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Abstract. We introduce partial differential equations and the Laplacian,

proving the Harnack inequality for harmonic functions. We then define Holder
continuity, proving an equivalent definition of Holder continuous. After this

we prove the Schauder estimate (with a preliminary lemma and the maximum
principle), which bounds the Holder norm of a weak solution by its L∞ norm

and the L∞ norm of its Laplacian. We then prove the Holder continuity of a

weak solution where div(A∇u) is very close to ∆u. Finally, we prove the De
Giorgi theorem and Harnack inequality in two dimensions.
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1. Introduction

Partial Differential Equations, or PDEs, are equations which involve functions
and their partial derivatives. One of the most important PDEs is asking about a
function u where we know its Laplacian,

∆u =

n∑
i=1

∂2u

∂x2
i

= f

where f is a given function, and where u = g on the boundary ∂Ω of the domain.
When ∆u = 0, u is called harmonic, and there are many results about harmonic
functions, some of which we discuss in the preliminaries. For example, harmonic
functions are smooth in the interior of the domain, and they satisfy the maximum
principle. They also minimize the Dirichlet integral, which is the functional∫

Ω

|∇u|2.
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In this paper, however, we also ask to what degree these properties extend to
other PDEs. Instead of having a function u where the Laplacian ∆u is 0, we may
have a function u where

∂i(aij∂ju) =

n∑
i=1

∂i

( n∑
j=1

aij∂ju
)
= 0

where each aij is a function entry of a positive definite matrix A. Note that if A
were the identity I, then div(A∇u) = div(∇u) = ∆u. It turns out that functions
u which are weak solutions to ∂i(aij∂ju) = 0 are also smooth in the interior of the
domain if A is smooth, but this result is much more complicated to prove, and we
first need to prove other perturbation and regularity results.

After this, we show De Giorgi and the Harnack Inequality in two dimensions,
where the proofs are simpler. The De Giorgi Theorem says that if div(A∇u) = 0
for A in L∞, then u ∈ Cα. This theorem is monumental in the theory of PDEs;
in this paper, we prove it in the two-dimensional case. The Harnack Inequality is
also an important result. It says that if u is a positive weak solution on B1, then
the ratio of supu and inf u is bounded on B1/2.

2. Background on the Laplacian

Before beginning the subject of the paper, we establish some preliminaries.
Firstly, the notion of a weak solution is vital to understanding PDEs. We say that
u ∈ H1(Ω) is a weak solution of{

∆u = 0 on Ω

u = g on ∂Ω,

if u = g on the boundary and ∫
Ω

∇u · ∇ϕ = 0

for any ϕ ∈ H1
0 (Ω). In general, a weak solution is characterized by its behavior

when integrating with a smooth, compactly supported function ϕ. In this paper,
saying a function is a solution means it is a weak solution. Also, to denote the ball
Br(0) centered at the origin, we simply write Br.

The solutions of PDEs can also be characterized as minimizers of certain func-
tionals. For example, harmonic functions minimize the Dirichlet integral:∫

Ω

|∇u|2.

First we prove the Harnack inequality for harmonic functions.

Theorem 2.1. Given a positive harmonic function u : B1 → (0,∞), then there
exists some absolute C (independent of u) such that

1

C
≤ u(x)

u(y)
≤ C

for all x, y ∈ B1/2.
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Proof. Let u be a positive harmonic function. Then set v = log u and w = |∇v|2.
Then we can see that

∆v =

n∑
i=1

[
− 1

u2

( ∂u

∂xi

)2
+

1

u

(∂2u

∂x2
i

)]
= −

n∑
i=1

1

u2

( ∂u

∂xi

)2
= −w.

At this point, we show the equality

∆(|∇v|2) =
n∑

i=1

n∑
j=1

∂2

∂x2
i

( ∂v

∂xj

)2
=

n∑
i=1

n∑
j=1

2
( ∂2v

∂xi∂xj

)2
+ 2
( ∂v

∂xj

) ∂v

∂xj

(∂2v

∂x2
i

)
= 2(|D2v|2 +∇∆v · ∇v).

Therefore
∆w = 2(|D2v|2 +∇∆v · ∇v) = 2(|D2v|2 −∇w · ∇v).

Because ∇w = 2D2v∇v, then this means that given some ϕ ∈ C∞
c (B1), we have

∆(ϕw) + 2∇v · ∇(ϕw) = 2ϕ|D2v|2 + 2w∇v · ∇ϕ+ w∆ϕ+ 2∇w · ∇ϕ

= 2ϕ|D2v|2 + 2w∇v · ∇ϕ+ w∆ϕ+ 4D2v∇v · ∇ϕ.

Now let ϕ = η2 where η is a cutoff function, so that ∇ϕ = 2η∇η. This gives

∆(η2w) + 2∇v · ∇(η2w) = 2η2|D2v|2 + 4wη∇v · ∇η + w∆ϕ+ 8η∇η ·D2v∇v.

By Cauchy’s inequality, for all a, b, we have that given any ϵ > 0, 2ab ≥ −ϵa2 − b2

ϵ .
Therefore

8η∇η ·D2v∇v ≥ −C|η||∇η||D2v||∇v|

≥ −ϵη2|D2v|2 − C ′

ϵ
|∇η|2|∇v|2 = −ϵη2|D2v|2 − C ′

ϵ
|∇η|2w

(where we have set a as |η||D2v| and b as |∇η||∇v|). By similar logic,

4ηw∇v · ∇η ≥ −C|η||w||∇v||∇η|

≥ −ϵη2w2 − C ′

ϵ
|∇v|2|∇η|2 = ϵη2w2 − C ′

ϵ
|∇v|2w.

