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Abstract. This paper addresses the problem of tensor rank, a fundamen-

tal concept in multilinear algebra analogous to matrix rank in linear algebra.

While matrix rank is a well-understood and solved problem, tensor rank re-
mains an area of active research with many open questions. This paper will

provide a comprehensive overview of tensor rank by first defining tensors and

tensor rank, then exploring the computational hardness of determining tensor
rank. We will present some simple lower and upper bounds, discuss the current

state of the art approximation algorithms, and highlight various applications

of tensor rank in different fields.
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1. Definitions

There are many ways in the literature to define a tensor (a comprehensive ex-
pository survey can be bound in, say, [8]), but this paper will only use the simplest
notion. In this paper, we think of a tensor as a multi-dimensional array, in the
same sense that a matrix is a 2-dimensional array and a vector is a 1-dimensional
array. Because of this simple definition, tensors and tensor methods are as useful
in practice as useful in practice as matrices themselves. This paper will focus on
tensors of dimension 3, as most results can be extended.

Tensor rank decomposition is a fundamental concept in multilinear algebra. First
recall a familiar result from linear algebra, that the outer product uvT of two
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nonzero vectors u and v is always a rank-1 matrix, and that a rank r-matrix M can
be decomposed as the sum of r rank-1 matrices via the singular value decomposition

M =

r∑
i=1

σiuiv
T
i .

We can define tensor rank in an entirely analogous way.

Definition 1.1. An m × n × p tensor X is simple if it is the outer product of
three vectors u ∈ Rm, v ∈ Rn, w ∈ Rp i.e.,

Xj,k,l = ujvkwl, ∀ (j, k, l) ∈ [m]× [n]× [p]

where [n] denotes {1, 2, . . . , n} for any integer n. We write

X = u⊗ v ⊗ w.

Definition 1.2. A rank-r decomposition of X is a way to represent the tensor
as the sum of simple tensors:

X =

r∑
i=1

ui ⊗ vi ⊗ wi.

The rank of a tensor X is the the smallest r such that X can be represented as a
sum of rank-1 tensors:

rk(X ) = min

{
r : X =

r∑
i=1

ui ⊗ vi ⊗ wi

}
.

One can think of tensor rank as a measure of “orderliness” of the given tensor,
where rank-1 tensors are the most orderly. Thus, the motivation to study tensor
decomposition ties directly with the need to understand, process and analyze multi-
dimensional data. Some notable applications will be discussed in the last section
of the paper.

2. Example of tensor rank

As an introductory example, in this section we will determine the rank of the
following tensor:

(2.1) X =

[[
0 1
1 0

] [
1 0
0 0

]]
Here we are notating a 2× 2× 2-shaped tensor as a vector of matrices, where the
vector is indexed by the last index of Xjkl and the rows and columns by the first
and second indices.

We will call matrices of the form Xj::, X:k:, and X::l slices of a tensor, and slices
of the form X::k frontal slices. For instance, the frontal slices of X in (2.1) are

given by

[
0 1
1 0

]
and

[
1 0
0 0

]
.

Since there are only 3 non-zero entries, we can write X as the sum of 3 tensors
with only one nonzero entry; such tensors are clearly simple as they are the outer
product of standard basis vectors. Therefore X has rank at most 3. The question
is whether or not X has a rank-2 representation.

We first introduce the following lemma
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Lemma 2.2. Let X be a tensor with shape m× n× p. Denote the frontal slices of
X with M1,M2, . . . ,Mp, which are m × n matrices. Then rk(X ) is the size of the
smallest set of singular matrices that span span(M1,M2, . . . ,Mp).

Proof. Let r = rk(X ), then

X =

r∑
i=1

ui ⊗ vi ⊗ wi.

Fixing the last index, we have:

Ml =

r∑
i=1

ui ⊗ vi · wi,l.

This implies that the set of ui ⊗ vi span every Ml. Hence, r is at least the size of
the smallest set of singular matrices that span span(M1,M2, . . . ,Mp)

On the other hand, if there is a set u1 ⊗ v1, u2 ⊗ v2, . . . , ur ⊗ vr that spans every
Ml. We can then construct wi’s so that:

Ml =

r∑
i=1

ui ⊗ vi · wi,l, ∀ l

which is possible because the Ml are linear combination of ui ⊗ vi’s. Hence, r is at
most size of the smallest amount of rank-1 matrices to span all Ml’s.

