
TWO PROOFS OF THE PRIME NUMBER THEOREM

DESMOND SAUNDERS

Abstract. The Prime Number Theorem (PNT) is perhaps the simplest and

most elegant way to characterize the assymptotic behavior of prime numbers
(in particular, their frequency among the natural numbers). In this paper we

present two very different proofs of the PNT: one using complex analysis and

the Riemann zeta function, and the other using only elementary methods.
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1. Introduction

Theorem 1.1 (Prime Number Theorem). Let

π(x) = the number of primes less than x.

Then lim
x→∞

π(x)

x/ log x
= 1. Equivalently, π(x) is asymptotic to x

log x , or π(x) ∼
x

log x .

The goal of this paper is simply to prove this theorem, and we will do so in two
very different ways. The first proof, much like the original proof of the theorem
as done independently by Hadamard and de la Vallée Poussin in 1896, relies on
complex analysis.1 The second proof is elementary (in that it only uses basic
notions of real analysis, and could even be formulated without them) and is due
to Selberg and Erdős in the late 1940’s.2 By juxtaposing these two proofs we can

Date: August 28, 2024.
1Our proof will more closely follow D.J. Newman’s simplified version from 1980.
2Selberg and Erdős generated a few different proofs. Although it may not be the simplest, we

will follow the very first one as published by Erdős in 1949.
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2 DESMOND SAUNDERS

understand why complex analysis is helpful in proving this non-complex result,
and also why the complex proof was discovered over 50 years before the (very
convoluted) elementary one.

One of the few things that these two proofs have in common is the focus on the
Chebyshev function

ϑ(x) =
∑
p≤x

log p

where p is prime (throughout the paper p and q will always mean primes and n will
always mean natural numbers greater than or equal to 1). This function is much
nicer to study than π(x), and so both proofs actually show that ϑ(x) ∼ x. This
result is entirely equivalent to the PNT, but for our purposes we only need to show
that one implies the other:

Theorem 1.2. ϑ ∼ x implies that π(x) ∼ x
log x .

Proof. We would like to bound π(x) log x on both sides by ϑ(x). One side is easy,

ϑ(x) =
∑
p≤x

log p ≤
∑
p≤x

log x = π(x) log x.

For the other side, let ϵ > 0. Then

ϑ(x) ≥
∑

x1−ϵ≤p≤x

log p ≥
∑

x1−ϵ≤p≤x

log x1−ϵ = (1− ϵ) log x
[
π(x)− π(x1−ϵ)

]
≥ (1− ϵ) log x

[
π(x)− x1−ϵ

]
.

Thus we have

ϑ(x) ≤ π(x) log x ≤ ϑ(x)

1− ϵ
+ x1−ϵ log x.

We then divide both sides by x and take the limit as x goes to infinity, using the
standard fact that lim

x→∞
log x
xϵ = 0 for any ϵ > 0,

1 = lim
x→∞

ϑ(x)

x
≤ lim

x→∞

π(x) log x

x
≤ lim

x→∞

1

1− ϵ

ϑ(x)

x
+

log x

xϵ
=

1

1− ϵ

and so indeed making ϵ arbitrarily small and using the given that ϑ ∼ x, it must

be that lim
x→∞

π(x)

x/ log x
= 1. □

Before showing that ϑ(x) ∼ x, it is helpful to find a basic upper bound on the
growth rate of ϑ(x). To make this notion of “growth rate” precise, we use the
following two pieces of notation: let f and g be functions of a variable x with g
everywhere positive. Then

f = O(g)

means that there exist some constants x0 and C > 0 such that |f(x)| ≤ Cg(x) for
all x ≥ x0. Similarly we say

f = o(g)

if, for all C > 0, there exists an xC such that |f(x)| ≤ Cg(x) for all x ≥ xC .
3 Note

that the equals sign as used in this notation does not denote any sort of equality of

3We can also modify both of these definitions to describe the behavior as f approaches a point

other than infinity.
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functions, and therefore one must be very careful to avoid abuses of this notation.
This allows us to state the following theorem:

Theorem 1.3 (Chebyshev). ϑ(x) = O(x)

Proof. Using standard facts about binomial coefficients we have

22n =

2n∑
j=1

(
2n

j

)
≥

(
2n

n

)
=

(2n)(2n− 1) . . . (n+ 1)

n!

and since we know
(
2n
n

)
is an integer, the denominator must divide the numerator.

However, any primes in the numerator (i.e primes between n + 1 and 2n) will not
divide out and so remain in the numerator. Thus

22n ≥ (2n)(2n− 1) . . . (n+ 1)

n!
≥

∏
n<p≤2n

p = eϑ(2n)−ϑ(n)

and so we have ϑ(2n)− ϑ(n) ≤ 2n log 2. We would like to show a similar result for
2n+ 1. We have ϑ(2n+ 1) ≤ ϑ(2n) + log(2n+ 1), and so

ϑ(2n+ 1)− ϑ

(
2n+ 1

2

)
= ϑ(2n+ 1)− ϑ(n) ≤ 2n log 2 + log(2n+ 1).

Therefore, regardless of which case we are in there exist constants C > 0 and x0
such that, for all x ≥ x0, we have

ϑ(x)− ϑ
(x
2

)
≤ Cx

Now consider adding together the inequalities

ϑ(x)− ϑ
(x
2

)
≤ Cx, ϑ

(x
2

)
− ϑ

(x
4

)
≤ C

x

2
, ϑ

(x
4

)
− ϑ

(x
8

)
≤ C

x

4
, . . .

Once this goes below x0 these inequalities no longer hold, but that just adds some
bounded finite error for all x. Thus taking this sum we have

ϑ(x) ≤ C
(
x+

x

2
+
x

4
+ . . .

)
+O(1) = 2Cx+O(1)

and so indeed ϑ(x) = O(x). □

2. Complex Analytic Proof

2.1. Overview and Prerequisites. This proof has three major players:

ϑ(x) =
∑
p≤x

log p

Φ(s) =
∑
p

log p

ps

ζ(s) =

∞∑
n=1

1

ns

where s is used to represent complex numbers (this is convention for the ζ function).
First we will give a very brief overview of the proof. It has four major steps:

(1) ζ(s) has an analytic continuation with no zeros on the line ℜ(s) = 1.
(2) Φ(s) can be written in terms of ζ(s), such that the above features of the

zeta function provide an analytic continuation for Φ(s).
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(3) We can show that an integral converges if we can show that the Laplace
transform of the function inside the integral has an analytic continuation
to the line ℜ(z) = 0.

(4) The statement ϑ(x) ∼ x is equivalent to the convergence of the integral∫ ∞

1

ϑ(x)− x

x2
dx

and indeed the analytic continuation for Φ(s) gives us an analytic continu-
ation for the Laplace transform of this integrand.

The essential connection between the PNT and complex analysis comes in step
(3), where the niceties of complex analysis provide a relatively simple way of proving
the convergence of a real-valued integral.

All that is needed to follow this proof is a basic understanding of complex analysis
(any reader with such an understanding can skip to the next section). Here, assum-
ing knowledge of complex numbers, we will provide four basic results of complex
analysis without proof to aid the unfamiliar reader.

Definition 2.1. A function f : C → C is called analytic on an open set U if one
of two equivalent statements hold:

(i) For all z0 ∈ U , f is differentiable at z0.
(ii) For all z0 ∈ U , there exists a power series

∞∑
n=0

an(z − z0)
n

and a radius r > 0 such that for all z, if |z − z0| < r, then the power series
converges at z and equals f(z).

Complex analysis frequently concerns itself with the study of these analytic func-
tions. While these may seem like relatively weak conditions for real-valued func-
tions, in the complex numbers analytic functions are highly constrained. A good
example of this is the crucial phenomenon of analytic continuation:

Theorem 2.2. Let U and V be connected open sets such that U ∩ V ̸= Ø, and let
f be an analytic function on U and g be an analytic function on V . If f(z) = g(z)
for all z ∈ U ∩ V , then g is the unique analytic function on V with this property.
We call g the analytic continuation of f to V .

Typically, when we show that such an analytic continuation exists, we will not
even bother to give it a separate name on its new domain.

It may not be immediately obvious that functions defined as series or integrals
are analytic. However, one can safely assume that any sufficiently well-behaved
function (e.g. uniformly convergent) is analytic.

Finally, complex analysis is frequently concerned with integrals along paths. We
will not provide the rigorous definition of such integrals, however we will use two
key results of complex analysis, both due to Augustin-Louis Cauchy.

Theorem 2.3 (Cauchy’s Theorem). Let γ and η be paths in an open, simply-
connected set U having the same beginning point and ending point. Let f be analytic
on U . Then ∫

γ

f =

∫
η

f.
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In other words, all that matters are the starting and ending points of a path.
Furthermore, the value of a function at any point can be determined by integrating
along (essentially) any curve that surrounds that point:

Theorem 2.4 (Local Cauchy Formula). Let D be a closed disk of positive radius
(or in general any closed region with sufficiently simple boundary) and let ∂D be
the boundary of D. Suppose f is analytic on D. Then for all z0 in the interior of
D we have

f(z0) =
1

2πi

∫
∂D

f(z)

z − z0
dz.