We can also bound the 2ϕ|D2v|2 term, noting that

w2 = (∆v)2 =

n∑
i,j

∂2v

∂x2
i

∂2v

∂x2
j

≤
n∑
i,j

1

2

(∂2v

∂x2
i

)2
+

1

2

(∂2v

∂x2
j

)2
=

n∑
i,j

(∂2v

∂x2
i

)2
= n

n∑
i=1

(∂2v

∂x2
i

)2
≤ n

n∑
i,j

( ∂2v

∂xi∂xj

)2
= n|D2v|2.

Therefore w ≤ n|D2v|2, which with the other inequalities means that, taking ϵ
small enough that 2/n− ϵ− ϵ/n ≥ 0,

∆(η2w) + 2∇v · ∇(η2w) ≥ 2

n
η2w2 − ϵη2w2 − C

ϵ
|∇η|2w − ϵ

n
ϵ2w2

− C

ϵ
|∇η|2w − |∆(η2)|w ≥

( 2
n
− ϵ− ϵ

n

)
η2w2 − Cηw.
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Then let x0 be an interior maximum of n2w; this means that ∆(η2w)(x0) ≤ 0
and ∇(η2w)(x0) = 0. Therefore, using the previous inequality, we have that( 2

n
− ϵ− ϵ

n

)
(ηw)2(x0) ≤ Cηw(x0) =⇒ (ηw)2(x0) ≤ C(η,n)w(x0).

Since η2w ≤ (η2w)(x0), this means

η2ww(x0) ≤ (ηw)2(x0) ≤ C(η,n)w(x0) =⇒ η2w ≤ C(η,n).

Therefore, since w = |∇v|2, this means that there exists a constant C depending
on η such that

η2|∇ log u|2 ≤ C.

Choose η to be a cutoff function where η = 1 on B1/2. Thus there exists C
independent of u such that |∇ log u| ≤ C on B1/2. As a result, for all x ̸= y ∈ B1/2,

| log u(x)− log u(y)|
|x− y|

≤ C =⇒ e| log u(x)−log u(y)| ≤ eCe|x−y|.

Assuming without loss of generality that log u(x) > log u(y), then this means

elog u(x)

elog u(y)
=

u(x)

u(y)
≤ eCe|B1/2| = C ′.

As a result, there exists C such that u(x) ≤ Cu(y) on B1/2, which proves the
Harnack inequality for harmonic functions. □

3. Holder Preliminaries

Definition 3.1. (Holder continuity.) The space C0,α(Ω) of functions that are
α-Holder on a space Ω consists of functions f such that there exists M ∈ R where

sup
x ̸=y∈Ω

|f(x)− f(y)|
|x− y|α

≤ M.

Also, when we write oscΩf , this is the oscillation of the function f over the
domain Ω, meaning

oscΩf = sup
Ω

f − inf
Ω

f.

3.1. Morrey’s Characterization of Holder Continuity. We prove here an
equivalent definition of Holder continuity, which is Morrey’s characterization. This
alternative definition comes in handy when proving the Schauder estimate, and an
additional perturbation result, which are both vital to prove De Giorgi’s theorem.

Theorem 3.2. There exists C > 0 such that

1

|Br|

∫
Br(x)

|u− (u)Br(x)|
p ≤ Crαp

for all Br(x) ⊂ B1 if and only if u ∈ Cα(B1) with [u]α ≈ C.

Proof. First, we want to prove that if some u ∈ Cα(B1), then u satisfies

−
∫
Br(x0)

|u− (u)Br(x0)|
p ≤ Crαp
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for all x0 ∈ B1/2, r ∈ (0, 1/2). We know that if u ∈ Cα(B1), then for all x, y ∈
Br(x0) where x0 ∈ B1/2 and r ∈ (0, 1/2), there exists M such that

|u(x)− u(y)|
|x− y|α

≤ M.

As a result,

|u(x)− u(y)| ≤ M |x− y|α ≤ M(2α)rα = Crα

where C depends on α. Then we can see that oscBr(x0)u ≤ Crα. As a result,

−
∫
Br(x0)

|u− (u)Br(x0)|
p ≤ 1

|Br|
|Br|(oscBr(x0)u)

p ≤ (Crα)p = C ′rαp.

Here C ′ is a constant depending on α and p.

For the other direction, we assume that

−
∫
Br(x0)

|u− (u)Br(x0)|
p ≤ Crαp

for all x0 ∈ B1, r ∈ (0, 1/2) and want to show that u ∈ Cα(B1/2). Fix some
x, y ∈ B1 such that |x− y| = r. Then by the triangle inequality

|u(x)− u(y)| ≤ |u(x)− (u)B2r(x)|+ |(u)B2r(y) − (u)B2r(x)|+ |u(y)− (u)B2r(y)|.

(3.3)

We proceed to bound each of these terms by some constant times rαp. Take the
middle term first; we consider the average of u over B′ = B(x, 2r) ∩B(y, 2r), or

−
∫
B(x,2r)∩B(y,2r)

u(z)dz = −
∫
B′

u(z)dz.

Then by the triangle inequality, we can bound the middle term thus:

|(u)B2r(y) − (u)B2r(x)| ≤
∣∣∣(u)B2r(y) −−

∫
B′

u(z)dz
∣∣∣+ ∣∣∣−∫

B′
u(z)dz − (u)B2r(x)

∣∣∣
=
∣∣∣−∫

B′
(u)B2r(y) − u(z)dz

∣∣∣+ ∣∣∣−∫
B′

u(z)− (u)B2r(x)dz
∣∣∣

≤ −
∫
B′

|(u)B2r(y) − u(z)|dz +−
∫
B′

|u(z)− (u)B2r(x)|dz

≤ C

(
−
∫
B(y,2r)

|(u)B2r(y) − u(z)|dz +−
∫
B(x,2r)

|u(z)− (u)B2r(x)|dz

)
where

C =
|B′|

|B2r(x)|
=

|B′|
|B2r(y)|

.

