
LEBESGUE MEASURE

JULIA RYCHLIK

Abstract. This paper offers an introduction to the concept of Lebesgue mea-
sure and its most important properties. It begins with a development of a more
basic measure function, outer measure, that can be applied to all sets of real
numbers, and then develops a smaller σ-algebra of Lebesgue measurable sets,
applied to which the outer measure function has improved properties. It con-
cludes with a brief exploration of non-measurable sets.
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1. Introduction

In its calculation, the Riemann integral requires partitioning the function of in-
terest’s domain into subintervals that are associated with the values of the function
over that subinterval. This is limiting in both the types of functions that are in-
tegrable and the domains that those functions can have. The Lebesgue integral is
able to calculate the integral on more general functions with more general domains
by assigning certain sets of the domain a quantity called Lebesgue measure. This
quantity creates an integral that is both more widely applicable and has better
properties than the Riemann integral. This paper serves to develop the concept of
Lebesgue measure.

The Lebesgue measure function, denoted by m, which maps each set in a σ-
algebra of sets called the Lebesgue measurable sets to a real number has the fol-
lowing properties:

(1) The Lebesgue measure of any bounded interval is the difference of its end-
points, and the Lebesgue measure of any unbounded interval is ∞.

(2) The Lebesgue measure of any Lebesgue measurable set does not change
under a translation. That is, if A is Lebesgue measurable, and x is a real
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number, then the set A+x = {a+x | a ∈ A} is measurable and the measure
of A+x is equal to the measure of A. This is called translation invariance.

(3) If we have a countable disjoint collection of Lebesgue measurable sets,
{Ak}∞k=1, then the measure of their union is equal to the sum of the in-
dividual measures of each set. That is

m(

∞

k=1

Ak) =

∞

k=1

m(Ak).

This is called countable additivity over countable disjoint unions of sets.

In order to construct the Lebesgue measure function, we will first, in section 2,
construct a more general measure function called outer-measure, denoted m∗, that
maps every set of real numbers to a real number. It is not possible for this outer-
measure function to possess all of the above properties while still being applicable
to all sets of real numbers [1]. However, we can construct an outer-measure function
that satisfies the first and second properties, as well as satisfying a looser version of
the third property, namely that for any disjoint or non-disjoint countable collection
of sets, denoted {Bk}∞k=1, the outer-measure of their union is less than or equal to
the sum of the outer-measures of the individual sets, that is

m(

∞

k=1

Bk) ≤
∞

k=1

m(Bk).

After constructing the outer-measure function, in section 3 we will develop the
Lebesgue measurable sets, show that they are a σ-algebra, and create a new func-
tion called Lebesgue measure by restricting the outer-measure function to these
sets. In section 4, we will show that Lebesgue measure satisfies the third property
of countable additivity in addition to the first and second properties. This will
conclude our development of Lebesgue measure.

In section 5 we will develop a non-measurable set to show that not all sets of
real numbers are measurable.

2. Outer Measure

We begin our construction of outer measure by examining the lengths of intervals.
For any nonempty interval of real numbers, I, we define its length, l(I) to be the
difference of its endpoints if I is bounded, and ∞ if I is unbounded.

Consider a set, A, of real numbers and all of the collections of nonempty, open,
bounded intervals that cover this set, denoted {Ik}∞k=1. For each such collection,
A ⊆

∞
k=1 Ik. For each collection of this type, consider the sum of the lengths of

each interval in the collection. We shall define outer measure by the infimum of the
collection of all sums of this type. That is,

m∗(A) = inf{
∞

k=1

l(Ik) | A ⊆
∞

k=1

Ik}

Because the lengths of intervals are always nonnegative, we can see from this
definition that outer-measure is always nonnegative. Additionally, the following
proposition about the monotonicity of outer measure also follows from the defini-
tion:

Proposition 2.1. For any sets A and B, if A ⊆ B, then m∗(A) ≤ m∗(B).
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We will now examine three important properties of outer measure that mirror
the three properties of Lebesgue measure outlined in the introduction. For each
proposition, we will give an informal explanation of how that property follows from
the definition, but will forgo a formal proof as the details are more cumbersome
than they are helpful.