Aside from these results, everything should be understandable to a reader with
some understanding of real analysis and a willingness to accept that most results
of real analysis extend perfectly to the complex plane.

2.2. Function 1: ζ(s), the Riemann Zeta Function. First we show that the
zeta function is well defined on the complex plane with ℜ(s) > 1.

Theorem 2.5. ζ(s) =

∞∑
n=1

1

ns
converges absolutely for ℜ(s) > 1 and uniformly on

ℜ(s) ≥ 1 + δ for any δ > 0.

Proof. This is a simple consequence of the fact that the magnitude of a real number
raised to a complex power depends only on the real part of the power,∣∣∣∣ 1

nσ+it

∣∣∣∣ = ∣∣∣elog 1
n (σ+it)

∣∣∣ = ∣∣∣elog 1
nσ

∣∣∣ ∣∣∣ei(t log 1
n )
∣∣∣ = 1

nσ

Since

∞∑
n=1

1

nσ
converges for all σ > 1, we have that ζ(s) is absolutely convergent if

ℜ(s) > 1. Furthermore, for all s in the region ℜ(s) ≥ 1 + δ for any δ > 0 we have∣∣∣∣ 1ns
∣∣∣∣ ≤ 1

n1+δ

and so this convergence is uniform. □

Now we can state a key result of Euler’s that begins to show the connection
between the zeta function and prime numbers.

Theorem 2.6 (The Euler product). The infinite product∏
p

1

1− 1
ps

converges absolutely when ℜ(s) > 1, uniformly on the region ℜ(s) ≥ 1+δ for δ > 0,
and we have

ζ(s) =
∏
p

1

1− 1
ps

.

Proof. Let us first take it as given that this product converges absolutely and
uniformly on the desired regions. Then we can expand with the geometric series

1

1− 1
ps

= 1 +

(
1

ps

)
+

(
1

ps

)2

+ · · · = 1 +
1

ps
+

1

p2s
+ . . . .
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Furthermore, from the Fundamental Theorem of Arithmetic, every number n ∈ N
can be uniquely factored into primes, and thus ns can be uniquely factored into
primes all raised to a multiple of s. Therefore when we further expand∏

p

(
1 +

1

ps
+

1

p2s
+ . . .

)
each number 1

ns appears exactly once, and so indeed ζ(s) =
∏
p

1

1− 1
ps

.

To show that this product does in fact converge, consider taking the product
of the first N terms. Expanding with the geometric series as above, this gives us
an infinite sum of the form

∑
1
ns with the restriction that the prime factorization

of n only contains the first N primes (for example, this includes all numbers less
than the (N + 1)th prime). By choosing larger and larger N , we can ensure that
this sum is arbitrarily close to ζ(s), which we just showed converges in the desired
manner. □

Corollary 2.7. ζ(s) has no zeros on ℜ(s) > 1.

Proof. The Euler product has no zeros, since no term is zero and the terms approach
1, and so neither does ζ(s). □

While this is certainly a useful result, we would really like to show that ζ(s)
has no zeros on the region ℜ(s) ≥ 1. To do so we must first show that the zeta
function has an analytic continuation. In general it is possible to show that the
zeta function has a continuation to the entire complex plane (except at the point
s = 1), however this is unnecessary for our purposes. Thus we will only show that
the zeta function has a continuation to ℜ(s) > 0.

Theorem 2.8. ζ(s) has the following continuation to ℜ(s) > 0 which is analytic
except for a pole at s = 1:

ζ(s) =
s

s− 1
− s

∫ ∞

1

x− ⌊x⌋
xs+1

dx

where ⌊x⌋ denotes the largest integer less than or equal to x.

Proof. For ℜ(s) > 1 we have

s

s− 1
− s

∫ ∞

1

x− ⌊x⌋
xs+1

dx = s

∫ ∞

1

1

xs
dx− s

∫ ∞

1

x− ⌊x⌋
xs+1

dx

= s

∫ ∞

1

⌊x⌋
xs+1

dx

=

∞∑
n=1

∫ n+1

n

sn

xs+1
dx

=

∞∑
n=1

n

ns
−

∞∑
n=1

n

(n+ 1)s

=

∞∑
n=1

n

ns
−

∞∑
n=1

n− 1

ns

=

∞∑
n=1

1

ns
= ζ(s)
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Other than the pole at s = 1, we have x− ⌊x⌋ ≤ 1 and so∫ ∞

1

x− ⌊x⌋
xs+1

dx ≤
∫ ∞

1

1

x1+s
dx

thus the integral is absolutely convergent. Therefore this expression is well-defined
and indeed analytic on ℜ(s) > 0. Thus we have found the desired analytic contin-
uation for the zeta function. □

Corollary 2.9. As s→ 1 we have ζ(s) = O( 1
s−1 ).

Proof. Since we showed that this integral is analytic whenever ℜ(s) > 0, we know
we can find the following Taylor series:∫ ∞

1

x− ⌊x⌋
xs+1

dx = a0 + a1(s− 1) + a2(s− 1)2 + . . .

for some constants a0, a1, a2, . . . . Using our previous result we can thus find the
Laurent series for ζ(s) around s = 1,

ζ(s) =
s

s− 1
+

∫ ∞

1

x− ⌊x⌋
xs+1

dx =
1

s− 1
+ 1 +

(
a0 + a1(s− 1) + a2(s− 1)2 + . . .

)
The only negative power term in this series is exactly 1

s−1 , and in particular we can

conclude that ζ(s) = O( 1
s−1 ) as s approaches 1. □

Now that we have defined ζ(s) on the line ℜ(s) = 1, it remains to show that
there are no zeros on this line.

Theorem 2.10. For ℜ(s) ≥ 1, we have ζ(s) ̸= 0.

Proof. If ℜ(s) > 1, then this has already been shown in Corollary 2.7. Now we use
Theorem 2.6 and the typical Taylor series for log(1− x) to expand

ζ(s) =
∏
p

(
1− 1

ps

)−1

= exp log
∏
p

(
1− 1

ps

)−1

= exp
∑
p

− log

(
1− 1

ps

)

= exp
∑
p

∞∑
m=1

1

mpms

so long as ℜ(s) > 1. Since the magnitude of such an expression only depends on
the real part of the exponent, we have

|ζ(s)| = exp
∑
p

∞∑
m=1

ℜ
(

1

mpms

)
= exp

∑
p

∞∑
m=1

cos(mt log p)

mpmσ

where s = σ + it. In particular we have

ζ3(σ)|ζ(σ + it)|4|ζ(σ + 2it)| = exp
∑
p

∞∑
m=1

3 + 4 cos(mt log p) + cos(2mt log p)

mpmσ
.



8 DESMOND SAUNDERS

We can then factor the numerator on the right, since

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + (2 cos2 θ − 1) = 2(1 + cos θ)2 ≥ 0.

Thus for σ > 1, ζ3(σ)|ζ(σ + it)|4|ζ(σ + 2it)| is equal to e taken to the sum of
infinitely many non-negative terms, so

ζ3(σ)|ζ(σ + it)|4|ζ(σ + 2it)| ≥ e0 = 1.(2.11)

Now suppose for contradiction the zeta function had a zero on the line ℜ(s) = 1, or
in other words there exists some t∗ ̸= 0 such that ζ(1+it∗) = 0.4 Consider ζ(σ+it∗)
as σ approaches 1 from the right. Since ζ(s) is analytic around 1 + it∗, we know it
has a Taylor series with zero constant term, so as σ → 1, ζ(σ + it∗) = O(σ − 1).

Similarly, ζ is analytic around 1 + 2it, possibly with non-zero constant term, so
as σ → 1, ζ(σ + 2it∗) = O(1). Finally, by Corollary 2.9 we have ζ(σ) = O( 1

σ−1 ) as
σ → 1. Thus

ζ3(σ)|ζ(σ + it)|4|ζ(σ + 2it)| = O

(
1

(σ − 1)3
(σ − 1)4

)
= O(σ − 1).

For σ sufficiently close to 1 this expression must get arbitrarily close to zero, and
in particular become smaller than 1. This contradicts (2.11), and so the proof is
finished. □

2.3. Function 2: Φ(s). Recall that Φ(s) =
∑
p

log p

ps
. As with the zeta function,

we first show that it converges on ℜ(s) > 1.

Theorem 2.12. Φ(s) converges absolutely on ℜ(s) > 1 and uniformly on the region
ℜ(s) ≥ 1 + δ for δ > 0.

Proof. Let δ > 0. By a standard fact of calculus, there exists n0 such that for all

n ≥ n0 we have log n ≤ n
δ
2 . Let ℜ(s) ≥ 1 + δ. For all but the finite number of

terms less than n0 we have∑
p≥n0

∣∣∣∣ log pps
∣∣∣∣ ≤ ∞∑

n=n0

∣∣∣∣ log nns
∣∣∣∣ ≤ ∞∑

n=n0

n
δ
2

n1+δ
=

∞∑
n=n0

1

n1+
δ
2

and so indeed the convergence is absolute and uniform as desired. □

Now we are ready to connect this function to the zeta function.