Then by the assumption, we have

|(u)B2r(y) − (u)B2r(x)| ≤ C

(
−
∫
B2r(y)

|(u)B2r(y) − u(z)|dz +−
∫
B2r(x)

|u(z)− (u)B2r(x)|dz

)
≤ Crαp.
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This bounds the middle term of Equation (3.4). Now we want to bound the first
and last term. Given some x0 ∈ B1/2 and 0 < r < ρ, then

|(u)Br(x0) − (u)Bρ(x0)|
p = −

∫
Br(x0)

|(u)Br(x0) − (u)Bρ(x0)|
pdy

= −
∫
Br(x0)

|(u)Br(x0) − u(y) + u(y)− (u)Bρ(x0)|
pdy.

For p ≥ 1, f = xp is a convex equation, so we can see that by Jensen’s inequality

|(u)Br(x0)−u(y)+u(y)−(u)Bρ(x0)|
p ≤ 2p−1

(
|(u)Br(x0)−u(y)|p+|u(y)−(u)Bρ(x0)|

p
)
.

As a result, by this result and our original assumption, we have

−
∫
Br(x0)

|(u)Br(x0) − u(y) + u(y)− (u)Bρ(x0)|
pdy

≤ 2p−1
(
−
∫
Br(x0)

|(u)Br(x0) − u(y)|p +−
∫
Br(x0)

|u(y)− (u)Bρ(x0)|
p
)

≤ Crαp + C
(ρ
r

)n
ραp.

Therefore, this means

|(u)Br(x0)
− (u)Bρ(x0)

| ≤ Crα + C
(ρ
r

)(n/p)
ρα.

Then given some R > 0, we can set r = 2−k−1R and ρ = 2−kR. We thus have

|(u)BR/2N (x0) − (u)BR(x0)| ≤ |(u)BR/2N (x0) − (u)BR/2N−1 (x0)|+
. . .+ |(u)BR/2(x0) − (u)BR(x0)|

=

N−1∑
k=0

|(u)B
R/2−k−1 (x0) − (u)B

R/2−k (x0)|

≤
N−1∑
k=0

C
( R

2k+1

)α
+ 2n/p

( R

2k

)α
.

This last term is less than or equal to the limit as N goes to infinity, meaning that

|(u)BR/2N (x0) − (u)BR(x0)| ≤ lim
N→∞

N−1∑
k=0

C
( R

2k+1

)α
+ 2n/p

( R

2k

)α
≤ 2C

∞∑
k=1

( R

2k

)α
= 2C

( 1

1− 2α

)
Rα.

When we take both sides to the power of p, we get that

|(u)BR/2N (x0) − (u)BR(x0)|
p ≤ C

( 1

1− 2α

)p
Rαp = CRαp.

Taking N → ∞, this means

|u(x0)− (u)BR(x0)
|p ≤ CRαp =⇒ |u(x0)− (u)BR(x0)

| ≤ CRα.

Therefore each term in Equation (3.4) is bounded by some constant times rα,
meaning we have

|u(x)− u(y)| ≤ Crα =⇒ oscB1/2
u ≤ Crα.
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Thus u is Cα on B1/2. □

Theorem 3.4. Suppose f ∈ C(Ω), and that for any ball Br(x) ⊂ Ω, there exists a
linear function ℓ(p) = a · p+ b where a ∈ Rn, b ∈ R, such that

sup
Br(x)

|f(y)− ℓ(y)| ≤ Cr1+α.

Then f ∈ C1,α(Ω) with C approximately ||f ||C1,α . Moreover, if there exists a
quadratic polynomial p such that

sup
Br(x)

|f(y)− p(y)| ≤ Cr2+α,

then f ∈ C2,α(Ω).

Proof. First, we show that f is Lipschitz because for all x, y ∈ Ω, we have

|f(x)− f(y)|
|x− y|

≤ |f(x)− ℓ(x)|+ |ℓ(x)− ℓ(y)|+ |ℓ(y)− f(y)|
|x− y|

≤ |f(x)− ℓ(x)|
|x− y|

+ a+
|f(y)− ℓ(y)|

|x− y|
≤ C|x− y|α + a+ C|x− y|α

≤ C(diam(Ω))α + a

which means |f(x) − f(y)|/|x − y| is bounded. To obtain that f ∈ C1,α(Ω), we
now show that given x, y ∈ Ω, ∇f(x) = ∇f(y) + O(rα). We define ℓx(y) =
f(x) +∇f(x)(y− x) given some x ∈ Ω. Moreover, given x, y ∈ Ω, take z such that
r = |y − z| = |x− z|. Then we have

f(z) = f(x) +∇f(x)(z − x) +O(r1+α)

f(z) = f(y) +∇f(x)(z − y) +O(r1+α)

f(y) = f(x) +∇f(x)(x− y) +O(r1+α).

As a result we have that

f(x) +∇f(x)(z − x) +O(r1+α) = f(y) +∇f(y)(z − y) +O(r1+α)

f(x) +∇f(x)(z − x) +O(r1+α) = f(x) +∇f(x)(x− y) +∇f(y)(z − y) +O(r1+α)

∇f(x)(z − y) = ∇f(y)(z − y) +O(r1−α)

∇f(x) = ∇f(y) +
O(r1−α)

z − y

∇f(x) = ∇f(y) +O(rα).

Therefore, this means that

|∇f(x)−∇f(y)| ≤ Crα.

As a result, ∇f is Cα, meaning that f ∈ C1,α.

For the second part of this proof, we assume that given some Br(x) ⊂ Ω, there
exists a quadratic polynomial p such that ||f − p||L∞ ≤ Cr2+α. Therefore take
a sequence of decreasing radii rk, and for each Brk(x) we have a corresponding
quadratic polynomial Pk. Then

||f − Pk||L∞(Brk
(x)) ≤ Cr2+α

k .
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Given Pk, Pℓ such that ℓ ≤ k, by the triangle inequality we have that

||Pk − Pℓ||L∞(Brℓ
(x)) ≤ 2Cr2+α

ℓ .

