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Abstract. The central topic of this expository paper is martingales. We

will introduce the notion of a martingale and explore some key martingale

results. We will also explore several examples of martingales in discrete and
continuous time such as Polya’s urn and Brownian motion. Martingales will

also be applied to prove several key results in probability and in algebra.
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1. Introduction and Motivation

Imagine you are playing a game involving a flip of a fair coin that costs one dollar
to play. If the result of the flip is heads, you are paid two dollars, meaning you
profit one dollar. If the flip is tails, you are paid nothing, thus resulting in a loss
of the dollar you wagered to play the game. While there is nothing you can do to
influence the result of one round of this game to increase your chances of winning,
one may wonder whether you can employ certain strategies to increase your chances
of winning over the course of several rounds. In particular, what would happen if
you changed the amount you wagered each round depending on the result of the
previous rounds?

In the 18th century in France, gamblers asked questions like this about games
like the one we just described (in fact, the aforementioned game was one example
of such a game). The strategies they came up with were called martingales. One
example of such a strategy is one for the game we described above where the player
would double their bet each time they lost, meaning if the coin came up heads
before they ran out of money, they would walk away netting a dollar of profit.

Since then, the term martingale has appeared frequently in literature on the
theory behind fair games like the one described in the paragraph above, and the
term has come to be the name of a fair game [12]. Throughout this paper, we
will use probability to uncover some of the theory behind these fair games. Then
we will see that this theory developed can be used to prove some key theorems
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in probability. Interestingly enough, we will also use martingales to prove a key
theorem in algebra, which is pretty amazing considering martingales were originally
just a collection of betting strategies—something that seems completely unrelated
to algebra.

2. Measure Theory and Probability Background

For the purposes of this paper, we assume that the reader has familiarity with
introductory measure theory and probability. The background information neces-
sary to proceed can be found in the second, third, and twenty-first chapters of [8].
Now, we turn our attention to the convergence of random variables. We will present
a definition followed by a useful lemma and its partial converse.

Definition 2.1. Let {Xn} be a sequence of random variables and X be a random
variable defined on a common probability space (Ω,F ,P). We say Xn converges to
X almost surely if

P
[
lim

n→∞
Xn = X

]
= 1.

Lemma 2.2 (Borel-Cantelli Lemma). Let A1, A2, . . . be an infinite sequence of

independent random variables. If
∞∑

n=1
P[An] < ∞, then P[An i.o.] = 0.

Proposition 2.3 (Partial Converse to the Borel-Cantelli Lemma). As before, let

A1, A2, . . . be an infinite sequence of independent events. If
∞∑

n=1
P[An] = ∞, then

P[An i.o.] = 1.

A proof for the Borel-Cantelli Lemma and its partial converse can be found in [8,
p. 254]. Now with this lemma and proposition, we will pose a motivating question
for this paper involving Bernoulli-p random variables.

Consider an infinite sequence of Bernoulli-p random variables where p ∈ (0, 1).
Note that we restrict p so that p ∈ (0, 1) because p = 0 or p = 1 will result in
an infinite sequence of 0s or 1s respectively. A natural question to ask about this
sequence is what will the longest streak of 1s be. How about the longest streak of
0s? The proposition below provides an answer to that question.

Proposition 2.4. Given an infinite sequence of Bernoulli-p random variables where
p ∈ (0, 1), arbitrarily long sequences of 1s will occur infinitely many times.

Although this conclusion can be reached through an application a proof involv-
ing the partial converse to the Borel-Cantelli lemma, we will show it is true by
applying the Kolmogorov 0-1 law. However, this proof will be saved until Section
5, where the Kolmogorov 0-1 law will be proved with martingales.

Now, we will briefly discuss various results in the last important piece of back-
ground information for this paper: conditional probability.

Definition 2.5. An Lp norm is defined on a probability space (Ω,F ,P) where

||X||p = E[Xp]
1
p .

We say that a random variable is bounded in Lp if there is a K ∈ R+ such that
E[|X|p] ≤ K.

Definition 2.6. An Lp space, typically written as Lp (Ω,F ,P), is {X : ||X||p < ∞}.
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Remark 2.7. One can verify that the way we have defined Lp spaces technically
defines an equivalence class since if X and Y are two random variables that agree
everywhere except on a set of points with probability 0, then they are in the same
Lp space. However, for the purposes of this paper, we will treat Lp as a space of
functions rather than an equivalence class of functions.

Definition 2.8. Let (Ω,F ,P) be a probability space, and let G be a sub sigma-
algebra of F . IfX ∈ L1 (Ω,F ,P), the conditional expectation ofX given G, denoted
E[X | G], is given by some random variable Z ∈ L1 (Ω,G,P) (that is unique up to
a set of probability 0) such that for every bounded G-measurable random variable
Y ,

E[XY ] = E[ZY ].

In particular, if Y = 1G for some G ∈ G, we have∫
G

XdP =

∫
G

ZdP.

Remark 2.9. The existence of such a Z ∈ L1 (Ω,G,P) is not trivial; however, a
proof that there is a Z ∈ L1 (Ω,G,P) satisfying E[XY ] = E[ZY ] for every X ∈
L1 (Ω,F ,P) will not be given in this paper but can be found in [3].

Now that we have defined conditional expectation, we will introduce a few key
properties from [3]. The proofs for these properties will not be presented in this
paper.

Proposition 2.10. For all of these propositions, let X,Y ∈ L1 (Ω,F ,P), and let
G and H be sub sigma-algebras of F .

(a) E[aX + Y | G] = aE[X | G] + E[Y | G].
(b) If Y ≤ X, E[Y | G] ≤ E[X | G].
(c) If Y is G-measurable, then E[XY | G] = Y E[X | G].
(d) E[E[X | G]] = E[X].
(e) If H is a sub sigma-algebra of G, then E[E[X | G] | H] = E[X | H].
(f) For any scalar, a, E[a | G] = a.
(g) If f : R 7→ R is convex and E[|X|] < ∞, then E[f(X)] ≥ f(E[X]) and

E[f(X) | Y ] ≥ f(E[X | Y ]) where Y is a G-measurable random variable.
Furthermore, E[f(X) | G] ≥ f(E[X | G]).

Note that although they will not be presented in this paper, conditional proba-
bility does have two results that are analogous to the montone convergence theorem
and the dominated convergence theorem. These can also be found in [3]. Finally, we
introduce a few final definitions that are greatly useful in the study of martingales.

Definition 2.11. Let F be a sigma-algebra. A filtration {Fn : n ≥ 0} is a set of
increasing sub sigma-algebras of F . In other words,

F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ F .

Furthermore, we define

F∞ = σ

(⋃
n

Fn

)
⊆ F .