Theorem 2.13. For ℜ(s) > 1 we have

Φ(s) = −ζ
′(s)

ζ(s)
− h(s)

where h(s) is a function that is analytic for ℜ(s) > 1
2 .

Proof. We first take the logarithmic derivative of the zeta function. Since we showed
in Theorem 2.6 that the Euler product is absolutely and uniformly convergent on

4If t∗ = 0 then we would be assuming ζ(1) = 0 which we know to be incorrect.
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ℜ(s) > 1, we can bring the derivative inside the sum as so:

ζ ′(s)

ζ(s)
=

d

ds
log ζ(s) =

d

ds

∑
p

log

(
1− 1

ps

)−1

=
∑
p

d

ds
log

(
1− 1

ps

)−1

= −
∑
p

log p

ps − 1

Furthermore, from the geometric series we have

1

ps − 1
=

1

ps
1

1− 1
ps

=
1

ps

(
1 +

1

ps
+

1

p2s
+ . . .

)
=

1

ps
+

1

p2s
+

1

p3s
+ . . .

and so

−ζ
′(s)

ζ(s)
=

∑
p

log p

(
1

ps
+

1

p2s
+ . . .

)
=

∑
p

log p

ps
+

∑
p

log p

(
1

p2s
+

1

p3s
+ . . .

)
= Φ(s) +

∑
p

hp(s)

where

|hp(s)| =
∣∣∣∣log p( 1

p2s
+

1

p3s
+ . . .

)∣∣∣∣
=

∣∣∣∣∣ log pp2s
1

1− 1
ps

∣∣∣∣∣
≤ C

log p

|p2s|

for some constant C that is the same for all primes p on the whole region ℜ(s) > 1
2 .

Thus on this region we have∑
p

|hp(s)| ≤
∞∑

n=1

|hn(s)| ≤ C

∞∑
n=1

log n

p2n

which converges absolutely and uniformly on the region ℜ(s) > 1
2 + δ for δ > 0 by

the same argument as in Theorem 2.12. Thus, if we let h(s) =
∑

p hp(s) then h is

analytic for ℜ(s) > 1
2 and indeed

Φ(s) = −ζ
′(s)

ζ(s)
− h(s)

as desired. □

Theorem 2.14. Let g(z) =
Φ(z + 1)

z + 1
− 1

z
. Then g(z) extends to a function that is

analytic for ℜ(z) ≥ 0.
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Proof. Let z = s− 1. We would equivalently like to show that

Φ(s)

s
− 1

s− 1

extends to an analytic function on ℜ(s) ≥ 1 (we already know this is analytic for
ℜ(s) > 1). From Theorem 2.13 we have

g(s) = − ζ ′(s)

sζ(s)
− 1

s
h(s)− 1

s− 1

where 1
sh(s) is indeed analytic on the desired region. Thus we only need to show

that − ζ′(s)
sζ(s) −

1
s−1 extends to an analytic function for ℜ(s) = 1. To do so we use our

continuation of the zeta function. By Theorem 2.10 we know ζ(s) ̸= 0 on this whole
line, which shows that this expression must be analytic everywhere except s = 1.
At s = 1 we can analyze the Laurent series of our functions. By Corollary 2.9 we
know that the Laurent series of ζ(s) has a single term with negative power, 1

s−1 .

Since s
s−1 = 1

s−1 + 1, the function sζ(s) shares this pole. Thus for some constants
a0, a1, a2, . . . we have

sζ(s) =
1

s− 1
+ a0 + a1(s− 1) + a2(s− 1)2 + . . . .

We can similarly differentiate the Laurent series of ζ(s) to get

−ζ ′(s) = 1

(s− 1)2
− b0 − b1(s− 1)− b2(s− 1)2 − . . . .

For some constants b0, b1, b2, . . . . Thus

−ζ ′(s)
sζ(s)

− 1

s− 1
=

1
(s−1)2 − b0 − b1(s− 1)− b2(s− 1)2 − . . .

1
s−1 + a0 + a1(s− 1) + a2(s− 1)2 + . . .

− 1

s− 1

=
(s− 1)2

(s− 1)2

(
1

(s−1)2 − b0 − b1(s− 1)− . . .
)

(
1

s−1 + a0 + a1(s− 1) + . . .
) − 1

s− 1

=
1− b0(s− 1)2 − b1(s− 1)3 − . . .

(s− 1)(1 + a0(s− 1) + a1(s− 1)2 + . . . )
− 1

s− 1
.

When we incorporate the 1
s−1 term, the constant term in the numerator disappears,

−ζ ′(s)
sζ(s)

− 1

s− 1
=

−a0(s− 1)− (a0 + b0)(s− 1)2 − . . .

(s− 1)(1 + a0(s− 1) + a1(s− 1)2 + . . . )

=
−a0 − (a0 + b0)(s− 1)− . . .

1 + a0(s− 1) + a1(s− 1)2 + . . .

which must be analytic around 1 since the denominator is non-zero. Thus indeed
every component of Φ(s) extends to an analytic function on ℜ(s) = 1, and therefore
so does Φ(s). □

Finally, it will help to have an integral representation of Φ(s). Recall that

ϑ(x) =
∑
p≤x

log p.
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Theorem 2.15. For ℜ(s) > 1 we have

Φ(s) = s

∫ ∞

1

ϑ(x)

xs+1
dx.

Proof. Note that between any two prime numbers ϑ is a constant function. Thus,
if we define the sequence (pn) where each pn is the nth prime (and for convenience
we can set p0 = 1), we have

s

∫ ∞

1

ϑ(x)

xs+1
dx = s

∞∑
n=0

∫ pn+1

pn

ϑ(pn)

xs+1
dx

= s

∞∑
n=0

ϑ(pn)
1

s

(
1

psn
− 1

psn+1

)

=

∞∑
n=0

ϑ(pn)

psn
− ϑ(pn+1)− log pn+1

psn+1

=

∞∑
n=0

(
ϑ(pn)

psn
− ϑ(pn+1)

psn+1

)
+

∑
p

log p

ps

= Φ(s).

In the second to last line, the sum telescopes, leaving only ϑ(1)
1s = 0. □

2.4. Function 3: ϑ(x). The key result about ϑ(x) is that the integral∫ ∞

1

ϑ(x)− x

x2
dx

converges. However, we will prove this result somewhat indirectly using the Laplace
transform.

Definition 2.16. Let f : R≥0 −→ R be bounded and piecewise continuous.5 Then
for ℜ(z) > 0 we define the Laplace transform of f to be

g(z) =

∫ ∞

0

f(t)e−zt dt.

Our central idea is that evaluating the integral∫ ∞

0

f(t) dt

is essentially equivalent to evaluating the Laplace transform at 0. While our re-
strictions on f are sufficient to show that the Laplace Transform is well defined (i.e.
the integral converges) whenever ℜ(z) > 0, we cannot naively assume convergence
when ℜ(z) = 0. This is where analytic continuation comes into play. Formally, the
key step is encapsulated in this lemma:

Lemma 2.17. Let f and g be as in Definition 2.16. If g extends to an analytic

function on ℜ(z) ≥ 0, then

∫ ∞

0

f(t)dt exists and equals g(0).

5These restrictions on f are actually stronger than necessary, but are sufficient for our purposes.
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Proof. For T > 0, let

gT (z) =

∫ T

0

f(t)e−zt dt.

Since it is a finite integral of a well-behaved function, gT is analytic everywhere.
Furthermore we have that

lim
T→∞

gT (0) = lim
T→∞

∫ T

0

f(t)e−0t dt =

∫ ∞

0

f(t) dt

so it is equivalent to our lemma to show that

lim
T→∞

gT (0) = g(0).

This statement may seem obvious, but since we are dealing with analytic continua-
tions we must tread carefully. Let C be the solid closed path in the diagram below,
consisting of an arc that is just a tiny bit longer than a semi-circle and a vertical
line. It is defined by two parameters, R and δ, and composed of the circle |z| = R
for ℜ(z) ≥ −δ and then the line ℜ(z) = −δ for |z| ≤ R.

ℜ(z) = −δ

S−

|z| = R

C− C+

We define C+ to be the part of this path to the right of the imaginary axis, and
C− to be to the left (so C− includes two tiny peices of the arc).

By our assumption that g extends to an analytic function on ℜ(z) ≥ 0, we
actually know that it is analytic on some open set containing this region, and so
for any R we can choose some δ small enough that g is analytic on all of C and its
interior. Thus, since gT (z) is analytic everywhere, we have that

HT (z) = (g(z)− gT (z)) e
Tz

(
1 +

z2

R2

)
is analytic on this whole region. Thus we can use Theorem 2.4 to get

g(0)− gT (0) = HT (0) =
1

2πi

∫
C

HT (z)

z
dz.
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We would like to show that this difference must vanish for large enough T . To do
so, we bound the integral with strategic choice of R. Since we are given that f is
bounded, there exists some B ≥ 0 such that |f(t)| ≤ B for all t > 0.