Therefore, there rank of X is the smallest amount of rank-1 matrices needed to
span all Ml’s. □

Corollary 2.3. The tensor X in (2.1) is rank-3

Proof. Assume for the sake of contradiction that X has a rank-2 representation.
Then, from the lemma, we can find A = u1 ⊗ v1 and B = u2 ⊗ v2 which span
X::1,X::2. The matrices A and B will therefore be linear combinations of X::1,X::2.
However,

aX::1 + bX::2 =

[
b a
a 0

]
,

where a and b are nonzero scalars. This matrix has has determinant a2. Since
both A and B are rank-1, their determinants are 0. Therefore we must have a be
nonzero, which is a contradiction. □

We can now generate more rank-3 2×2×2 tensors, using the notion of equivalent
tensors, defined through the multilinear matrix multiplication as follow:

Definition 2.4. Let X ∈ Rm×n×p, A ∈ Rm′×m, B ∈ Rn′×n, C ∈ Rp′×p be tensor
and matrices, define

[A,B,C] · X = Y
such that

Yxyz =
∑
j,k,l

Ax,jBy,kCz,lXjkl.

We say X and Y are equivalent if A,B and C are invertible.

Theorem 2.5. Equivalent tensors have the same rank.
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Proof. We will first show that if

(A,B,C) · X = Y

and we have a rank-r representation of X

X =

r∑
i=1

ui ⊗ vi ⊗ wi

then

Y =

r∑
i=1

(Aui)⊗ (Bvi)⊗ (Cwi)

To show this, we can calculate each entry of Y with:

Yxyz =
∑
j,k,l

Ax,jBy,kCz,lXjkl.

=
∑
j,k,l

Ax,jBy,kCz,l

r∑
i=1

ui,jvi,kwi,l

=

r∑
i=1

∑
j,k,l

Ax,jBy,kCz,lui,jvi,kwi,l

=

r∑
i=1

m∑
j=1

Ax,jui,j

n∑
k=1

By,kvi,k

p∑
l=1

Cz,lwi,l

=

r∑
i=1

(Aui)x · (Bvi)y · (Cwi)z

Which means

Y =

r∑
i=1

(Aui)⊗ (Bvi)⊗ (Cwi)

Now, if we can write X as the sum of r tensors, we can do so for Y as well,
meaning

rk(X ) ≥ rk(Y).

However, this equivalence relation is reflexive (using the matricesA−1, B−1, C−1),
hence

rk(Y) ≥ rk(X )

Therefore, rk(X ) = rk(Y). □

Using this, we can create an entire family of rank-3 tensors with shape 2× 2× 2
from the tensor in (2.1).

3. Determining tensor rank is hard

Determining matrix rank is essentially a solved problem and the algorithms to
do so are easy and numerous (SVD, QR, Gaussian elimination, etc.). Surprisingly,
the opposite has been shown for tensors of dimension 3 or more.

Theorem 3.1 (Hastad). Given a tensor X of dimension 3 and an integer r, de-
termining whether rk(X ) < r is NP-hard.
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The classNP denotes the subset of computational problems for which a potential
solution can be verified in polynomial time. While verifying might be easy, finding
a solution can be exponentially costly. This is the essence of the Millenium Problem

P
?
= NP : can we solve NP problems in polynomial time?. The class of NP-hard

consists of the “hardest” problems in NP, in the sense that we can use an algorithm
for an NP-hard problem to solve any NP problem equally efficiently.

The idea of the proof of Theorem 3.1 is as follows. A “solution” to the tensor
rank problem refers to a valid rank-r decomposition of X , so verification is easy.
The proof of NP-hardness relies on reduction from the 3SAT problem (an archetypal
NP-hard problem) using Lemma 2.2. Interested readers can find the full proof in
[9].

Theorem 3.1 suggests that in general, there is no algorithm better than brute
force to find the rank of a tensor on finite fields. In fact, there is no known finite-
runtime algorithm to find the rank on infinite fields either.

4. Some bounds on tensor rank

Given that the problem of deciding the rank of a particular tensor is hard, we
hope instead to be able to bound the maximum rank of tensors of a given size. The
case for matrices is rather simple; by the rank-nullity theorem, a m×n-matrix has
rank at most min(m,n). The case for tensors is considerably more difficult.

