωp : TpM → R
to each p ∈M . For k < 0, a k-form is defined to be 0 by convention.

A k-linear function on a vector space V is also called a k-tensor on V . As above,
a 0-tensor is a constant and a 1-tensor on V is a linear function f : V → R. Let
Ak(V ) be the vector space of all alternating k-tensors on V . Then A0(V ) = R and
A1(V ) = V ∗ := Hom(V,R), the dual vector space of V . In this language a k-form
on M is the assignment of an alternating k-tensor

ωp ∈ Ak(TpM)

to each point p ∈M .

Definition 1.15. Let Sk be the group of all permutations of {1, 2, . . . , k}. A (k, l)-
shuffle is a permutation σ ∈ Sk+l such that

σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l).
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Definition 1.16. The wedge product of an alternating k-tensor α and an alternat-
ing l-tensor β on a vector space V is by definition the alternating (k + l)-tensor

(α ∧ β)(v1, . . . , vk+l) =
∑

(sgnσ)α(vσ(1), . . . , vσ(k))β(vσ(k+1), . . . , vσ(k+l)),

where the sum is over all (k, l)-shuffles.

For example, if α and β are alternating 1-tensors, then

(α ∧ β)(v1, v2) = α(v1)β(v2)− α(v2)β(v1).

The wedge of an alternating 0-tensor, i.e., a constant c, with another alternating
tensor β is simply scalar multiplication. In this case, in keeping with the traditional
notation for scalar multiplication, we often replace the wedge by a dot or even by
nothing:

c ∧ β = c · β = cβ.

Proposition 1.1. The wedge product ∧ is bilinear, associative, and graded-commutative
in its two arguments. Graded-commutativity means that for two alternating tensors
α, β on a vector space V ,

α ∧ β = (−1)degα deg β β ∧ α.

Proposition 1.2. If α1, . . . , αn is a basis for the 1-covectors on a vector space V ,
then a basis for the k-covectors on V is the set

{αi1 ∧ · · · ∧ αik | 1 ≤ i1 < · · · < ik ≤ n }.
A k-tuple of integers I = (i1, . . . , ik) is called a multi-index. If i1 ≤ · · · ≤ ik, we
call I an ascending multi-index, and if i1 < · · · < ik, we call I a strictly ascending
multi-index. We will write

αI = αi1 ∧ · · · ∧ αik .

As noted earlier, for a point p in a coordinate chart (U, x1, . . . , xn), a basis for
the tangent space TpM is

∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p
.

Let (dx1)p, . . . , (dxn)p be the dual basis for the cotangent space A1(TpM) = T ∗
pM ,

i.e.,

(dxi)p

( ∂

∂xj

∣∣∣
p

)
= δij .

By Proposition 1.2, if ω is a k-form on M , then at each p ∈ U , ωp is a linear
combination:

ωp =
∑

aI(p) (dxI)p =
∑

aI(p) (dxi1)p ∧ · · · ∧ (dxik)p.

Definition 1.17. A k-form ω is smooth if for every point p ∈ M , there is a chart
(U, x1, . . . , xn) about p such that on U the coefficients

aI : U → R
of

ω =
∑

aI dxI

are smooth. By differential k-forms, we will mean smooth k-forms on a manifold.
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Definition 1.18. A frame of differential k-forms on an open set U ⊂ M is a
collection of differential k-forms

ω1, . . . , ωr

on U such that at each point p ∈ U , the alternating k-tensors

(ω1)p, . . . , (ωr)p

form a basis for the vector space Ak(TpM) of alternating k-tensors on the tangent
space at p.

For example, on a coordinate chart (U, x1, . . . , xn), the k-forms

dxI = dxi1 ∧ · · · ∧ dxik , 1 ≤ i1 < · · · < ik ≤ n,

constitute a frame of differential k-forms on U .

Definition 1.19. A subset B of a left R-module V is called a basis if every element
of V can be written uniquely as a finite linear combination∑

ribi,

where ri ∈ R and bi ∈ B. An R-module is said to be free if it has a basis, and if
the basis is finite with n elements, then the free R-module is said to be of rank n.

It can be shown that if a free R-module has a finite basis, then any two bases
have the same number of elements, so that the rank is well defined. We denote the
rank of V by rkV .