Let us start with C+. We would like to show that∣∣∣∣ 1

2πi

∫
C+

HT (z)

z
dz

∣∣∣∣ ≤ B

R
.(2.18)

For ℜ(z) > 0 we have

|g(z)− gT (z)| =
∣∣∣∣∫ ∞

T

f(t)e−zt dt

∣∣∣∣ ≤ ∫ ∞

T

|f(t)|
∣∣e−zt

∣∣ dt ≤ B

∫ ∞

T

∣∣e−zt
∣∣ dt

=
B

ℜ(z)
e−ℜ(z)T

and∣∣∣∣eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ = eℜ(z)T |R2 + z2|
|R2|

1

R
= eℜ(z)T |R2 + z2|

|Rzz/z|
1

R
= eℜ(z)T

∣∣∣∣ zR +
z

R

∣∣∣∣ 1

R

= eℜ(z)T 2ℜ(z)
R2

.

Thus by taking the product of these two estimates, we get an upper bound for
HT (z)

z . The integral therefore must be less than the length of the path times this
upper bound, or∣∣∣∣ 1

2πi

∫
C+

HT

z
dz

∣∣∣∣ ≤ 1

2π

(
B

ℜ(z)
e−ℜ(z)T

)(
eℜ(z)T 2ℜ(z)

R2

)
(πR) =

B

R

as desired.
Now we would like to estimate the integral on C−. We have∣∣∣∣∫

C−

HT (z)

z
dz

∣∣∣∣ ≤ ∫
C−

∣∣∣∣g(z)eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ dz
+

∫
C−

∣∣∣∣gT (z)eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ dz.
We again estimate each of these integrals separately. First, similar to the positive
case, we have ∫

C−

∣∣∣∣gT (z)eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ dz ≤ B

R
.(2.19)

Since gT is analytic everywhere, this integrand is analytic everywhere on ℜ(z) < 0
(in fact, everywhere except z = 0). Therefore, by Theorem 2.3, we can take this
integral over any path in the half-plane ℜ(z) < 0 as long as it has the same start
and end points. In particular, let S− be the part of the circle |z| = R to the left of
the imaginary axis (the dashed line in the diagram). This path satisfies our criteria,
so ∫

C−

∣∣∣∣gT (z)eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ dz = ∫
S−

∣∣∣∣gT (z)eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ dz.
and we can make essentially the same estimations as above

|gT (z)| =

∣∣∣∣∣
∫ T

0

f(t)e−zt dt

∣∣∣∣∣ ≤ B

∫ T

0

∣∣e−zt
∣∣ dt = B

e−ℜ(z)T − 1

−ℜ(z)
< B

e−ℜ(z)T

−ℜ(z)
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and as before ∣∣∣∣eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ = eℜ(z)T 2ℜ(z)
R2

so we have∫
S−

∣∣∣∣gT (z)eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ ≤ (
B
e−ℜ(z)T

−ℜ(z)

)(
eℜ(z)T 2ℜ(z)

R2

)
(πR) =

B

R
.

Finally we would like to show that

lim
T→∞

∫
C−

∣∣∣∣g(z)eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ dz = 0.(2.20)

We can write this integrand as eTz times some analytic function h(t) that is inde-
pendent of T . Since we are considering h(t) on a compact set where it is analytic,
it must have some upper bound M . Thus we have∫

C−

∣∣∣∣g(z)eTz

(
1 +

z2

R2

)
1

z

∣∣∣∣ dz ≤M

∫
C−

∣∣eTz
∣∣ dz

and we can certainly choose large enough T such that this integral is arbitrarily
small (for ℜ(z) < 0).

We can now prove the lemma. We would like to show that

lim
T→∞

|g(0)− gT (0)| = 0.

Let ϵ > 0 and choose R large enough such that B
R < ϵ

3 . We can also choose
sufficiently large T such that the expression in (2.20) is also less than ϵ

3 . We can
then add together our results from (2.18), (2.19), and (2.20) to get

|g(0)− gT (0)| ≤
B

R
+
B

R
+
ϵ

3
< ϵ

which proves the lemma. □

With this lemma we can show the convergence of the desired integral using our
previous work on analytic continuations:

Theorem 2.21. The integral ∫ ∞

1

ϑ(x)− x

x2
dx

converges.

Proof. Let f(t) =
ϑ(et)− et

et
. Then making the substitution x = et we have∫ ∞

1

ϑ(x)− x

x2
dx =

∫ ∞

0

ϑ(et)− et

e2t
etdt =

∫ ∞

0

f(t) dt.

By Theorem 1.3 we know that f is bounded, and it is also piecewise continuous.
Therefore if the Laplace transform of f has an analytic continuation we are done
by Lemma 2.17. Specifically if we can show that∫ ∞

0

f(t)e−ztdt =
Φ(z + 1)

z + 1
− 1

z
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then applying Theorem 2.14 would complete the proof. By Theorem 2.15 we have

Φ(s)

s
− 1

s− 1
=

∫ ∞

1

ϑ(x)

xs+1
dx−

∫ ∞

1

1

xs
dx =

∫ ∞

1

ϑ(x)− x

xs+1
dx

and so indeed letting z = s− 1 we get

Φ(z + 1)

z + 1
− 1

z
=

∫ ∞

1

ϑ(x)− x

xz+2
dx =

∫ ∞

0

ϑ(et)− et

e2t+z
et dt =

∫ ∞

0

f(t)e−zt dt

as desired. □

This last result was the key application of complex analysis, and we can imme-
diately prove the final theorem:

Theorem 2.22. ϑ(x) ∼ x.

Proof. Recall that this statement really means that lim
x→∞

ϑ(x)
x = 1. This is equiva-

lent to the following:

(i) For any λ > 1, there exists x0 such that for all x ≥ x0, ϑ(x) < λx, and
(ii) For any 0 < λ < 1, there exists x0 such that for all x ≥ x0, ϑ(x) > λx.

Let λ > 1 and suppose for contradiction that the set of x such that ϑ(x) ≥ λx is
unbounded. Let x be some such point and consider the interval from x to λx. Since
ϑ is non-decreasing, for all t in this interval we have ϑ(t) ≥ ϑ(x) ≥ λx. Thus∫ λx

x

ϑ(t)− t

t2
dt ≥

∫ λx

x

λx− t

t2
dt =

[
−λx
t

− log t

]λx
x

= (λ− 1)− log λ

which is positive and independent of x. By assumption, we can find arbitrarily large
x where this is the case. Thus for any possible value of the integral, there will always
be an x such that the integral will leave any sufficiently small ϵ-neighborhood, and
so the integral does not converge. However this contradicts Theorem 2.21.

Similarly, let 0 < λ < 1 and suppose that the set of x such that ϑ(x) ≤ λx is
unbounded. Then for any such x,∫ x

λx

ϑ(t)− t

t2
dt ≤

∫ x

λx

λx− t

t2
dt =

∫ 1

λ

λ− t

t2
dt < 0

which is negative and independent of x, and so again the integral does not converge,
contradicting Theorem 2.21. □

Right at the beginning, in Theorem 1.2, we showed that ϑ(x) ∼ x implies that
π(x) ∼ x

log x . Thus Theorem 2.22 completes the proof of the PNT.

3. Elementary Proof

3.1. Overview and Assumptions. This proof involves three steps, which happen
to correspond chronologically to the contributions of Selberg and Erdős. While this
proof requires no advanced methods, we shall still assume some basic techniques of
elementary number theory without proof. The most notable of these is the Möbius
Inversion Formula. To understand this formula, we must first define the Möbius
function:
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Definition 3.1. We define µ : N −→ {−1, 0, 1} by

µ(n) =


1 n = 1

0 n is not square-free

(−1)r n = p1p2 . . . pr with each pj distinct

where square-free means that no prime in the number’s prime factorization has a
power greater than 1. This is an essential function in elementary number theory
and will be used throughout our proof, primarily due to its role in the following
formula:

Theorem 3.2 (Möbius Inversion Formula). Let f and g be functions from the
natural numbers to the complex numbers such that

g(n) =
∑
d|n

f(d).

Then

f(n) =
∑
d|n

µ(d)g
(n
d

)
.

We will also make use of this alternate version:

Theorem 3.3. Let f and g be functions from the interval [1,∞) to the complex
numbers such that

g(x) =
∑
n≤x

f
(x
n

)
then

f(x) =
∑
n≤x

µ(n)g
(x
n

)
.

This elementary proof does also use calculus, although it requires nothing beyond
the high-school level other than a familiarity with lim sup, lim inf, and asymptotic
notation.

In addition to this, we will use three basic estimates without proof. Let

a = lim inf
x→∞

ϑ(x)

x
and A = lim sup

x→∞

ϑ(x)

x
.

