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1. Introduction

1.1. Optimization and Sampling.
This paper, on a high level, shows the unexpected and close relationship between

optimization and sampling. We will now briefly explore these two topics.
To understand the idea of optimization, consider a road trip. You want to get

to your destination as quickly as possible, but you also want to avoid toll roads,
minimize fuel consumption, and perhaps enjoy some scenic views along the way.
The process of deciding the best route that balances these factors is a form of
optimization. In this case, you’re trying to optimize your route based on time, cost,
and experience.
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At its core, optimization is about finding the best possible solution to a problem
within a set of given constraints. Formally, this is modelled mathematically with a
real-valued function called an objective function defined over a set of valid solutions.
The goal is, for example, to find the solution that minimizes the function value.
In this example, the set of solutions is all feasible ways to solve the problem (i.e.,
all the paths you can take), whereas the objective function gives the “cost” (real
number) associated to each path.

In particular, if the objective function and set of solutions are convex, one pow-
erful algorithm is gradient descent, which we will explore further.

To understand the idea of sampling in the context of the paper, consider a dance
class. In this class, people are paired up with someone different each week. However,
we would like to ensure that any pairing have compatible dance styles. Now, we
must decide how to construct a set of pairings such that it works for everyone. If
we had a way to sample a set of pairings from the set of all possible sets of pairings,
we could use this algorithm to construct a set of compatible and random pairings
each week. The randomness will ensure that the pairings are sufficiently different
each week.

Therefore, the task of sampling is to find an algorithm that constructs a sample
from a given distribution.

Here is how an example of this algorithm works. We maintain a set of pairings
which is initially empty. Now, we choose a viable pairing (from the set of all pairs
of people that are compatible dance partners) at random, and compare it to the
set of pairings we maintain. If the two people in the proposed pairing are already
partnered with each other, we will remove that pairing from the set of pairings. If
neither has partners, we partner them together, and finally, if one of them has a
partner, we will partner them with the proposed partner instead of their current
partner. We repeat this process for some number of times until the distribution of
the set of pairings is sufficiently random. This is an example of an algorithm that
is called Markov Chain Monte Carlo.

Clearly at the start, the set of pairings we maintain is not random, but rather
deterministic. This is far from the distribution on the set of viable sets of pairings
we want. However, as we repeat the process, the outcome becomes more random,
and in fact, the distribution of viable sets of pairings gets closer to the desired
distribution. The theory of mixing time helps us quantify how long we need to
run this process until the distribution output is close enough to the distribution we
want. By close enough, we use the total variation distance, which is a standard
measure of distance between probability distributions used throughout statistics.

This act of removing and adding pairings is an example of a Markov chain. At
any time, the distribution of the next set of pairings only depends on the current
set of pairings and not any previous pairings. This property is called the Markov
property, as explored later.

From a high level, in Markov Chain Monte Carlo, we perform a random walk
over the state space of all possible outcomes, starting from any fixed outcome of the
distribution. Each step of this walk performs some random local transformations
to the current outcome to get another (random) one. Importantly, these random
local transformations are usually much easier to implement, and it turns out that
if this process is designed correctly, then letting it run long enough will produce a
sample that is distributed almost as if we sampled from the desired distribution.
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As we discussed in the pairing example, the random walk is modeled by an object
in probability called a Markov chain.

1.2. Connection between Sampling and Optimization.
While the two subjects, sampling and optimization, might at first glance seem

disconnected from each other, a lot of research has now been built on the interesting
relation between the two. One of the foremost examples of the connection between
sampling and optimization was given in [JKO98]. In this paper, we will show that
a version of this connection can prove useful even in the case of discrete time, finite
space Markov chains. For our purposes, the connection between Markov chains and
gradient descent comes from the following observations:.

First, we will see from the basic theory of Markov chains that given some starting
distribution on the states of the chain, the distribution after running the Markov
chain one step can be found with a matrix multiplication. On the other hand, the
gradient of a quadratic form is itself a matrix multiplication, so gradient descent
also performs matrix multiplication. Thus, gradient descent on the right objective
will produce iterates that exactly equal the distributions of the Markov chain, and
so we can transfer statements about convergence of gradient descent to statements
about convergence of Markov chains to their stationary distributions.

