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Abstract. We prove the asymptotic equivalence of two types of phase space

distributions associated to eigenfunctions of the Laplacian on a compact hyper-
bolic surface in the semi-classical limit. We then construct an explicit unitary

intertwining operator between the Schrödinger group and geodesic flow on cer-

tain Hilbert spaces of symbols on the cotangent bundle of a compact hyperbolic
surface. This exposition is primarily based on recent work of Anantharaman

and Zelditch [1], [2].
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1. Motivation

1.1. The Semi-Classical Limit. In Hamiltonian mechanics, a formulation of clas-
sical mechanics, the motion over time of an electron orbiting a hydrogen atom is
modelled by Hamilton’s equations

(1.1)

{
∂tx(t) = ∂ξp(x(t), ξ(t))

∂tξ(t) = −∂xp(x(t), ξ(t))

with the Hamiltonian

p(x, ξ) =
1

2
|ξ|2 − V (x) : T ∗Rn → R.

1
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The orbits of electrons are situated on specific level sets of the Hamiltonian.
In quantum mechanics, the electron orbiting a hydrogen atom is modeled by

wave functions ψj that have energy levels Ej via Schrödinger’s equation

Ĥψj :=

(
−h

2

2
∆ + V

)
ψj = Ejψj ,

where V is the potential and h is the Planck constant, that is, the ratio of the energy
of a photon to its frequency. The resemblance between the Schrödinger operator
Ĥ and Hamiltonian p is readily apparent. Bohr’s correspondence principle asserts
that the behavior of a quantum mechanical system approaches the description of
the behavior via classical mechanics in the limit of large quantum numbers (large
orbits and high energies), namely, λ → ∞. With the parameters V = 0, E = 1,
h = λ−1, the Schrödinger equation specializes to the following eigenvalue equation
for the Laplacian, known as the Helmholtz equation on the domain Ω{

(∆ + λ2)φλ = 0

φλ|∂Ω = 0
.

Consequently, the semi-classical limit h → 0 can be attained through taking the
high energy limit λ→ ∞. In this limit, there ought to be a relationship between the
asymptotics of eigenfunctions and eigenvalues of the Laplacian and the dynamics
of the Hamiltonian flow.

1.2. Global Harmonic Analysis of the Laplacian on Riemannian Mani-
folds. The exposition in this part is based on [13]. Let (M, g) be a Riemannian
manifold and let ∆g denote the Laplacian. We are concerned with the eigenvalue
problem

(∆g + λ2)φλ = 0.

When M is compact, it follows from the Spectral Theorem for compact self-adjoint
operators applied to ∆−1 that there exists an orthonormal basis {φj}j≥0 of L2(M)
of eigenfunctions,

∆gφj = −λ2jφj , ⟨φj , φkdVg = δjk.

Furthermore, when M is compact, the Laplacian has a discrete spectrum with
finite multiplicities. Global techniques to study the eigenfunctions rely on the wave

equation. To see this, set □ = ∂2

∂t2 −∆g. The Cauchy problem for the wave equation
on R×M is the initial value problem (with Cauchy data f, g) is{

□u(t, x) = 0

u(0, x) = f, ∂
∂tu(0, x) = g(x)

.

The solution operator is the wave group

U(t) =

(
cos t

√
∆ sin t

√
∆√

∆√
∆sin t

√
∆ cos t

√
∆

)
.

To obtain this, we note that this initial value problem can be decomposed into an
even part {

( ∂
∂t

2 −∆)u = 0

u|t=0 = f, ∂
∂tu|t=0 = 0
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and an odd part {
( ∂
∂t

2 −∆)u = 0

u|t=0 = 0, ∂
∂tu|t=0 = g

.

A solution to the even part is C(t) := cos t
√
∆ and a solution to the odd part

is S(t) := sin t
√
∆√

∆
. These functions arise in the solution to the following Cauchy

problem {
( 1i

∂
∂t −

√
−∆) = 0

u(0, x) = u0
.

The solution operator to this Cauchy problem is known as the forward half-wave
group. The solution is given by u(t, x) = U(t)u0(x) with U(t) : L2(M) → L2(M)
being the half-wave propagator given by

U(t) = eit
√
−∆ = C(t) + i

√
−∆S(t),

which is the unitary group generated by the self-adjoint elliptic operator
√
−∆.

The half-wave propagator has the eigenfunction expansion

U(t, x, y) =

∞∑
j=0

eitλjφj(x)φj(y),

which is known as the wave kernel. The wave kernel is a simple example of a Fourier
integral operator. It is difficult to analyze the eigenfunctions of the half-wave prop-
agator, so the typical approach to study them is to investigate the wave kernel
and its singularities. The simplest technique for constructing a Fourier integral
representation of the wave kernel is the Hadamard parametrix construction.

1.3. Quantum Mechanics in Phase Space. Phase space consists of all possible
states of a quantum mechanical system. It keeps track of both position and mo-
mentum rather than just one of these. The phase space formulation of quantum
mechanics can be viewed in analogy to Hamiltonian mechanics because the setting
for Hamiltonian mechanics is phase space. The mathematical description of phase
space is the cotangent bundle T ∗M , on which the variable x denotes position and
the variable ξ denotes momentum. A classical observable is a function on phase
space. A quantum observable is a bounded operator on L2(M). Quantization is
a procedure by which we associate a quantum observable to a classical observable.
The quantum observables which can be studied in the semi-classical limit are the
semi-classical pseudo-differential operators Oph(a) = a(x, hD); we refer to such op-
erators as quantizations of classical observables. It is apparent from the following
definition that quantum observables are pseudo-differential operators. The semi-
classical Weyl quantization on Rn is denoted by Oph(a) = aw(x, hD) and defined
by

Oph(a)f(x) = (2πh)−1

∫
Rn

e
i
h (x−y)ξa

(
x+ y

2
, ξ

)
f(y) dy dξ,

where 0 < h << 1 is the semi-classical parameter. By piecing together coordinate
charts, we can obtain a quantization on an arbitrary manifold M . To the classical
observable a = a(x, ξ) ∈ C∞

c (T ∗M), we associate the quantum observable

Oph(a) := aw
(
x,
h

i
∂x

)
: L2(M) → L2(M).
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Classical evolution is evolution with respect to the geodesic or, more generally,
Hamiltonian flow because the geodesic flow on the punctured cotangent bundle
T ∗M \ 0 is the Hamiltonian flow of the metric norm. A quantization procedure
provides a mapping from classical Hamiltonian dynamics to quantum dynamics in
phase space. To see this, let p : R2n → R, p = p(x, ξ) be an arbitrary Hamilton-
ian. The time-evolution of the position and momentum of the system is given by
Hamilton’s system of equations 1.1. The solution of this system is

φt = exp(tHp),

where

Hpq := {p, q} = ⟨∂ξ, ∂xq⟩ − ⟨∂xp, ∂ξq⟩
is the Poisson bracket. We describe how quantization provides the analogy between
the time-evolution of a classical observable and the time-evolution of a quantum
observable, following [16]. Let a be a symbol and set

at(x, ξ) := a(φt(x, ξ)).

The classical time-evolution of the symbol is given by

∂tat = {p, at}.

To define the quantum time-evolution, set P = pw(x, hD) and A = aw(x, hD), and
define

A(t) := F−1(t)AF (t),

where F (t) := e−
itP
h . Here, A(t) represents the time evolution of the quantum

observable A. The time evolution equation of the quantum observable A is

∂tA(t) =
i

h
[P,A(t)].

This is obviously an analogue of the classical evolution equation, where the Poisson
bracket has been replaced with a commutator. Generally, assertions about Hamil-
tonian dynamics involving a Poisson bracket will involve a commutator in quantum
dynamics.

Another statement that links classical and quantum mechanics is the following
theorem. In particular, it relates the time evolution of an observable to the time
evolution of its principal symbol.

Theorem 1.2 (Egorov [13]). If A ∈ Ψ0(M) (i.e. A is a pseudo-differential oper-

ator of order zero) and U t = eit
√
−∆, then αt(A) := U tA(U t)∗ ∈ Ψ0(M) and the

principal symbol of αt(A) is a ◦ Gt, where Gt is the Hamiltonian flow. Quantita-
tively,

U t
ℏOph(a)U

−t
ℏ −Oph(a ◦Gt) ∈ Ψ−1

h (M),

i.e. the difference is a pseudo-differential operator of order −1. This means that
the difference is of order O(ℏ).

1.4. Quantum Ergodicity. Let (M, g) be a closed manifold and let {φj} be an
orthonormal basis of eigenfunctions of the Laplacian arranged in increasing order of
eigenvalues. The matrix entries of a quantum observable A are ρjk(A) := ⟨Aφj , φk⟩.
The diagonal matrix element ρjj(A) is interpreted as the expected value of the
observable A in the energy state φj (of energy λ

2
j ). The off-diagonal matrix elements

ρjk(A) with j ̸= k are transition amplitudes. Once we fix a quantization map
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a 7→ Oph(a), the matrix elements can be represented by Wigner distributions. For
the diagonal elements, we define Wk ∈ D′(T ∗M) by∫

T∗M

a dWk := ⟨Oph(a)φk, φk⟩.