In Theorem 1.3 we showed that ϑ(x) = O(x), and thus there exists some constant
C such that ϑ(x) ≤ Cx for large enough x. We will assume specifically that

A ≤ 1.5.(3.4)

We take this as a reasonable assumption because one can actually show much
stronger bounds with elementary methods. Indeed, before Hadamard and de la
Vallée Poussin proved the PNT in 1896, Chebyshev had found bounds c1 < 1 < c2
very close to 1 such that

c1 < lim
x→∞

π(x) log x

x
< c2.

(recall that ϑ(x)
x and π(x) log x

x are closely related, see Theorem 1.2). This also
motivates the next assumption:

a > 0(3.5)
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which can also be shown with purely elementary methods. Finally we assume∑
p≤x

log p

p
= (1 + o(1)) log x.(3.6)

Again, one can actually show a much stronger result with purely elementary meth-
ods, namely

∑
p≤x

log p
p = log x+ o(1).

3.2. The Selberg Symmetry Formula. The process of finding the elementary
proof of the PNT truly began when Selberg mentioned to Erdős that he had found
an elementary proof of the following formula:∑

p≤x

log2 p+
∑
pq≤x

log p log q = 2x log x+O(x).(3.7)

Although not nearly as nice a statement as the PNT, this formula does speak to
the asymptotic behavior of primes and so it becomes an essential tool that will be
used repeatedly throughout this proof.

Definition 3.8. Define the 1st and 2nd von Mangoldt functions as

Λ(n) =
∑
d|n

µ(d) log
(n
d

)
Λ2(n) =

∑
d|n

µ(d) log2
(n
d

)
.

We will start by showing that the 2nd von Mangoldt function is an approximate
indicator for primes and the product of two primes:

Theorem 3.9. For distict primes p and q we have

Λ2(1) = 0

Λ2(p) = log2 p

Λ2(p
2) = 3 log2 p

Λ2(pq) = 2 log p log q

and for any n with three or more prime factors, Λ2(n) = 0.

Proof. The first four statements follow from simple calculation.6 Let n = pe11 . . . pekk
with k ≥ 3. To show that Λ2(n) = 0, we need to show that∑

d|n

µ(d) logm d = 0

so long as m < k, which we do with induction. Our base case is that∑
d|n

µ(d) = 0

whenever n has one or more prime factors (i.e. n ≥ 1). This is a standard fact
about the Möbius function which we assume. Now suppose we are given that∑

d|n

µ(d) logm d = 0

6For example, Λ2(pq) = (log pq)2 − log p− log q = 2 log p log q.
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for some m > 1 so long as n has more than m prime factors. We have∑
d|n

µ(d) logm+1 d =
∑
d|n

(µ(d) logm d)
(
log p

ei1
i1

+ · · ·+ log p
eil
il

)
where p

ei1
i1

. . . p
eil
il

is the prime factorization of d. We can then break up this sum
over the powers of prime factors of n to get

∑
pr|n

∑
d| n

pr

p∤d

µ(dpr) logm dpr

 log pr.

If r ≥ 2 then µ(dpr) = 0. Otherwise r = 1 and since p ∤ d we know µ(dp) = −µ(d).
Therefore ∑

d|np

µ(dp) logm dp = −
∑
d|np

µ(d) (log d+ log p)
m

= −
m∑
i=1

(
m

i

)
logi p

∑
d|np

µ(d) logm−i d

= 0

using strong induction. Note that certain elements of this last sum may have one
fewer prime factor, so we can only apply our assumption if n has more than m+ 1
prime factors, which is as expected.

Thus we have

Λ2(n) =
∑
d|n

µ(d) log2
(n
d

)
=

∑
d|n

µ(d) (log n− log d)
2

= log2 n
∑
d|n

µ(d)− 2 log n
∑
d|n

µ(d) log d+
∑
d|n

µ(d) log2 d.

By our above result each of these terms is zero, so indeed Λ2(n) = 0. □

In order to show the Selberg Symetry Formula, (3.7), we will show separately
that

∑
n≤x Λ2(n) equals both sides of the equation. First, however, we need the

following lemma:

Lemma 3.10. Λ2(n) = Λ(n) log n+
∑
d|n

Λ(d)Λ
(n
d

)
.

Proof. If n = pk, then the only divisors of n such that µ(d) ̸= 0 are d = 1 and
d = p, so Λ(n) = k log p− (k − 1) log p = log p. If n has two or more prime factors
then by our previous argument

Λ(n) =
∑
d|n

µ(d) log
(n
d

)
= log n

∑
d|n

µ(d) +
∑
d|n

µ(d) log d = 0.
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Thus we have Λ(n) =
∑
pr≤x

log p. If we have n = pe11 . . . pekk then

∑
d|n

Λ(d) =
∑
pr|n

log p =

k∑
i=1

ei log pi = log n.

We apply this equality in the first and fourth lines of the following manipulations:

log2 n =
∑
d|n

Λ(d) log n

=
∑
d|n

Λ(d)
(
log d+ log

n

d

)
=

∑
d|n

Λ(d) log
n

d
+
∑
d|n

Λ(d) log d

=
∑
d|n

Λ(d)
∑
a|nd

Λ(a)

+
∑
d|n

Λ(d) log d

=
∑
ad|n

Λ(a)Λ(d) +
∑
d|n

Λ(d) log d

=
∑
b|n

Λ(b) log b+
∑
d|b

Λ(d)Λ

(
b

d

) .

Applying Theorem 3.2 to log2 n =
∑

b|n

(
Λ(b) log b+

∑
d|b Λ(d)Λ

(
b
d

))
completes

the proof. □

Now we are ready for the first half of the symmetry formula.

Proposition 3.11.
∑
n≤x

Λ2(x) =
∑
p≤x

log2 p+
∑
pq≤x

log p log q +O(x).

Proof. We break this proof into three steps. First, using Lemma 3.10 we have

∑
n≤x

Λ2(n) =
∑
n≤x

Λ(n) log n+
∑
d|n

Λ(d)Λ
(n
d

)
=

∑
n≤x

Λ(n) log n+
∑

mn≤x

Λ(m)Λ(n).(3.12)

We now analyze each of these sums indidually. We have∑
n≤x

Λ(n) log n =
∑
pk≤x

log p log pk =
∑
p≤x

log2 p+
∑
pk≤x
k≥2

log p log pk.

We would like to show that this last term is negligible, so we estimate∑
pk≤x
k≥2

log p log pk ≤
∑
pk≤x
k≥2

log2 x ≤
√
x log2 x =⇒

∑
pk≤x
k≥2

log p log pk = O
(√
x log2(x)

)



20 DESMOND SAUNDERS

and so ∑
n≤x

Λ(n) log n =
∑
p≤x

log2 p+O
(√
x log2(x)

)
.(3.13)

Before we turn to the other sum, we need to show that
∑

n≤x Λ(n) = O(x), which
comes straight from Theorem 1.3 and the estimate we just did,∑

n≤x

Λ(n) =
∑
p≤x

log p+
∑
pk≤x
k≥2

log p = O(x) +O
(√
x log x

)
= O(x).

To complete the proof, we only need to show that∑
mn≤x

Λ(m)Λ(n) =
∑
pq≤x

log p log q +O(x).(3.14)

Moving
∑

pq≤x log p log q to the left side we get the equivalent form∑
mn≤x

m,n not both prime

Λ(m)Λ(n) = O(x)

or by symmetry ∑
mn≤x

m not prime

Λ(m)Λ(n) = O(x).

Using the above estimate we have∑
mn≤x

m not prime

Λ(m)Λ(n) =
∑
m≤x

m not prime

Λ(m)
∑
n≤ x

m

Λ(n)

= O

 ∑
m≤x

m not prime

Λ(m)
x

m



= O

x ·
∑
pk≤x
k≥2

log p

pk



We would like to show that
∑

pk≤x
k≥2

log p
pk = O(1). It suffices to show it converges,

∑
pk≤x
k≥2

log p

pk
≤

∑
p≤x

log p

∞∑
k=2

1

pk

≤
∑
n≤x

log n

∞∑
k=2

1

nk

≤
∑
n≤x

log n
1

n(n− 1)
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which converges by the integral test. Thus we have shown (3.14), and combining
(3.12), (3.13), and (3.14) compeletes the proof. □

All that remains is to show
∑

n≤x Λ2(n) = 2x log x+O(x).

Lemma 3.15. We have the following three estimates:∑
n≤x

µ(n)

n
= O(1)(3.16)

∑
n≤x

µ(n)

n
log

(x
n

)
= O(1)(3.17)

∑
n≤x

µ(n)

n
log2

(x
n

)
= 2 log x+O(1)(3.18)

Proof. By Theorem 3.3 we have

x =
∑
n≤x

1 =⇒ 1 =
∑
n≤x

µ(n)
(x
n
+O(1)

)
=⇒

∑
n≤x

µ(n)

n
=

1

x
+O(1)

which shows (3.16). Now we use an integral to estimate∑
n≤x

1

n
=

∫ x

1

1

n
dn+

∫ x

1

(
1

⌊n⌋
− 1

n

)
dn

where, since the function 1
n is decreasing,∣∣∣∣∫ x

1

(
1

⌊n⌋
− 1

n

)
dn

∣∣∣∣ ≤ ∑
n≤x

1

n
− 1

n+ 1
= 1− 1

⌊x⌋+ 1
.