Our goal for this paper is to use this idea to show the standard spectral mixing
time bound for Markov chain.

2. Preliminaries

In this section we will talk about the basic definitions and theorems we will be
using in the paper. We will only be giving a high level overview, but for depth, the
reader may consult [BH14] [Ove23] [Sig09] for Markov chains and [Gup19][Kak15][Rya15]
for gradient descent.

2.1. Markov Chains.

Example 2.1. To introduce the idea of Markov chains, consider a bunny.
Let this bunny exist in a world where there are three fields they can migrate

between. Now, the likelihood of the bunny moving between any two of the three
fields has fixed values. Given these conditions, there are some questions that we
may ask.

(1) What is the probability that after n migrations, the bunny is in a given
field?

(2) Does the probability that the bunny is in a given field converge? If the
probability were to converge
(a) Is there the kth migration in which it converges?
(b) Can we find how close we are to the convergence (later defined as

stationary distribution) after n migrations?

These are all questions which Markov chains allow us to answer.
Now, let us define Markov chains.

Definition 2.2 (Markov Chain). A Markov chain is a stochastic process that acts
on a set of states Ω in which the probability of each event (migration to a specific
field, Ex 2.1) only depends on the state (field, Ex 2.1) of the previous event.
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That is, if we let Xt represent the state at time t and let Xt = x such that x ∈ Ω
(where Ω is the set of states), we know that the Markov chain makes a transition
from one state (Xt) to the other (Xt+1) by

P (Xt+1 = y|Xt = x)

where P (Xt+1 = y|Xt = x) is the conditional probability of getting y given that in
the previous step we had x.

As seen in the definition above, one of the most important properties of a Markov
chain is the Markov property, which implies that the state at time t + 1 depends
solely on the state at time t, in other words:

P (Xt+1|X0, · · · , Xt) = P (Xt+1|Xt)

.
Now, we will define an important concept of Markov chain that will be continu-

ously referred to within the paper.

Definition 2.3 (Stationary Distribution). A probability distribution π of a finite-
space, discrete-time Markov chain is considered a stationary distribution of the
transition matrix P if πP = π.

Essentially, the stationary distribution represents the equilibrium or steady-state
behavior of the chain, where the probability distribution does not change as the
Markov chain evolves over time.

Now, we will explore two specific types of Markov chains.

Definition 2.4 (Reversible Markov chains). AMarkov chain is said to be reversible
if for all i, j ∈ Ω,

π(i)P (i|j) = π(j)P (j|i),
where π is the stationary distribution.

Essentially, time-reversible Markov chains satisfy the detailed balance condition,
which implies that for any two states i, j in the Markov chain, the probability flux
from i to j is matched by that from j to i. Hence, time-reversible Markov chains
do not exhibit a net flow of probability in any particular direction between states
once it reaches the stationary distribution.

Note that it follows from the definition that a Markov chain with a transition
matrix P is reversible with respect to π ∈ ∆n = {ν ∈ Rn

≥0|
∑n

i=1 νi = 1} (stationary
distribution) if

ΠP = PTΠ,

where Π is a diagonal matrix such that Π =


π1 0 · · · 0
0 π2 · · · 0
...

...
. . .

...
0 0 · · · πn

 .

Now, it can be seen that ΠP is symmetric as PTΠT = PTΠ given that Π is a
diagonal matrix, and hence, it follows that

ΠP = PTΠ

= PTΠT

= (ΠP )T .
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Definition 2.5 (Irreducible Markov chains). A Markov chain with transition ma-
trix P is said to be irreducible if for any two states i, j, there exists a finite number
of steps with positive probability to go from i to j. In other words, for each two
states, there is some time where the probability of going from i to j is positive.

Essentially, if every state is accessible from any other state of the Markov chain,
it is an irreducible Markov chain, and for the purpose of this paper, we will only
be exploring reversible and irreducible Markov chains.