Let Ωk(M) denote the vector space of C∞ k-forms on M and let

Ω∗(M) =

n⊕
k=0

Ωk(M).

If (U, x1, . . . , xn) is a coordinate chart on M , then Ωk(U) is a free module over
C∞(U) of rank (

n

k

)
,

with basis {dxI} as above.

Definition 1.20. An algebra A is said to be graded if it can be written as a direct
sum

A =

∞⊕
k=0

Ak

of vector spaces such that under multiplication

Ak ·Al ⊂ Ak+l.

A graded algebra A =
⊕∞

k=0Ak is said to be a graded commutative algebra if for
all x ∈ Ak and y ∈ Al,

x · y = (−1)kl y · x.

The wedge product ∧ makes Ω∗(M) into a graded commutative algebra over R.
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1.3. Exterior Differentiation. On any manifold M there is a linear operator

d : Ω∗(M) → Ω∗(M),

called exterior differentiation, uniquely characterized by three properties:

(1) d is an antiderivation of degree 1, i.e., d increases the degree by 1 and for
ω ∈ Ωk(M) and τ ∈ Ωl(M),

d(ω ∧ τ) = dω ∧ τ + (−1)k ω ∧ dτ ;

(2) d2 = d ◦ d = 0;
(3) On 0-forms, the exterior derivative coincides with the differential: for a

0-form f ∈ C∞(M) and a vector field X ∈ X(M), we have

(df)(X) = Xf.

By induction the antiderivation property (1) extends to more than two factors;
for example,

d(ω ∧ τ ∧ η) = dω ∧ τ ∧ η + (−1)degω ω ∧ dτ ∧ η + (−1)degω+deg τ ω ∧ τ ∧ dη.

Proposition 1.3. Let (U, x1, . . . , xn) be a coordinate chart. Suppose

d : Ω∗(U) → Ω∗(U)

is an exterior differentiation. Then:

(i) For any f ∈ Ω0(U),

df =
∑ ∂f

∂xi
dxi;

(ii) d(dxI) = 0;
(iii) For any aI dx

I ∈ Ωk(M),

d(aI dx
I) = daI ∧ dxI .

Proof. (i) Since (dx1)p, . . . , (dx
n)p is a basis of 1-covectors at each point p ∈ U , we

may write (suppressing p):

(df)p =
∑

ai(p) (dx
i)p.

That is,

df =
∑

ai dx
i.

Applying both sides to the vector field ∂
∂xi

gives

(df)
( ∂

∂xj

)
=

∑
ai dx

i
( ∂

∂xj

)
=

∑
ai δij = aj .

On the other hand, by property (3) of d,

(df)
( ∂

∂xj

)
=

∂f

∂xj
.

Hence, aj =
∂f
∂xj and

df =
∑ ∂f

∂xj
dxj .
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(ii) By the antiderivation property of d,

d(dxI) = d(dxi1 ∧ · · · ∧ dxik) =
k∑

j=1

(−1)j−1 dxi1 ∧ · · · ∧ d(dxij ) ∧ · · · ∧ dxik = 0,

since d2 = 0.
(iii) By the antiderivation property of d,

d
(
aI dx

I
)
= daI ∧ dxI + aI d(dx

I) = daI ∧ dxI ,

since d(dxI) = 0. □

Proposition 1.3 proves the uniqueness of exterior differentiation on a coordinate
chart (U, x1, . . . , xn). To prove its existence, we define d by two of the formulas of
Proposition 1.3:

(i) If f ∈ Ω0(U), then

df =
∑ ∂f

∂xi
dxi;

(iii) If

ω =
∑

aI dxI ∈ Ωk(U) for k ≥ 1,

then

dω =
∑

daI ∧ dxI .
Next we check that so defined, d satisfies the three properties of exterior differ-

entiation.

(1) For ω ∈ Ωk(U) and τ ∈ Ωl(U),

d(ω ∧ τ) = (dω) ∧ τ + (−1)k ω ∧ dτ.

Proof. Suppose

ω =
∑

aI dxI and τ =
∑

bJ dxJ .