The central question of quantum ergodicity is that of determining the set of
weak∗ limit points of the sequence {dWk}. For the off-diagonal elements of a
quantum observable, the appropriate question is that of determining the set of
weak∗ limit points of the sequence {ρjk} on the classical phase space T ∗M .

We say that a subsequence {φjk} equidistributes in physical space if for all
a ∈ C∞(M), ∫

M

a(x)|φjk(x)|2 dvolg(x) →
1

volg(M)

∫
M

a(x) dvolg(x)

as k → ∞. We say that {φjk} equidistributes in phase space if for all a ∈ C∞
c (T ∗M)

we have

⟨Ophjk
(a)φjk , φjk⟩ →

∫
S∗M

a(x, ξ) dµL(x, ξ)

as k → ∞. The Liouville measure µL on the cosphere bundle S∗M = {(x, ξ) ∈
T ∗M : |ξ|g = 1} is dµL(x, ξ) := c dvolg(x) dS(ξ) where the densities dvolg on
M and dS on the fibers of S∗M are induced by the metric g and c is chosen
to be a normalizing constant to ensure that µL is a probability measure. Note
that equidistribution in phase space is a stronger property than equidistribution
in physical space. For example, on M = R/2πZ, the sequence of eigenfunctions
φj = eijx equidistributes in physical space but not in phase space. The following
results on the equidistribution of eigenfunctions are foundational in quantum chaos.

Theorem 1.3 (Shnirelman [4]). Assume that the geodesic flow on M is ergodic
with respect with respect to the Liouville measure. Then, there exists a density one
subsequence {φjk} of eigenfunctions which equidistributes in physical space.

Density one means that

#{k : λjk ≤ R}
#{j : λj ≤ R}

→ 1

as R→ 1, where eigenvalues are counted with multiplicity. Physically, Shnirelman’s
Theorem means that the probability of finding a particle in a set approaches the
volume of that set in the high energy limit. The semi-classical version of this result,
known as the Quantum Ergodicity Theorem, is below.

Theorem 1.4 ([4]). Assume that the geodesic flow on M is ergodic with respect
to the Liouville measure. Then there exists a density one subsequence {φjk} that
equidistributes in phase space.

Both of these theorems have a broad scope because many manifolds have ergodic
geodesic flows, including manifolds of negative sectional curvature. A question that
naturally arises is whether all eigenfunctions rather than a density one subsequence
of eigenfunctions equidistribute in phase space. The property that all eigenfunctions
equidistribute is known as quantum unique ergodicity. In other words, quantum
unique ergodicity is the problem of determining which geodesic flow invariant prob-
ability measures arise as weak∗ limits of Wigner distributions. Rudnick and Sarnak
conjecture in [12] that quantum unique ergodicity holds for any orthonormal basis
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of eigenfunctions if the geodesic flow is Anosov. Negatively curved manifolds are
a setting where the geodesic flow is Anosov. The conjecture of quantum unique
ergodicity, in its originally stated form, remains open. Thus, we investigate distri-
butions associated to eigenfunctions of the Laplacian on hyperbolic surfaces, which
are compact surfaces of constant curvature −1.

2. Outline

2.1. Setup and Identifications. Here, we specify the notation and conventions
that will be used in the remainder of this paper. We denote the duality pairing on
the space Y between a distribution E ∈ D′(Y ) and a test function f ∈ D(Y ) =
C∞

0 (Y ) by ⟨f,E⟩Y =
∫
Y
f(y)E(dy). For the hyperbolic plane, we utilize two mod-

els: the upper half-plane model H and the Poincaré disk model D. Let SD denote
the unit tangent bundle for D, SH denote the unit tangent bundle for H, and set
G = PSU(1, 1). Since G acts freely and transitively on SD, we can identify G
and SD. Likewise, since PSL(2,R) acts freely and transitively by Möbius trans-
formations on SH, we can identify PSL(2,R) and SH. Since all models of the
hyperbolic plane are isometric, we identify SD, SH, PSU(1, 1), and PSL(2,R).
Let K be the maximal compact subgroup PSO(2,R) and identify the correspond-
ing symmetric space G/K with D. Let Γ ⊂ G be a cocompact discrete subgroup.
Then, XΓ = Γ\D is a hyperbolic surface.

On SH, we define three flows that preserve the Liouville measure. The geodesic
flow gt : SH → SH is defined by moving distance t along the oriented geodesic
tangent to a given vector v. The horocycle flow hs : SH → SH is defined by
moving distance s along the horocycle perpendicular to v with v pointing inward.
The elliptic flow er : SH → SH is defined by rotating v through angle r in its
tangent space. The geodesic, horocyclic, and elliptic flows on SH correspond to
the right action of the one-parameter subgroups

A =
{
at =

(
et/2 0
0 e−t/2

)
: t ∈ R

}
N =

{
nt =

(
1 t
0 1

)
: t ∈ R

}
K =

{
kt =

(
cos(t/2) sin(t/2)
− sin(t/2) cos(t/2)

)
: t ∈ R

}
,

respectively. In fact, every connected subgroup of G is conjugate to {1}, K, A, N ,
or AN .

We utilize two parametrizations of SD. The first is G ∼ G/K ×K ∼ D × B,
where B is the boundary at infinity of D identified with S1 in the Poincaré disk
model. We obtain this with the Gram-Schmidt process as G/K is upper triangular
and K is orthogonal. Geometrically, (z, b) ∈ D × B is identified with the unit
tangent vector (z, v), where v ∈ SzD is the vector tangent to the unique geodesic
through z ending at b. Second, B ×B \∆ can be naturally identified with the set
of oriented geodesics on D since each oriented geodesic γb′,b is determined by its
unique forward limit point b in B and unique backward limit point b′ ̸= b in B.
Since the space of geodesics on D is defined as the quotient of SD by the action
of the geodesic flow, this gives rise to the identification SD ≡ (B × B \ ∆) × R.
We specify the time parameter by identifying (b′, b, τ) ∈ (B × B \ ∆) × R with
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(z, b) ∈ D × B where z is on the geodesic γb′,b situated τ units from the point
zb,b′ ∈ γb,b′ closest to the origin o := eK ∈ D.

Without modifications, the geodesic flow acts on functions on TXΓ and the
Schrodinger flow acts on XΓ. The Schwarz kernel is a distribution on XΓ × XΓ.
By taking the local Fourier transform of the kernel with respect to the second
component, we obtain a distribution on the cotangent bundle T ∗XΓ called the
symbol of the operator. We let the Schrödinger group act on the space of operators
by conjugation. These operators have a Schwarz kernel and taking the Fourier
transform in the second variable gives the action on T ∗XΓ. We identify TXΓ and
T ∗XΓ with the metric and this results in the Schrödinger flow acting on the same
space as the geodesic flow.

The geodesic flow gt on SD is given by gt(z, v) = (γv(t), γ
′
v(t)) where γv(t) is

the unit speed geodesic with initial value (z, v). Thus, the natural setting on which
to define geodesic flow-invariant distributions (namely, Patterson-Sullivan distribu-
tions) is SXΓ. The diagonal quantum-invariant distributions (Wigner distributions)
are defined on SXΓ.

The off-diagonal Wigner distributions will be defined on SXΓ ×R. We identify
SXΓ with SXΓ × { rj+rk

2 }, thereby extending Patterson-Sullivan distributions to
SXΓ×R. With this identification, the off-diagonal Patterson-Sullivan and Wigner
distributions are defined on the same space.

2.2. Main Results. Quantum dynamics are intimately related to the automorphic
eigenvalue problem for the Laplacian on the compact hyperbolic surface XΓ =
Γ\G/K. {

∆ϕ = −λϕ
ϕ(γz) = ϕ(z) for all γ ∈ Γ and for all z

The eigenvalues of the Laplacian can be expressed as λ = λr = 1/4 + r2 and also
λ = λs = s(1 − s) where s = 1/2 + ir. We denote by {λj = 1/4 + r2j} the set
of eigenvalues repeated according to multiplicity, and a corresponding orthonormal
basis of eigenfunctions by {ϕirj}. We define two types of phase space distribu-
tions associated with the automorphic eigenfunctions ϕirj of the Laplacian on XΓ.
Patterson-Sullivan distributions PSirj , which are the residues of the dynamical zeta

functions Z(s; a) :=
∑

γ
e−sLγ

1−e−Lγ

∫
γ0
a (where the sum runs over closed geodesics)

at the poles 1/2 + irj , are invariant under the geodesic flow (classical evolution).
Wigner distributions

∫
S∗XΓ

a dWirj = ⟨Op(a)ϕirj , ϕirj ⟩L2(XΓ), where Op(a) denotes

the hyperbolic quantization, arise in quantum chaos and are invariant under the
wave group (quantum evolution). The following is the relationship between the
Patterson-Sullivan distributions and Wigner distributions, where Lr is an operator

that transforms normalized Patterson-Sullivan distributions P̂Sirj into Wirj . In

the semi-classical limit, namely, as λj → ∞, the distributions P̂Sirj and Wirj are
asymptotically equivalent.

Theorem 2.1 ([1]). For any a ∈ C∞(Γ\G), we have the exact formula

⟨Op(a)ϕirj , ϕirj ⟩SXΓ
= 2(1+2irj)

∫
SD

(Lrjχa)(g)PSirj (dg)
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and the asymptotic formula∫
SXΓ

a(g)Wirj (dg) =

∫
SXΓ

a(g)P̂Sirj (dg) +O(r−1
j ).