4.1. Tensors over rings. Up to this point we have been considering tensors over
R. As a warm-up, we briefly consider tensors over a finite ring. Using a simple
counting argument, we can see that there exists tensors of high rank for such tensors.

Theorem 4.1. On a finite ring R, there exist tensors with shape m × n × p with
rank at least mnp/(m+ n+ p).

Proof. Let q be the number of elements of R. There are qmnp possible tensors,
while there are qm+n+p rank-1 tensors. There are at most qt(m+n+p) tensors rank
≤ t (since there are qm+n+p ways to choose each component rank-1 tensor). Thus
the maximum rank is at least mnp/(m+ n+ p) □

By counting zeros of a polynomial instead, we can obtain the same bound for an
infinite ring R.

Theorem 4.2. On an infinite commutative ring R, there exist tensors with shape
m× n× p with rank at least mnp/(m+ n+ p).

Proof. Assume that r is the maximum rank of m×n× p-shaped tensors. Consider
mnp polynomials in r(m+ n+ p) variable:

fjkl =

r∑
i=1

ui,jvi,kwi,l

with i ∈ [r], j, k, l ∈ [m]× [n]× [p].
These are the entries of the tensor

X =

r∑
i=1

ui ⊗ vi ⊗ wi.

when we take the ui,j , vi,k, wi,l as variables.
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Suppose for the sake of contradiction that mnp > r(m + n + p). Then there
are more polynomials than variables. Hence, the polynomials are algebraically de-
pendent, meaning we can then find a nontrivial polynomial P (x111, x112, . . . , xmnp)
such that:

P
(
f111, f112, . . . , fmnp

)
= 0

In other words, we can find a non-trivial polynomial that all rank-r tensors sat-
isfy. However, sinceR is infinite and P is non-trivial, we can find (x111, x112, . . . , xmnp) ∈
Rmnp such that

P (x111, x112, . . . , xmnp) ̸= 0

Choose the xjkl as the entries of X , we have a tensor that does not satisfy P ,
and thus does not have a rank-r representation. This contradicts the assumption
that r is the maximum rank. Therefore, r ≥ mnp/(m+ n+ p). □

The two proofs above are from [2], as Theorem 9 and 11. Additionally, on a
infinite field F, we can write u · v · w = ab(u · (v/a) · (w/b)), for any a, b ∈ F. This
means we can normalize the vectors that make up a tensor rank decomposition,
reducing the right hand side of (??) to r(m+n+p− 2) variables. Readers can find
the proof of this as Theorem 12 in [2] as well.

4.2. Tensors over R. Using the upper bound of matrix rank on the slices of the
tensor, we the following upper bound:

Theorem 4.3. A m× n× p tensor can have rank at most min(mn, np,mp)

Proof. Given a tensor X , consider its frontal slices M1,M2, . . . ,Mp (fixing the last
index) as m× n matrices. Then, the rank of X is at most sum of rk(Mi), since

X = M1 ⊗ e1 +M2 ⊗ e2 + · · ·+Mp ⊗ ep,

where ei are the standard basis vectors. Then from a decomposition of the Mi’s,
we obtain a decomposition of X with rank:

p∑
i=0

rk(Mi) ≤
p∑

i=0

min(m,n) ≤ min(mp, np)

Repeat the process for the other directional slices (fixing the first or second index),
and we are done. □

It is rather surprising that such a simple result is tight for tall tensors (p much
larger than m,n):

Theorem 4.4. If p ≥ mn, there is a m× n× p tensor with rank mn.

Proof. Again, consider the frontal slices of a tensor X . If we can write

X =

r∑
i=1

ui ⊗ vi ⊗ wi,

then the matrices ui ⊗ vi’s span the frontal slices of X , since:

Mk =

r∑
i=1

wi,k · ui ⊗ vi.

Choosing the frontal slices of X to be the standard basis matrices, we have now
mn linearly independent frontal slices. Applying Lemma 2.2 along with the upper
bound of mn in the previous theorem, we are done. □



SOME RESULTS IN TENSOR RANK DECOMPOSITION 7

For more balanced tensors (m,n, p closer to each other), we can improve the
bounds by about a factor of 2.