We begin with the first property of Lebesgue measure which is true for outer
measure as well.

Proposition 2.2. The outer measure of any bounded interval is the difference of
its endpoints, and the outer measure of any unbounded interval is ∞.

This follows quite directly from the definition of outer measure as any cover of an
interval I by a collection of intervals other than the interval itself is going to have
a larger collective length than the interval itself. This makes l(I) the infimum of
{
∞

k=1 l(Ik) | I ⊆
∞

k=1 Ik}, so that by definition, the outer measure of an interval
is its length.

We shall now examine the second property of Lebesgue measure: that it is
translation invariant.

Proposition 2.3. Outer measure is translation invariant, meaning that for any
set A and for any number y,

m∗(A) = m∗(A+ y).

For any interval I and for any real number y, it is clear that

l(I) = l(I + y)

and similarly, we can see that if {Ik}∞k=1 is a cover of a set A, then {Ik + y}∞k=1 is a
cover of the set A+ y. Then, from the definition of outer measure, we can see why
this proposition is true.

Finally, we shall establish the countable subadditivity property that outer mea-
sure possesses.

Proposition 2.4. Outer measure is countably subadditive, meaning that for any
countable collection of sets, {Ek}∞k=1,

m∗(

∞

k=1

{Ek}) ≤
∞

k=1

m∗(Ek)

This is a similar but distinct property from the countable additivity property
possessed by Lebesgue measure. It will be important in our establishment of the
collection of Lebesgue measurable sets.

3. Lebesgue Measurable Sets

The one important property of Lebesgue measure that outer-measure does not
possess is countable or finite additivity. However, there exists a collection of sets
called the Lebesgue measurable sets for which the outer-measure function is count-
ably and finitely additive. Below is one possible definition for a Lebesgue measur-
able set (referred to simply as a measurable set from now on), and the one that we
will be using:
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Definition 3.1. A set A is said to be measurable if for any set E,

m∗(E) = m∗(E ∩A) +m∗(E ∩AC)

where AC denotes the complement of A.

In more understandable terms, a set A is measurable if the outer measure of any
set E is equal to the sum of the outer measure of the subset of E that overlaps with
A and the outer measure of the subset of E that overlaps with AC .

Consider disjoint sets A and B and assume that A is measurable. By the defini-
tion of measurability, we see that

m∗(A ∪B) = m∗([A ∪B] ∩A) +m∗([A ∪B] ∩AC) = m∗(A) +m∗(B)

meaning that finite additivity holds for two disjoint sets if at least one of them is
measurable. We shall complete the proof of countable additivity in section 4, but
for now this observation shows one of the improved properties of outer measure
when restricted to measurable sets.

Because for any sets A and E, E = [E ∩ A] ∪ [E ∩ AC ], we can use Proposition
2.4 to conclude that

m∗(E) ≤ m∗(E ∩A) +m∗(E ∩AC).

Thus, in order to prove measurability, we need only prove that

m∗(E) ≥ m∗(E ∩A) +m∗(E ∩AC).

This inequality is always true if m∗(A) = ∞, so we will only be examining sets
with finite outer measure.

We will now define some important terms for the central theorem of this section.

Definition 3.2. A σ-algebra is a collection of subsets of R that contains R and is
closed with respect to the formation of complements and countable unions. Note
that by De Morgan’s Identities, a σ-algebra is also closed with respect to the for-
mation of countable intersections.

Definition 3.3. A Borel set is a set that can be formed from countable unions and
complements of open sets. The σ-algebra of Borel sets is the smallest σ-algebra of
sets of real numbers that contains all of the open sets of real numbers.

Definition 3.4. A Gδ set is a countable intersection of opens sets.

Definition 3.5. An Fδ set is a countable union of closed sets.

Our main objective of this section is to prove the following theorem:

Theorem 3.6. The collection of measurable sets is a σ-algebra that contains the
σ-algebra of Borel sets. Each interval, each open set, each closed set, each Gδ set,
and each Fδ set is measurable.

To begin our establishment of this theorem, we must examine complements of
measurable sets and countable unions of measurable sets. These properties will
show that the measurable sets are a σ-algebra.

