
SHARPENING THE CONVERGENCE TO EQUILIBRIUM

ESTIMATE OF THE DISPERSION PROCESS

MINH PHAM

Abstract. In this paper, we summarize the continuous time dispersion pro-

cess introduced by Fei Cao and Jincheng Yang in [2] and apply the theory of
Volterra integral equation to sharpen the convergence to equilibrium estimate.
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1. Introduction

Let GN be the complete graph on N vertices with vertex set labeling 1 to N .
Let M ∈ N+ be the number of particles that inhabit the vertices of GN . Denote
by Xi(t) the number of particles on vertex i at time t ∈ R+ and µ := M/N the
average number of particles per vertex. At random times (generated by exponential
law), each non-empty vertex i which is inhabited by at least two particles expels a
particle at the rate Xi to another uniformly chosen vertex j.

We take the limit of the system asM and N go to infinity while keeping constant
the ratio µ =M/N . Consider the probability distribution function of particles:

p(t) = (p0(t), p1(t), ..., pn(t), ...)

with pn(t) = {“probability that a typical site has n particles at time t”}. Observe
that the evolution of p(t) is governed by the following system of nonlinear ordinary
differential equations:

The probability distribution p(t) is governed by the deterministic system of
nonlinear ordinary differential equations:
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d

dt
pn(t) = L[pn(t)](1.1)

with

L[p]n =


−
(∑

k≥2 kpk

)
p0 n = 0,

2p2 +
(∑

k≥2 kpk

)
p0 −

(∑
k≥2 kpk

)
p1, n = 1,

(n+ 1)pn+1 +
(∑

k≥2 kpk

)
pn−1 −

(
n+

∑
k≥2 kpk

)
pn n ≥ 2.

For each case, the positive terms come from pn−1 gaining one particle and pn+1

losing one particle, and the negative term comes from pn either gaining or losing
a particle. The rigorous justification of the transition from stochastic process on
finite graphs into the associated ODE system (1.1) requires the propagation of chaos
property [3], which is beyond the scope of this paper.

This model can be utilized to analyze wealth distribution within an exchange
economy. Let N represent the number of individuals in the economy and M the
total capital. In this context, Xi(t) denotes the wealth of individual i at time t,
where a value of 1 corresponds to the subsistence-level income. The parameter
µ represents the multiple of subsistence-level income per capita. To examine the
behavior of an economy with large values of N and M , we consider the limit as N
and M approach infinity, maintaining the ratio µ =M/N as constant. Variants of
this model can be found in [6], [7], and [8].

2. Summary of the main results in [2]

We summarize (without proofs) the main results of [2] to set up for our improve-
ment results in Section 3.

2.1. Properties of the ODE system. In this subsection, we describe the con-
servation rules satisfied by (1.1) and derive an equivalent system of ODEs. We also
discussed the equilibrium solution of (1.1) across different ranges of µ.

Lemma 2.1 (Conservation rules). If p(t) is a solution of the system (1.1), then

∞∑
n=0

L[p]n = 0 and

∞∑
n=0

nL[p]n = 0.

In particular, the total probability mass and the average amount of particles per
site are conserved. Thanks to these conservation relations, the solution p(t) lives in
the space of probability distributions on N, with prescribed mean value µ, defined
by

Sµ :=

{
p ∈ [0, 1]N

∣∣∣∣ ∞∑
n=0

pn = 1,

∞∑
n=0

npn = µ

}
.

More importantly, the system (1.1) will be equivalent to the following system of
nonlinear ODEs:

(2.2)
d

dt
p(t) = L[p(t)]
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in which

(2.3) L[p]n =


−(µ− p1)p0 n = 0,

2p2 + (µ− p1)p0 − (µ− p1)p1 n = 1,

(n+ 1)pn+1 + (µ− p1)pn−1 − (n+ µ− p1)pn n ≥ 2.

Proposition 2.4 (Equilibrium distributions). The unique equilibrium solution of
(2.2) and (2.3) in the space Sµ, for µ ∈ (0, 1], is the two-point Bernoulli distribution
p∗ = (p∗0, p

∗
1, ..., p

∗
n, ...) where

p∗0 = 1− µ, p∗1 = µ, p∗n = 0 for n ≥ 2.

The unique equilibrium solution of (2.2) and (2.3) in the space Sµ, when µ ∈
(1,∞), is the zero-truncated Poisson distribution p = (p0, p1, ..., pn, ...) where

p0 = 0 , pn =
νn

n!
· 1

eν − 1
for n ≥ 1

where ν = µ+W0(−µe−µ) andW0(·) denotes the principal branch of the Lambert-W
function.

Proof. From the evolution equation defined by (2.2) and (2.3), it is straightforward
to check that

npn = (µ− p1)pn−1 for all n ≥ 2, and (µ− p1)p0 = 0

must hold at equilibrium. This is done by setting all the equations of (2.3) to zero
and recursively substitute L[p]n−1 into L[p]n.