Definition 2.12. A filtered probability space (Ω,F ,Fn,P) is a probability triple
(Ω,F ,P) equipped with a filtration {Fn : n ≥ 0}.
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Definition 2.13. A process X = {Xn : n ≥ 0} is called adapted to a filtration
{Fn} if at each n, Xn is Fn measurable.

3. Martingales in Discrete Time

Definition 3.1. A process {Xn} is called a martingale relative to (Ω,F ,Fn,P) if
(i) {Xn} is adapted.
(ii) E[Xn] < ∞ for all n.
(iii) E[Xn | Fn−1] = Xn−1 a.s. (n ≥ 1).

Submartingales and Supermartingales are defined in an identical manner except
instead of having E[Xn | Fn−1] = Xn−1 a.s. (n ≥ 1), a supermartingale has the
condition E[Xn | Fn−1] ≤ Xn−1 a.s. (n ≥ 1) and a submartingale has E[Xn |
Fn−1] ≥ Xn−1 a.s. (n ≥ 1). An intuitive way to think about martingales is by
thinking of a fair game. By the same token, submartingales or supermartingales
can be thought of as unfair games that are in your favor in the submartingale
case or rigged against you in the supermartingale case. We proceed with a couple
examples of martingales.

Example 3.2. Let X1, X2, . . . be an infinite sequence of independent random vari-

ables with mean 1. Define M0 = 1 and let Mn =
n∏

k=1

Xk.

This is a martingale since

E[Mn+1 | Fn] = E[MnXn+1 | Fn] = MnE[Xn+1 | Fn] = MnE[Xn+1] = Mn.

Example 3.3. Consider an urn with a white ball and a black ball at time 0. At
each time t = 1, 2, . . . , a ball is chosen at random from the urn, and a new ball that
is the same color as the ball chosen is placed in the urn. For example, if a black
ball is chosen at time t = 1, another black ball will be placed in the urn, so the
urn would have 2 black balls and 1 white ball. Let Bt be the number of black balls
placed in the urn at time t (excluding the one black ball originally in the urn). We
will show that a process {Mt} defined as Mt =

Bt+1
t+2 is a martingale with respect

to the filtration Ft = σ (B1, B2, . . . , Bt). Let 1t be the indicator variable of if you
put in a black ball at time t. Thus,

P[1t = 1 | Bt−1 = k] =
k + 1

t+ 1
if and only if E[1t | Ft−1] =

Bt−1 + 1

t+ 1
.

To show this is a martingale, we will consider E[Mt | Ft−1] and show that it is
equal to Mt−1.

E[Mt | Ft−1] = E
[
Bt−1 + 1t + 1

t+ 2
| Ft−1

]
=

Bt−1 + 1

t+ 2
+

1

t+ 2
E[1t | Ft−1]

=
Bt−1 + 1

t+ 2
+

Bt−1 + 1

(t+ 2) (t+ 1)

=
Bt−1 + 1

t+ 1
= Mt−1.

We therefore see that {Mt} is a martingale.
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We now proceed with a few Martingale properties before introducing the notions
of previsible strategies and stopping times.

Proposition 3.4. {Xn} is a submartingale with respect to (Ω,F ,P) if and only if
{−Xn} is a supermartingale with respect to (Ω,F ,P).

Proof. {Xn} is a submartingale if and only if E[Xn | Fn−1] ≥ Xn−1 if and only if −
E[Xn | Fn−1] ≤ −Xn−1 if and only if E[−Xn | Fn−1] ≤ −Xn−1 if and only if {−Xn}
is a supermartingale. □

Proposition 3.5 (Tower Property for Martingales). If {Xn} is a martingale with
respect to (Ω,F ,P), then

Xm = E[Xn | Fm] for all n > m.

Proof. We will show this by induction. First, from the definition of a martingale,
it follows that

Xm = E[Xm+1 | Fm].

Next, we inductively assume that Xm = E[Xn−1 | Fm]. By our induction hy-
pothesis, the definition of a martingale, and Proposition 2.10 e, Xm = E[Xn−1 |
Fm] = E[E[Xn | Fn−1] | Fm] = E[Xn | Fm], meaning we can deduce that
E[Xn | Fm] = Xm for all n > m. □

Definition 3.6. A process C = {Cn : n ∈ N} is previsible if Cn ∈ Fn−1 for each
n. Intuitively, one can think of Cn as the bet placed on the nth round of a game.
Therefore, your total winnings in the nth round is given by Cn (Xn −Xn−1).

Definition 3.7. We define the martingale transform of {Xn} by C as

(C ·X)n =

n∑
k=1

Ck (Xk −Xk−1) .

We typically write Yn =
n∑

k=1

Ck (Xk −Xk−1).

Proposition 3.8. Suppose C is a bounded, previsible strategy such that for some
K ∈ [0,∞), |Cn (ω) | ≤ K for all n, ω. If {Xn} is a martingale then so is (C ·X)n.

Proof. As before, we will write {Yn} for (C ·X)n. Hence,

E[Yn − Yn−1 | Fn−1] = CnE[Xn −Xn−1 | Fn−1] = 0.

Therefore, we see that {Yn} is a martingale. □

Definition 3.9. A stopping time is a random variable T : Ω → Z+ ∪{0} such that

{T ≤ n} = {ω : T (ω) ≤ n} ∈ Fn.

Equivalently,

{T = n} = {ω : T (ω) = n} ∈ Fn.

Note that T can be ∞ and that constants are stopping times.

To show that these two definitions are equivalent, let T be a stopping time
defined in the first way. Therefore,

{T = n} = {T ≤ n} \ {T ≤ n− 1} ∈ Fn.
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Now, if T is a stopping time by the second definition, note that

{T ≤ n} =

n⋃
k=1

{T = k} ∈ Fn.

Notation 3.10. The process
{
XT

n

}
means {XT∧n}, where T∧n denotes min(T, n),

and this process is called a martingale stopped at time T . A previsible process for a

martingale with a stopping time T can be written as C
(T )
n . If we bet 1 unit on a game

and quit at time T , then your stake for each round is written as C
(T )
n = 1{n≤T},

and your winnings are given by
(
C(T ) ·X

)
n
.

Lemma 3.11. If {Xn} is a martingale, then
{
XT

n

}
is a martingale. In particular,

E[XT∧n] = E[X0].

Proof. First, define a process Cn where

Cn = 1{n≤T}.

Note that

(C ·X)n =

n∑
k=1

1{k≤T} · (Xk −Xk−1) =

T∧n∑
k=1

(Xk −Xk−1) = XT
n −X0.

Hence, (C ·X)n is precisely
{
XT

n

}
, and this process is Fn−1-measurable and hence

previsible since

1{n≤T} = 1{n−1<T} = 1− 1{T≤n−1}.