Through similar methods, we can prove the asymptotic equivalence of the off-
diagonal Γ-invariant Patterson-Sullivan distributions and Wigner distributions in
the semi-classical limit.

Theorem 2.2 ([2]). Let a ∈ C∞(Γ\G). Given a sequence of pairs (vjn , vkn
) of

spectral parameters with −ivjn → +∞ and |vjn − vkn
| ≤ τ0 for some τ0 ≥ 0, we

have the asymptotic formula∫
SXΓ

a(g)WΓ
jn,kn

(dg) = 21+vjn−vkn

(
π

rkn

)1/2

e
−iπ
4

∫
SXΓ

a(g)PSΓ
vjn ,−vkn

(dg)+O(v−1
kn

).

In the preceding results, we showed the asymptotic equivalence of two phase
distributions associated with the classical and quantum dynamics. Below, we show
the correspondence between the classical and quantum dynamics holds at a deeper
level. In particular, we explicitly construct an operator L that intertwines the

geodesic flow Gt and Schrödinger group eit
∆
2 at the level of symbols. The quantum

evolution is given by αt(Op(a)) = e−it∆
2 Op(a)eit

∆
2 and this operator on symbols

V t is defined formally by αt(Op(a)) = Op(V t(a)). The following theorem describes
the intertwining relation on the universal cover.

Theorem 2.3 ([2]). For a ∈ S0
0 , La is a continuous function, and we have the

pointwise equality
L ◦ V ta = Gt ◦ La.

Furthermore, the intertwining operator L extends to an isometry from L2
W (G ×

R, dg × dp(r)) to the space HPS(D) of functions such that

1

4

∫
|PSa(ir, b, ir′, b′)|2 db db′p(dr)p(dr′) < +∞,

and we have
L ◦ V t = Gt ◦ L

where both sides are bounded operators from L2
W (G×R, dg × dp(r)) to HPS(D).

On the quotient XΓ, we define Hilbert spaces HW = HW (XΓ) and HPS =
HPS(XΓ) of Γ-invariant symbols and their dual spaces H∗

W and H∗
PS . The Wigner

distributions WΓ
j,k form an orthonormal basis of H∗

W while the Patterson-Sullivan
distributions form an orthonormal basis of H∗

PS . We define an operator between
these spaces that satisfies the intertwining relation analogous to that on the uni-
versal cover.

Theorem 2.4 ([2]). The operator LΓ# : H∗
PS → H∗

W is an isometric isomorphism,
and LΓ# sends PSvj ,−vk to Wj,k. Dually, we have

LΓ ◦ V t
Γ = Gt

Γ ◦ LΓ,

as an equality between operators from HW to HPS.

Although the Hilbert spaces HPS and HW are defined ad hoc so that the inter-
twining relation holds, this result is substantive in several ways. The Hilbert spaces
of distributions HW and HPS contain large symbol classes. The intertwining oper-
ator clearly is inspired by the exact relation Lr between the Patterson-Sullivan
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distributions and Wigner distributions. Finally, it gives rise to a quantization
procedure a 7→ Op(L−1

Γ a) that satisfies the Egorov Theorem exactly (without a
remainder term). This makes it natural in a sense because the only other quantiza-
tion procedure known to have this property is the Weyl quantization on Euclidean
space.

3. Asymptotic Equivalence of Classical and Quantum Dynamics in
the Semi-Classical Limit

We devote this section to the proof of Theorem 2.1, which relates two types of
phase space distributions associated to eigenfunctions of the Laplacian on a com-
pact hyperbolic surface, namely, the Patterson-Sullivan and Wigner distributions.
Patterson-Sullivan distributions arise as residues of dynamical zeta functions and
are invariant under the geodesic flow (classical evolution). Wigner distributions
arise in quantum chaos and are invariant under the wave group (quantum evolu-
tion).

Based on Fourier analysis on the hyperbolic disk introduced by Helgason in [9],
a hyperbolic pseudo-differential calculus was introduced in [14]. We use this hyper-
bolic pseudo-differential calculus in the remainder of the paper. Let ⟨z, b⟩ denote
the signed distance to 0 of the horocycle through the points z ∈ D, b ∈ B. The

hyperbolic plane waves eν,b(z) := e(
1
2+ν)⟨z,b⟩ with ν ∈ C and b ∈ B are hyper-

bolic analogues of the Euclidean plane waves x 7→ ei⟨x,ξ⟩ and are complex-valued
eigenfunctions of the Laplacian ∆eν,b = −

(
1
4 − ν2

)
eν,b. The family of functions

{eir,b(z)}r>0,b∈B forms a basis of generalized eigenfunctions of the Laplacian on
L2(D) [9]. The Helgason-Fourier transform is defined as

Ff(b, r) =
∫
D

e(
1
2−ir)⟨z,b⟩f(z) dVol(z)

with b ∈ B and r ∈ R. The Fourier transform has the symmetry

(3.1)

∫
B

Ff(b, r)e(
1
2+ir)⟨z,b⟩ db =

∫
B

Ff(b,−r)e(
1
2−ir)⟨z,b⟩ db.

The non-Euclidean Fourier inversion formula is given by

u(z) =

∫
R+

∫
B

Fu(r, b)e(
1
2+ir)⟨z,b⟩ dp(r) |db|,

where the Plancherel measure on R is dp(r) = 1
2π r tanh(πr) dr. Note that the

Plancherel formula ∥f∥L2(D,Vol) = ∥Ff∥L2(B×R+,db×dp(r)) holds for f ∈ L2(D).
Following [14], we define a hyperbolic quantization procedure onD. For a symbol

a(z, b, r) that is polyhomogeneous in r, we define the action of pseudo-differential
operators on D by

Op(a)e(
1
2+ir)⟨z,b⟩ = a(z, b, r)e(

1
2+ir)⟨z,b⟩.

With the non-Euclidean Fourier inversion formula, we extend the definition of Op(a)
from the non-Euclidean plane waves eν,b(z) to C

∞
c (D)

Op(a)u(z) =

∫
B

∫
R+

a(z, b, r)e(
1
2+ir)⟨z,b⟩Fu(b, r) dp(r) db.

Helgason proved the following fundamental representation theorem for the eigen-
functions of the Laplacian on D. It states that we can represent eigenfunctions via
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distributions that encode their boundary values. We will use these distributions to
define the Patterson-Sullivan and Wigner distributions.

Theorem 3.2 (Helgason [9]). Let ϕ be an eigenfunction for the eigenvalue λ =
−
(
1
4 − ν2

)
∈ C with the property that ϕ has exponential growth, that is, there exists

C > 0 such that |ϕ(z)| ≤ CeCdD(0,z). Then there exists a distribution Tν,ϕ ∈ D′(B)
such that

ϕ(z) =

∫
B

e(
1
2+ν)⟨z,b⟩Tν,ϕ(db),

for all z ∈ D. The distribution is unique if 1
2 + ν ̸= 0,−1,−2, ....

The distribution Tν,ϕ is called the boundary values of the eigenfunction ϕ (for
the spectral parameter ν). This terminology arises from the analogy to the the-
ory of distributional boundary values of harmonic functions. Indeed, the kernel
that arises in Helgason’s Representation Theorem is the generalized Poisson kernel

P
( 1

2+ir)
D (z, b) = e(

1
2+ir)⟨z,b⟩ of the unit disk.

Definition 3.3. The Patterson-Sullivan distribution associated to a real eigenfunc-
tion ϕirj is the distribution on B ×B \∆ defined by

psirj (db
′, db) :=

Tirj (db)Tirj (db
′)

|b− b′|1+2irj
.

If ϕirj is Γ-invariant, then psirj is Γ-invariant and time reversal invariant. We
use the distributions ϕirj to construct geodesic flow-invariant distributions PSirj

on SD. This requires the use of the Radon transform and smooth fundamental
domain cutoffs, which we now define.

Definition 3.4. The Radon transform R : C0(SD) → C0(B ×B \∆) is given by

Rf(b′, b) =
∫
γb′,b

f dt.

When dealing with integrals against irregular distributions, it is convenient to
replace the characteristic function of a fundamental domain by a smooth (compactly
supported) cutoff.

Definition 3.5. We say that χ ∈ C∞
0 (D) is a smooth fundamental domain cutoff

if ∑
γ∈Γ

χ(γz) = 1.

These cutoffs are defined to satisfy the property that
∫
D f dV ol(z) =

∫
D
χf dV ol(z)

for any f ∈ C(Γ\D), where D is a fundamental domain for Γ in D.

Definition 3.6. (1) On SD we define the Patterson-Sullivan distributions PSirj

by

PSirj (db
′, db, dt) = psirj (db

′, db)|dt|
in the sense that

⟨a, PSirj ⟩SD =

∫
B×B\∆

(Ra)(b′, b)psirj (db′, db).
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(2) On the quotient SXΓ = Γ\D = Γ \ PSU(1, 1), we define the Patterson-
Sullivan distributions PSirj ∈ D′(SXΓ) by

⟨a, PSirj ⟩SXΓ
= ⟨χa, PSirj ⟩SD =

∫
B×B\∆

R(χa)(b′, b)psirj (db
′, db),

where χ is a smooth fundamental domain cutoff.
(3) We define the normalized Patterson-Sullivan distributions by

P̂Sirj :=
1

⟨1, PSirj ⟩SXΓ

PSirj .