Proposition 3.7. A set A is measurable if and only if AC is measurable.
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Proof. If a set A is measurable, then for any set E,

m∗(E) = m∗(E ∩A) +m∗(E ∩AC) = m∗(E ∩AC) +m∗(E ∩A).

Therefore, AC is measurable.
If for a set A, AC is measurable, then for any set E,

m∗(E) = m∗(E ∩AC) +m∗(E ∩A) = m∗(E ∩A) +m∗(E ∩AC).

Therefore, A is measurable. □

Proposition 3.8. The empty set and the set of real numbers are measurable.

Proof. For any set E,

m∗(E) = m∗(E ∩ ∅) +m∗(E ∩ ∅C).

Because ∅C = R, by Proposition 3.7, R is also measurable. □

Now that we have established that the collection of measurable sets contains R
and is closed under complements, we must examine countable unions of measurable
sets. To do this, we must first examine finite unions of measurable sets.

Proposition 3.9. The union of a finite collection of measurable sets is measurable.

Proof. First, we will prove that the union of two measurable sets is measurable.
Let A1 and A2 be measurable sets, and let E be any set. By the measurability

of A1,

m∗(E) = m∗(E ∩A1) +m∗(E ∩AC
1 ).

By the measurability of A2,

m∗(E ∩AC
1 ) = m∗([E ∩AC

1 ] ∩A2) +m∗([E ∩AC
1 ] ∩AC

2 ).

Thus

m∗(E) = m∗(E ∩A1) +m∗([E ∩AC
1 ] ∩A2) +m∗([E ∩AC

1 ] ∩AC
2 ).

We can simplify the following sets like so:

[E ∩A1] ∪ [[E ∩AC
1 ] ∩A2] = E ∩ [A1 ∪A2].

[E ∩AC
1 ] ∩AC

2 = E ∩ [A1 ∪A2]
C

Therefore,

m∗(E) = m∗(E ∩A1) +m∗([E ∩AC
1 ] ∩A2) +m∗([E ∩AC

1 ] ∩AC
2 )

≥ m∗([E ∩A1] ∪ [[E ∩AC
1 ] ∩A2]) +m∗(E ∩ [A1 ∪A2]

C)

= m∗(E ∩ [A1 ∪A2]) +m∗(E ∩ [A1 ∪A2]
C)

so that [A1 ∪A2] is measurable.
Now consider a finite collection of measurable sets {Ak}nk=1. We proceed by

means of induction. For n = 1 measurable sets, A1 is measurable so that {Ak}nk=1

is measurable.
Now assume that

n−1
k=1 Ak is measurable for some natural number n. Then, as

we showed above, [
n−1

k=1 Ak] ∪An is measurable so that
n

k=1 Ak is measurable.
By the principle of mathematical induction, a finite union of measurable sets is

measurable. □
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Proposition 3.10. For any set E and any finite, disjoint collection of measurable
sets {Ak}nk=1,

m∗(E ∩ [

n

k=1

Ak]) =

n

k=1

m∗(E ∩Ak)

In particular

m(

n

k=1

Ak) =

n

k=1

m(Ak).

Proof. Let {Ak}∞k=1 be a finite, disjoint collection of measurable sets and let E be
any set. We proceed by means of induction. Let n be a natural number. For the
case of n = 1, we see that

m∗(E ∩ [

n

k=1

Ak]) = m∗(E ∩A1) =

n

k=1

m∗(E ∩Ak).

Assume that for a natural number n,

m∗(E ∩ [

n−1

k=1

Ak]) =

n−1

k=1

m∗(E ∩Ak).

Then by the measurability of An,

m∗(E ∩
n

k=1

Ak) = m∗([E ∩
n

k=1

Ak] ∩An) +m∗([E ∩
n

k=1

Ak] ∩AC
n ).

Because the sets {Ak}nk=1 are disjoint,

[E ∩
n

k=1

Ak] ∩An = E ∩An

[E ∩
n

k=1

Ak] ∩AC
n = E ∩

n−1

k=1

Ak

Thus, by the induction hypothesis,

m∗(E ∩
n

k=1

Ak) = m∗([E ∩
n

k=1

Ak] ∩An) +m∗([E ∩
n

k=1

Ak] ∩AC
n ).