From Proposition 3.8, we know that this means that (C · X)n is a martingale,
meaning

{
XT

n

}
is a martingale.

Since E[(C ·X)n] = 0, we see that E[XT
n −X0] = 0. Therefore,

E[XT
n ] = E[X0].

□

Now that we have introduced some basic Martingale results, we turn our atten-
tion to some key theorems.

Theorem 3.12 (Doob’s Optional Sampling Theorem). Let T be a stopping time
and {Xn} be a martingale. If one of the following is true, then E[XT ] = E[X0]

(i) T is bounded (there exists N ∈ Z+ such that T ≤ N a.s.).
(ii) {Xn} is bounded (there exists K > 0 such that |Xn| ≤ K for all n) and T

is a.s. finite.
(iii) E[T ] < ∞ and for some K ∈ R+, |Xn (ω) −Xn−1 (ω) | ≤ K for all ω ∈ Ω

and n ∈ N.

Proof. From Lemma 3.11, we know that E[Xn∧T ] = E[X0].
If the first condition is true, we know that then we can take n = N , and it follows

that E[XT ] = E[X0] since N ∧T = T . If the second condition is true, we know that
X is dominated by some value K.

Hence, we can apply the dominated convergence theorem and get

E[X0] = lim
n→∞

E[Xn∧T ] = E
[
lim
n→∞

Xn∧T

]
= E[XT ].
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Finally, if the third condition is true, then

Xn∧T ≤ |X0|+
n∧T∑
k=0

|Xk+1 −Xk| ≤ |X0|+KT.

Note that T is a.s. finite since E[T ] < ∞, meaning Xn∧T is bounded above, and,
again, we can apply the dominated convergence theorem to get

E[X0] = lim
n→∞

E[Xn∧T ] = E[ lim
n→∞

Xn∧T ] = E[XT ].

□

Remark 3.13. One can also show using a similar proof that given any of the three
conditions above, if {Xn} is a supermartingale then E[XT ] ≤ E[X0].

Both Proposition 3.8 and Theorem 3.12 are important because they show that
given a fair game, no matter what strategy you use regarding your stake on each
round or when you decide to stop playing the game, it will always remain fair.

To conclude this section about martingales, we turn our attention to proving
the martingale convergence theorem, which will first require a couple definitions,
lemmas, and a corollary.

Definition 3.14. The number of upcrossings UN [a, b] (ω) of [a, b] made by n 7→
Xn (ω) is defined to be the largest k such that

0 ≤ s1 < t1 < s2 < t2 < · · · < sk < tk ≤ N

such that for all 1 ≤ j ≤ k, Xsi < a and Xti > b.

Notation 3.15. For a value x ∈ R, we write (x)+ for max(0, x) and (x)− for
max(0,−x).

From the definition of an upcrossing, we have the following inequality which
serves as a lower bound for winnings at time N (which are denoted by YN (ω)
where {Yn} = (C ·X)n, where C is previsible):

(3.16) YN (ω) ≥ (b− a)UN [a, b] (ω)− (XN (ω)− a)
−
.

This equality comes from the fact that for each upcrossing, the minimum payout is
b− a since Xs < a and Xt > b. The (XN (ω)− a)

−
accounts for the fact that you

may lose on the Nth round.

Lemma 3.17. If {Xn} is a supermartingale and UN [a, b] is the number of upcross-
ings by time N , then

E[(XN (ω)− a)
−
] ≥ E[(b− a)UN [a, b] (ω)].

Proof. As shown in Proposition 3.8, we know that the process {Yn} will be a su-
permartingale, meaning E[YN ] ≤ 0. Combining this with (3.16), we have

0 ≥ E[YN (ω)] ≥ E[(b− a)UN [a, b] (ω)− (XN (ω)− a)
−
].

By linearity of expectations, we can rearrange the terms from this inequality to get

E[(XN (ω)− a)
−
] ≥ E[(b− a)UN [a, b] (ω)].

□
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Lemma 3.18. Let a, b ∈ R and let {Xn} be a supermartingale bounded in L1 such
that

sup
n

E[|Xn|] < ∞.

Then, given UN [a, b] ↑ U∞[a, b],

E[(b− a)U∞[a, b]] ≤ |a|+ sup
n

E[Xn] < ∞.

Proof. From Lemma 3.17, we know

E[(XN − a)
−
] ≥ E[(b− a)UN [a, b]].

By the triangle inequality,

E[| (XN − a) |] ≤ E[|XN |+ | − a|] = E[|XN |] + |a|.

Therefore, we see that

E[(b− a)UN [a, b]] ≤ sup
n

E[|XN |] + |a|.

Taking N → ∞, which can be done by the monotone convergence theorem since
UN [a, b] ↑ U∞[a, b], we get

E[(b− a)U∞[a, b]] ≤ sup
n

E[|XN |] + |a|

which is the desired result. □

Corollary 3.19. P[U∞[a, b] = ∞] = 0.

This corollary comes from the fact that P[U∞[a, b] = ∞] ̸= 0 would contradict
our lemma.

We now turn our attention to the final main result of this section.

Theorem 3.20 (Martingale Convergence Theorem). Let {Xn} be a supermartin-
gale bounded in L1. Then {Xn} converges a.s. to a random variable X∞, and
limn→∞ Xn is a.s. finite.

Proof. Consider {ω : Xn (ω) does not converge}

=

{
ω : lim inf

n→∞
Xn (ω) < lim sup

n→∞
Xn (ω)

}
=

⋃
{a,b∈Q:a<b}

{
ω : lim inf

n→∞
Xn (ω) < a < b < lim sup

n→∞
Xn (ω)

}
=

⋃
{a,b∈Q:a<b}

{ω : U∞[a, b] (ω) = ∞}

Note that for fixed a, b ∈ Q where a < b, we have shown that

P[{ω : U∞[a, b] (ω) = ∞}] = 0.

Therefore,

P

 ⋃
{a,b∈Q:a<b}

{ω : U∞[a, b] (ω) = ∞}

 = 0
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since it is a countable union of sets each with probability measure 0.
Now, to show X∞ is finite, we have

E[|X∞|] = E
[
| lim
n→∞

Xn|
]

= E
[
| lim inf

n→∞
Xn|

]
≤ lim inf

n→∞
E[|Xn|]

≤ sup
n

E[|Xn|]

< ∞.

The first inequality can be justified by Fatou’s lemma.
Hence, {Xn} converges a.s. to a random variable X∞, and limn→∞ Xn is a.s.

finite. □

4. Random Walks

Definition 4.1. Consider an infinite sequence of independent identically distributed
random variables X1, X2, . . . such that P[X = 1] = P[X = −1] = 1

2 . A random

walk on Z is defined such that S0 = 0 and Sn =
n∑

k=1

Xk.