Theorem 4.5. A m× n× p tensor can have rank at most m+ ⌊p/2⌋n, if m ≤ n

The proof of this can be found in [3]. The idea of the proof is to show that given
m arbitrary singular matrices, we only need another n for each additional 2 frontal
slices, instead of 2m as in Theorem 4.4.

Applying the theorems above on a n×n×n tensor, we know that the maximum
rank is between n3/(3n − 2) ≈ n2/3 and n + ⌊n/2⌋n ≈ n2/2. To our knowledge,
these are the current state-of-the art bounds without any additional assumptions.

5. Approximating tensors

Since computing the rank of a tensor is hard, a sensible approach might be to
guess the rank of a tensor and see how close the best rank r approximation is.

Definition 5.1. Let APPROX(X , r) be the rank-r tensor Y that minimizes ∥X −
Y∥, where ∥ · ∥ denotes the Frobenius norm on tensors, that is, the square root of
the sum of squared entries.

If we can solve APPROX reasonably fast, a sensible way to estimate the matrix
rank of X might be to begin with r = 1, find the best rank-r approximation of X ,
and increase r until the error is sufficiently small. In the matrix case, APPROX is
solved by the following well-known result, the proof of which can be found at [10].

Theorem 5.2 (Eckart-Young). Let A ∈ Rm×n be a matrix with m ≤ n with rank
r. Let the singular value decomposition of A be given by

A = UΣV T =

R∑
i=r

σiuiv
T
i

Assume that σi > σi+1 for all i. Then:

APPROX(A, k) =

k∑
i=1

σiuiv
T
i

For tensors of dimension 3, we run into some problems.

Theorem 5.3. There exists 2 × 2 × 2 tensors of rank 3 that can be approximated
arbitrarily well with rank ≤ 2 tensors. In other words, there exists a rank-3 tensor
X such that for all ε > 0, there exists a rank-2 tensor Y such that ∥X − Y∥ < ε.

Proof. Given 6 arbitrary vectors u, v, w, a, b, c, consider the following tensor of rank
at most 3:

(5.4) X = a⊗ v ⊗ w + u⊗ b⊗ w + u⊗ v ⊗ c

For n ∈ N, consider also the tensors of rank at most 2 given by

Yn = n
(
u+

a

n

)
⊗
(
v +

b

n

)
⊗

(
w +

c

n

)
− nu⊗ v ⊗ w,
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We claim limn→∞ Yn = X . Observe that if we expand the first term of Yn, we get

n
(
u+

a

n

)
⊗
(
v +

b

n

)
⊗

(
w +

c

n

)
= n

(
u⊗ v ⊗ w +

1

n
(a⊗ v ⊗ w + u⊗ b⊗ w + u⊗ v ⊗ c) +O(

1

n2
)

)
= nu⊗ v ⊗ w + X +O(

1

n
).

So Yn → X as n → ∞.
If we choose u, v, w and a, b, c so that X is a rank-3 tensor, we are done. We can

do this by considering the example tensor in (2.1) and representing it in the form
of (5.4) with u, v, w, a, b, c being appropriate choices of unit basis vectors. □

The claim of the theorem is true for n×n×n tensors as well, interested readers
can find it in [12].

This poses a problem for us, because if X is the tensor in (2.1), APPROX(X , 2)
has no best approximation to return! Moreover, the gap between this approximated
rank and the actual rank can be arbitrarily small, obtained by combining tensors
of the form (5.4). Their ratio can also be made arbitrarily large, as shown in [11].
This suggests that determining the rank of a tensor is highly ill-posed. Because of
this, the following notion of rank is useful.

Definition 5.5. The border rank of X is the smallest number of rank-1 tensors
needed to approximate X arbitrarily well.

rk(X ) = min{r | ∀ ε > 0, ∃ rank-r tensor Y s.t. ∥X − Y∥ < ε}

For n × n × n shaped tensors, we have the following relationship between rank
and border rank.

Theorem 5.6. The rank of almost all (everything except a set of Lebesgue measure
0) n× n× n tensors, which is also their maximum border rank, is exactly⌈

n3

3n− 2

⌉
.

The intuition behind typical rank and maximum border rank being equal is that
if we can approximate every tensor with a rank-r tensor, then almost all tensors
should be rank-r. The full proof can be found at [6].