Suppose that Pk = ak + bk(y − x) + (y − x)Mk(y − x), and similarly for Pℓ. Then
as rℓ, rk → ∞, we have that ||Pk − Pℓ||L∞ ≤ 0, meaning that the sequences ak, bk
and Mk must be Cauchy, since ak − aℓ, bk − bℓ, and Mk −Mℓ must converge to 0.
Therefore Pk is a Cauchy sequence, so there exists some P = limk→∞ Pk such that

||f − P ||L∞(Br) ≤ Cr2+α.

Because the norm f − P is comparable to r2+α on Br, it follows that P is the
second order Taylor polynomial of f (centered at the origin). Thus, we can follow
steps similar to the previous proof to reach the conclusion that f ∈ C2,α. □

4. Schauder Theorem

The Schauder theorem states that given some u where ∆u = f and u = g on
∂Ω, then we can bound all the second derivatives of u by the L∞ norms of f and
g. This means that if f and g are bounded, then u ∈ C2,α. This estimate can help
us prove DeGiorgi’s theorem.

Before we begin explaining the Schauder theorem, we first introduce harmonic
replacements. Given some {

u = g on ∂Ω

u = f on Ω,

then the harmonic replacement v of u is a function such that v = u on ∂Ω, and∫
Ω

∇ϕ · ∇v = 0

for all ϕ ∈ H1
0 (Ω). Also, before the Schauder theorem, we first need to prove

the maximum principle, and then a preliminary lemma. The maximum principle
proves that the maxima (and by similar logic, minima) of a weak solution lie on its
boundary. We prove this result for the more general uniformly elliptic case, rather
than just for harmonic solutions.

Lemma 4.1. (Maximum Principle.) For an H1(B2) weak solution u to ∂i(aij∂ju) =
0 where each aij is bounded, measurable, and uniformly elliptic,

essupΩu = essup∂Ωu

for any open set Ω ⊂ B2. A similar statement holds for minima.

Proof. Let v = (u − essup∂Ωu)+. Then because v belongs to H1
0 (Ω) by standard

Sobolev Space theory, ∫
Ω

aij∂ju∂iv = 0.

Because this integral is only nonzero on the set A = {x ∈ Ω | u(x) > essup∂Ωu},
then ∫

Ω

aij∂ju∂iv =

∫
A

aij∂ju∂iv =

∫
Ω

aij∂j(u− essup∂Ωu)+∂iv = 0.

Since ∂jv = ∂ju on A and ∂jv = 0 almost everywhere on Ω \A,

0 ≥ λ

∫
Ω

|∇(u− essup∂Ωu)+|2.
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Because

λ

∫
Ω

|∇(u− essup∂Ωu)+|2 ≥ 0

and λ > 0, this means ∫
Ω

|∇(u− essup∂Ωu)+|2 = 0

and therefore that∇(u−essup∂Ωu)+ = 0 on Ω. Since, however, (u−essup∂Ωu)+ = 0
on ∂Ω, this means (u − essup∂Ωu)+ = 0 on Ω and therefore that essup∂Ωu =
essupΩu.

By a similar argument using v = (essinf∂Ωu−u)+, we also have that essinf∂Ωu =
essinfΩu. □

Lemma 4.2. Let u ∈ H1(B1) be a weak solution of{
∆u = f in B1,

u = g on ∂B1.

Then there exists C > 0 such that

||u||L∞(B1) ≤ C(||f ||L∞(B1) + ||g||L∞(∂B1)).

Proof. We define

ũ =
u

||f ||L∞(B1) + ||g||L∞(∂B1)
.

Then ∆ũ = f̃ where f̃ = f/(||f ||L∞(B1) + ||g||L∞(∂B1)), and ũ = g̃ on ∂B1 where

g̃ = g/(||f ||L∞(B1) + ||g||L∞(∂B1)). Then ||f̃ ||L∞(B1) ≤ 1 and ||g̃||L∞(B1) ≤ 1. Now
we define a new function

v = ũ− |x|2

2d
+ 1 +

1

2d
.

Recall that ∆(|x|2) = 2d; therefore we have that ∆v = f̃ − 1 ≤ 0 and on ∂B1 we
have v = g̃ + 1 ≥ 0. Thus by the maximum principle, since v ≥ 0 on ∂B1 and
∆v ≤ 0, v ≥ 0 on B1. Therefore,

ũ− |x|2

2d
+ 1 +

1

2d
≥ 0 =⇒ ũ ≥ |x|2

2d
− 1− 1

2d
on B1. Therefore, ũ ≥ −2. By applying the same argument to −u, we also have
ũ ≤ 2, so |ũ| ≤ 2, meaning that |u| ≤ 2(||f ||L∞(B1) + ||g||L∞(∂B1)), which proves
the theorem. □

Now we can move on to the Schauder estimate.

Theorem 4.3. (Schauder Theorem.) Let u ∈ H1(B1) be a bounded weak solution
to ∆u = f ∈ Cα(B1), where 0 < α < 1. Then there exists some C > 0 depending
only on α and the dimension d such that

||u||C2,α(B1) ≤ C(||u||L∞(B1) + ||f ||Cα(B1)).

Proof. We can suppose without loss of generality that f(0) = 0 by replacing a given

u′ with u(x) = u′(x)− f(0)|x|2
2d , so that ∆u = f − f(0). We can also reduce to the

case that ||u||L∞(B1) ≤ 1 and ||f ||Cα(B1) ≤ ϵ for some ϵ > 0; this is because we can
multiply u by the constant ϵ/(ϵ||u||L∞ + ||f ||Cα). Then defining u′ and u multiplied
by this constant, we have

||u′||L∞ ≤ 1

||u||L∞
||u||L∞ ≤ 1,



10 SIMON SEIGNOUREL

as well as

||∆u||Cα ≤ ϵ

||f ||Cα

||f ||Cα ≤ ϵ.

Therefore, from now on we assume that our given function u is such that ∆u(0) =
f(0) = 0, ||u||L∞ ≤ 1 and ||∆u||Cα = ||f ||Cα ≤ ϵ.