One can easily verify that this is a martingale because if after n steps you are at
a point P , we have

E[Sn+1 | Sn = P ] = P[Xn+1 = 1] (P + 1) + P[Xn+1 = −1] (P − 1)

=
1

2
(P + 1) +

1

2
(P − 1) = P.

Inductively, one can show that the expected position after n steps is 0 for every
positive n. A natural question to consider is what is the probability of being at 0
after n steps.

The first observation needed to solve this problem is that it is impossible to be
at the origin after an odd number of steps. Next, observe that we are at the origin
after 2m steps for m ∈ Z if exactly m of the steps are 1 and m of the steps are −1.
Therefore, we get the expression

P[S2m = 0] =

(
2m

m

)(
1

2

)2m

=
(2m)!

(m!)
2
22m

.

Another natural question that arises about a random walk is how many times
will a random walk return to 0. Before answering this question, we will introduce
some terminology important to this topic.

Definition 4.2. A process is said to be recurrent if it will return to a state infinitely
many times. A process is said to be transient if it will return to a state finitely
many times.

Returning to our question, by the partial converse to the Borel-Cantelli lemma,

if we show that
∞∑
k=1

P[Sk = 0] diverges, then the random walk returns to the origin
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infinitely often and is recurrent. To solve this, however, we must better understand

the behavior of (2n)!

(n!)222n
as n → ∞, which motivates the need for an approximation

of n! for large n. This approximation is called Stirling’s approximation, and it
asserts that n! =

√
2πn

(
n
e

)n (
1 +O

(
n−1

))
. Below, we will prove a slightly weaker

version of Stirling’s approximation that will work for our purposes.

Lemma 4.3. There is an A ∈ R such that as n → ∞,

log (n!) = n log (n)− n+
1

2
log (n) +A+O

(
n−1

)
.

Equivalently, this implies that as n → ∞,

n! = eA
√
n
(n
e

)n (
1 +O

(
n−1

))
.

Proof. Set an = n log (n)−n+ 1
2 log (n), and let us evaluate an+1−an, We compute

an+1 − an = (n+ 1) log (n+ 1)− n log (n)− 1 +
1

2
log

(
n+ 1

n

)
= n log

(
1 +

1

n

)
+ log (n+ 1)− 1 +

1

2
log

(
1 +

1

n

)
.

By Taylor’s formula, we see that log
(
1 + 1

n

)
= 1

n − 1
2n2 +O

(
n−3

)
. Therefore,

an+1 − an = 1− 1

2n
+ log (n+ 1)− 1 +

1

2

(
1

n
− 1

2n2

)
+O

(
n−3

)
= log (n+ 1) +O

(
n−2

)
.

Thus, there is some constant C such that

|an − an+1 − log (n+ 1) | ≤ C

n2
.

Hence the series
∞∑

n=1
an − an+1 − log (n+ 1) converges to some constant A at speed

O
(
n−1

)
, and we have

log n!− an −A = O
(
n−1

)
,

which is what we set out to prove. □

Remark 4.4. The constant A is known to be log
(√

2π
)
, where log denotes the

natural logarithm; however, that is not important for the purposes of this paper.

Now that we have established Stirling’s Approximation, we get that

∞∑
n=1

P[Sn = 0] =

∞∑
n=1

(2n)!

(n!)
2
22n

≈
∞∑

n=1

eA
√
2n
(
2n
e

)2n(
eA

√
n
(
n
e

)n)2
22n

=

∞∑
n=1

√
2

eA
√
n
.
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By the p-series test, we can see that this series will diverge, and therefore by the
partial converse to the Borel-Cantelli lemma, we can deduce that

P[S2n = 0 i.o.] = 1.

Corollary 4.5. A random walk visits each point infinitely many times.

Proof. Consider some N ∈ N, and let A be the event that you start at 0 and go in
the positive direction N moves in a row. We can easilt verify that

P[An] =

(
N

N

)(
1

2

)N

=

(
1

2

)N

.

Now let nk = 1, 2, . . . be a subsequence of indices for which Snk
= 0, and

A1, A2, . . . be the sequence of events where a random walk goes right N times after
each trip to the origin. Note that

∞∑
nk=1

P[Ank
] =

∞∑
nk=1

(
1

2

)N

=

(
1

2

)N ∞∑
nk=1

1.

This sum clearly diverges, thus, by the partial converse of the Borel-Cantelli lemma,
we can conclude that each point is visited infinitely many times in a random walk
with probability one. □

Another thing one could wonder about a random walk in one dimension is about
the expected distance from the origin at any given step. To do this, we will consider
E[S2

n].

E[S2
n] = E

 n∑
j=1

Xj

( n∑
k=1

Xk

)
=

n∑
k=1

E

Xk

n∑
j=1

Xj

 .

First, let us consider E[XjXk] for j ̸= k. By the definition of a random walk, Xj

and Xk are independent, meaning if j ̸= k, then E[XjXk] = E[Xj ]E[Xk] = 0 since
the Xi’s are mean 0. Thus, we see that

E[S2
n] = E

[
n∑

k=1

X2
k

]
=

n∑
k=1

E[X2
k ].

We can compute that E[X2
k ] = 1, meaning

E[S2
n] =

n∑
k=1

1 = n.

Finally, although this does not show that E[|Sn|] = O
√
n, it does help give intuition

behind why that is true. It is known that E[|Sn|] tends to
√

2n
π [10], but a proof of

this fact will not be presented in this paper.
One final aspect about random walks in one dimension that we will touch on is

the behavior of a random walk within a certain interval. We will first present a
couple of useful lemmas.
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Lemma 4.6. Let X1, X2, . . . be a sequence of independent identically distributed

random variables each with mean µ, let Sn =
n∑

k=1

Xk and S0 = 0 as before, and let

T be a stopping time. Then,

E[ST ] = µE[T ].

Lemma 4.7. As before, let X1, X2, . . . be a sequence of independent identically

distributed random variables each with mean 0 and variance σ2, Sn =
n∑

k=1

Xk,

S0 = 0, and T be a stopping time. Then,

E[S2
T ] = σ2E[T ].

Proofs of these lemmas can be found in [7]. Now that these lemmas are out of
the way, we proceed with a proposition about how long a random walk will stay in
an interval.

Proposition 4.8. Consider a random walk that starts at 0 and an open interval
(a, b) such that a, b ∈ Z and a < 0 < b. If T = inf {n|Sn /∈ (a, b)} is a stopping
time, then E[T ] is finite a.s. and, in particular,

E[T ] = −ab.