= m∗(E ∩An) +m∗(E ∩
n−1

k=1

Ak)

= m∗(E ∩An) +

n−1

k=1

m∗(E ∩Ak)

=

n

k=1

m∗(E ∩An)

Plugging in ∅ for E gives us

m∗(

n

k=1

Ak) =

n

k=1

m∗(Ak).
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Because Ak is measurable for each natural number k, by Proposition 3.9
n

k=1 Ak

is measurable, so that we can write this as

m(

n

k=1

Ak) =

n

k=1

m(Ak)

thus establishing the finite additivity of Lebesgue measure. □
Lemma 3.11. For any union of a countable collection of measurable sets, there
exists a union of a countable collection of disjoint measurable sets that contains all
the same elements.

Proof. Let {Ak}∞k=1 be a countable collection of measurable sets. We define A′
1 =

A1. For each natural number k ≥ 2, we define

A′
k = Ak ∼

k−1

i=1

Ai

Because the measurable sets are an algebra, each A′
k is measurable. By construc-

tion, the collection {A′
k}∞k=1 is disjoint and {A′

k}∞k=1 = {Ak}∞k=1. □
Now, using Propositions 3.9, 3.10, and Lemma 3.11, we will show that the col-

lection of measurable sets are closed under countable unions, completing the estab-
lishment of this collection as a σ-algebra.

Proposition 3.12. The union of a countable collection of measurable sets is mea-
surable.

Proof. Let A be the union of a countable collection of measurable sets. By Lemma
3.11, there exists a countable, disjoint collection of measurable sets {Ak}∞k=1 such
that A = {Ak}∞k=1. Let E be any set, and let n be a natural number. Then by
Proposition 3.9

n
k=1 Ak is measurable and

n
k=1 Ak ⊆ A so that by Proposition

3.10,

m∗(E) = m∗(E ∩
n

k=1

Ak) +m∗(E ∩ [

n

k=1

Ak]
C)

≥ m∗(E ∩
n

k=1

Ak) +m∗(E ∩AC)

=

n

k=1

m∗(E ∩Ak) +m∗(E ∩AC).

This inequality does not rely on the value of n. Thus, by the countable subadditivity
of outer measure,

m∗(E) ≥
∞

k=1

m∗(E ∩Ak) +m∗(E ∩AC)

≥ m∗(

∞

k=1

(E ∩Ak)) +m∗(E ∩AC)

= m∗(E ∩
∞

k=1

Ak) +m∗(E ∩AC)

= m∗(E ∩A) +m∗(E ∩AC)
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Therefore A is measurable. □

With Propositions 3.7, 3.8, and 3.12, we have established that the collection of
measurable sets is a σ-algebra. The next part of Theorem 3.6 states that this σ-
algebra contains the σ-algebra of Borel sets. We begin our treatment of this part of
the theorem with the following lemma which will help us show that every interval
is measurable:

Lemma 3.13. Let E1 be any set and let E2 be a set with outer measure zero. Then

m∗(E1 ∼ E2) = m∗(E1).

Proof. Because E1 ∼ E2 ⊆ E1,

m∗(E1 ∼ E2) ≤ m∗(E2).

Additionally, by the subadditivity of outer-measure,

m∗(E1) = m∗([E1 ∼ E2] ∪ E2) ≤ m∗(E1 ∼ E2) +m∗(E2) = m∗(E1 ∼ E2)

Therefore

m∗(E1 ∼ E2) = m∗(E1)

□

Proposition 3.14. Every interval is measurable.

Proof. We will show that intervals of the form (a,∞) are measurable because all
other types intervals can be constructed from this type using finite unions, finite
intersections, and complements which all preserve measurability since the set of
measurable sets is an algebra.

Let E be any set. If a ∈ E, replace E by E ∼ {a} which, by Lemma 3.12, does
not change the outer-measure since m∗({a}) = 0. Otherwise, assume a /∈ E.

We want to show that

m∗(E ∩ (a,∞)) +m∗(E ∩ [(a,∞)]C) ≤ m∗(E)

which, because a /∈ E, is equivalent to showing

m∗(E ∩ (a,∞)) +m∗(E ∩ (−∞, a)) ≤ m∗(E).