Now let some w be the harmonic replacement of u, meaning that it solves{
∆w = 0 on B1,

w = u on ∂B1.
.

Then by Lemma 4.1, and because of the assumptions we make on u, we have

||u− w||L∞(B1) ≤ C||∆u||L∞(B1) = C||f ||L∞(B1) ≤ C||f ||Cα ≤ Cϵ.

Moreover, again because of the assumptions we made on u, we have

||w||L∞(B1) ≤ ||w||L∞(∂B1) = ||u||L∞(∂B1) ≤ 1.

Then we define P1 to be the second order Taylor polynomial of w about 0; in other
words,

P1(x) := w(0) +∇w(0) · x+
1

2
x ·D2w(0)x.

Because w is harmonic, the second derivatives are bounded [1]. Then by Theorem
2.10 of [2], and since ||w||L∞(B1) ≤ 1, we have that on a smaller ball B1/2 there
exists C such that,

||P1||L∞(B1/2) ≤ C||w||L∞(B1) ≤ C.

Thus ||P1||L∞(B1) ≤ C where C depends only on the dimension d. As a result, since
P1 is the second order Taylor polynomial of w, we have that for all r ≤ 1/2e

||w − P1||L∞(Br) ≤ C||D3w||L∞(Br)r
3 ≤ C||D3w||L∞(B1)r

3.

Because P1 is the second order Taylor polynomial of a harmonic function w, one
can compute that

∆P1(x) =

d∑
i=1

∂2w

∂x2
i

(x) = ∆w(x) = 0.

Thus P1 is harmonic, so ∆(w − P1) = 0, meaning that

||w − P1||L∞(Br) ≤ C||D3w||L∞(B1)r
3 ≤ C ′||w||L∞r3 ≤ C ′r3.

Since ||w − P1||L∞(Br) ≤ Cr3, and ||u − w||L∞(Br) ≤ ||u − w||L∞(B1) ≤ Cϵ, this
means that

||u− P1||L∞(Br) ≤ ||w − P1||L∞(Br) + ||u− w||L∞(Br)

≤ C1r
3 + C2ϵ

≤ C(r3 + ϵ)

for all r ≤ 1. Then choose r = r0 = ( 1
2C )1/(1−α), and pick ϵ = r30. Then

C(r3 + ϵ) = C
(
2
( 1

2C

)3/(1−α))
=
( 1

2C

) 3
1−α−1

=
( 1

2C

) 2+α
1−α

= r2+α
0

which implies that

||u− P1||L∞(Br0
) ≤ r2+α

0 .
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Now we define

u2(x) :=
(u− P1)(r0x)

r2+α
0

for all x ∈ B1. Then

||u2||L∞(Br) ≤
||u− P1||L∞(Br)

r2+α
0

≤ r2+α
0

r2+α
0

= 1.

Moreover, let f2 be the Laplacian of u2; then because P1 is harmonic we have that

[∆u2]Cα(B1) = sup
x ̸=y

r20[(∆u−∆P1)(r0x)− (∆u−∆P1)(r0y)]

r2+α
0 |x− y|α

= sup
x,y

∆u(r0x)−∆u(r0y)

|r0x− r0y|α

= [f ]Cα(Br0 )
≤ ϵ.

This means that ||f2||Cα(Br0 )
≤ ϵ. We can also bound the L∞ norm of f2, noting

that

||f2||L∞(B1) = r−α
0 ||f ||L∞(Br0 )

≤ ϵ

because for any |x| < r, |f(x)| = |f(x) − f(0)| ≤ ϵrα. Therefore f2 is Cα since
its L∞ norm and seminorm are bounded. As above, we can again define w2 to
be the harmonic replacement of u2, and define P2 to be the second order Taylor
polynomial of w2. We again have w2 and P2 such that ||u2 − P2||L∞(Br0 )

≤ r2+α
0 .

This means that by our definition of u2,

u2(x)r
2+α
0 = (u− P1)(r0x).

From there we have that

u(r0x) = P1(r0x) + r2+α
0 P2(r0x) + r2+α

0 (u2 − P2)(r0x),

which implies that

||u− P1 − r2+α
0 P2||L∞(Br0 )

≤ r
2(2+α)
0 .

Therefore if we define the polynomial Q2 = P1 + r2+α
0 P2,

||u−Q2||L∞(Br0 )
≤ r

2(2+α)
0 .

We now continue, similarly defining u3, P3 and Q3 such that

||u3 − P3||L∞(Br0 )
≤ r2+α

0 and ||u−Q3||L∞(B
r20

) ≤ r
3(2+α)
0 .

In other words, we can iterate so that for each k there exists a quadratic Qk such
that

||u−Qk||L∞(B
r
k−1
0

) ≤ r
k(2+α)
0 .

Then by Theorem 3.4, this means that u ∈ C2,α(B1). However, we manipulated
our original function to get this u. Our original function is

u′ = u(||u||L∞ + (||f ||Cα/ϵ)) +
f(0)|x|2

2d
.

Therefore because u ∈ C2,α we obtain that

||u′||C2,α ≤ C(||u||L∞ + ||f ||Cα).

□
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5. Perturbation Result

In this section, we first look at a perturbation result where ∂i(aij∂ju) = 0 and
||A − I|| ≤ ϵ, meaning A is very close to the identity. In other words, ∂i(aij∂ju)
is close to the Laplacian, so u is close to being harmonic. We then ask about the
regularity of u (whether it is Holder continuous).

Lemma 5.1. Given some u such that −
∫
Br(x0)

|∇u|p ≤ Cr(α−1)p for all x0 ∈ B1/2,

r ∈ (0, 1/2), this implies that u is Holder continuous by Morrey’s characterization.

Proof. Poincaré’s Inequality gives us that ||u− (u)Br
||Lp(Br) ≤ C||∇u||Lp(Br). Let

ur(x) = u(rx). Poincare’s also gives us that ||ur − (ur)B1
||Lp(B1) ≤ C||∇ur||Lp(B1).