Now, before we define a crucial idea of the paper, we will first explore the funda-
mental theorem of Markov chain as it deeply relates to this idea. However, before
that, we will define a crucial measure of length used in statistics.

Definition 2.6 (Total Variation Distance). Let u, v be probability distributions.
We define the total variation distance as

||u− v||TV :=
∑

x:u(x)>v(x)

(u(x)− v(x)) =
1

2
||u− v||1 = max

A∈Ω
u(A)− v(A)

where Ω is the set of states.

In other words, total variation distance takes the largest distance between the
two states.

Theorem 2.7 (Fundamental Theorem of Markov Chain). Any irreducible, re-
versible and aperiodic Markov chain has a unique stationary distribution, π, and
for all states x, y, as t (steps) approaches infinity,

P t(x|y) → π(y)

Furthermore, for any ϵ > 0, there exists t > 0 such that

||P t(x|.)− π||TV ≤ ϵ.

Therefore, the fundamental theorem of Markov chain states that starting from
any place we will eventually get to the stationary distribution, and the mixing time
quantifies how fast this happens.

Now, for state x ∈ Ω let

τx(ϵ) = min{t : ||P t(x|.)− π||TV ≤ ϵ}

be the first time that the total variation distance between the chain started at x
and the stationary distribution drops below ϵ.

Furthermore, define

τ(ϵ) = max
x

τx(ϵ).

That is, how long it takes (how many steps it takes), in the worst case, for the
Markov chain to get close to the stationary distribution, no matter where it starts.

Definition 2.8 (Markov Chain Mixing Time). Markov chain mixing time is defined
as τ(1/2ϵ) as from above. That is, this is the time that the total variation distance
of the chain started at the worst possible starting point drops below 1/2ϵ.

In other words,

the time (step) until the Markov chain is ”close” to its stationary distribution
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2.2. Gradient Descent.

Example 2.9. To introduce the idea of gradient descent, consider a bunny.
Let this bunny exist in a world where there are hills, and the objective of the

bunny is to find the lowest point in the landscape, a valley, where it can rest and
find the most food. Given these conditions, there are some questions that we may
ask.

(1) What is the best strategy for the bunny to find the lowest point?
(2) How can the bunny reach the lowest point?

(a) How much should the bunny jump each time?
(b) How long will it take for the bunny to reach the valley?

These are all questions gradient descent can help answer.
Note that throughout the paper, x∗ will be used as the notation for the x value

of the minimum (optimal value).

Definition 2.10 (Gradient Descent). Gradient Descent is an optimization algo-
rithm used to find the minimum of a function.

It iteratively moves in the direction of the steepest descent, as defined by the
negative of the gradient of the function at the current point.

The most common algorithm or formula of gradient descent that is seen is the
update rule, which causes the iterative moves in the direction of steepest descent.

Definition 2.11 (Update Rule of Gradient Descent). Let f(x) be a multi-variable
function that is differentiable and xn be the value of the current value of x.

In gradient descent, the next iterate (xn+1) is related to the previous one (xn)
by

xn+1 = xn − η(∇f(xn)),

where η is the step size (or learning rate) and ∇f(xn) is the gradient of the function
at xn.

Note that ∇f(xn) is a vector of partial derivatives that points in the direction
of the steepest increase of the function.

Next, we will introduce two types of functions integrally related to gradient
descent. However, before we do, we will quickly define the Euclidean norm used in
the definition of the two functions.

Definition 2.12 (Euclidean Norm). The Euclidean norm, ||v||2, measures the
standard Euclidean distance from the origin to the point v ∈ Rn, and is defined as

||v||2 =

√√√√ n∑
i=1

v2i .

We will also need other inner products in order to define our gradient descent
algorithm. In particular, for a matrix M , we let ⟨x, y⟩M = ⟨Mx,My⟩ be the inner

product induced by M , and define ∥x∥M =
√
⟨x, x⟩M as with the Euclidean inner

product. We will use a version of gradient descent that is modified for this inner
product with the update rule

xn+1 = xn − η(MTM)−1∇f(xn)

To analyze the performance of gradient descent, we will require the objective to
satisfy certain properties, which we discuss now.
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Definition 2.13 (µ-strongly convex). A function f is µ-strongly convex with re-
spect to the inner product ⟨·, ·⟩M if for all x, x′,

f(x′) ≥ f(x) + ⟨∇f(x), (x′ − x)⟩+ µ

2
||x− x′||2M .