It is apparent from this definition that the Patterson-Sullivan distributions are
geodesic flow invariant on SD.

Proposition 3.7. Suppose that ϕirj is Γ-invariant, and let Tirj denote its radial
boundary values. Then the distribution on B ×B \∆ defined by

psirj (db
′, db) :=

Tirj (db)Tirj (db
′)

|b− b′|1+2irj

is Γ-invariant.

Proof. The Γ-invariance of ϕirj means that ϕirj (γz) = ϕirj (z) for γ ∈ Γ. By the

uniqueness of the Helgason representation, e(
1
2+irj)⟨γz,γb⟩Tirj (dγb) = e(

1
2+irj)⟨z,b⟩Tirj (db).

Using the identity ⟨γ · z, γ · b⟩ = ⟨z, b⟩ + ⟨γ · 0, γ · b⟩ from [9], the boundary values

Tirj (db) have the following invariance property: Tirj (dγb) = e−(
1
2+irj)⟨γ·0,γ·b⟩Tirj (db).

Consequently,

Tirj (dγb)Tirj (dγb
′) = e−(

1
2+irj)⟨γ·0,γ·b⟩e−(

1
2+irj)⟨γ·0,γ·b′⟩Tirj (db)Tirj (db

′).

To continue the proof, we state a couple of identities from [11]:

|γ(x)− γ(y)| = |γ′(x)|1/2|γ′(y)|1/2|x− y|
1− |γ(x)|2 = |γ′(x)|(1− |x|2)

for every x, y ∈ D ∪B, γ ∈ Γ. So, for b ∈ B and γ ∈ Γ, we have

|γ(0)− γ(b)|2 = |γ′(b)|(1− |γ(0)|2).
Furthermore, using the formula for the Poisson kernel of the unit disk, we have

e−[⟨γ·0,γ·b⟩+⟨γ·0,γ·b′⟩]|b− b′|2 =
|γ(0)− γ(b)|2

1− |γ(0)|2
|γ(0)− γ(b′)|2

1− |γ(0)|2
|b− b′|2

= |γ′(b)||γ′(b′)||b− b′|2

= |γb− γb′|2.
Therefore,

|γb− γb′|1+2irj = e−(
1
2+irj)[⟨γ·0,γ·b⟩+⟨γ·0,γ·b′⟩]|b− b′|1+2irj .

By substitution,

Tirj (dγb)Tirj (dγb
′) =

|γb− γb′|1+2irj

|b− b′|1+2irj
Tirj (db)Tirj (db

′)

and hence
psirj (dγb

′, dγb) = psirj (db
′, db).

□
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Corollary 3.8. PSirj is a Γ-invariant distribution on SD = D×B.

The geodesic flow invariance of PSirj on SXΓ results from the following lemma.

Lemma 3.9. Let T ∈ D′(SD) be a Γ-invariant distribution. Let a be a Γ-invariant
smooth function on SD. Then, for any a1, a2 ∈ D(SD) such that

∑
γ∈Γ ai(γ.(z, b)) =

a(z, b) (i = 1, 2), we have
⟨a1, T ⟩SD = ⟨a2, T ⟩SD.

Proof. Let χ be a function on C∞
0 (D × B) such that

∑
γ∈Γ χ(γ.(z, b)) ≡ 1. We

choose χ to be independent of b. Then,

⟨ai, T ⟩SD =

∫
SD

∑
γ∈Γ

χ(γ(z, b))

 ai(z, b)T (dz, db)
=

∫
SD

∑
γ∈Γ

χ(z, b)ai(γ(z, b))T (dz, db)

=

∫
SD

χ(z, b)a(z, b)T (dz, db)

□

Next, we define the Wigner distributions.

Definition 3.10. The Wigner measure of ϕirj is the distributionWirj ∈ D′(S∗XΓ)
defined by

⟨a,Wirj ⟩ =
∫
S∗XΓ

a(g)Wirj (dg) := ⟨Op(a)ϕirj , ϕirj ⟩L2(XΓ)

for a ∈ C∞(S∗XΓ).

Note that the Wigner distributions are normalized since ⟨1,Wirj ⟩ = 1 and are in-
variant under quantum evolution: ⟨U∗

t Op(a)Utϕirj , ϕirj ⟩L2(XΓ) = ⟨Op(a)ϕirj , ϕirj ⟩L2(XΓ)

for Ut = eit
√
∆. By Egorov’s Theorem, Wirj is asymptotically invariant under the

action of the geodesic flow gt on S∗XΓ in the large energy limit rj → ∞. This
justifies having a result like Theorem 2.1, which asserts the asymptotic equivalence
of Wirj and geodesic flow-invariant distributions in the semi-classical limit. At the

heart of the proof of the theorem is the operator Lr, which transforms P̂Sirj into

Wirj and induces an asymptotic equality Wirj ∼ P̂Sirj between them. To make
the notation more convenient, we will sometimes drop the j indices of rj and index
the eigenfunctions by r instead.

Definition 3.11. Define Lr : C∞
0 (G) → C∞(G) by

Lra(g) :=

∫
R

(1 + u2)−(
1
2+ir)a(gnu) du.

The first part of the proof of Theorem 2.1 involves computing an explicit expres-
sion of Wirj . We will use the following identity.

Lemma 3.12 ([11]). Let z ∈ D, let b1, b2 ∈ B, and let sb1,b2(z) denote the hyper-
bolic distance from z to the geodesic γb1,b2 defined by (b1, b2). Then

cosh sb1,b2(z) =
2|z − b1||z − b2|
|b1 − b2|(1− |z|2)

.
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Lemma 3.13. We have

⟨Op(a)ϕirj , ϕirj ⟩L2(XΓ) =

2(1+2irj)

∫
B×B

(∫
D

χa(z, b)[cosh sb′,b(z)]
−(1+2irj) dVol(z)

)
Tirj (db)Tirj (db

′)

|b− b′|1+2irj
.

The right side is independent of the choice of χ.

Proof. When a is a Γ-invariant function on SD, then we have

Op(a)ϕirj :=

∫
B

a(z, b)e(
1
2+irj)⟨z,b⟩Tirj (db).

Using this formula and the generalized Poisson formula from Theorem 3.2, we obtain

⟨Op(a)ϕirj , ϕirj ⟩ =
∫
B×B

(∫
D

χa(z, b)e(
1
2+irj)⟨z,b⟩e(

1
2+irj)⟨z,b′⟩ dVol(z)

)
Tirj (db)Tirj (db

′).

Next, observe from Lemma 3.12 that

e⟨z,b⟩e⟨z,b
′⟩ =

(1− |z|2)2

|z − b|2|z − b′|2

=

(
|z − b′||z − b|

1− |z|2

)−2

= 4[cosh sb′,b(z)]
−2|b− b′|−2

so

e(
1
2+irj)⟨z,b⟩e(

1
2+irj)⟨z,b′⟩ =

21+2irj [cosh sb′,b(z)]
−(1+2irj)

|b− b′|1+2irj
.

By substitution, the proof is complete. □

Next, we analyze the operator Lr : Cc(D) → C(B ×B), which we define as

Lr(χa)(b
′, b) :=

∫
D

χa(z, b)[cosh sb′,b(z)]
−(1+2ir) dVol(z).

To relate Lr to the intertwiner Lr, we perform a change of coordinates on D or
H adapted to a particular geodesic γb′,b. Given this geodesic, we write z = (t, u),
where tmeasures arclength on γb′,b and umeasures arclength on horocycles centered
at b. More precisely, we denote by g(b′, b) the vector on γb′,b which is closest to
the origin, and the parametrization of z = (t, u) is defined by (z, b) = g(b′, b)atnu.
For any given (b′, b), the volume element of z is dV ol = dtdu. We check this for
b′ = 0 and b = ∞ using the upper half plane model of the hyperbolic plane. This
is the geodesic represented by x = 0. The origin, which we denote by e, is the
point i ∈ C, which has an x-coordinate of 0 and a y-coordinate of 1. Therefore,
g(b′, b) = e = (i,∞). Horocycles centered at ∞ are represented by horizontal
lines parallel to the real axis, so the horocycle through e is represented by the line
y = i. So, the action of the geodesic and horocycle flows at the base point are
atnui = et(i + u). From this, we observe that y = et and x = uet. Substituting

this into the area form for the upper half plane model, which is dxdy
y2 , yields dtdu,

as required. It follows that

Lr(χa)(b
′, b) =

∫
cosh sb′,b(t, u)

−(1+2ir)χa(g(b′, b)atnu) du dt.
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The distance sb′,b(z) from z = (t, u) to the geodesic from b′ to b depends only on u

and satisfies cosh sb′,b(t, u) =
√
1 + u2. By substitution,

Lr(χa)(b, b
′) =

∫
R×R

(1 + u2)−(
1
2+ir)χa(g(b′, b)atnu) du dt.

We also observe that

Lr(χa)(b, b
′) =

∫
R

Lr(χa)(g(b, b
′)at) dt.

Combining the preceding results, we can write the Wigner distributions in terms
of the Patterson-Sullivan distributions.

Lemma 3.14.