By scaling Poincaré’s inequality∫
Br

|u(x)− (u)Br
|pdx ≤ C

∫
Br

|r∇u|pdx,

which means by assumption that∫
Br

|u(x)− (u)Br
|pdx ≤ Crpr(α−1)p,

and thus
∫
Br

|u(x)− (u)Br |pdx ≤ Crαp, which is the condition of Morrey’s charac-

terization of Holder continuity. □

Lemma 5.2. Let ϕ be a nonnegative, increasing function with

ϕ(ρ) ≤ C
((ϕ

r

)γ
+ ϵ
)
ϕ(r)

for all 0 < ρ < r. For any 0 < β < γ, there exists c > 0 such that ϕ(r) ≤ cϕ(1)rβ

holds for all r.

Proof. To prove this, we fix 0 < r < 1. Then we know by assumption that there
exists C, γ satisfying the inequality above. Now given some β < γ, we can fix

τ =
( 1

2C

) 1
γ−β

.

Since τ < 1 this means τr < r. Then we choose ϵ0 = τγ . Setting ρ = τr, this gives
us

ϕ(ρ) ≤ C(τγ + τγ)ϕ(r) = 2C
( 1

2C

) γ
γ−β

ϕ(r) =
( 1

2C

) β
γ−β

ϕ(r) = τβϕ(r).

As a result, this means ϕ(τ) ≤ τβϕ(1). Take some 0 < τ < r < 1, we can see
ϕ(τ) ≤ τβϕ(1) ≤ rβϕ(1), and therefore

ϕ(r) ≤ rβϕ(1)
(ϕ(r)
ϕ(τ)

)
≤ rβϕ(1)

(ϕ(1)
ϕ(τ)

)
.

Moreover, now suppose τk+1 < r < τk for some k ≤ 1. Then we know

ϕ(τk+1) ≤ τβ(ϕ(τk)) ≤ τβτβ(ϕ(τk−1)) . . . ≤ (τk+1)β(ϕ(1)) ≤ rβ(ϕ(1)).

Therefore, this means

ϕ(r) ≤ rβ(ϕ(1))
( ϕ(r)

ϕ(τk+1)

)
≤ rβ(ϕ(1))

( ϕ(τk)

ϕ(τk+1)

)
≤ rβ(ϕ(1))

(ϕ(1)
ϕ(τ)

)
.

Thus if we let c = ϕ(1)/ϕ(τ), we have some c such that given 0 < β < γ, ϕ(r) ≤
rβϕ(1)c for all r. □
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We now state and prove the perturbation result.

Theorem 5.3. Let λI ≤ A = A(x) ≤ ΛI be a uniformly elliptic matrix with
||A − I||L∞(B1) < ϵ. For every α ∈ (0, 1), there exists ϵ0(d, α) > 0 such that if

ϵ < ϵ0, and u ∈ H1(B1) solves

∂i(aij∂ju) = div(A∇u) = 0 on B1,

then u ∈ Cα(B1/2).

Proof. Fix some ball Br(x0) ⊂ B1, and suppose without loss of generality that
x0 = 0, 0 < r < 1. Define v as the harmonic replacement of u on Br(x0), and set
h = u− v ∈ H1

0 (Br). Then

∆h = ∆u = div(I∇u),

and since ∆v = 0, we have

∆h = ∆u−∆v = div(I∇u)− div(A∇u) = div(I −A)(∇u)

by assumption. By the weak formulation of the equation for h, taking the test
function to be h, we have∫

Br

|∇h|2 =

∫
Br

((I −A)∇u)∇h.

Then by Cauchy-Schwartz,∫
Br

|∇h|2 =

∫
Br

((δij − aij)∂ju)∂ih ≤
∫
Br

ϵ|∇u||∇h| ≤ ϵ||∇u||L2 ||∇h||L2 .

As a result,

||∇h||L2 ≤ ϵ||∇u||L2 .

We can also show that |∇v|2 is subharmonic, meaning that ∆(|∇v|2) ≥ 0. We
have that

∆|∇v|2 =

d∑
i=1

d∑
k=1

2(∂i∂kv)
2 +

d∑
i=1

d∑
k=1

∂kv(∂k∂
2
i v).

The first term here is greater than or equal to zero, and the second term is zero be-
cause ∆v = 0. Hence |∇v|2 is a subharmonic function. A property of subharmonic
functions is that their averages are monotone increasing. As a result, this means
that given some 0 < δ < r,

1

|Bδ|

∫
Bδ

|∇v|2 ≤ 1

|Br|

∫
Br

|∇v|2

which implies ∫
Bδ

|∇v|2 ≤ δn

rn

∫
Br

|∇v|2.

Because v is the harmonic replacement of u on Br, we have ∆v = 0 on Br and v = u
on ∂Br, meaning that because harmonic functions are minimizers of the Dirichlet
integral ∫

Br

|∇v|2 ≤
∫
Br

|∇u|2.
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Therefore we have that∫
Bδ

|∇u|2 =

∫
Bδ

|∇(v + h)|2

≤
∫
Bδ

2(|∇v|2 + |∇h|2)

≤ 2
(δn
rn

)∫
Br

|∇v|2 + 2ϵ2
∫
Bδ

|∇u|2

≤ 2
((δn

rn

)
+ ϵ2

)∫
Br

|∇u|2.

Returning now to the original proof, we set I(r) =
∫
Br

|∇u|2. This is a nonnegative,

increasing function, and we have shown that

I(δ) ≤ 2((
δn

rn
) + ϵ2)I(r)

for δ < r. As a result, by Lemma 5.2, there exists a constant c such that given
0 < ρ < 1, if we take ϵ small enough,

I(ρ) ≤ Cρn−2+2αI(1).