Intuitively, this means the function does not change too rapidly and that its
gradient is bounded by L. Note that the term ⟨∇f(x), (x′ − x)⟩ uses the usual
Euclidean inner product, not the inner product induced by M .

Definition 2.14 (L-smooth). A function f is L-smooth with respect to ⟨·, ·⟩M if
for all x, x′,

f(x′) ≤ f(x) + ⟨∇f(x), (x′ − x)⟩+ L

2
||x− x′||2M .

Intuitively, this means that the function has a strong ”curvature” with a lower
bound on how steep it can be. In the case of an objective f(x) = 1

2x
TAx for a

symmetric matrix A, it turns out that the smoothness and strong convexity are
related to the eigenvalues of the matrix M−TAM−1:

Claim 2.15. f(x) defined above is λmax(M
−TAM−1)-smooth with respect to ⟨·, ·⟩M

and λmin(M
−TAM−1)-strongly convex with respect to ⟨·, ·⟩M .

This claim follows from the characterization of smoothness and strong convexity
based on the eigenvalues of the Hessian (the second derivative of f), see e.g. [Faw13],
and a change of basis argument.

Now, we will state the convergence theorem for gradient descent on smooth and
strongly convex functions. We will use this later to prove the spectral mixing time
bound of Markov chains.

Theorem 2.16 (Gradient Descent Convergence Bound). Fix an inner product
⟨·, ·⟩M . Let f be µ-strongly convex and differentiable and L-smooth with respect to
M . Then if we run gradient descent with respect to this inner product for t iterations
with a fixed step size η ≤ 1

L , it yields a solution which satisfies the following bound:

∥xt − x∗∥2M ≤ (1− ηµ)t∥x0 − x∗∥2M
where xt is the tth x iterate, x1 is the first iterate, and x∗ = argminx f(x).

This shows that gradient descent, with an appropriate step size, converges expo-
nentially to the optimal solution. Our convergence bound is slightly more general
than the usual gradient descent convergence bound because it works for any in-
ner product rather than just the standard inner product. This theorem is proved
by successive application of the following property, which is called the contraction
property.

Lemma 2.17 (Contraction Property). Let f be L-smooth and µ-strongly convex
with respect to the inner product ⟨·, ·⟩T , then for gradient descent with respect to
this inner product x′ = x− η(MTM)−1∇f(x) with η = 1

L , we have:

||x′ − x∗||2M ≤ (1− η · µ)||x− x∗||2M .

For a proof of this lemma, refer to Section 2.2 of [Gow18]. The proof given is
in the Euclidean norm. However, it can be modified to accommodate any norm
induced by an inner product.
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3. Relations between Markov Chain Mixing Time and Gradient
Descent Convergence Bound

Let P be the transition matrix of a reversible (with respect to π, the stationary
distribution) and irreducible Markov chain, and Π be the diagonal matrix of π.

Consider the objective function

f(ν) =
1

2
νTΠ−1(I − PT )ν

where Π−1(i, i) = 1
π(i) . We will first explore a general intuition behind this objective

function.
Consider the Laplacian matrix of the Markov chain, I − PT . Since we know

that the Markov chain is reversible, and hence, ΠP is symmetric, it follows that
Π−1(I − PT ) is symmetric, as proven below.

Claim 3.1. Π−1(I − PT ) is symmetric.

Proof. Since ΠP = PTΠ, if we multiply both sides by Π−1:

Π−1ΠPΠ−1 = Π−1PTΠΠ−1

PΠ−1 = Π−1PT (*)

It follows that

(Π−1(I − PT ))T = (I − P )Π−1

= Π−1 − PΠ−1

= Π−1 −Π−1PT

= Π−1(I − PT )

Therefore, Π−1(I − PT ) is symmetric. □

Now, νTΠ−1(I − PT )ν is a quadratic form, which is common in optimization
problems, and for a general quadratic function f(ν) = 1

2ν
TAν, the gradient is

∇f(ν) = Aν where A is a matrix. Notice that there is a general similarity in both
Markov chains and gradient descent for quadratic forms in that to get to the next
state/point, they both multiply a matrix to the old state/point. Therefore, the
following goal of this paper is to show that gradient descent allows us to achieve
the mixing time of Markov chains.