Thus for some constant C we have∑
n≤x

1

n
= log x+ C +O

(
1

x

)
.

Multiplying by x, we get
∑

n≤x
x
n = x log x+Cx+O(1), and applying Theorem 3.3

x =
∑
n≤x

µ(n)
(x
n
log

x

n
+ C

x

n
+O(1)

)
= x

∑
n≤x

µ(n)

n
log

x

n
+ Cx

∑
n≤x

µ(n)

n
+O(x)

applying (3.16) then gives

x
∑
n≤x

µ(n)

n
log

x

n
= O(x)
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and dividing by x completes the proof of (3.17). Now we use the same strategy to
prove (3.18) starting with the integral approximation∑
n≤x

1

n
log

x

n
=

∫ x

1

1

n
log

x

n
dn+

∫ x

1

(
1

⌊n⌋
log

x

⌊n⌋
− 1

n
log

x

n

)
dn

=
1

2
log2 x+

∫ ∞

1

(
1

⌊n⌋
− 1

n

)
log x dn+

∫ x

1

(
1

n
log n− 1

⌊n⌋
log⌊n⌋

)
dn

=
1

2
log2 x+ C1 log x+O

(
log x

x

)
+ C2 +O

(
log x

x

)
.

For some constants C1 and C2. Again multiplying both sides by x and using
Theorem 3.3 gives

x log x =
x

2

∑
n≤x

µ(n)

n
log2

x

n
+ C1x

∑
n≤x

µ(n)

n
log

x

n
− C2x

∑
n≤x

µ(n)

n
+

∑
n≤x

O
(
log

x

n

)
.

We then apply (3.16), (3.17) and the following integral approximation∑
n≤x

log
x

n
= x+O(log x)

to get

x log x =
x

2

∑
n≤x

µ(n)

n
log2

x

n
+O(x) +O(x) +O(x) +O(log x)

and dividing by x
2 completes the proof of (3.18). □

Finally we can complete the proof of the Selberg Symmetry formula:

Theorem 3.19.
∑
p≤x

log2 p+
∑
pq≤x

log p log q = 2x log x+O(x).

Proof. First we need two more integral approximations∑
n≤x

log2
x

n
= O(x) and

∑
n≤x

log2 n = x log2 x− 2x log x+ 2x+O(log2 x)

of which we will derive the second,∑
n≤x

log2 n =

∫ x

1

log2 n dn+

∫ x

1

(
log2⌊n⌋ − log2 n

)
dn

= x log2 x− 2x log x+ 2x+ C +

∫ x

1

(
log2⌊n⌋ − log2 n

)
dn

where, since the natural log is increasing,∣∣∣∣∫ x

1

(
log2⌊n⌋ − log2 n

)
dn

∣∣∣∣ ≤ ∑
n≤x

log2(n+ 1)− log2(n) = O(log2 x).
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Thus we have∑
n≤x

Λ2(n) =
∑
n≤x

∑
d|n

µ(d) log2
n

d
=

∑
ad≤x

µ(d) log2(a)

=
∑
d≤x

µ(d)
∑
a≤ x

d

log2 a

= x
∑
d≤x

µ(d)

d
log2

x

d
− 2x

∑
d≤x

µ(d)

d
log

x

d

+ 2x
∑
d≤x

µ(d)

d
+O

∑
d≤x

log2
x

d


Applying all three estimates from Lemma 3.15 and the above mentioned approxi-
mation for

∑
d≤x log

2 x
d , we get∑

n≤x

Λ2(x) = 2x log x+O(x) +O(x) +O(x) +O(x)

which is indeed the right hand side of our formula. Thus, combining with Proposi-
tion 3.11, the proof is complete. □

3.3. Erdős’s Contribution. After Selberg showed him the symmetry formula,
Erdős managed to prove the result of Theorem 3.21, after which it only took Selberg
two days to prove the PNT. Before we present Erdős’s result, we need the following
lemma:

Lemma 3.20. If x < y, then ϑ(y)− ϑ(x) ≤ 2(y − x) + o(y).

Proof. Slightly weakening the result of Theorem 3.19, we have∑
p≤x

log2 p+
∑
pq≤x

log p log q = 2x log x+ o(x log x).

Evaluating at y and x and subtracting yields∑
x<p≤y

log2 p ≤ 2(y − x) log y + o(y log y).7

Now we must break into cases. For the first case, suppose that x ≥ y
log2 y

. Thus

log x ≥ log y − 2 log(log y) =⇒ log x = log y + o(log y)

and so for all p ∈ (x, y] we have log p = (1 + o(1)) log y. Thus∑
x<p≤y

log2 p = (1 + o(1)) log y
∑

x<p≤y

log p ≤ 2(y − x) log y + o(y log y)

=⇒ (1 + o(1))
∑

x<p≤y

log p ≤ 2(y − x) + o(y)

=⇒
∑

x<p≤y

log p+ o(y) ≤ 2(y − x) + o(y)

7Note how f(x) = g(x) + o(h(x)) and f(x) ≤ g(x) + o(h(x)) are different. For our purposes,
the little-o can be interpreted as follows: there exists a function h′(x) such that h′(x) = o(h(x))

and in the first case f(x) = g(x) + h′(x) or in the second f(x) ≤ g(x) + h′(x).
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where the last step is by Theorem 1.3. This completes case 1. Case 2, where
x < y

log2 y
, can be reduced to the first case as follows:

ϑ(y)− ϑ(x) = ϑ(y)− ϑ

(
y

log2 y

)
+ ϑ

(
y

log2 y

)
− ϑ(x)

= ϑ(y)− ϑ

(
y

log2 y

)
+O

(
y

log2 y

)
+O

(
y

log2 y

)
< 2

(
y − y

log2 y

)
+ o(y)

< 2 (y − x) + o(y)

as desired. □

Theorem 3.21. For every c > 0, there exists δc > 0 and x0 > 0 such that for all
x ≥ x0 we have ϑ(x(1 + c))− ϑ(x) > δcx.

Proof. We will proceed by contradiction. Suppose there exists some c such that for
all δ > 0, we have ϑ(x(1+c))−ϑ(x) ≤ δx for arbitrarily large values of x. Let X be
an unbounded subset of R≥0 such that, for all δ > 0, there exists an x0 ∈ X such
that ϑ(x(1 + c)) − ϑ(x) ≤ δx for all x ∈ X where x ≥ x0.

8 In other words, if we
restrict x′ to run through X and not all of R, we have ϑ(x′(1+ c))−ϑ(x′) = o(x′).9

Let S be the set of all c where this is the case, and let C = supS. By (3.4) and
(3.5) we have 0 < a ≤ A < ∞, so C < ∞ as well. The first step of our proof is to
show that C ∈ S, i.e. ϑ(x(1 + C))− ϑ(x) = o(x) for some values of x.

Let ϵ > 0 and let c ∈ S such that c > C− ϵ
2 . We have that ϑ(x′(1+ c))−ϑ(x′) =

o(x′). Thus, using Lemma 3.20,

ϑ(x′(1 + C))− ϑ(x′) = ϑ(x′(1 + C))− ϑ(x′(1 + c)) + ϑ(x′(1 + c))− ϑ(x′)

≤ 2(C − c)x′ + o(x′)

< ϵx′ + o(x′)

and since ϵ was arbitrary, this is simply o(x′). Now we can move towards our
contradiction. We would like to use C and its associated x′ values to give a lower
bound on A. This bound should then contradict (3.4). In fact, throughout the
rest of this proof we will only be concerned with the x ∈ X, and therefore we will
simply denote these values x rather than x′.

First we do some manipulations. Subtracting two versions of (3.7) yields∑
x<p≤x(1+C)

log2 p+
∑

x<pq≤x(1+C)

log p log q = 2Cx log x+ o(x log x).

8For an explicit construction of X we can inductively define a sequence (xn), where each xn

is chosen such that ϑ(xn(1 + c))− ϑ(xn) ≤ 1
n
x and xn > xn−1 + 1.

9This will be a very useful tool for us: when we do not know about the asymptotic behavior of

some function f in general but we do know about its behavior on some specific unbounded set X,

then we can restrict x′ to only run through X and so state f(x′) = o(g(x′)). Indeed, in the future
we will do so with much less explicit construction and notation. Note that we cannot a priori

conclude anything about f(ax′) for a ̸= 1.
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Since log p ≤ log(x(1 + C)) we have∑
x<p≤x(1+C)

log2 p ≤ log(x(1 + C))
∑

x<p≤x(1+C)

log p

= (ϑ(x(1 + C))− ϑ(x)) log(x(1 + C))

= o(x log x).