By the definition of m∗(E), it suffices to show that for every countable collection
of open, bounded intervals {Ik}∞k=1 that covers E,

(3.15) m∗(E ∩ (a,∞)) +m∗(E ∩ (−∞, a)) ≤
∞

k=1

l(Ik).

For each interval Ik in {Ik}∞k=1, define

I ′k = Ik ∼ (a,∞) and I ′′k = Ik ∼ (−∞, a).

Note that

l(Ik) = l(I ′k) + l(I ′′k ).

{I ′k}∞k=1 is a finite collection of open, bounded intervals that covers E ∼ (a,∞) and
{I ′′k }∞k=1 is a finite collection of open, bounded intervals that covers E ∼ (−∞, a)
so that by the definition of outer measure,

m∗(E ∩ (a,∞)) ≤
∞

k=1

l(I ′k) and m∗(E ∩ (−∞, a)) ≤
∞

k=1

l(I ′′k ).
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Thus,

m∗(E ∩ (a,∞)) +m∗(E ∩ (−∞, a)) ≤
∞

k=1

l(I ′k) +

∞

k=1

l(I ′′k ) =

∞

k=1

l(Ik).

Therefore, (3.15) holds. □
We can now rigorously support Theorem 3.6. Because every open set is the

disjoint union of a countable collection of open intervals [1], by Proposition 3.12
and Proposition 3.14, every open set is measurable.

The Borel σ-algebra is the intersection of every σ-algebra that contains all of the
open sets, which means that it is contained in every σ-algebra that contains all of
the open sets. Thus, the collection of measurable sets contains the Borel σ-algebra.

Because the measurable sets are closed under complements, and every closed set
is the complement of an open set, every closed sets is measurable. From this fact
and the fact that the measurable sets are a σ-algebra, we see that every Gδ and Fδ

set is measurable.
We have now rigorously defined the σ-algebra of measurable sets and its im-

portant properties, which sets us up for the development of the Lebesgue measure
function in the next section.

4. Lebesgue Measure & Important Properties

We are now ready to give a formal definition of Lebesgue measure.

Definition 4.1. The Lebesgue measure function is the restriction of the outer-
measure function to the collection of measurable sets. We denote Lebesgue measure
by m, and for any measurable set A, we define

m(A) = m∗(A).

With this definition, we are finally ready to establish the three critical properties
of Lebesgue measure laid out in the introduction. We begin with the first two
properties which are shared with outer measure.

Proposition 4.2. The measure of any interval is its length.

This follows from Proposition 3.14 which establishes that every interval is mea-
surable, and Proposition 2.2 which establishes that the outer measure of any interval
is its length since the measure of any measurable set is defined as its outer measure.

In order to prove the translation invariance of Lebesgue measure, we must first
prove that the translate of a measurable set is, in fact, measurable.

Proposition 4.3. The translate of a measurable set is measurable.

Proof. Let A be a measurable set, let E be any set, and let y be a real number.
Then by the translation invariance of outer-measure and the measurability of A,

m∗(E) = m∗(E − y) = m∗([E − y] ∩A) +m∗([E − y] ∩AC)

= m∗(E ∩ [A+ y]) +m∗(E ∩ [A+ y]C)

□
With this property established, and Proposition 2.3 which states that outer

measure is translation invariant, we have formalized the translation invariance of
Lebesgue measure:
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Proposition 4.4. Lebesgue measure is translation invariant.

We will now establish the last property from the introduction, and the only one
that is unique to Lebesgue measure: countable additivity.

Proposition 4.5. Lebesgue measure is countably additive over countable disjoint
unions of sets, meaning that if {Ak}∞k=1 is a countable disjoint collection of mea-
surable sets, then

∞
k=1 Ak is also measurable, and

m(

∞

k=1

Ak) =

∞

k=1

m(Ak).

Proof. Let {Ak}∞k=1 be a countable disjoint collection of measurable sets. By Propo-
sition 3.12,

∞
k=1 Ak is measurable.

By Proposition 2.4, we know that outer measure is countably subadditive, so
that

(4.6) m(

∞

k=1

Ak) ≤
∞

k=1

m(Ak)

Thus, to complete the proof, we need only prove that

m∗(

∞

k=1

Ak) ≥
∞

k=1

m(Ak).