Now, consider the Laplacian matrix of the Markov chain (L = I − P ).
From Claim 2.15, we know that the smoothness and strong convexity of f(x) =

1
2x

TAx are the same as the largest and smallest eigenvalues of M−TAM−1, respec-

tively. In this case,M = Π− 1
2 and A = Π−1(I−PT ), and hence, the smoothness and

strong convexity of f(x) are the largest and smallest eigenvalues of Π− 1
2 (I−PT )Π

1
2 ,

which is, by definition, similar to I − PT . Therefore, it has the same eigenvalues
of the transpose of the Laplacian since LT = I − PT , and hence, has the same
eigenvalues of the Laplacian.

Note that there is a case where Π−1(I − P⊤)π = 0; however, for simplicity, we
will simply ignore what happens in this eigenspace. (A formal argument can be
made using quotient spaces.)
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Now, since L = I −P and we know that P is row-stochastic, if we let λj be any
eigenvalue of P , we know that −1 ≤ λj ≤ 1 by the basic theory of Markov chains.
Hence, if we let λi be any eigenvalue of L, we know that 0 ≤ λi ≤ 2.

Therefore, if we order the eigenvalues of L, we get 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2
where λ1 corresponds to the stationary distribution of the Markov chain.

Here we introduce the spectral gap. The spectral gap is a property of the Markov
chain that quantifies its connectivity, and we will show that it controls the mixing
time. Now, the spectral gap of P (difference between the largest and the second-
largest eigenvalues) is λ1(P )−λ2(P ) where the eigenvalues of P are ordered λ1(P ) ≥
λ2(P ) ≥ · · · ≥ λn(P ). As the largest eigenvalue corresponds to the stationary
distribution, λ1(P ) = 1, it follows that the spectral gap is λ1(P ) − λ2(P ) = 1 −
λ2(P ). Now, since L = I −P , 1−λ2(P ) = λ2(L). Therefore, the spectral gap of P
is λ2(L).

Now, we will prove the key lemma using connection between Markov chains and
gradient descent.

Given a Markov chain P , associated with it is another Markov chain, which
we call the ‘lazy’ version of the Markov chain. The transition matrix of the lazy
version of the Markov chain is P ′ = 1

2 (P+I). From the perspective of basic Markov
chain theory, this ensures that the Markov chain is aperiodic, which is necessary for
the fundamental theorem to hold. From our perspective, for the gradient descent
contraction property to hold, we need to choose a step size that depends on the
smoothness of the function we optimize. In this case, the step size we must choose
means that gradient descent will be simulating the lazy version of the Markov chain,
rather than the Markov chain itself.

Lemma 3.2. Let P be the transition matrix of an irreducible Markov chain that is
reversible with respect to π, and let Π be the diagonal matrix of π.

Let P ′ = 1
2 (P + I) be the lazy transition matrix for P . Then for any ν ∈ ∆n

where ∆n is the space of probability distribution, we have

||νt+1 −Π||2
Π− 1

2
≤

(
1− λ2(L)

2

)
||νt −Π||2

Π− 1
2
.

Proof. Let P be the transition matrix of an irreducible Markov chain that is re-
versible with respect to π, and let Π be the diagonal matrix of π.