Subtracting these two results yields

2Cx log x+ o(x log x) =
∑

x<pq≤x(1+C)

log p log q

=
∑

≤x(1+C)

log p
∑

x
p<q≤ x

p (1+C)

log q

=
∑

p≤x(1+C)

(
ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

))
log p.(3.22)

Now we need a lemma to understand what happens when our restricted x values
are divided by primes.

Lemma 3.23. Consider running through the values of x such that ϑ(x(1 + C))−
ϑ(x) = o(x). Then

ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

)
= 2C

x

p
+ o

(
x

p

)
(3.24)

for all primes p other than some set P which satisfies∑
p∈Px

log p

p
= o(log x)

where Px = {p ∈ P | p ≤ x}.

Proof. We will once again use contradiction. For all p ≤ x(1+C) that fail the first
equation, by Lemma 3.20 it must be that

ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

)
< 2C

x

p
+ o

(
x

p

)
or in other words there exists some b1 > 0 such that

ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

)
< (2C − b1)

x

p
(3.25)

for large x. Since Px is finite, we can take the minimum such b1 which works for
all p ∈ Px. Suppose for contradiction that∑

p∈Px

log p

p
̸= o(log x).

However, from (3.6) we know that
∑

p∈Px

log p
p = O(log x). Thus there must exist

some constant b2 such that ∑
p∈Px

log p

p
∼ b2 log x.
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Using (3.22) we have

2Cx log x+ o(x log x) =
∑

p≤x(1+C)

(
ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

))
log p

=
∑
p∈Px

(
ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

))
log p

+
∑
p/∈Px

p≤x(1+C)

(
ϑ

(
x

p
(1 + C)

)
− ϑ

(
x

p

))
log p.

Applying (3.24) and (3.25) then gives

2Cx log x+ o(x log x) <
∑
p∈Px

(2C − b1)x
log p

p
+

∑
p/∈Px

p≤x(1+C)

2Cx
log p

p
+ o

(
x
log p

p

)

≤ (2C − b1)xb2 log x+ 2Cx

 ∑
p≤x(1+C)

log p

p
−

∑
p∈Px

log p

p

+ o(. . . )

= b2(2C − b1)x log x+ 2Cx ((1 + o(1)) log x− b2 log x) + o(. . . )

= (2C − b1b2)x log x+ o(x log x)

where the unwritten steps to evaluate the little-o were identical to the steps taken
in the right-most sum. This is a contradiction, so the lemma is proven. □

Now we return to the proof of Theorem 3.21. We will label all primes that satisfy
(3.24) as good, and all others (primes in P) as bad. Now for ϵ > 0 suppose we have
a list of good primes p1 < · · · < pk such that (1 + ϵ)pi < pi+1 < (1 + C)(1 + ϵ)2pi
for all 1 ≤ i < k, and the list is sufficiently long so that pk > 10p1. We will show
that we can actually construct such a list at the end of this proof. First we would
like to show that

ϑ

(
x

pi
(1 + C)

)
− ϑ

(
x

pi+1

)
> 1.9

(
x

pi
(1 + C)− x

pi+1

)
(3.26)

for all 1 ≤ i < k. We will need to break into two cases. Consider the intervals

Ii =

[
x

pi
,
x

pi
(1 + C)

]
.

For our first case, suppose I ∩ Ii+1 ̸= Ø. Thus, using the given restriction that
pi+1 > pi(1 + ϵ), we have

x

pi+1
(1 + ϵ) <

x

pi
<

x

pi+1
(1 + C).

Our claim is that, in this case,

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
= 2

(
x

pi
− x

pi+1

)
+ o

(
x

pi

)
.(3.27)

To show this, suppose for contradiction there exists a c1 such that

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
< (2− c1)

(
x

pi
− x

pi+1

)
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(where Lemma 3.20 shows that this is in fact the negation of our desired result).
Since pi+1 is good we have

ϑ

(
x

pi+1
(1 + C)

)
− ϑ

(
x

pi+1

)
= 2C

x

pi+1
+ o

(
x

pi+1

)
.

Taking the difference of these two equations we get

ϑ

(
x

pi+1
(1 + C)

)
− ϑ

(
x

pi

)
> 2C

x

pi+1
+ o

(
x

pi+1

)
− (2− c1)

(
x

pi
− x

pi+1

)
= 2

(
x

pi+1
(1 + C)− x

pi

)
+ c1

(
x

pi
− x

pi+1

)
+ o

(
x

pi+1

)
> 2

(
x

pi+1
(1 + C)− x

pi

)
+ o

(
x

pi+1

)
which contradicts Lemma 3.20, thus confirming (3.27). To show (3.26), all we need
to do is add (3.27) and (3.24) evaluated at pi (since pi is good),

ϑ

(
x

pi
(1 + C)

)
− ϑ

(
x

pi+1

)
= 2

(
x

pi
(1 + C)− x

pi+1

)
+ o

(
x

pi

)
> 1.9

(
x

pi
(1 + C)− x

pi+1

)
.

Now, for our second case, suppose that Ii ∩ Ii+1 = Ø, and so

x

pi+1
(1 + C) <

x

pi
<

x

pi+1
(1 + C)(1 + ϵ)2.

Similarly to our first case, it suffices to show that

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
> 1.9

(
x

pi
− x

pi+1

)
since then we can use the fact that pi is good and add (3.24) to get (3.26). Using
the above inequalities, the monotonicity of ϑ, and that pi+1 is good gives us

ϑ

(
x

pi

)
− ϑ

(
x

pi+1

)
> ϑ

(
x

pi+1
(1 + C)

)
− ϑ

(
x

pi+1

)
= 2

(
x

pi+1
(1 + C)− x

pi+1

)
+ o

(
x

pi+1

)
> 2

(
x

pi(1 + ϵ)2
− x

pi+1

)
+ o

(
x

pi+1

)
>

2

(1 + ϵ)2

(
x

pi
− x

pi+1

)
+ o

(
x

pi+1

)
> 1.9

(
x

pi
− x

pi+1

)
for sufficiently small ϵ. Thus we have established (3.26) in both cases. Adding these
inequalities together for all 1 ≤ i < k we get

ϑ

(
x

p1
(1 + C)

)
− ϑ

(
x

pk

)
> 1.9

(
x

p1
(1 + C)− x

pk

)
=⇒ ϑ

(
x

p1
(1 + C)

)
> 1.9

(
x

p1
(1 + C)− x

pk

)
.
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Since pk > 10p1 we have −1.9 x
pk
> −0.19 x

p1
> −0.19 x

p1
(1 + C) and so

ϑ

(
(1 + C)

x

p1

)
> 1.6

x

p1
(1 + C).

Recall that, although it is restricted, x still becomes arbitrarily large, and thus so
does (1 + C) x

p1
. Therefore, this sequence of values provides a lower bound on A.

In particular, A = lim sup
x→∞

ϑ(x)
x ≥ 1.6 and this contradicts (3.4).

All that remains is to show that we can construct the necessary sequence of
primes. For this purpose, let ϵ > 0 and let B be some sufficiently large number.10

For each natural number r up to ⌊ log x
2 logB ⌋−1, let Ir =

(
B2r, B2r+1

)
. By construction

we have that Ir ⊂ (0, x) for all r.
Our first step is to show that for all but o(log x) many values of r, Ir contains a

good prime. We defined C as supS, thus so long as B > 1+C we know B− 1 /∈ S
and so in particular there must exist a constant δB > 0 such that

ϑ(Bx)− ϑ(x) ≥ δBBx.

Thus if we let xr = B2r we have∑
p∈Ir

log p

p
=

∑
xr<p≤Bxr

log p

p
≥ 1

Bxr

∑
xr<p≤Bxr

log p ≥ 1

Bxr
δBBxr = δB .

Let R(x) be the number r values such that Ir does not contain a good prime. By
Lemma 3.23, we have

o(log x) =
∑
p≤x

p is bad

log p

p
≥

∑
p∈Ir

Ir has no good p

log p

p
≥ R(x)δB =⇒ R(x) = o(log x)

as desired.
For each r such that Ir does contain a good prime, let p1(r) be the smallest

good prime in Ir. We then iteratively choose good primes p2(r), . . . , pj(r) such
that (1 + ϵ)pi(r) < pi+1(r) < (1 + C)(1 + ϵ)2pi(r) for 1 ≤ i < j. If any of these
lists are long enough such that pj(r) > 10p1(r) then we are done. Thus suppose for
contradiction that pj(r) ≤ 10p1(r) for all r and none of these lists can be extended
to any more good primes. Let Jr(j) = [pj(r)(1 + ϵ), pj(r)(1 + C)(1 + ϵ)2]. Then
by this assumption, Jr(j) only contains bad primes for all r. As before, since
(1 + C)(1 + ϵ) > 1 + C, there exists c1 such that

ϑ((1 + ϵ)(1 + C)x)− ϑ(x) > c1x

and so ∑
p∈Jr(j)

log p

p
> c1.

Let S = {Jr(j) | Ir contains a good prime}. Since we showed earlier that R(x) =

o(log x), for sufficiently large x we know R(x) < log x
4 logB . Thus

|S| =
⌊

log x

2 logB

⌋
− 1−R(x) >

log x

4 logB
.