⟨Op(a)ϕir, ϕir⟩L2(XΓ) = 21+2ir

∫
G

Lr(χa)(g)PSir(dg)

Proof.

⟨Op(a)ϕirj , ϕirj ⟩L2(XΓ
) =

21+2ir

∫
B×B

[∫
D

χa(z, b)[cosh sb′,b(z)]
−(1+2ir)|b− b′|−(1+2ir) dVol(z)

]
Tirj (db)Tirj (db

′) =

21+2ir

∫
B×B

|b− b′|−(1+2ir)Lr(χa)(b
′, b)Tirj (db)Tirj (db

′) =

21+2ir

∫
B×B

|b− b′|−(1+2ir)R(Lr(χa))(b, b
′)Tirj (db)Tirj (db

′) =

21+2ir

∫
B×B

R(Lr(χa))(b, b
′) dpsirj =

21+2ir⟨Lr(χa), PSirj ⟩SD

□

To complete the proof of Theorem 2.1, we fix an arbitrary geodesic γb′,b and
perform the method of stationary phase for Lr(χa). The critical set of Lr(χa)(b

′, b)
is the geodesic γb′,b, so the critical set of Lr(χa) is the set u = 0 in the integral

defining Lr(χa). Since (log(1 + u2)′′)
∣∣∣
u=0

= 2, the method of stationary phase

provides the expansion

(3.15) Lr(χa)(g) = (−ir/π)−1/2

∑
n≥0

r−nL2n(χa)(g)

 ,

where L2n is a differential operator of order 2n on SD. In particular, L0 is the
identity and the other L2n are differential operators in the stable direction nu. We
integrate 3.15 with respect to PSirj and substitute into Lemma 3.14 to obtain the
asymptotic expansion

⟨Op(a)ϕir, ϕir⟩L2(XΓ) = 2(1+2ir)(−ir/π)−1/2

∑
n≥0

∫
SD

L2n(χa)(g)PSir(dg)

 .

Note that the first term (n = 0) of the expansion is the Patterson-Sullivan distri-
bution in the quotient SXΓ. On the left side of the equation above, we have the
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Γ-invariant distribution

e(1/2+ir)⟨z,b⟩e(1/2+ir)⟨z,b′⟩ dVol(z)Tir(db)Tir(db
′)

in the triple (b, b′, z). This implies that the distributions on the right side of the
preceding equation

f 7→
∫
SD

L2n(f)(g)PSir(dg)

are also Γ-invariant. By Lemma 3.9, the functional

a 7→
∫
G

L2n(χa)(g)PSir(dg)

defines a distribution on Γ\G and the definition is independent of the choice of
the cutoff χ. Now that we have confirmed well-definedness, we deduce from the
stationary phase asymptotics in 3.15 that∫
SXΓ

a(g)Wirj (dg) = 2(1+2ir)(−ir/π)−1/2
N∑

n=0

r−n
j

∫
SD

L2n(χa)(g)PSirj (dg)+O(r−N−1+K
j ),

where C,K > 0 are numerical constants such that for a ∈ C2(SXΓ), |⟨a, PSirj ⟩SXΓ | ≤
C(1+ |rj |)K∥a∥C2 for all j. If we choose N > K then the remainder term vanishes

in the semi-classical limit. Since L0 = Id, the operator L
(N)
r =

∑N
n=0 r

−nL2n can

be inverted up to O(r−N−1), that is, one can find differential operators M
(N)
r =∑N

n=0 r
−nM2n (with M0 = Id) and R

(N)
r such that

L(N)
r M (N)

r = Id + r−N−1R(N)
r .

We thus get∫
SXΓ

M (N)
rj a(g)Wirj (dg) =

∫
SD

L(N)
rj χM (N)

rj a(g)PSirj (dg) +O(r−N−1+K
j )

=

∫
SD

L(N)
rj M (N)

rj χa(g)PSirj (dg) +O(r−N−1+K
j )

=

∫
SXΓ

a(g)PSirj (dg) +O(r−N−1+K
j ),

where the second step follows from Lemma 3.9. By standard estimates on pseudo-
differential operators, the Wigner measures are uniformly bounded in (Ck)∗ for
some k. Therefore,∫

SXΓ

M (N)
rj a(g)Wirj (dg) =

∫
SXΓ

a(g)Wirj (dg) +O(r−1
j ).

This shows that

2(1+2irj)(−irj/π)−1/2

∫
SXΓ

a(g)PSirj (dg) =

∫
SXΓ

a(g)Wirj (dg) +O(r−1
j ).

The left side is asymptotically the same as ⟨a, P̂Sirj ⟩ since the leading coefficients
must match when a = 1. This completes the proof of Theorem 2.1.

The proof of Theorem 2.2 for the asymptotic equivalence in the semi-classical
limit for the off-diagonal Patterson-Sullivan and Wigner distributions can be re-
duced to the above, so we do not present it here.
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4. Explicit Intertwining of the Geodesic Flow and Schrodinger Flow

The objective of this section is to discuss the proofs of Theorems 2.3 and 2.4.
These proofs involve microlocal analysis, so we start by describing several symbol
classes that we will use for pseudo-differential calculus on the Poincaré disk.

Observe that the Schwarz kernel of Op(a) is given by

(4.1) Ka(z, w) =

∫
B

∫
R+

a(z, b, r)e(
1
2+ir)⟨z,b⟩e(

1
2−ir)⟨w,b⟩ dp(r) db.

Assume that a has the following symmetry with respect to the transformation
(z, b, r) 7→ (z, b,−r)
(4.2)∫

a(z, b, r)e(
1
2+ir)⟨z,b⟩e(

1
2−ir)⟨w,b⟩ db =

∫
a(z, b,−r)e(

1
2−ir)⟨z,b⟩e(

1
2+ir)⟨w,b⟩ db

for all z, w ∈ D and r ∈ R. Then, by the Plancherel formula for the non-Euclidean
Fourier transform, we can recover the symbol from the kernel by

a(z, b, r) = e−(
1
2+ir)⟨z,b⟩

∫
D

Ka(z, w)e
( 1

2+ir)⟨w,b⟩Vol(dw)

for all r ∈ R. By L2
W (G × R, dg × dp(r)), we denote the space of functions in

L2(G × R, dg × dp(r)) that have symmetry 4.2 with respect to the Weyl group.
Furthermore, we will use symmetry 4.2 in the definition of the Wigner distributions
on D.

The pointwise intertwining in Theorem 2.3 occurs for functions on SD×R with
appropriate growth and smoothness properties with respect to (z, b) ∈ SD. The
definitions of the Hilbert spaces that are intertwined in Theorem 2.4 are also based
on this particular class of smoothing symbols. To define this symbol class, we first
introduce Schwarz functions. Schwarz functions were first defined on G by Harish-
Chandra [8] and were extended to the hyperbolic disk G/K by Eguchi [5, 6].

Definition 4.3 ([5, 6]). We say that f belongs to the Schwarz space Cp(G/K) for
0 < p ≤ 2 if and only if f is a smooth function on G which is right-K-invariant and

sup
g∈G

φ0(gK)−2/p(1 + d(gK, o))q|LRf(g)| < +∞

for any q > 0 and for any differential operators L, R on G which are respectively
left and right invariant. Here, φ0 is the spherical function on G/K, given by

φ0(z) =
∫
e

1
2 ⟨z,b⟩ db.

Since functions on Cp(G/K) are Lp, they are known as Schwarz functions of Lp

type. The following result is a Paley-Wiener theorem for Schwarz functions of Lp

type.

Proposition 4.4 ([5, 6]). Set ϵ = ϵ(p) = 2
p − 1. The space F(Cp(G/K)) coincides

with the space C(B ×Rϵ)W of functions u on B ×R such that

• if ϵ > 0, then u extends holomorphically to the strip Rϵ = {|Im(r)| < ϵ
2}

• on Rϵ, we have a bound

sup
(b,r)

(1 + |r|)q
∣∣∣ ∂α
∂rα

Du(b, r)
∣∣∣ < +∞

for all q > 0, every integer α, and every K-left-invariant differential oper-
ator D acting on B. Here we are using the identification B ∼ K.
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• u must satisfy symmetry 3.1. This symmetry condition with respect to the
Weyl group is indicated by the subscript W .

We define the space Kp
q(G/K×G/K)W of kernels of operators sending Cp(G/K)

continuously to (Cq(G/K))′. On this space, formula 4.1 can be used to relate
the kernel to the Fourier transform of the symbol. We denote the symbol class
corresponding to the kernels Kp

q(G/K ×G/K)W by Sp
q (G/K ×B ×R).

The space K0
0(G/K × G/K) of smoothing operators that send (∩Cp(G/K))′ to

∩Cp(G/K) is of particular interest to us. The corresponding space of smoothing
symbols is defined as follows.

Definition 4.5. C(B×Rϵ; Cp(G/K))W is the space of functions a(z, b, r) with the
C(B × Rϵ)-regularity in the (b, r) variables, taking values in Cp(G/K). We will
denote the space of smoothing symbols

S0
0 := S0

0 (G/K ×B ×R)W :=
⋂
ϵ

⋂
p

C(B ×Rϵ; Cp(G/K))W .

By this definition, we have for a ∈ S0
0 that

Op(a)e(
1
2+ν)⟨•,b⟩(z) = a(z, b,−iν)e(

1
2+ν)⟨z,b⟩

for any ν ∈ C.