Because of the difference between border rank and actual rank, along with others
detailed in [12], finding a best approximation is frequently impossible. Two notable
exceptions are matrices, as well as finding the best rank-1 approximation of tensors
of dimension 3. The former is the Eckart-Young theorem mentioned above, and as
an example for the latter, we will compute the rank-1 APPROX of the following
tensor:

Lemma 5.7. Let

X =

[[
2 0
0 1

] [
0 1
1 0

]]
then

APPROX(X , 1) = S =

[[
2 0
0 0

] [
0 0
0 0

]]



SOME RESULTS IN TENSOR RANK DECOMPOSITION 9

Proof. Let Y be a rank-1 tensor, i.e.,

Y =

[
x1

x2

]
⊗

[
y1
y2

]
⊗
[
z1
z2

]
.

We wish to choose Y to minimize ∥X − Y∥. If Y = S, then the tensor X − Y has

only 3 non-zero entries (all being 1s), meaning ∥X − Y∥ =
√
3. We will show that

it cannot get smaller.
If either z1 = 0 or z2 = 0, the problem becomes finding the best rank-1 approxi-

mation of one of the frontal slices of X , which we can do with Eckart-Young, which
does not get us smaller than

√
(3). Any other entries being 0 yields the same result.

If none of them are 0, let a = x2/x1, b = y2/y1, c = z2/z1 and x = x1x2x3 (the
entries need to be non-zero for the divisions), then:

Y = x

[
1
a

]
⊗
[
1
b

]
⊗

[
1
c

]
=

[[
x xa
xb xab

] [
xc xac
xbc xabc

]]
Our task now becomes minimizing

∥X−Y∥2 = (2−x)2+(xa)2+(xb)2+(xc)2+(1−xab)2+(1−xbc)2+(1−xca)2+(xabc)2.

Rearranging the RHS into a quadratic equation in x, we get:

f(x) = 7− 2x(2 + ab+ bc+ ca) + x2(1 + a2)(1 + b2)(1 + c2)

To prove that f(x) ≥ 3 for all x, we can show that the discriminant of f(x)− 3 is
non-positive i.e.

(2 + ab+ bc+ ca)2 − 4(1 + a2)(1 + b2)(1 + c2) ≤ 0

Expanding the equation, we find it equivalent to:

(5.8) 4(a2+b2+c2)+3(a2b2+b2c2+c2a2)+4a2b2c2 ≥ 4(ab+bc+ca)+2abc(a+b+c).

This is always true because

(5.9) (a− b)2 + (b− c)2 + (c− a)2 ≥ 0 ⇔ 2(a2 + b2 + c2) ≥ 2(ab+ bc+ ca)

and

(ab− bc)2 + (bc− ca)2 + (ca− ab)2 ≥ 0 ⇔ 2(a2b2 + b2c2 + c2a2) ≥ 2abc(a+ b+ c)

This means we have ∥X − Y∥2 ≥ 3.
Moreover, equality can only happen if a = b = c = 0 (because of (5.9) and the

leftover 4a2b2c2 ≥ 0 in (5.8)). Solving for x then yields x = 2, giving us the tensor
S. □

We exploited the small size of the tensor (2 × 2 × 2), along with it’s symmetry
in order to make it simpler.

The fact that rank-1 approximation is easy, while tensor rank is hard, highlights
another complication with tensor rank: a computing low-rank approximation does
not get us a lower rank tensor. This is completely different from matrices, where the
Eckart-Young theorem implies that subtracting away the best rank-1 approximation
from a rank r matrix will result in a rank r − 1 matrix.

Theorem 5.10. Subtracting a best rank-1 approximation can increase the rank of
a tensor.
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Proof. We first show that the following tensor is rank-2

X =

[[
a2 0
0 1

] [
0 1
1 0

]]
.

Indeed, lets look at the following 2 matrices:

A =

[
a2 a
a 1

]
and

B =

[
a2 −a
−a 1

]
which are both singular. The slices of X can be written as (A + B)/2 and

(A−B)/2a, respectively. Thus, by Lemma 2.2, X is rank-2.

Choosing a =
√
2, we can show (and will in the lemma below) that APPROX(X , 1)

has only one non-zero entry (which is 2, corresponding with X122).
Subtracting APPROX(X , 1) from X gives us the tensor in (2.3), which as we

have shown is rank-3. □

The phenomena shown in Theorem 5.10 is not rare, surprisingly. For almost
all 2 × 2 × 2 tensors, subtracting away the best rank 1 approximation will either
increase the rank or keep it the same; the proof can be found in [5].