On functions, d(fg) = (df)g+f (dg) is simply another manifestation of the ordinary
product rule, since

d(fg) =
∑
i

∂

∂xi
(fg) dxi

=
∑
i

( ∂f
∂xi

g + f
∂g

∂xi

)
dxi

=
(∑

i

∂f

∂xi
dxi

)
g + f

∑
i

∂g

∂xi
dxi

= (df) g + f dg.

Next suppose k ≥ 1. Since the exterior derivative d is linear and the wedge
product ∧ is bilinear over R, we may assume that

ω = aI dxI and τ = bJ dxJ ,

each consisting of a single term. Then

d(ω ∧ τ) = d(aIbJ dxI ∧ dxJ) = d(aIbJ) ∧ dxI ∧ dxJ (by definition of d)

= (daI)bJ ∧ dxI ∧ dxJ + aI (dbJ) ∧ dxI ∧ dxJ
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= daI ∧
(
bJ dxJ

)
∧ dxI + (−1)k aI dxI ∧ (dbJ) ∧ dxJ

= dω ∧ τ + (−1)k ω ∧ dτ.

□

(2) d2 = 0 on Ωk(U).

Proof. This is a consequence of the fact that the mixed partials of a function are
equal. For f ∈ Ω0(U),

d2f = d(df) = d
(∑ ∂f

∂xi
dxi

)
=

∑
d
( ∂f
∂xi

)
∧ dxi =

∑∑ ∂2f

∂xj∂xi
dxj ∧ dxi.

In this double sum, the factors

∂2f

∂xj∂xi

are symmetric in i, j, while dxj ∧ dxi are skew-symmetric in i, j. Hence, for each
pair i < j there are two terms

∂2f

∂xi∂xj
dxi ∧ dxj , ∂2f

∂xj∂xi
dxj ∧ dxi,

that add up to zero. It follows that d2f = 0.
For

ω =
∑

aI dxI ∈ Ωk(U), k ≥ 1,

we have

d2ω = d
(∑

daI ∧ dxI
)
=

∑[
(d2aI) ∧ dxI + daI ∧ d(dxI)

]
= 0.

In this computation, d2aI = 0 by the degree 0 case, and d(dxI) = 0 follows as in
the proof of Proposition 1.3(ii). □

Proof. (3) Suppose

X =
∑

aj
∂

∂xj
.

Then

(df)(X) =
(∑ ∂f

∂xi
dxi

)(∑
aj

∂

∂xj

)
=

∑
ai
∂f

∂xi
= X(f).

□
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1.4. Pullback of Differential Forms. Unlike vector fields, which in general can-
not be pushed forward under a C∞ map, differential forms can always be pulled
back. Let

F : N →M

be a C∞ map. The pullback of a C∞ function on M is the C∞ function

F ∗f := f ◦ F

on N . This defines the pullback on C∞ 0-forms. For k > 0, the pullback of a
k-form ω on M is the k-form F ∗ω on N defined by

(F ∗ω)p(v1, . . . , vk) = ωF (p)

(
F ∗
,pv1, . . . , F

∗
,pvk

)
,

for p ∈ N and v1, . . . , vk ∈ TpN . From this definition, it is not obvious that the
pullback F ∗ω of a C∞ form ω is C∞. To show this, we first derive a few basic
properties of the pullback.

Proposition 1.4. Let F : N → M be a C∞ map of manifolds. If ω and τ are
k-forms and σ is an l-form on M , then

(i) F ∗(ω + τ) = F ∗ω + F ∗τ ;
(ii) For any real number a, F ∗(aω) = aF ∗ω;
(iii) F ∗(ω ∧ τ) = F ∗ω ∧ F ∗τ ;
(iv) For any C∞ function h, dF ∗h = F ∗(dh).

Proof. The first three properties (i), (ii), (iii) follow directly from the definitions.
To prove (iv), let p ∈ N and Xp ∈ TpN . Then

(dF ∗h)p(Xp) = Xp(F
∗h) = Xp(h ◦ F ),

and

(F ∗dh)p(Xp) = (dh)F (p)

(
F ∗
,pXp

)
=

(
F ∗
,pXp

)
(h) = Xp(h ◦ F ).

Hence,

dF ∗h = F ∗(dh).