This is because n is our γ as stated in the lemma, and n − 2 + 2α < n because
0 < α < 1. This means that

1

ρn

∫
Bρ

|∇u|2 ≤ Cρ2(α−1)

∫
B1

|∇u|2 =⇒ −
∫
Bρ

|∇u|2 ≤ Cρ2(α−1)−
∫
B1

|∇u|2.

Therefore, u satisfies the condition in Lemma 5.1 with constant

C ′ = C−
∫
B1

|∇u|2.

Therefore u is Holder continuous over B1/2. □

6. DeGiorgi’s Theorem in 2D

We now prove De Giorgi’s Theorem in two dimensions. This result is surprising
because given only that u is a weak solution and the coefficients aij are L∞, this
means that u ∈ Cα. Instead of proving the general De Giorgi’s Theorem, we only
prove it in two dimensions, which is much simpler.

Theorem 6.1. Let u ∈ H1(B1) solve ∂i(aij∂ju) = 0 in the weak sense. Assume
that the dimension is n = 2 and the matrix A is uniformly elliptic. Then u ∈
Cα(B1/2) for some 0 < α < 1.

Proof. First, we fix B = Br(x0) such that 2B = B2r(x0) ⊂ B1. Then set ϕ =
(u − c)η2 for some constant c to be chosen, and some smooth η such that η = 1
on B, η = 0 on B1 \ 2B, with |∇η| ≤ 2/r. Then because ϕ ∈ C∞

c (B1) and u is a
solution, we have ∫

B1

aij∂ju∂iϕ =

∫
B1

aij∂ju∂i((u− c)η2) = 0.

We split this into three parts, writing (since the term on B1 \B2r is zero)∫
Br

aij∂ju∂i((u− c)η2) +

∫
B2r\Br

aij∂ju∂i((u− c)η2) = 0
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We also know η = 1 on Br, meaning that∫
Br

aij∂ju∂iu = −
∫
B2r/Br

aij∂ju∂i((u− c)η2).

By the uniform ellipticity of A,

λ

∫
Br

|∇u|2 ≤
∣∣∣− ∫

B2r\Br

aij∂ju∂i((u− c)η2)
∣∣∣ ≤ ∫

B2r\Br

|aij∂ju∂i((u− c)η2)|.

By the product rule,

∇((u− c)η2) = η2∇(u− c) + (u− c)∇(η2) = η2∇(u− c) + (u− c)2η∇η.

As a result,

λ

∫
Br

|∇u|2 ≤
∫
B2r\Br

A∇u · ∇u+

∫
B2r\Br

|(u− c)A∇u · ∇η|.

By the Holder inequality and uniform ellipticity, we have that∫
B2r/Br

A∇u∇η(u− c) ≤ ||Λ|∇u||∇η|||L2(B2r\Br)||u− c||L2(B2r\Br).

As a result this gives us

λ

∫
Br

|∇u|2 ≤ Λ

∫
B2r/Br

|∇u|2 +
(∫

B2r/Br

(Λ|∇u||∇η|)2
)1/2(∫

B2r/Br

(u− c)2
)1/2

≤ Λ

∫
B2r/Br

|∇u|2 + Λ

r
||∇u||L2(B2r/Br)

(∫
B2r/Br

(u− c)2
)1/2

.

Choosing c to be the average of u on the annulus, we apply the scaled Poincaré’
inequality to obtain

λ

∫
Br

|∇u|2 ≤ Λ

∫
B2r/Br

|∇u|2 + Λ

r
||∇u||L2(B2r/Br)cr||∇u||L2(B2r/Br)

= (Λ + (Λ/r)cr)

∫
B2r/Br

|∇u|2 = (Λ + Λc)

∫
B2r/Br

|∇u|2.

Adding λ
∫
Br

|∇u|2 to both sides, we have some constant C = (Λ+Λc)/λ such that∫
Br(x0)

|∇u|2 ≤ C

∫
B2r(x0)/Br(x0)

|∇u|2.

Then if we define I(r) =
∫
Br(x0)

|∇u|2, we can see that I(r) ≤ C(I(2r) − I(r)),

meaning

I(r) ≤ C

C + 1
I(2r).

Given some r < 1/2, choose k ≥ 1 such that 2−(k+1) ≤ r ≤ 2−k. Then by the
monotonicity of I, I(r) ≤ I(2−k). We know

I(2−k) ≤
( C

C + 1

)k
I(1).

Then if we denote ζ = C/(C + 1), we have

ζ−k = (2log2 ζ)−k = (2−k)log2 ζ ≤ 2rlog2 ζ .
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Therefore I(r) ≤ 2I(1)rα where α = log2 ζ. Therefore∫
Br(x0)

|∇u|2 ≤ Crα

for all r < 1/2. Then by the scaled Poincaré inequality

1

|Br|

∫
Br(x0)

|u− (u)Br(x0)|
2 ≤ r2

|Br|

∫
Br(x0)

|∇u|2.

Since we are in two dimensions, r2/|Br| is just the constant 1/π (this is why this
proof only works in two dimensions). As a result, we have that

1

|Br|

∫
Br(x0)

|u− (u)Br(x0)|
2 ≤ C

∫
Br(x0)

|∇u|2 ≤ Crα.

By Morrey’s characterization of Holder continuity, this means that u ∈ Cα/2, and
therefore u is Holder continuous.

□

7. Harnack Inequality in 2D

Harnack’s inequality states that for a positive weak solution u, the ratio of the
supremum and infimum of u is bounded independent of u. Before we prove this
result, we have a preliminary lemma, which only holds in two dimensions.

Lemma 7.1. Let u : R2 → R be a C1 function such that ω(r) := osc∂Br
u is

increasing. Then it holds that

ω(r)2 ≤ π

log(1/r)

∫
B1

|∇u|2.