To conclude, the problem APPROX is often ill-posed. Whether or not one can
overcome this is still an open question, as noted in [12].

6. Approximation algorithm

How does one actually compute the best rank-r decomposition of a tensor? Recall
that APPROX(A, r) is finding 3r vectors u1, v1, w1, . . . , ur, vr, wr. An iterative
approach might be appropriate here: selecting some vectors and optimize them
while fixing the others. However, we can’t select u1, v1, w1 at the same time, as
subtracting the best rank-1 approximation does not reduce the rank.

Instead, the state of the art algorithms select the ui’s, then vi’s, then wi’s, and
repeat. To ease calculation, we combine the ui into a factor matrix U (similarly
for V,W ) by way of :

U =
[
u1 u2 . . . ur

]
.

We can solve for factor matrices instead of each vector individually. JU, V,W K
denotes the tensor reconstructed from U, V and W .

To compute APPROX, we will utilize the Alternating Least Square method:

(1) Choose the desired rank r.
(2) Initialize factor matrices U, V,W (usually as random matrices).
(3) Fix V andW , choose U to minimize ∥X−JU, V,W K∥. (hence, Least Square)
(4) Choose V and W similarly as in step (3). (hence, Alternating)
(5) Repeat (3) and (4) until convergence.

Since steps (1) and (2) are only done once and steps (4), (5) is the repetition
of (3), we turn our attention to optimizing these latter steps. Consider a rank-r
decomposition of a m× n× p tensor:

X =

r∑
i=1

ui ⊗ vi ⊗ wi
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Let’s take a closer look at an m× n frontal slice of X . We can write

Xk =

r∑
i=1

wi,k · ui ⊗ vi =

r∑
i=1

ui ⊗ (wi,k · vi) = UV T
k

where Vk is

Vk =
[
w1,k · v1 w2,k · v2 . . . wr,k · vr

]
.

If we line up the slices of X as follows, we get:[
X1 X2 . . . Xp

]
= X(1) = U

[
V T
1 V T

2 . . . V T
p

]
,

where X(1), which is a m×np matrix, is the mode-1 matricization of X : turning
the tensor into a matrix via reshaping, so that the first index is preserved, meaning:

Xj:: 7→
(
X(1)

)
j:

Similarly, we have X(2) and X(3), which have shapes n×mp and p×mn and preserve
the second and third index, respectively.

We also define the Khatri-Rao product ⊙ of W ∈ Rp×r and V ∈ Rn×r, which
is the np× r matrix:

W ⊙ V =


w1,1v1 w1,2v2 . . . w1,rvr
w2,1v1 w2,2v2 . . . w2,rvr
. . . . . . . . . . . .

wp,1v1 wp,2v2 . . . wp,rvr

 =


V1

V2

. . .
Vp


So that:

X(1) = U(W ⊙ V )T

X(2) = V (W ⊙ U)T

X(3) = W (V ⊙ U)T

(6.1)

With this, for step (3) of our algorithm, we can choose U to minimize

∥X(1) − U(W ⊙ V )T ∥.

This is a linear least squares problem, which has an efficient solution.
The algorithm above is called canonical polyadic (CP) decomposition. The im-

plementation details, along with discussion of applications and variations, can be
found in [1].

7. Applications

To conclude, here we present 2 applications of tensors in different fields. For an
overview, see [1].

7.1. Chemometrics.
In chemometrics, data is often collected from experiments that measure various

properties of chemical samples across multiple conditions. For example, fluorescence
spectroscopy might measure the emission intensity of a sample across different
excitation wavelengths and emission wavelengths, generating a 3-dimensional tensor
with dimensions corresponding to intensity, excitation wavelength, and emission
wavelength.
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Then, using a tensor decomposition, we get

X ≈
R∑
i=r

λrui ⊗ vi ⊗ wi

Where each rank-1 λrui⊗vi⊗wir correspond to a distinct chemical component.
u, v, w represent the intensity, excitation wavelength and emission wavelength of
the pure component. This makes them easily identifiable. A deeper analysis, along
with comparisons to similar tools, can be found in [4].
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