□

We now prove that the pullback of a C∞ form is C∞. On a coordinate chart
(U, x1, . . . , xn) in M , a C∞ k-form ω can be written as a linear combination

ω =
∑

aI dxi1 ∧ · · · ∧ dxik ,

where the coefficients aI are C∞ functions on U . By the preceding proposition,

F ∗ω =
∑

(F ∗aI) d
(
F ∗xi1

)
∧· · ·∧d

(
F ∗xik

)
=

∑
(aI ◦F ) d

(
xi1 ◦F

)
∧· · ·∧d

(
xik ◦F

)
,

which shows that F ∗ω is C∞, because it is a sum of products of C∞ functions and
C∞ 1-forms.

Proposition 1.5. Suppose F : N →M is a smooth map. On C∞ k-forms,

dF ∗ = F ∗d.
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Proof. Let ω ∈ Ωk(M) and p ∈ M . Choose a chart (U, x1, . . . , xn) about p in M .
On U ,

ω =
∑

aI dxi1 ∧ · · · ∧ dxik .

Then

F ∗ω =
∑

(aI ◦ F ) d
(
xi1 ◦ F

)
∧ · · · ∧ d

(
xik ◦ F

)
.

Thus,

dF ∗ω =
∑

d(aI ◦ F ) ∧ d
(
xi1 ◦ F

)
∧ · · · ∧ d

(
xik ◦ F

)
=

∑
d
(
F ∗aI

)
∧d

(
F ∗xi1

)
∧· · ·∧d

(
F ∗xik

)
=

∑
F ∗(daI)∧F ∗(dxi1)∧· · ·∧F ∗(dxik)

=
∑

F ∗(daI ∧ dxi1 ∧ · · · ∧ dxik
)
= F ∗(dω).

□

As computed above, in summary, for any C∞ map F : N → M , the pullback
map

F ∗ : Ω∗(M) → Ω∗(N)

is an algebra homomorphism that commutes with the exterior derivative d.

Example 1.3. Let N and M be manifolds. A C∞ map

f : N →M

is called an immersion if for all p ∈ N , the differential

f∗,p : TpN → Tf(p)M

is injective. A subset S ofM with a manifold structure such that the inclusion map

i : S →M

is an immersion is called an immersed submanifold ofM . An example is the image of
a line with irrational slope in the torus R2/Z2. (Note that an immersed submanifold
need not have the subspace topology.)

If ω ∈ Ωk(M), p ∈ S, and v1, . . . , vk ∈ TpS, then by the definition of the pullback,

(i∗ω)p(v1, . . . , vk) = ωi(p)

(
(i∗v1), . . . , (i

∗vk)
)
= ωp(v1, . . . , vk).

Thus, the pullback of ω under the inclusion map i is simply the restriction of ω to
the submanifold S. We also adopt the more suggestive notation

ω|S

for i∗ω.
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2. de Rham Cohomology

Definition 2.1. We have a sequence of vector spaces and linear maps

0 −→ Ω0(U)
d0

−→ Ω1(U)
d1

−→ Ω2(U) −→ · · · −→ Ωn(U) −→ 0,

such that dp ◦ dp−1 = 0. This is called the de Rham complex. Since dp+1 ◦ dp = 0,
we have im(dp) ⊂ ker(dp+1).

Definition 2.2. The k-th de Rham cohomology of U is defined by

Hk
dR(U) :=

ker(dk)

im(dk−1)
=

Zk(U)

Bk(U)
,

Example 2.1 (Cohomology of R). Consider R1. Then

Ω0(R) = C∞(R), Ω1(R) = { f ′(x) dx : f ∈ C∞(R)}.
Zero-forms: Z0(R) = ker(d0) = { f ∈ C∞(R) : f ′ = 0} = {constant functions} ∼=
R. Since B0(R) = 0, we get

H0
dR(R) =

Z0(R)
B0(R)

=
R
0

= R.

One-forms: We have

B1(R) = im(d0) = { f ′(x) dx : f ∈ C∞(R)}.
Any ω ∈ Ω1(R) looks like g(x) dx; by the fundamental theorem of calculus, g(x) =
f ′(x) for some f . Hence ω ∈ B1(R), showing Z1(R) = B1(R). Therefore

H1
dR(R) =

Z1(R)
B1(R)

= 0.