Proof. We first strive to show that E[T ] < ∞. To do this, consider the fact that at
any time when we are in the interval, if the next b− a moves are to the right, then
we will be outside (a, b). The probability of this not happening is 1− 1

2(b−a) . Note
that this is not necessarily the only way out of the interval (suppose a = −1, b = 1,
clearly it takes 1 step to escape even though (b− a) = 2), meaning

P[T > (b− a)] ≤ 1− 1

2(b−a)

Inductively, assume that

P[T > n (b− a)] ≤
(
1− 1

2(b−a)

)n

.

Using the same logic as before, if we are in (a, b) at time n (b− a), if the next b− a
steps were all to the right we would be out of (a, b). However, this is not necessarily
the only way to escape (a, b). Thus,

P[T > (n+ 1) (b− a)] ≤
(
1− 1

2(b−a)

)n+1

.
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Therefore, we have inductively shown that P[T > n (b− a)] ≤
(
1− 1

2(b−a)

)n
for all n.

Now, we have the following expression for E[T ]:

E[T ] =
∑
k≥0

P[T > k]

≤
∑
k≥0

P
[
T > (b− a)

⌊
k

(b− a)

⌋]

≤
∑
k≥0

(
1− 1

2(b−a)

)⌊ k
(b−a)⌋

≤
∑
k≥0

(b− a)

(
1− 1

2(b−a)

)k

= (b− a)
∑
k≥0

(
2(b−a) − 1

2(b−a)

)k

.

This is a geometric series whose common ratio is less than one, therefore, we can
see that the series converges, and in particular, we have an upper bound for E[T ]:

E[T ] ≤ b− a

1− 2(b−a)−1
2(b−a)

< ∞.

By the way our stopping time is defined, we know that at the stopping time, ST = a
or ST = b. Hence,

E[ST ] = aP[ST = a] + bP[ST = b]

From Lemma 4.6, we know that E[ST ] = µE[T ], which is just 0 because µ = 0 in a
random walk. This information lets us say that

0 = aP[ST = a] + bP[ST = b]

equivalently,

(4.9) P[ST = a] =
b

b− a
and P[ST = b] =

−a

b− a
.

Next, consider E[S2
T ].

E[S2
T ] = a2P[ST = a] + b2P[ST = b].

Furthermore, Lemma 4.7 tells us that E[S2
T ] = σ2E[T ], and in this case σ = 1,

meaning

E[S2
T ] = E[T ].

Therefore, E[T ] = a2P[ST = a] + b2P[ST = b]. Plugging in our expressions from
(4.9) for P[ST = a] and P[ST = b], we get

E[T ] = a2
b

b− a
+ b2

a

b− a
= −ab.

Hence, E[T ] = −ab, as desired. □
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Now that we know the expected amount of time to get out of (a, b), a natural
follow up question to consider is which way are you likely to escape. The answer
to this problem is analogous to the solution to Gambler’s ruin, a famous result
in probability. Intuitively, one can easily deduce that whichever endpoint you are
closer to is more likely to be hit first; however, we may want to know the exact
probability associated with this.

Let F (x) be the function that gives the probability of hitting b before hitting a
assuming the random walk starts at x. Clearly, for all x ≤ a, F (x) = 0 and for all
x ≥ b, F (x) = 1. Given an x ∈ (a, b), we know that we are equally likely to end up
at x+ 1 and x− 1 on the next turn, therefore,

F (x) =
1

2
(F (x+ 1) + F (x− 1)) .

This information about F motivates the following theorem about what F will look
like on (a, b); however, before solving for F , we need to define the discrete Laplacian
and prove the maximum principle.

Definition 4.10. A discrete Laplacian of a function, f , in d-dimensions is defined
as

∆ (f (x)) =

 1

2d

∑
|y−x|=1

f (y)

− f (x) .

We say a function is harmonic across a set, S if its Laplacian is 0 on S.
Note that this means that a function is harmonic if and only if

f (x) =
1

2d

∑
|y−x|=1

f (y) .

In one dimension, this means

f (x) =
1

2
(f (x+ 1) + f (x− 1)) .

Proposition 4.11 (The Maximum Principle). A harmonic function attains its
maximum value along the boundary of the set on which it is harmonic.

Proof. If f is constant, then the conclusion immediately follows since f obtains its
maximum everywhere.

Now, assume f is non-constant. Take f to be a harmonic function on S and
assume for the sake of contradiction that f attains its maximum at some point x
on the interior of S, that is, not on S̄\S.

Therefore, f (x) ≥ f (y) for all y ∈ S. Start at some x where this maximum is
attained, and consider its nearest neighbors. If all of its neighbors attain the same
value f (x), then find a different point where this maximum is attained. Repeat
this process until you find an x′ that has a neighbor, z, such that f (x′) > f (z).
The existence of such an x′ is guaranteed by the fact that f is non-constant. Note
that this will pose a contradiction since if f is harmonic, f (x) is an average of its
nearest neighbors. However, since there is some z ∈ S such that f (x) > f (z), we
know one of xs nearest neighbors will have a function value greater than f (x), and,
thus, we get a contradiction. □
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Theorem 4.12. Consider a function F : {a, a+ 1, . . . , 0, . . . , b− 1, b} 7→ [0, 1] such
that F (x) = P [ST = b|S0 = x], where T is a stopping time such that

T = min{n | Sn = a or Sn = b}.

The only solution satisfying such properties is a linear function of the form

F (x) =
x− a

b− a
.

Proof. Let Sn be a random walk starting at x, and let T = min {N : SN = a or SN = b}.
By the optional stopping theorem, we know that E[S0] = E[ST ]. Therefore, we

see that

x = E[S0] = bF (x) + a (1− F (x)) .

Rearranging terms, we get

F (x) =
x− a

b− a
.

Now, we want to show uniqueness. Suppose that F1 and F2 are two functions with
the properties above. Note that it follows that F1 and F2 are harmonic since this
follows from the conditions above. Therefore, the function F1 − F2 is harmonic
as well. Since F1 (a) − F2 (a) = 0 and F1 (b) − F2 (b) = 1 − 1 = 0. Therefore,
F1 − F2 ≤ 0 on (a, b) due to Proposition 4.11.

Now, consider F2 − F1. Again, F2 − F1 is harmonic. Since F2 (a) − F1 (a) = 0
and F2 (b) − F1 (b) = 1 − 1 = 0, we know that F2 − F1 ≤ 0 on (a, b) too. Since
F2 − F1 = − (F1 − F2) and both F2 − F1 and F1 − F2 are bounded above by 0, we
know that F2 − F1 = F1 − F2 = 0. Therefore, F1 = F2, which indicates that F is
unique. □

5. Proving the Kolmogorov 0-1 Law and Radon-Nikodym Theorem

Before getting into the proof of the Kolmogorov 0-1 Law, we must first establish
a few things about uniform integrability. We begin by explaining some notation
and presenting the definition of uniform integrability and a few properties before
defining a uniformly integrable martingale.