4.1. Pointwise Intertwining of Symbols on the Universal Cover. In this
part, we prove Theorem 2.3. Recall that we extend the Patterson-Sullivan distribu-
tion PS(ir,b),(−ir′,b′) for r, r

′ ∈ R, which was originally defined on SD, to SD×R
by tensoring it by δ r+r′

2

on the R variable. We make precise the notions of geodesic

and Schrödinger flow in this context. The geodesic flow on G extends to G×R via
the formula Gt(g, r) = (gart, r). The geodesic flow can be considered an operator
acting on functions by composition. For a function a on G, we have gta := a ◦ gt
and for a function a on G×R, we have Gta := a◦Gt. The Schrödinger group is the

unitary 1-parameter group (eit
∆
2 ) induced by the Laplacian on the Hilbert space

L2(D) and it preserves the Schwarz spaces Cp(G/K). We denote by V t the operator
on symbols, defined formally by e−it∆/2Op(a)eit∆/2 = Op(V ta). Explicitly,

V ta(z, b, r) = e−(
1
2+ir)⟨z,b⟩

∫
e(

1
2+ir)⟨w,b⟩e(

1
2−ir′)⟨w,b′⟩e(

1
2+ir′)⟨z,b′⟩a(w, b, r)

× e
it
2 (r′2−r2)Vol(dw) db′ dp(r′).

The generatorDV of V t is a skew-adjoint differential operator on L2(G×R+, dg×
dp(r)) that satisfies Op(DV a) =

[
Op(a), i∆2

]
.

Next, we define analogues of Wigner and Patterson-Sullivan distributions on the
universal cover D.

Definition 4.6. For b, b′ ∈ B and ν, ν′ ∈ iR, the Wigner distributionW(ν,b),(ν′,b′) ∈
D′(SD×R) associated to the two eigenfunctions e(ν,b)(z) = e(

1
2+ν)⟨z,b⟩ and e(ν′,b′)(z) =

e(
1
2+ν′)⟨z,b′⟩ is defined formally by∫

SD×R

a(z, b̃, r)W(ν,b),(ν′,b′)(dz, db̃, dr) = ⟨Op(a)eν,b, eν′,b′⟩

for a having the symmetry 4.2.



18 YASH RASTOGI

On the boundary B (endowed with the density db) we will denote δb0(b) the
distribution defined by the Dirac mass at a point b0 and δb0(db) = δb0(b) db the
corresponding distribution density, defining the linear form f 7→ f(b0) on C

∞(B).
The Wigner and Patterson-Sullivan distributions are actually distribution densities.
If ν = ir, then

⟨Op(a)eν,b, eν′,b′⟩ =
∫
D

a(z, b, r)eir,b(z)eν′,b′(z)Vol(dz).

Therefore,

W(ν,b),(ν′,b′)(dz, db̃, dr) = eν,b(z)eν′,b′(z)δb(db̃)δ−iν(dr)Vol(dz).

We can observe that supp W(ν,b),(ν′,b′) ⊂ SD × {−iν}, so W(ν,b),(ν′,b′) can be ex-
tended to functions a(z, b, r) that depend continuously on r with values in C∞

c (SD),
and in particular for functions a that do not depend on r and are continuous and
compactly supported with respect to (z, b).

Definition 4.7. The Wigner transform of a function a ∈ C∞
c (G×R) that satisfies

symmetry 4.2 is W : C∞
c (G×R) → L2(B× iR×B× iR, db⊗ p(dr)⊗ db′ ⊗ p(dr′))

and is given by

Wa(ν, b, ν′, b′) =W(ν,b),(−ν′,b′)(a),

where p denotes the Plancherel measure.

TheWigner transformation is the non-Euclidean Fourier transform of a(z, b, r)e(
1
2+ir)⟨z,b⟩

with respect to z, evaluated at (b′,−r′). From the inversion formula for F , we have

a(z, b, r) =
1

2
e−(

1
2+ir)⟨z,b⟩

∫
B

∫
R

e(
1
2−ir′)⟨z,b′⟩Wa(ir, b, ir′, b′) db′ dp(r′)

and by the Plancherel formula for F , we have the isometry
(4.8)
∥a∥L2

W (G×R,dg×dp(r)) = ∥Wa(ir, b, ir′, b′)∥L2(B×iR+×B×iR+,db⊗p(dr)⊗db′⊗p(dr′)).

The Patterson-Sullivan distributions and transform can be defined in a manner
similar to the Wigner distributions and transform, respectively.

Definition 4.9. For ν, ν′ ∈ iR, the Patterson-Sullivan distribution PS(ν,b),(−ν,b) :=

PSe(ν,b),e(−ν,b′) associated to the two eigenfunctions e(ν,b)(z) = e(
1
2+ν)⟨z,b⟩ and

e(−ν′,b′)(z) = e(
1
2−ν′)⟨z,b′⟩ is the distribution on SD = B(2) ×R defined by

PSe(ν,b),e(−ν′,b′)(db̃, db̃
′, dτ) =

δb(db̃)δb′(db̃′)

|b̃− b̃′|1+ν−ν′ e
(ν+ν′)τ dτ.

The Patterson-Sullivan distributions are eigendistributions of the geodesic flow
in the sense that for ν, ν′ ∈ iR, we have

gt#PSe(ν,b),e(−ν′,b′) = e−t(ν+ν′)PSe(ν,b),e(−ν′,b′) ,

where gt# is the pushfoward by gt. The Patterson-Sullivan transform of a test
function consists of the pairing of a Patterson-Sullivan distribution with that test
function.
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Definition 4.10. The Patterson-Sullivan transform PS : C∞
c (G×R) → C∞(B(2)×

iR× iR) on G is given by

PSa(ν, b, ν′, b′) = PS(ν,b),(−ν′,b′)

(
a ν−ν′

2i

)
=

1

|b− b′|1+ν−ν′

∫
R

a

(
g(b′, b)aτ ,

ν − ν′

2i

)
× e(ν+ν′)τ dτ.

The Patterson-Sullivan transform can be related to the Fourier-Radon transform.
The inversion formula for the Patterson-Sullivan transform, stated below, can be
derived from the inversion formula for the Fourier-Radon transform

(4.11) a(b′, b, t, R) =
e2iRt|b− b′|1+2iR

π

∫
R

PSa(ir, b, i(2R− r), b′)e−2irt dr.

As in the diagonal case, we define an operator Lν that sends the Patterson-
Sullivan distributions to the Wigner distributions.

Definition 4.12. If a is a function on SD ≃ G and ν ∈ C, we define the function
Lνa on G by

Lνa(g) =

∫
R

a(gnu)(1 + u2)−(
1
2+ν) du.

We then have the exact relation below. Its proof is an adaptation of the proof of
the analogous result for the diagonal Patterson-Sullivan and Wigner distributions
[1].

Proposition 4.13. Let a ∈ C∞
c (G), ν, ν′ ∈ iR and (b′, b) ∈ B(2). Then L−ν′(a) ∈

C∞(SD). Although L−ν′(a) is not compactly supported, the pairing PS(ν,b)(−ν′,b′)(L−ν′(a))
is well-defined, and we have

PS(ν,b)(−ν′,b′)(L−ν′(a)) = 2−(1+ν−ν′)W(ν,b)(−ν′,b′)(a).

Proof. By definition,

W(ν,b),(−ν′,b′)(a) =

∫
D

a(z, b)e(
1
2+ν)⟨z,b⟩e(

1
2−ν′)⟨z,b′⟩ V ol(dz)

=

∫
D

a(z, b)e(
1
2−ν′)⟨z,b⟩e(

1
2−ν′)⟨z,b′⟩e(ν+ν′)⟨z,b⟩ V ol(dz)

=
21−2ν′

|b− b′|1−2ν′

∫
D

a(z, b)[cosh sb′,b(z)]
−(1−2ν′)e(ν+ν′)⟨z,b⟩ V ol(dz)

=
21−2ν′

|b− b′|1+ν−ν′

∫
D

a(z, b)[cosh sb′,b(z)]
−(1−2ν′) e(ν+ν′)⟨z,b⟩

|b− b′|−(ν+ν′)
V ol(dz)

Recall that sb1,b2 denotes the hyperbolic distance from z to the geodesic γb1,b2 and
satisfies the identity

e⟨z,b⟩e⟨z,b
′⟩ = 4[cosh sb′,b(z)]

−2|b− b′|−2.

As in [1], we use the adapted coordinates (z, b) = g(b′, b)aτnu for which Vol(dz) =

dτdu and cosh sb′,b(z) =
√
1 + u2.

The expression for the hyperbolic distance in the upper half plane model is given
by

(4.14) cosh d(z, w) = 1 +
|z − w|2

2Im(z)Im(w)
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and from this we obtain

e⟨g(b
′,b)aτnu,b⟩|b− b′| = 2eτ .

Therefore,

W(ν,b),(−ν′,b′)(a) =
2(1+ν−ν′)

|b− b′|1+ν−ν′

∫
R×R

(1 + u2)−(
1
2−ν′)a(g(b, b′)aτnu)e

(ν+ν′)τ du dτ

= 2(1+ν−ν′)PS(ν,b)(−ν′,b′)(L−ν′(a)).