Let P ′ = 1
2 (P + I) be the lazy transition matrix for P . Let the step size be

η = 1
2 and the objective function be f(ν) = 1

2ν
TΠ−1(I − PT )ν with the weighted

inner product ⟨·, ·⟩
Π− 1

2
. First, the gradient of f(ν) with respect to ν is ∇f(ν) =

Π−1(I − PT )ν and the update rule for gradient descent is

νt+1 = νt −
1

2
(Π−T/2Π−1/2)−1∇f(νt)

= νt −
1

2
Π∇f(νt) = νt −

1

2
ΠΠ−1(I − PT )νt

= νt −
1

2
(I − PT )νt = (I − 1

2
(I − PT ))νt

=

(
1

2
(I + PT )

)
νt

Hence, the update rule for gradient descent on the objective function can be rewrit-
ten

νt+1 = (P ′)T νt.
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Second, we will prove that the objective function is µ-strongly convex and L-
smooth. Let A = Π−1(I − PT ). The smallest positive eigenvalue of A corresponds
to µ and the largest eigenvalue of A corresponds to L. Now, since A = Π−1(I −
PT ) = Π− 1

2 (I − PT )Π
1
2 , it follows that the eigenvalues are the same as those of

L. Therefore, µ corresponds to the smallest positive eigenvalue of L, λ2(L) and L
corresponds to the largest eigenvalue of L, 2. Hence, it follows that f(ν) is λ2(L)-
strongly convex and 2-smooth. Applying Lemma 2.15, using η = 1

2 = 1
L , it follows

that

||νt+1 − π||2
Π− 1

2
≤ (1− ηµ)||νt − π||2

Π− 1
2

=

(
1− λ2(L)

2

)
||νt − π||2

Π− 1
2
.

□

Therefore, this lemma shows that the weighted distance to the stationary distri-
bution decreases geometrically, with a contraction factor dependent on the spectral
gap λ2(L).

Now, we will prove the key theorem of this paper, but first, we will give inter-
mediate lemmas that lead to this theorem.

Theorem 3.3 (Spectral Mixing Time Bound). For any starting starting distribu-
tion on the states ν0 ∈ ∆, after running the Markov chain with the lazy transition

matrix P ′ for t =
4 log

(
1

ϵ
√

π(x∗)

)
λ2(L) steps, we have ||νt − π||1 ≤ ϵ.

First, we will relate the total variation distance, the more common measure of
distance, to the distance in the Π− 1

2 norm, the one used in this paper.

Lemma 3.4. Let νt be the distribution on the states after running the ‘lazy’ Markov
chain t times. Then,

||νt − π||1 ≤ ||νt − π||
Π− 1

2
.

Proof. From the Cauchy-Schwarz inequality and the definition of the total variation
distance, we know that

||νt − π||1 =
∑
x

|νt(x)− π(x)| ≤
√∑

x

(νt(x)− π(x))2

π(x)

∑
x

π(x)

=

√∑
x

(νt(x)− π(x))2

π(x)
since

∑
x

π(x) = 1

= ||νt − π||
Π− 1

2
.

□

Now, we will bound the ∥ν0 − π∥2
Π−1/2 distance by the worst-case starting dis-

tance, which happens for distributions that are concentrated at the least likely
state. In other words,

Lemma 3.5. Let ν0 be any distribution on the states and x∗ be x∗ = argminx π(x).
Then,

||ν0 − π||2Π−1/2 ≤ 1

π(x∗)
.
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Proof. For any state x, write ν0(x) =
∑

y ν0(y)1{x=y}, where 1{x=y} means 1 when
x = y and 0 otherwise.

Now, Jensen’s inequality states that for any function ϕ that is convex, then for
any probability distribution ν0, the inequality holds:

ϕ(
∑
y

ν0(y)zy) ≤
∑
y

ν0(y)ϕ(zy).

Now, consider the convex function ϕ(z) = (z−1)2 and zy =
1{x=y}
π(x) . By Jensen’s

inequality and convexity of ϕ(z) = (z − 1)2, we get(∑
y ν0(y)1{x=y}

π(x)
− 1

)2

≤
∑
y

ν0(y)

(
1{x=y}

π(x)
− 1

)2

.

Now, since ∥π − ν0∥2Π−1/2 =
∑

x π(x)(
ν0(x)
π(x) − 1)2, and by the Jensen inequality

we know that (
ν0(x)

π(x)
− 1

)2

≤
∑
y

ν0(y)

(
1{x=y}

π(x)
− 1

)2

,

it follows that∑
x

π(x)

(
ν0(x)

π(x)
− 1

)2

≤
∑
x

π(x)
∑
y

ν0(y)

(
1{x=y}

π(x)
− 1

)2

.