Notation 5.1. For X ∈ L1(Ω,F ,P) and F ∈ F , we write E[X;F ] = E[X1F ].

Definition 5.2. A class C of random variables is uniformly integrable if for all
ϵ > 0, there is a K ∈ R+ such that

E[|X|; |X| > K] < ϵ for all X ∈ C.

Proposition 5.3. A class of uniformly integrable random variables is in L1.

Proof. Let C be a class of uniform random variables defined on a probability space
(Ω,F ,P), and take some X ∈ C. First note that

E[|X|] = E[|X|; |X| > K] + E[|X|; |X| ≤ K].

Because X is in C, given an ϵ > 0, we can choose Kϵ such that E[|X|; |X| > K] < ϵ.
Fixing ϵ and its corresponding Kϵ, we get

E[|X|] = E[|X|; |X| > Kϵ] + E[|X|; |X| ≤ Kϵ] ≤ ϵ+Kϵ.

Therefore, we see that X ∈ L1. Since X ∈ C was chosen arbitrarily, this holds for
all X ∈ C. □
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Lemma 5.4. If X ∈ L1 (Ω,F ,P), then for any ϵ > 0, there is a δ > 0 such that
for any F ∈ F , P[F ] < δ implies that E[|X|;F ] < ϵ.

We will not present a proof of this lemma; however, a proof can be found in [1,
p. 126].

Theorem 5.5. If X ∈ L1 (Ω,F ,P), then
{E[X | G] : G is a sub sigma-algebra of F}

is a uniformly integrable family.

Proof. First, take some ϵ > 0. We know that we can take δ > 0 such that P[F ] <
δ implies that E[|X|;F ] < ϵ.

Also, since X ∈ L1, we know that there is a K ∈ R+ such that E[|X|] < Kδ.
Now, taking G to be a sub sigma-algebra of F and Y to be E[X | G], we can apply
Jensen’s inequality (Proposition 2.10 g) to get

|Y | ≤ E[|X| | G]
a.s. Therefore, we also have E[|Y |] ≤ E[|X|], and, by Markov’s inequality,

KP[|Y | > K] ≤ E[|Y |] ≤ E[|X|] < Kδ.

Hence,

P[|Y | > K] < δ, and therefore E[|Y |; |Y | > K] < E[|X|; |Y | > K] < ϵ.

□

Definition 5.6. Let {Mn} be a martingale relative to (Ω,F , {Fn} ,P). We say
{Mn} is a uniformly integrable martingale (UI martingale) if {Mn} is a uniformly
integrable class.

Theorem 5.7. Let {Mn} be a UI Martingale relative to (Ω,F , {Fn} ,P). Then,
M∞ = limn→∞ Mn exists almost surely in the L1 sense. Furthermore, Mn =
E[M∞ | Fn] for all n.

This theorem is the extension of the martingale convergence theorem for UI
martingales, and the proof for it is similar to the one presented for Theorem 3.20
and it can be found in [1, pp. 133-134]. With this out of the way, we move on to
proving Levy’s upward theorem, which will be used in our proof of the Kolmogorov
0-1 law.

Theorem 5.8 (Levy’s Upward Theorem). Let ξ ∈ L1 (Ω,F ,P), and define Mn =
E[ξ | Fn] a.s. Define η = E[ξ | F∞]. Then, {Mn} is a UI martingale and {Mn}
converges almost surely to η in the L1 sense.

Proof. First, note that E[Mn+1|Fn] = Mn by Proposition 2.10 e, meaning {Mn}
is a martingale. Furthermore, since ξ ∈ L1, Theorem 5.5 tells us that {Mn} is
uniformly integrable. By Theorem 5.7, we know that limn→∞ Mn = M∞ exists in
the almost sure sense and in the L1 sense. It remains to show that M∞ = η a.s.

Without loss of generality, we assume that ξ ≥ 0. Take two measures on (Ω,F∞),
that are defined such that

µ1(F ) = E[η;F ] and µ2(F ) = E[M∞;F ] where F ∈ F∞.

Now, note that for every F ∈ Fn, E[η;F ] = E[ξ;F ] by the tower property. Thus,

E[η;F ] = E[Mn;F ] = E[M∞;F ],
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where the second equality comes from [1, pp. 133-134]. Hence we see that µ1 and
µ2 agree on ∪∞

n=1Fn, meaning they agree on F∞.
Note that both η and M∞ are both F∞-measurable. One can see M∞ is F∞-

measurable by taking M∞ = lim supn→∞ Mn almost surely. Therefore, we see that
{ω | η > M∞} ∈ F∞, and because µ1(F ) = µ2(F ), we see that E[η − M∞; η >
M∞] = 0. Thus, P[η > M∞] = 0. One can show in an identical manner that
P[η < M∞] = 0.

Therefore, M∞ = η a.s. □

Before, proceeding to the proof of the Kolmogorov 0-1 law, we must define a tail
event.

Definition 5.9. Let F1,F2, . . . be a sequence of sigma-algebras on a common
probability space (Ω,F ,P). The tail sigma-algebra is defined as

τ =

∞⋂
n=1

σ

( ∞⋃
i=n

Fi

)
.

An event, T , is said to be a tail event if T ∈ τ .

Theorem 5.10 (Kolmogorov 0-1 Law). Given a probability space (Ω,F ,P) and a
sequence of independent events F1, F2, · · · ∈ F and a tail τ , for all T ∈ τ , P[T ] = 0
or P[T ] = 1.

Proof. Define Fn = σ (F1, F2, . . . , Fn). Let T be a tail event, and let η = 1T . By
Levy’s upward theorem, we know that

(5.11) η = E[η | F∞] = lim
n→∞

E[η | Fn] a.s.

Now, note that for all n, η is independent of Fn, thus, E[η|Fn] = E[η], which, from
(5.11) implies η = E[η] = P[T ]. Furthermore, we know that since η := 1T , we know
it takes on values of 0 or 1, meaning P[T ] = 0 or P[T ] = 1, which is the desired
result. □

Now that we have proved the Kolmogorov 0-1 law, we will apply it to answer
our question from Section 2 about a sequence of 1s given a sequence of Bernoulli-p
random variables. Recall the result.

Proposition 5.12. Given an infinite sequence of Bernoulli-p random variables
where p ∈ (0, 1), arbitrarily long sequences of 1s will occur infinitely many times.