10An explicit lower bound could be calculated, but is not necessary.
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If each Jr(j) is disjoint, then we have∑
p≤x

p is bad

log p

p
≥

∑
p∈Jr(j)

for some r

log p

p
> c1

log x

4 logB

which contradicts Lemma 3.23. Thus, all that is needed to complete the proof is to
show that we can make each of these intervals disjoint. Let B > 10(1+C)(1 + ϵ)2.
We assumed that pj(r) ≤ 10p1(r) for all r, thus we have

(1 + C)(1 + ϵ)2pj(r) ≤ 10(1 + C)(1 + ϵ)2p1(r)

≤ 10(1 + C)(1 + ϵ)2B2r+1

< B2r+2

≤ p1(r + 1)

< (1 + ϵ)pj′(r + 1)

where j′ is the j value associated with r + 1. Therefore the upper bound of Jr(j)
is less than the lower bound of Jr+1(j

′), and the proof is complete. □

3.4. Proof of the Prime Number Theorem. As in the complex proof, our goal
is to show that ϑ(x) ∼ x so that Theorem 1.2 completes the proof of the PNT.
Recall that

A = lim sup
x→∞

ϑ(x)

x
and a = lim inf

x→∞

ϑ(x)

x
.

Thus if we can show A = a = 1, then the fact that lim
x→∞

ϑ(x)
x = 1 follows.

We will do so in two steps: first we show that A+a = 2 and then A = a. Before
that, however, we need the following lemma:

Lemma 3.28.
∑
p≤x

log2 p = ϑ(x) log x+O(x).

Proof. Let

ψ(x) =
∑
n≤x

Λ(n) =
∑
n≤x

∑
pm≤n

log p.

We know that for all p ∈ (x1/2, x), log p will appear in our sum exactly once, while
all p ∈ (x1/3, x1/2), log p will appear in our sum twice, and so on. Thus

ψ(x) = ϑ(x) + ϑ
(
x1/2

)
+ ϑ

(
x1/3

)
+ · · · =

∑
2m<x

ϑ
(
x1/m

)
.

For all x ≥ 2 we have ϑ(x) ≤ x log x, so for m ≥ 2 we have

ϑ
(
x1/m

)
< x1/m log x ≤ x1/2 log x =⇒ ϑ

(
x1/m

)
= O

(
x1/2 log x

)
.

Thus, since there are approximately log x values of m such that 2m < x,

ψ(x) = ϑ(x) +
∑
m≥2
2m<x

ϑ
(
x1/m

)
= ϑ(x) +O

(
log x

(
x1/2 log x

))
.(3.29)

By (3.13) we have ∑
p≤x

log2 p =
∑
n≤x

Λ(n) log n+O
(√
x log x

)
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so we manipulate this sum, letting N = ⌊x⌋,∑
n≤x

Λ(n) log n = ψ(1) log(1) + (ψ(2)− ψ(1)) log 2 + · · ·+ (ψ(N − 1)− ψ(N)) logN

= ψ(1)(log 1− log 2) + · · ·+ ψ(N − 1)(log(N − 1)− logN) + ψ(N) logN.

For all 1 ≤ n ≤ N − 1, we know that ψ is constant on (n, n+ 1). Thus each of our
terms can be written

ψ(n)(log n− log(n+ 1)) = −
∫ n+1

n

ψ(t)

t
dt

and so we have ∑
n≤x

Λ(n) log n = ψ(x) log x−
∫ x

1

ψ(t)

t
dt.

By (3.29), we have ψ(t) = O(t), and so this integral is O(x). Thus we have∑
p≤x

log2 p =
∑
n≤x

Λ(n) log n+O
(√
x log x

)
= ψ(x) log x+O(x) +O

(√
x log x

)
= ϑ(x) log x+O

(√
x log3 x

)
+O(x)

= ϑ(x) log x+O(x)

as desired. □

Theorem 3.30. A+ a = 2.

Proof. By the definition of A, we can restrict x to only run through values where
ϑ(x) is “large” compared to x, and so ϑ(x) = Ax+ o(x). Thus, by Lemma 3.28∑

p≤x

log2 p = ϑ(x) log x+ o(x log x) = Ax log x+ o(x log x).

Subtracting this from (3.7) gives∑
p≤x

ϑ

(
x

p

)
log p =

∑
pq≤x

log p log q = (2−A)x log x+ o(x log x).(3.31)

Given that we are only dealing with values of x such that ϑ(x) = Ax + o(x), for
large enough x we know that ϑ (x) ≥ ax. Thus, by (3.6) we have∑

p≤x

ϑ

(
x

p

)
log p ≥

∑
p≤x

a
x

p
log p = ax log x+ o(x log x).

Combining these two equations we have

ax log x+ o(x log x) ≤ (2−A)x log x+ o(x log x)

=⇒ 2−A− a+ o(1) ≥ 0

and so 2 − A − a ≥ 0. If we then repeat this argument with values of x such that
ϑ(x) = ax + o(x) and so ϑ(x) ≤ Ax for large x, we get 2 − A − a ≤ 0. Thus we
conclude A+ a = 2. □

Before showing that a = A, we need some lemmas. From here through the
rest of the proof we are going to assume that x is restricted to values such that
ϑ(x) = Ax+ o(x).
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Lemma 3.32. For our x such that ϑ(x) = Ax+ o(x), we also have

ϑ

(
x

p

)
= a

x

p
+ o

(
x

p

)
(3.33)

for all primes outside a set P which satisfies∑
p∈Px

log p

p
= o(log x)

where Px = {p ∈ P | p ≤ x}.

Proof. As in Lemma 3.23, suppose for contradiction that there exist constants b1
and b2 such that for all p ∈ P

ϑ

(
x

p

)
> (a+ b1)

x

p
and

∑
p∈Px

log p

p
∼ b2 log x.

From (3.31) and Theorem 3.30 we have∑
p≤x

ϑ

(
x

p

)
log p = (2−A)x log x+ o(x log x) = ax log x+ o(x log x)

and so

ax log x+ o(x log x) =
∑
p≤x

ϑ

(
x

p

)
log p

=
∑
p∈Px

ϑ

(
x

p

)
log p+

∑
p≤x
p/∈Px

ϑ

(
x

p

)
log p

>
∑
p∈Px

(a+ b1)
x

p
log p+

∑
p≤x
p/∈Px

a
x

p
log p

> b2(a+ b1)x log x+ (1− b2)ax log x+ o(x log x)

= ax log x+ b1b2x log x+ o(x log x)

which is a contradiction. □

Lemma 3.34. Let p1 be the smallest prime such that

ϑ

(
x

p1

)
= a

x

p1
+ o

(
x

p1

)
as in Lemma 3.32. We have

ϑ

(
x

p1p

)
= a

x

p1p
+ o

(
x

p1p

)
(3.35)

for all primes p outside a set P which satisfies∑
p∈Px

log p

p
= o(log x)

where Px = {p ∈ P | p ≤ x}.

Proof. The proof is identical to the proof of Lemma 3.32, simply replacing x with
x
p1

and switching A and a. □

We are now ready to prove the Prime Number Theorem:
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Theorem 3.36. ϑ(x) ∼ x.

Proof. Let p1 as in Lemma 3.34. Let pi denote a prime satisfying (3.33), and pj
one satisfying (3.35). For any 0 < c < A

a − 1,11 let

Ii =

[
pi
p1
, (1 + c)

pi
p1

]
.

We would like to show that there is some choice of pi and pj such that pj ∈ Ii.
Suppose for contradiction that pj /∈ Ii for all pi and pj . Thus all primes in Ii fail
to satisfy (3.35). Now we come to the key application of Theorem 3.21:∑

pi∈Ii

log p

p
≥ p1
pi(1 + c)

∑
pi
p1

<p<
pi
p1

(1+c)

log p

>
p1

pi(1 + c)
· δc

pi
p1

which is independent of pi. Thus we can find a constant η1 such that
∑

pi∈Ii
log p
p ≥

η1 for all sufficiently large pi. As in the proof of Theorem 3.21, for large x we can
construct η2 log x many disjoint intervals Ii all less than x. Thus we have∑

p≤x
p does not satisfy (3.35)

log p

p
≥

∑
p∈

⋃
Ii

log p

p
> η1η2 log x

and this contradicts Lemma 3.34. Thus there must exist some pi and pj such that

pi
p1

< pj <
pi
p1

(1 + c)

and so by rearranging, we get

x

p1pj
<

x

pi
<

x

p1pj
(1 + c).

For any δ > 0, we use the definitions of pi and pj to get

(A− δ)
x

p1pj
< ϑ

(
x

p1pj

)
< ϑ

(
x

pi

)
< (a+ δ)

x

p i

≤ (a+ δ)(1 + c)
x

p1pj

and in particular A − δ < (a + δ)(1 + c). Making both δ and c arbitrarily small
yields A ≤ a. Since we know by definition that A ≥ a, we have A = a. This result,
together with Theorem 3.30, shows that A = a = 1 and proves the theorem. □
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