2.1. Compact Supports.

Definition 2.3. A C∞ form ω is closed if dω = 0; it is exact if

ω = dτ for some τ ∈ Ωk−1(M).

Let U be an open subset of Rn.

Example 2.2. Suppose a function f is nonzero on the interval (0, 2). Then

Supp(f) ⊂ {x | f(x) ̸= 0} = [0, 2].

Definition 2.4. The zero set of a p-form ω on U is

Z(ω) = { p ∈ U | ωp = 0 }.
The support of ω is

supp(ω) = cl
{
p ∈ U | ωp ̸= 0

}
= cl

(
U \ Z(ω)

)
= cl

(
Z(ω)c

)
.

(Here c denotes the complement, and cl( · ) denotes closure.)

Define

Ωp
c(U) :=

{
C∞ k-forms on U with compact support

}
.

Proposition 2.1 (d is support-decreasing). For ω ∈ Ωp
c(U), we have

supp(dω) ⊂ supp(ω).
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Proof. Suppose p /∈ supp(ω). Since supp(ω) is closed, there exists an open neighbor-
hood V of p which is disjoint from supp(ω). On V we have ω = 0, so dω = 0 on V .
Hence p /∈ supp(dω). This shows (supp(ω))c ⊂ (supp(dω))c. Taking complements
yields

supp(dω) ⊂ supp(ω).

□

Corollary 2.1. If ω ∈ Ωp
c(U) has compact support, then so does dω. In fact,

supp(dω) is a closed subset of the compact set supp(ω).

Hence we get the differential complex

0 −→ Ω0
c(U) −→ Ω1

c(U) −→ · · · −→ Ωl
c(U) −→ 0,

the de Rham complex with compact support in U .

Definition 2.5. H∗
c (U) is the cohomology of this complex, i.e. the compactly sup-

ported de Rham cohomology.

Remark 2.1. A k-tensor has k variables. A 0-tensor has no variables.

Definition 2.6. A 0-form on a vector space V is a constant function. Equivalently,

A0(V ) = R.
Thus a 0-form on U assigns to each point of U the same constant, so 0-form =
function. In general,

Ω0(U) = C∞(U).

Example 2.3. Compute H0
c (R). A 0-form f on R with compact support must

satisfy df = 0 (to be in Z0
c ). If df = 0, f is constant. But having compact support

forces that constant to be 0. Hence f ≡ 0. So

Z0
c (R) = {0}.

Then

H0
c (R) =

Z0
c (R)

B0
c (R)

=
0

0
= 0.

Next we compute H1
c (R)
Z1
c (R) = Ω1

c(R) = { g(x) dx : g ∈ C∞
c (R)},

B1
c (R) = { df = f ′(x) dx : f ∈ C∞

c (R)}.
If g(x) = f ′(x) for some f with compact support, then∫ ∞

−∞
g(x) dx =

∫ ∞

−∞
f ′(x) dx = f(∞)− f(−∞) = 0,

since f must vanish at ±∞ (compact support). So the integral of an exact form
with compact support is 0.
Define ∫ ∞

−∞
: Z1

c (R) −→ R, g(x) dx 7→
∫ ∞

−∞
g(x) dx.

We have shown B1
c (R) ⊂ ker

(∫∞
−∞

)
.

Lemma 2.1. ker
(∫ ∞

−∞

)
⊂ B1

c (R).
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Proof. Suppose
∫∞
−∞ g(x) dx = 0. Define

f(x) =

∫ x

0

g(u) du.

By the fundamental theorem of calculus, f ′(x) = g(x). We must show f has
compact support. If supp(g) is [a, b], then for x < a,

f(x) =

∫ x

0

g(u) du =

∫ a

0

g(u) du = 0

because g(u) = 0 outside [a, b]. Similarly, for x > b,

f(x) =

∫ x

0

g(u) du =

∫ b

0

g(u) du = 0

by hypothesis. Hence f also vanishes outside [a, b], so f has compact support. Thus
g(x) dx = df ∈ B1

c (R). □

By the first isomorphism theorem,

H1
c (R) =

Z1
c (R)

B1
c (R)

∼= im
(∫ ∞

−∞

)
= R.
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