For each natural number n,
n

k=1 Ak ⊆
∞

k=1 Ak, so that by the monotonicity of
outer measure,

m(

n

k=1

Ak) ≤ m(

∞

k=1

Ak).

By Proposition 3.10, Lebesgue measure is finitely additive so that

n

k=1

m(Ak) = m(

n

k=1

Ak) ≤ m(

∞

k=1

Ak).

Because this inequality holds for any natural number n, we have

(4.7)

∞

k=1

m(Ak) ≤ m(

∞

k=1

Ak).

Therefore, by (4.6) and (4.7),

∞

k=1

m(Ak) = m(

∞

k=1

Ak).

□

We have now established the following theorem which lays out the most impor-
tant properties of Lebesgue measure.

Theorem 4.8. The set function Lebesgue measure, which is defined on the σ-
algebra of Lebesgue measurable sets, assigns any interval to its length, is translation
invariant, and is countably additive over countable collections of disjoint sets.
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5. Nonmeasurable Sets

Now that we have established the Lebesgue measure function and its domain, the
question arises of which sets are not Lebesgue measurable. In this section, we will
develop an example of a non-measurable set, and show their pervasiveness among
the sets of real numbers.

Lemma 5.1. Let A be a bounded, measurable set of real numbers. If there ex-
ists a bounded, countably infinite set of real numbers Λ for which the collection of
translates of A, (A+ λ)λ∈Λ, is disjoint, then m(A) = 0.

Proof. Because A is measurable, by Proposition 4.3 the set A + λ is measurable.
Then


λ∈Λ(A+λ) is a countable union of disjoint measurable sets so that countable

additivity applies and,

m(


λ∈Λ

[A+ λ]) =


λ∈Λ

m(A+ λ).

BecauseA and Λ are both bounded sets,m(


λ∈Λ[A+λ]) is finite so that


λ∈Λ m(A+
λ) is finite. However, m(A + λ) has the same value for all λ ∈ Λ, so this is only
possible if m(A) = 0. □

Theorem 5.2. Any set A with positive outer measure contains a subset that is not
measurable.

Proof. We must first develop some background on the concept of a rational equiva-
lence. Two numbers are rationally equivalent if their difference is a rational number.
This relationship is a type of relation called an equivalence relation, which means
that every number is rationally equivalent to itself, if a is rationally equivalent to b
then b is rationally equivalent to a, and rational equivalence is transitive. Because
this is an equivalence relation, there exists a disjoint decomposition of the set A
into classes that are rationally equivalent to one another. A choice set is a set that
contains exactly one element from each of the equivalence classes. This choice set,
denoted CA, posesses the following characteristics:

(1) The difference between any two points in the choice set CA is not rational.
(2) For each x ∈ A, there exists c ∈ CA and r ∈ Q such that x = c+ r.

We may now begin our proof of the theorem. We assume that A is bounded.
By means of contradiction, assume that CA is measurable. Let Λ0 be a bounded,
countably infinite set of rational numbers. Because of the first characteristic of
choice sets, the set {CA + λ}λ∈Λ0 is disjoint. Thus, by Lemma 5.1 and Proposition
4.5,

m(


λ∈Λ0

[CA + λ]) =


λ∈Λ0

m(C +A+ λ) = 0.

We now choose a specific Λ0 to obtain a contradiction. Since A is bounded, there
exists a real number b such that A ⊆ [−b, b]. Define

Λ0 = Q ∩ [−2b, 2b]

Because of the second characteristic of CA, for each x ∈ A, there exists c ∈ CA and
r ∈ Q such that x = c + r. Because x, c ∈ [−b, b], r ∈ [−2b, 2b] so that r ∈ Λ0.
Thus,

A ⊆


λ∈Λ

(CA + λ).
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By the countable subadditivity of measure,

0 < m(A) ≤ m(


λ∈Λ0

[CA + λ]) =


λ∈Λ0

m(CA + λ) = 0

This is a contradiction. Therefore Λ0 is not measurable. □
We have now successfully shown that there are many non-measurable sets, show-

ing the necessity of the restrictions on the Lebesgue measure function developed in
this paper.
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