□

The intertwining operator L : C∞
c (G×R) → C(G×R) should satisfy PSLa(ir, b, ir′, b′) =

Wa(ir, b, ir′, b′) for a ∈ D′(SD×R) and r, r′ ∈ R. It follows from Proposition 4.13

that this equality implies that PSLa(ir, b, ir′, b′) = 21+ir+ir′PS(ir,b),(−ir′,b′)(Lir′(ar)).
By the inversion formula for the Patterson-Sullivan transform (equation 4.11), we
have for all (b′, b) ∈ B(2), t ∈ R, R ∈ R that

La(b′, b, t, R) = 21+2iR

π
e2iRt|b− b′|1+2iR

∫
R

PS(La)(ir, b, i(2R− r), b′)e−2irt dr

=
21+2iR

π

∫
R

(1 + u2)−(
1
2+iR)ar ◦ hu(b′, b, τ)e

2i(R−r)

(
t−τ− log(1+u2)

2

)
dr du dτ.

Letting g = (b′, b, t), we have

La(g,R) = 21+2iR

π

∫
(1 + u2)−(

1
2+iR)a

(
ga

τ− log(1+u2)
2

nu, r
)
e2i(r−R)τ dr du dτ.

Now, we prove Theorem 2.3. Let a ∈ S0
0 . We first check that La is a continuous

function. For g = (z, b), we see that

La(z, b, R) = 21+2iR

π

∫
(1 + u2)−(

1
2+iR)a ◦ hu ◦ gτ−

log(1+u2)
2 (z, b, r)× e2i(r−R)τ dr du dτ

=
21+2iR

π

∫
(1 + u2)−(

1
2+iR)â ◦ hu ◦ gτ−

log(1+u2)
2 (z, b, 2τ)× e−2iRτ du dτ,

where we define â(z, b, r) =
∫
a(z, b, r)eirτ dr. It follows from the definition of S0

0

that |â(z, b, τ)| ≤ CN,M,x0
e−N |τ |e−Md(z,x0) for any N,M > 0 and any given x0.

Assume that z stays in a fixed compact set. Then for (z̃, b) = hu◦gτ−
log(1+u2)

2 (z, b),
we have exp d(z̃, x0) ≥ C(1 + |u|)e|τ | with C > 0. We check this with a concrete
example. For (z, b) = e ∈ G, we have

a
τ− log(1+u2)

2

nu =

(
eτ/2

(1+u2)1/4
ueτ/2

(1+u2)1/4

0 e−τ/2(1 + u2)1/4

)
.

In the upper half plane model of H, this element represents a unit tangent vector
based at

z̃ =
eτ

(1 + u2)1/2
i+

ueτ

(1 + u2)1/2
.
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By formula 4.14, the hyperbolic distance of this point to the origin x0 = i is

cosh d(z̃, i) = 1 +
1

2

[(
eτ

(1 + u2)1/2
− 1

)2

+
u2e2τ

1 + u2

]
(1 + u2)1/2e−τ

≥ 1

2
(1 + u2)1/2e|τ |

as required. By substitution,

|â(z̃, b, 2τ)| ≤ CN,M (1 + u2)−M/2e−(N+M)|τ |,

where CN,M is a uniform constant. Therefore, La exists and is continuous in the
variables (z, b, R). The geodesic flow is given by gt(b′, b, t) = (b′, b, t + τ), so we
deduce from the equality above that

|â ◦ gt(z̃, b, 2τ)| ≤ CN,M (1 + u2)−M/2e−N |τ |−M |t+τ |.

Using this estimate and our expression for La above, we deduce that |(La) ◦
gt(z, b, R)| ≤ Cz,b,R,Me

−M |t| for fixed (z, b, R) and arbitrary M > 0. Hence,

PSLa(ir, b, ir′, b′) is well-defined for any r, r′ ∈ C, (b′, b) ∈ B(2). By definition
of the geodesic flow Gt on SD × R and the fact that we defined L to satisfy
PSLa(ir, b, ir′, b′) = Wa(ir, b, ir′, b′), it follows that

PS(GtLa)(ir, b, ir′, b′) = e−i
(r2−r′2)t

2 PS(La)(ir, b, ir′, b′) = e−i
(r2−r′2)t

2 Wa(ir, b, ir′, b′).

The definition of the quantum evolution implies that

⟨Op(V ta)e(ir,b), e(−ir′,b′)⟩ = ⟨αt(Op(a))e(ir,b), e(−ir′,b′)⟩ = e
it
2 ((−ir′)2−(ir)2)⟨Op(a)e(ir,b), e(−ir′,b′)⟩

and it follows from the definition of the Wigner distributions that

W(ir,b),(−ir′,b′)(a) = e
it
2 (r2−r′2)W(ir,b),(−ir′,b′)(V

ta).

By definition of the Wigner transform, we have

e−i
(r2−r′2)t

2 Wa(ir, b, ir′, b′) = W(V ta)(ir, b, ir′, b′).

By substitution and the fact that we defined L to satisfy PSLa(ir, b, ir′, b′) =
Wa(ir, b, ir′, b′),

PS(GtLa)(ir, b, ir′, b′) = W(V ta)(ir, b, ir′, b′) = PS(LV ta)(ir, b, ir′, b′).

Inverting the Patterson-Sullivan transform (equation 4.11), we deduce the pointwise
equality GtLa = LV ta.

Since the Wigner transform extends to L2
W (G × R, dg × dp(r)) as an isometry

(equation 4.8) and PSLa(ir, b, ir′, b′) = Wa(ir, b, ir′, b′), we conclude that L is an
isometry from L2

W (G×R, dg×dp(r)) onto its image HPS(D) = L(L2
W (G×R, dg×

dp(r))). Thus, L ◦ V t = Gt ◦ L, where both sides are bounded operators from
L2
W (G×R, dg × dp(r)) to HPS(D).

4.2. Intertwining of Γ-Invariant Symbols on the Quotient. In this part, we
investigate L on the quotient XΓ by mimicking the constructions from the proof
of Theorem 2.3. Based on the definition of the Hilbert space of Hilbert-Schmidt
pseudo-differential operators, we provide an ad hoc definition of two Hilbert spaces
HW and HPS that have the families (Wνj ,−νk

) and (PSνj ,−νk
) as dual orthonor-

mal bases and satisfy the following properties: V t acts unitarily on HW , Gt acts
unitarily on HPS , L sends HW isometrically to HPS , and the intertwining relation
L ◦ V t = Gt ◦ L holds on these spaces. We cannot directly define a Γ-invariant
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version of L, which we denote by LΓ, on symbols because the kernel of L is not
smooth and does not decay fast enough away from the diagonal. However, the ad-
joint intertwining operator is naturally defined on PSνj ,−νk

, enabling us to define
LΓ by duality. This part culminates with the proof of Theorem 2.4.

To obtain intertwining on the quotient, we must adapt the symbols, quantization
map, Patterson-Sullivan and Wigner distributions, and geodesic and Schrödinger
flows. We proceed with each of these in turn.

Definition 4.15. Let χ on G be a smooth fundamental cutoff on G for the lift
to G of the (irregular) fundamental domain of the action of Γ on G/K satisfying
Πχ = 1, where the periodization operator Π is defined by

Πχ(g) =
∑
γ∈Γ

χ(γg).

The definition of the periodization operator extends to functions of (z, b, r) as

Πã(z, b, r) =
∑
γ∈Γ

ã(γ · z, γ · b, r).

The image of S0
0 under Π is denoted by ΠS0

0 .

Definition 4.16. The space of symbols S0
α consists of the a ∈ S0

0 that satisfy a
bound of the form

sup
(r,b)

eq|r|

∣∣∣∣∣ ∂n∂rnDa(•, b, r)
∣∣∣∣∣
Cp(G/K)

< +∞

in {|Im(r)| < ϵ/2} for every ϵ > 0, p, all q > 0, every nonnegative integer n, and
every K-left-invariant differential operator D acting on B.

This definition strengthens the definition of S0
0 by requiring that symbols decay

superexponentially fast in r instead of superpolynomially fast. For a ∈ S0
α, and any

fixed g ∈ G and R ∈ C the map t 7→ La(gat, R), originally defined for t ∈ R, has a
holomorphic extension to t ∈ C. This ensures that (GtLa)(g,R) is well-defined for
R ∈ C, which is necessary for intertwining on the quotient.