Proof. Let {Xn} represent our sequence of Bernoulli-p random variables and Am

be the event that n consecutive 1s occur starting at the (nm+ 1)th trial. That
is, Am = {Xnm+1 = 1} ∩ {Xnm+2 = 1} ∩ · · · ∩ {Xnm+n = 1}. Let A be the event
that n consecutive 1s occur in {Xn}. Now consider a sequence A1, A2, . . . , each

containing n disjoint trials. For each k, let Bk =
∞⋃

m=k

Am and let B =
∞⋂
k=1

Bk. Note

that this is just limk→∞ Bk since {Bk}∞k=1 is a decreasing sequence of sets.
Note that B is a tail event, meaning Kolmogorov’s 0-1 law implies that P[B] = 0
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or P[B] = 1. Consider P[B]:

P[B] = P[ lim
k→∞

Bk]

= lim
k→∞

P[Bk]

≥ lim
k→∞

P[Ak]

= lim
k→∞

pn

= pn

> 0.

Note that since P[B] > 0 and P[B] = 0 or P[B] = 1, we can deduce that P[B] = 1.
Hence, we can conclude that a sequence of n 1s will occur with probability 1. Since
n was chosen arbitrarily, this holds for any n ∈ Z+. □

Now that we have proved and applied the Kolmogorov 0-1 law, we turn to
another application of martingales: a proof of a slightly weaker version of the
Radon-Nikodym theorem, but first, we must define an atom.

Definition 5.13. Let (X,F) be a measurable space. E ∈ F is said to be an atom
if its only proper subset in F is the emptyset.

In our weaker version of the Radon-Nikodym theorem, we assume that the sigma-
algebra in the probability space is separable. This is not always the case. One can,
however, generalize the proof we present and prove the Radon-Nikodym theorem
without this extra restriction. The proof of this can be found in [1, pp. 148-149].

Theorem 5.14 (Radon-Nikodym Theorem Assuming Separability). Take (Ω,F ,P)
to be a probability space where F is separable in that

F = σ (Fn) for some {Fn : n ∈ N}

where Fn is a subsequence of subsets of Ω. Suppose Q is a finite measure on Ω
where

P[F ] = 0 implies that Q[F ] = 0.

Then there is some X ∈ L1 (Ω,F ,P) such that

Q[F ] =

∫
F

XdP = E[X;F ] for all F ∈ F .

We can also write
dQ

dP
= X a.s. on F .

Proof. Recall from earlier that if X ∈ L1, then for any ϵ > 0, there is a δ > 0 such
that for any F ∈ F , P[F ] < δ implies that E[X;F ] < ϵ. From this result, we can
show that for all ϵ > 0, there exists δ such that P[F ] < δ implies that Q[F ] < ϵ.
Now, define Fn = σ (F1, . . . , Fn). Now, for each n, let

An,1, . . . , An,k
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denote the atoms of Fn.
Now, define a function Xn : Ω → [0,∞) such that if ω ∈ An,j ,

Xn (ω) =

{
0 P[An,j ] = 0
Q[An,j ]
P[An,j ]

otherwise
.

Note that Xn ∈ L1 (Ω,F ,P) and that

E[Xn;F ] = Q[F ] for all F ∈ Fn.

From this, we can deduce that {Xn} is a martingale relative to the filtration Fn,
and since X is non-negative, we know that

lim
n→∞

Xn = X∞ exists a.s.

In order to deduce that Xn → X∞ a.s. in L1, however, we must show that {Xn}
is UI.

Take some ϵ > 0. Now, chose δ > 0 and K ∈ R such that

K−1Q[Ω] < δ.

Therefore,

P[Xn > K] ≤ K−1E[Xn] = K−1Q[Ω] < δ.

Accordingly, this means that

E[Xn;Xn > K] = Q[Xn > K] < ϵ.

Hence, Xn → X∞ a.s. in L1.
We see that this implies that F 7→ E[X;F ] and F 7→ Q[F ] agree on

⋃
n
Fn,

meaning they agree on F .
Now, it remains to show that such an X is unique. Consider f and g to be

functions that satisfy such a property. Therefore,

Q[F ] =

∫
F

fdP =

∫
F

gdP.

Then, f − g is P-integrable and ∫
F

(f − g) dP = 0.

In particular, we have that if F1 = {ω ∈ Ω : f (ω) > g (ω)} and F2 = {ω ∈ Ω : f (ω) < g (ω)},
we have ∫

F1

(f − g) dP = 0 and

∫
F2

(f − g) dP = 0.

This holds if and only if∫
Ω

(f − g)
+
dP = 0 and

∫
Ω

(f − g)
−
dP = 0.

Therefore, we have (f − g)
+
= 0 a.e. and (f − g)

−
= 0 a.e. This means f = g a.e.,

thus completing our proof of uniqueness. □
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6. Brownian Motion and Proving the Fundamental Theorem of
Algebra

Before defining Brownian motion and proving the fundamental theorem of alge-
bra, we must give some a few definitions and some theorems that are analogous to
those proved in Section 3.

Definition 6.1. Given a probability space (Ω,F ,P) and a filtration {Ft}t∈T, where
T is an interval (note that unlike before, our indexing set, T, is continuous), a family
of random variables {Xt}t∈T indexed by T is a stochastic process. A process is called
adapted if each random variable Xt is measurable with respect to the corresponding
sigma-algebra Ft.

Definition 6.2. Let {Xt}t∈T be an adapted stochastic process with respect to a
filtration {Ft}t∈T. The process {Xt}t∈T is said to be progressively measurable if for
every [r, s] ∈ T, the function {Xt}t∈[r,s] is (when considered as a function X(t, ω)
on [r, s] × Ω) measurable with respect to the sigma-algebra B([r, s]) × Fs, where
B([r, s]) is the Borel sigma-algebra generated by [r, s].

Definition 6.3. Given a probability space
(
Ω,F , {Ft}t∈T ,P

)
, a process {Mt}t∈T

is a martingale if for every s < t,

Ms = E[Mt | Fs].

Definition 6.4. Let {Xt}t∈T be an progressively measurable stochastic with re-
spect to a filtration {Ft}t∈T on a probability space

(
Ω,F , {Ft}t∈T ,P

)
. For a fixed

ω ∈ Ω, the function t 7→ Xt(ω) is called a sample path corresponding to the fixed
ω ∈ Ω.

Theorem 6.5 (Doob’s Optional Stopping Theorem in Continuous Time). If {Mt}
is a continuous martingale with respect to a filtration, F , with sample paths that
are right-continuous with left limits, then {Mt} is progressively measurable and for
any finite stopping time, T , the function MT is measurable. In particular, if T is
a bounded stopping time, then MT is integrable and

E[MT ] = E[M0].