Changing the order of summation we get∑
x

π(x)
∑
y

ν0(y)

(
1{x=y}

π(x)
− 1

)2

=
∑
y

ν0(y)
∑
x

π(x)

(
1{x=y}

π(x)
− 1

)2

=
∑
y

ν0(y)
1

π(y)
.

Now, to bound this expression more clearly, we can bound the sum by the inverse
of the smallest π(x), π(x∗), and we get

∑
y ν0(y)

1
π(y) ≤

1
π(x∗) .

Therefore,

||ν0 − π||2Π−1/2 ≤ 1

π(x∗)
.

□

Proof of Theorem 3.3. Following Claim 3.1, we know that the lazy transition state
P ′ satisfies

||νt+1 −Π||2
Π− 1

2
≤

(
1− λ2(L)

2

)
||νt −Π||2

Π− 1
2
.

Hence, after t steps

||νt −Π||2
Π− 1

2
≤

(
1− λ2(L)

2

)t

||ν0 −Π||2
Π− 1

2
.

This implies that

||νt −Π||
Π− 1

2
≤

(
1− λ2(L)

2

) t
2

||ν0 −Π||
Π− 1

2
.

Taking this conclusion with Lemma 3.4, it follows that

||νt − π||1 ≤ ||νt − π||
Π− 1

2
≤

(
1− λ2(L)

2

) t
2

||ν0 −Π||
Π− 1

2
.
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Since we know that ||ν0−π∥2
Π−1/2 ≤ 1

π(x∗) from Lemma 3.5 and that ||νt−π||1 ≤(
1− λ2(L)

2

) t
2 ||ν0 −Π||

Π− 1
2
from above, it follows that

||νt − π||1 ≤
(
1− λ2(L)

2

) t
2 1

π(x∗)
.

Now, to ensure that ||νt − π||1 ≤ ϵ, we want

(1− λ2(L)
2 )

t
2√

π(x∗)
≤ ϵ.

First, multiply both sides by
√

π(x∗) to get,(
1− λ2(L)

2

) t
2

≤ ϵ
√
π(x∗).

Now, taking the log of both sides, we get t
2 log(1 −

λ2(L)
2 ) ≤ log(ϵ

√
π(x∗)) and

since log(1− x) ≤ −x for x < 1, we get

t

2

(
−λ2(L)

2

)
≤ log(ϵ

√
π(x∗))

− tλ2(L)

4
≤ log(ϵ

√
π(x∗))

t ≥
4 log( 1

ϵ
√

π(x∗)
)

λ2(L)

□

Thus, the mixing time can be achieved by the convergence bound of the gradient
descent on the objective function in relation to the Markov chain.

4. The error of approximation

Now, we will explore why in Section 3 we used the Π− 1
2 norm instead of the 2

norm.
Existing proofs of the spectral mixing time bound use the Π− 1

2 norm, and we
can modify the usual gradient descent convergence bound to accommodate the Π− 1

2

norm. This allows us, with the right choice of objective function, to run a gradient
descent that simulates a Markov Chain. The way that we use the Π− 1

2 norm is
reminiscent of a technique in optimization called preconditioning.

However, the intuition for the reasoning can be as follows:.

(1) Optimization
From the perspective of gradient descent, changing the norm induced by

the inner product norm of the gradient descent is equivalent to doing regular
gradient descent in different coordinates. Since the performance of gradient
descent depends on the conditioning of the function we are optimizing,
changing the norm of the gradient descent can make the problem better
conditioned so we get faster convergence. In this particular case, the best
conditioning was achieved with the Π− 1

2 norm.
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(2) Sampling

The Π− 1
2 norm is seen when showing spectral mixing time bounds using

χ2 distance, which is equivalent to the distance in the Π− 1
2 norm and hence

is a natural norm that may be suitable (and was) for gradient descent. This
is because gradient descent convergence bound guarantees that ||νt − ν∗||
is decreasing in a particular norm and it should be the norm we want to
decrease.
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