Next, we describe the quantization map OpΓ acting on Γ-invariant symbols.
For a Γ-invariant symbol a, if Op(a) is a properly supported pseudo-differential
operator, that is, Ka(z, w) is supported in a fixed tube with d(z, w) < R around
the diagonal, where d denotes the hyperbolic distance between points, then Op(a)
preserves the space of Γ-invariant functions and OpΓ(a) is well-defined [14, 15].
We specify the action of such operators by examining their kernels. If p ≤ 1,
then the decay properties of the spherical function φo imply that L2(XΓ) can be
continuously embedded in (Cp(G/K))′. Therefore, a Γ-invariant kernel K(z, w)
with χ(z)K(z, w) ∈ Kp

p(G/K ×G/K) naturally defines a bounded operator on the

quotient KΓ : L2(XΓ) → L2(XΓ). For ϕ ∈ L2(XΓ), we define KΓϕ by the identity

⟨KΓϕ, ψ⟩ := ⟨χKϕ,ψ⟩D
for all ψ ∈ L2(XΓ), where χ is a smooth fundamental cutoff for the lift of the
fundamental domain. We rephrase this in terms of symbols. For a Γ-invariant
symbol a(z, b, r) with χ(z)a(z, b, r) ∈ Sp

p for p ≤ 1, we define the bounded operator

OpΓ(a) : L
2(XΓ) → L2(XΓ) by

⟨OpΓ(a)ϕ, ψ⟩XΓ
:= ⟨χOp(a)ϕ, ψ⟩D = ⟨Op(χa)ϕ, ψ⟩D.
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If a(z, b, r) is Γ-invariant and a(z, b, r) =
∑

γ∈Γ ã(γ · z, γ · b, r) where ã ∈ S0
0 , we

have

⟨OpΓ(a)ϕ, ψ⟩XΓ
= ⟨Op(ã)ϕ, ψ⟩D

for ϕ, ψ ∈ L2(XΓ) and this is independent of the choice of ã.
On the quotient, we will be undertaking similar analysis as that on the universal

cover, replacing the distributions PSe(ν,b),e(−ν′,b′) by the family PSνj ,−νk
.

Definition 4.17. PS(j,νj),(k,−νk)(db
′, dt, dτ), abbreviated as PSνj ,−νk

, is the right-

Γ-invariant distribution on B(2) ×R ∼ G defined by

PS(j,νj),(k,−νk)(db
′, db, dτ) =

Tj,νj
(db)Tk,−νk

(db′)

|b− b′|1+νj−νk
e(νj+νk)τ dτ

where Tj,νj
(db) and Tk,−νk

(db) are the Helgason boundary values for the pairs of
eigenfunctions ϕj and ϕk, respectively.

The geodesic flow is given by gt(b′, b, τ) = (b′, b, τ + t), so the Patterson-Sullivan
distributions are eigendistributions for the geodesic flow in the sense that

gt#PSνj ,−νk
= e−t(νj+νk)PSνj ,−νk

.

Therefore, PSνj ,−νk
induces an eigendistribution PSΓ

νj ,−νk
of the geodesic flow on

Γ\G = SXΓ defined by∫
Γ\G

a dPSΓ
νj ,−νk

=

∫
G

(χa) dPSνj ,−νk
,

where χ is a smooth fundamental domain cutoff. We extend the PS-distributions
to SXΓ × R by considering PSΓ

νj ,−νk
⊗ δ rj+rk

2

for real values of rj , rk. When rj

or rk is imaginary, this formula will be generalized to PSΓ
νj ,−νk

⊗ δ νj−νk
2i

, which

technically is no longer a distribution. In order to exist, PSΓ
νj ,−νk

⊗ δ νj−νk
2i

must

be paired with functions a(z, b, r) that have a holomorphic extension to r ∈ C.
The Paley-Wiener Theorem indicates that this is the case if the Schwarz kernel
Ka(z, w) corresponding to the symbol a is smooth and decays rapidly away from
the diagonal {z = w}.

As with the Patterson-Sullivan distributions, we replace the distributionsW(ν,b),(ν′,b′)

with the family Wj,k on the quotient.

Definition 4.18. The Wigner distributions Wj,k are defined on SD×R ≃ G×R
by the formula ∫

SD×R

a dWj,k := ⟨Op(a)ϕj , ϕk⟩D

for a ∈ S0
0 .

Since the distribution Wj,k is invariant by the action of Γ on SD, it can be used
to define a distribution WΓ

j,k on the quotient SXΓ×R ≃ Γ\G×R. If a is a smooth

function on Γ\G×R, we define∫
SXΓ×R

a dWΓ
j,k =

∫
SD×R

χa dWj,k,
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where χ is a smooth fundamental cutoff for the action of Γ. In terms of the quan-
tization on the quotient,∫

SXΓ×R

a dWΓ
j,k = ⟨OpΓ(a)ϕj , ϕk⟩L2(XΓ).

We describe the geodesic and Schrödinger flow on the quotient. We will denote by
Gt

Γ the flow on Γ\G×R induced by Gt. On the quotient, V t induces an operator V t
Γ

acting on ΠS0
0 , the space of Γ-invariant symbols obtained by periodizing elements of

S0
0 . More precisely, V t

Γ is the unitary flow on L2(Γ\G×R, dg×dp(r)) generated by
DV

Γ , which is a well-defined differential operator on Γ\G×R because it is induced
by the left-invariant differential operator DV on G×R. Its action can be described
as follows: if a = Πã with ã ∈ S0

0 , then we have V t
Γa = ΠV tã. This expression is

independent of the choice of ã.
Explicitly,

WΓ
j,k(a) =Wj,k(ã) =

∫
We(νj ,b),e(−νk,b′)

(ã) dTνj
(db) dT−νk

(db′)

and

PSΓ
νj ,−νk

(a) = PSνj ,−νk
(ã) =

∫
PSe(νj,b),e(−νk,b′)

(ã) dTνj (db) dT−νk
(db′)

for any smooth and Γ-invariant a and any ã such that a = Πã provided ã is smooth
and decays fast enough so that all terms are well-defined.

We can finally motivate and define the Hilbert spaces that will be intertwined
on the quotient. On the Hilbert space HS(XΓ) ≃ L2(XΓ ×XΓ) of Hilbert-Schmidt
operators on XΓ, the quantum evolution αt has the orthonormal spectral expansion

αt =
∑
j,k

eit
(νj−νk

2)

2 (ϕj ⊗ ϕ∗k)⊗ (ϕj ⊗ ϕ∗k)
∗.

The Hilbert-Schmidt norm is defined by ∥A∥2HS(XΓ)
= TrL2(XΓ)(AA

†) and is asso-

ciated with the scalar product ⟨A,B⟩HS(XΓ) = Tr(AB†). For a Γ-invariant symbol

a belonging to ΠS0
0 , we obtain the Hilbert-Schmidt operator OpΓ(a) ∈ HS(XΓ)

with norm

∥OpΓ(a)∥2HS(XΓ)
= TrL2(XΓ)OpΓ(a)OpΓ(a)

† =
∑
j,k

|TrL2(XΓ)OpΓ(a)ϕj⊗ϕ∗k|2 =
∑
j,k

|WΓ
j,k(a)|2.

Intuitively, the Hilbert space HW is the collection of all symbols a for which
OpΓ(a) is a Hilbert-Schmidt operator. More formally, we have the definition below.

Definition 4.19. The space HW (XΓ) is the completion of the symbol space ΠS0
0

with respect to the seminorm

∥a∥2W =
∑

|WΓ
j,k(a)|2.

We define HPS based on a seminorm that is analogous to the seminorm used in
the definition of HW .

Definition 4.20. We define HPS(XΓ) as the closure of ΠS0
0 under the seminorm

∥f∥2PS =
∑
j,k

|PSΓ
νj ,−νk

(f)|2.
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Just as the definition of Patterson-Sullivan distributions depends on the choice
of spectral parameters while the definition of the Wigner distributions does not,
the definition of HPS depends on the choice of spectral parameters νj for each j
unlike HW . We make the standard choice: νj ∈ [0, 1/2] ∪ iR+.

Definition 4.21. The intertwining operator L induces an operator

LΓ# : H∗
PS(XΓ) → H∗

W (XΓ), LΓ#PSνj ,−νk
=Wj,k

on Γ-invariant distributions. Define the operator LΓ : HW (XΓ) → HPS(XΓ) to be
the adjoint of LΓ#.

Since LΓ# is an isometry fromH∗
PS toH∗

W , it follows that LΓ is an isometry from
HW toHPS . TheW

Γ
j,k form an orthonormal basis ofH∗

W and LΓ#PS
Γ
νj ,−νk

=WΓ
j,k,

so the PSΓ
νj ,−νk

form an orthonormal basis of H∗
PS .

We now prove Theorem 2.4. Let a ∈ ΠS0
α, that is, a = Πã with a ∈ S0

α. We
choose this symbol class because it ensures that GtLã(g,R) is well-defined for all
R ∈ C. It suffices to consider such symbols because it is proven in section 7 of [2]
that ΠS0

α is dense in ΠS0
0 for the HPS-norm and is therefore dense in HPS . For all

j and k, the definition of Gt implies that

PSνj ,−νk
(GtLã) = eit

ν2
j −νk

2

2 PSνj ,−νk
(Lã).

Due to the definition of the intertwiner L,

PSνj ,−νk
(Lã) =

∫
PSe(νj,b),e(−νk,b′)(Lã) dTνj

(db)dT−νk
(db′)

=

∫
We(νj,b),e(−νk,b′)(ã) dTνj (db) dT−νk

(db′)

=Wj,k(ã).

By substitution,

PSνj ,−νk
(GtLã) = eit

ν2
j −νk

2

2 Wj,k(ã) =Wj,k(V
tã) = PSνj ,−νk

(L ◦ V tã),

where the last two equalities use the definitions of V t and L in the same man-
ner as in the proof of Theorem 2.3. By the definition of L# and the fact that
PSΓ

νj ,−νk
(LΓa) = PSνj ,−νk

(Lã), we conclude that

LΓ ◦ V t
Γ = Gt

Γ ◦ LΓ,

as an equality between operators from HW (XΓ) to HPS(XΓ).
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