Theorem 6.6 (Martingale Convergence Theorem in Continuous Time). Suppose
a continuous martingale {Mt} satisfies supt E[|Mt|p] < ∞ for some p ≥ 1. Then
there is some random variable M∞ such that

lim
t→∞

Mt = M∞ a.s.

If p > 1, then convergence also holds in Lp.

Proofs of these theorems can be found in [5] and [4] respectively. Now, after
spending Section 4 discussing random walks, we now turn our attention to Brownian
motion (an example of a continuous martingale), the continuous analog of a random
walk. We will start by giving a definition for a Brownian motion.

Definition 6.7. A real-valued stochastic process {B (t) : t ≥ 0} is a standard Brow-
nian Motion if the following conditions are met:

(i) B (0) = 0.
(ii) The process has independent increments. This means that for all t1, t2, . . . , tn,

the increments B (tn)− B (tn−1), B (tn−1)− B (tn−2), . . . , B (t2)− B (t1)
are pairwise independent random variables.
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(iii) Given any t ≥ 0 and h > 0, the increment B (t+ h) − B (t) is normally
distributed with an expected value of 0 and a variance of h.

(iv) The function f : t 7→ B (t) is a.s. continuous.

Existence of Brownian Motion is non-trivial, so before trying to prove properties
of Brownian motion, one must first verify that it exists. In this paper, we will
outline a construction of a function that meets these criteria; however, if the reader
would like to see the full construction, they can refer to [2, pp. 23-25].

To begin our outline of a construction, let (Ω,F ,P) be a probability space. Define
Dn =

{
k
2n , 0 ≤ k ≤ 2n

}
, and consider the set of all dyadic points on the interval

[0, 1]. That is,

D =

∞⋃
n=0

{
k

2n
, 0 ≤ k ≤ 2n

}
.

Let {Zt : t ∈ D} be a set of independent, standard normally distributed random
variables. Define B (0) = 0, B (1) = Z1. We now will define B (d) for every d ∈ D.
Inductively, define B (d) where

B (d) =
B (d− 2−n) +B (d+ 2−n)

2
+

Zd

2
n+1
2

.

Furthermore, define B to be linear between each pair of adjacent d ∈ Dn for all n.
One can show that this construction of B satisfies the four properties necessary for
it to be a standard Brownian motion, thus proving its existence.

Although there is a lot to prove about Brownian motion in one dimension, such
as the fact that Brownian motion is nowhere right differentiable a.s., we will not
dive into these facts in this paper. Instead, we will move onto discussing Brownian
motion in higher dimensions. We will now present a definition of Brownian motion
in d-dimensions.

Definition 6.8. A Brownian motion in Rd is a d-dimensional vector whose com-
ponents are independent scalar Brownian motions. Note that for the case d = 2
this is called planar Brownian motion.

We will now proceed with a propositions that will be used to prove a lemma.
The proof for this proposition will not be presented in this paper; however, it can
be found in [9].

Proposition 6.9. Let f : [0,∞) × Rd → R be continuously differentiable in the
first coordinate and twice continuously differentiable in the second coordinate. Fur-
thermore, suppose there is a K such that

(6.10) |f (t, x) |+ |∂f
∂t

|+
d∑

i=1

| ∂f
∂xi

(t, x) |+
d∑

i,j=1

| ∂2f

∂xi∂xj
(t, x) | ≤ KeK(t+|x|)

for all (t, x) ∈ [0,∞)× Rd. If f is harmonic, then f (t, Bt) is a martingale.

Remark 6.11. We say a function g is harmonic on a region A if ∆g = 0 on A,
where ∆ denotes a continuous version of the laplacian, which is defined as

∆f (x1, . . . , xk) =

d∑
k=1

∂2

∂x2
k

f (x1, . . . , xk) .
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Lemma 6.12. Planar Brownian motion is neighborhood recurrent, but it does not
visit a specific point. In particular, if B is a Brownian motion that starts at z0 ∈ C,
then given some neighborhood of z0, N (z0), we have

{t : Bt ∈ N (z0)}
is unbounded a.s., but

{t : Bt = z0}
is empty.

Proof. Without loss of generality, let z0 ̸= 0. We will show that with probability
1, B visits any neighborhood of 0 infinitely often, but it will never hit 0. Let
0 < a < b and multiply the function z 7→ log |z| by a smooth function that equals 1
for {z : |a| ≤ |z| ≤ b} and is 0 on

{
z : a

2 ≥ |z|, |z| ≥ 2b
}
. This yields a function, f ,

that satisfies (6.10), thus, f (Bt) is a martingale by Proposition 6.9. Furthermore,

∆f =
∂2

∂x2
f +

∂2

∂y2
f =

y2 − x2

x2 + y2
+

x2 − y2

x2 + y2
= 0

on {z : a < |z| < b}. Applying the optional stopping theorem to the uniformly
integrable martingale f (Bt) with the stopping time T = inf {t : |Bt| ∈ {a, b}} and
letting p be the probability Bt hits a before b, we get

log |z0| = p log a+ (1− p) log b.

Rearranging terms, we get

p =
log b− log z0
log b− log a

.

Letting b → ∞ lets us conclude {t : Bt ∈ N (z0)} is unbounded a.s. Letting a → 0
lets us conclude that {t : Bt = z0} is empty. Therefore, the desired conclusion is
reached. □

We are now ready to proceed to the proof of the fundamental theorem of algebra.
Recall the statement of the theorem.

Theorem 6.13 (Fundamental Theorem of Algebra). If p is a non-constant poly-
nomial, then there is some z ∈ C for which p (z) = 0.

Proof. Assume for the sake of contradiction that p (z) ̸= 0 for all z ∈ C. Then
f = 1

p is an analytic function on C. Since p is a polynomial, we know that p → ∞
as z → ∞, meaning f is bounded. Let Bt be a Brownian Motion starting at the
origin. We know that Ref (Bt) is a martingale since Ref is harmonic when f is
analytic. Applying the martingale convergence theorem since Ref is bounded, we
get that Ref (Bt) exists a.s. as t → ∞.

Conversely, Ref (C) contains more than one element, so we can choose α, β such
that

inf Ref (C) < α < β < supRef (C) .
Now, consider {z : Ref (z) < α} and {z : Ref (z) > β}, which are non-empty, dis-
joint open sets. From Lemma 6.12, we know that a Brownian motion visits each
neighborhood infinitely many times. Thus,

lim inf
t→∞

Ref (Bt) < α < β < lim sup
t→∞

Ref (Bt) .

However, this contradicts the convergence of Ref (Bt). Therefore, if p is a non-
constant polynomial, then there is some z ∈ C for which p (z) = 0. □
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