Proof. Given that u = u(x, y), we set x = r cos θ and y = r sin θ. Then because
∂u
∂x · ∂x

∂θ = ∂u
∂θ , we have ∂u

∂θ = ∂u
∂x (−r sin θ) and similarly ∂u

∂θ = ∂u
∂y (r cos θ). Then

|∂u∂θ | ≤ |r ∂u
∂x | and |∂u∂θ | ≤ |r ∂u

∂y |, meaning that∣∣∣∂u
∂θ

∣∣∣ ≤ r
((∂u

∂x

)2
+
(∂u
∂y

)2)1/2
.

As a result |∂u∂θ | ≤ |r∇u|.

Now for a given r > 0, assume that angles θ1 and θ2 attain the sup and inf on
∂Br

. Then

ω(r) = u(θ1)− u(θ2) =

∫ θ2

θ1

∣∣∣∂u
∂θ

∣∣∣∂θ ≤ r

∫ θ2

θ1

|∇u(r, θ)|dθ.

Then by Cauchy-Schwartz

ω(r) ≤ r

∫ θ2

θ1

|∇u(r, θ)|dθ ≤ r
√
π||∇u||L2

which implies

ω(r)2

r
≤ rπ

∫ 2π

0

|∇u(r, θ)|2dθ.
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Next we integrate both sides of this equation with respect to r to get∫ 1

r0

ω(r)2

r
dr ≤

∫ 1

r0

rπ

∫
B1\Br0

|∇u|2.

Because ω is increasing, then

ω(r0)
2

∫ 1

r0

1

r
dr ≤

∫ 1

r0

ω(r)2

r
.

As a result,

ω(r0)
2(− log(r0)) ≤ rπ

∫
B1\Br0

|∇u|2

implying that

ω(r0)
2 ≤ π

log(1/r0)

∫
B1

|∇u|2

for all r0 ∈ (0, 1). This proves Lemma 7.1. □

Theorem 7.2. (Harnack Inequality in 2D). Let u ∈ H1(B2) be a nonnegative so-
lution to ∂i(aij∂ju) = 0, where the coefficients aij are assumed only to be uniformly
elliptic, i.e., λI ≤ aij(x) ≤ ΛI. Then there exists an absolute constant C > 0 such
that

sup
B

u ≤ C inf
B

u

for every ball B ⊂⊂ B1.

Proof. Suppose we have some weak solution u ∈ H1 on B2 in two dimensions. Then
Lemma 7.1 holds for u. Since u is a weak solution on B2, it is a weak solution on
every subset Br of B2. Therefore, given some 2 > ρ > r > 0, by the maximum
principle (Lemma 5.1)

osc∂Bρu = oscBρu ≥ oscBru = osc∂Br .

Thus the oscillation is increasing and we can apply Lemma 7.1.
We assume now that u > 0, and set v = log u. Then given some ϕ ∈ C∞

c (B2),∫
B2

aij∂iv∂jϕ =

∫
B2

aij∂iu
(∂jϕ

u

)
.

We can see that (∂jϕ/u) = ∂j(ϕ/u) + (ϕ∂ju)/u
2. Then we have∫

B2

aij∂iv∂jϕ =

∫
B2

aij∂iu∂j(ϕ/u) +

∫
B2

aij∂iu
ϕ∂ju

u2
.

The first term is zero because u is a weak solution, which means∫
B2

aij∂iv∂jϕ =

∫
B2

aij∂iu
ϕ∂ju

u2
=

∫
B2

(aij∂iv∂jv)ϕ.

Set ϕ to be a cutoff function η2 which is 1 on B1, and 0 on B2 \ Br (where
1 < r < 2), decreasing on Br \ B1 so that |∇η| < 2/r. Then by the Cauchy-
Schwartz inequality

λ

∫
B1

|∇v|2η2 ≤
∫
B1

aij∂iv∂j(η
2) = 2

∫
B1

aij∂iv∂jη(η).
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This means that

λ

∫
B1

|∇v|2η2 ≤ 2

∫
B1

aij∂iv∂jη(η) ≤ 2Λ
(∫

B1

|∇v|2η2
)1/2(∫

B1

|∇η|2
)1/2

.

Since η is fixed, (
∫
B1

|∇η|2)1/2 is a constant C. As a result, this means that (squar-

ing both sides) ∫
B1

|∇v|2η2 ≤ C
Λ2

λ2
.

Since η = 1 on B1, then this means∫
B1

|∇v|2 ≤
∫
B1

|∇v|2η2 ≤ C
Λ2

λ2
= C ′

where C ′ is a constant based on λ, Λ and the dimension.
Now we can apply Lemma 7.1 to the function v = log u, since the function

ω(r) = osc∂Br
v is increasing. This means we have that

(sup
∂Br

log u− inf
∂Br

log u)2 ≤ π

log(1/r)

∫
B1

|∇v|2 ≤ Cπ

log(1/r)
.

Therefore

sup
∂Br

log u− inf
∂Br

log u ≤
√
Cπ√

log(1/r)
.

We then take both sides as powers of e to get that

esup∂Br
log u

einf∂Br log u
≤ e

√
Cπ

log(1/r) .

Then we can see that esup∂Br
log u = sup∂Br

u, and similarly for einf∂Br log u, meaning
that

sup∂Br
u

inf∂Br
u

≤ e

√
Cπ

log(1/r) .

Since we want Harnack to hold for any Br ⊂⊂ B1, this means r < 1. Thus
log(1/r) ≥ m where m > 0. This means that Cπ

log(1/r) is bounded by some C ′, and

thus that
sup∂Br

u

inf∂Br
u

≤ C ′,

which implies Harnack in 2D. □
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[3] Xavier Fernandez-Réal, Xavier Ros-Oton. Regularity Theory for Elliptic PDE.
https://arxiv.org/pdf/2301.01564.


	1. Introduction
	2. Background on the Laplacian
	3. Holder Preliminaries
	3.1. Morrey's Characterization of Holder Continuity

	4. Schauder Theorem
	5. Perturbation Result
	6. DeGiorgi's Theorem in 2D
	7. Harnack Inequality in 2D
	8. Acknowledgements
	References