On the one hand, if µ < 1, then p0 ̸= 0 so µ − p1 must be zero. This implies
that pn = 0 for all n ≥ 2 and we recover p∗. If µ = 1 and p0 ̸= 0, then we simply
wait for p0 to decrease. On the other hand, for µ > 1 ≥ p1, we deduce that p0 = 0,
and the unique equilibrium distribution, is p in the form of

p0 = 0, pn =
(µ− p1)

n−1

n!
p1 for n ≥ 2

where p1 > 0 is chosen such that p ∈ Sµ. Since
∑

n≥0 pn = 1, we deduce that

p1e
−p1 = µe−µ, whence p1 = −W0(−µe−µ). We finish the proof by introducing a

new constant ν = µ− p1. □

2.2. Main results of [2].

Theorem 2.5 (Convergence estimates). There exists a positive constant C de-
pending only on µ and p(0), such that any solution p(t) to (2.2) and (2.3) with
finite variance converges strongly (almost surely) to its equilibrium distribution as
t → ∞. To be precise, denoting ν = µ +W0(−µe−µ) ∈ (µ − 1, µ) for µ > 1 and

⟨t⟩ =
√
1 + t2 for t ≥ 0, we have:

(1) If 0 < µ < 1, then

||p(t)− p∗||ℓ1 ≤ Ce−2(1−µ)t.

(2) If µ = 1, then

||p(t)− p∗||ℓ1 ≤ Ct−1.
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(3) If 1 < µ < 1 + 1
e−1 (equivalently, 0 < ν < 1), then

||p(t)− p||ℓ1 ≤ C⟨t⟩ 1
2 eνt.

(4) If µ ≥ 1+ 1
e−1 (equivalently ν ≥ 1), then there exists N > 0 depending only

on µ such that

||p(t)− p||ℓ1 ≤ C⟨t⟩N+ 1
2 e−t.(2.6)

We intend to sharpen the estimate of the fourth case (2.6) to

||p(t)− p||ℓ1 ≤ C⟨t⟩ 1
2 e−t.

As such, we narrow our focus to results relating to the case ν ≥ 1.

2.3. Probability generating function. In this subsection, we repackage the
ODE system (2.2)-(2.3) into a probability generating function and derive a PDE
satisfied by said generating function.

Definition 2.7 (PGF of the dynamics). Define the probability generating function
G : [0,+∞)× [−1, 1] of the solution p(t) to (2.2) and (2.3) by

G(t, z) =

∞∑
n=0

pn(t)z
n.

Since pn(t) ≥ 0 and
∑∞

n=0 pn(t) = 1, we know the above series is absolutely
summable. Moreover, because

∑∞
n=0 npn(t) = µ, we know that

∂zG(t, z) =

∞∑
n=1

npn(t)z
n−1

is absolutely summable. The ODE system (2.2) and (2.3) can thus be written as
the following first-order PDE for G:

∂tG = (1− z)[∂zG− (µ− p1(t))G− p1(t)].(2.8)

Lemma 2.9 (Solution to the PDE for G). The probability generating function G
can be expressed using the following explicit formula: for z ∈ C with z ∈ [0, 2] and
t ∈ [0,∞), we have

G(t, 1− z) = 1 +

(
G(0, 1− ze−t)− 1− µz

∫ t

0

[v(s)]ze
−t+s

e−t+sds

)
[v(t)]−z,

where the auxiliary function v : [0,∞) → R is defined by

v(t) := exp

(∫ t

0

e−t+s(µ− p1(s))ds

)
.(2.10)

It turns out that this auxiliary function v holds the key to proving the convergence
of (2.6).
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2.4. Convergence of the auxiliary function. In this subsection, we show that
the auxiliary function v satisfies an integral equation, and that it converges to a
limit which depends on the value of µ. We also include some lemmas useful for our
proof in Section 3

Lemma 2.11 (Integral equation of v). For t ≥ 0, v(t) satisfies

v(t) = 1− f0(t) + f0(0)e
−

∫ t
0
log v(s)ds + µ

∫ t

0

[v(s)]e
−t+s

e−t+sds,(2.12)

where f0(t) = G(0, 1− e−t).

Lemma 2.13 (Fixed point of a integral expression). Let ψ : (0,∞) → R+ be a
strictly increasing continuous function defined by

ψ(x) := µ

∫ ∞

0

xe
−t

e−tdt =

{
µ · x−1

log x , x > 0, x ̸= 1

µ, x = 1
.

For ν ≥ 1, we have that ψ(eν) = eν .

Lemma 2.14 (Limit of v). Let ν = µ+W0(−µe−µ), then

lim
t→∞

v(t) = eν .

Lemma 2.15. (Estimates for error function) Define

e2(t) := 1− f0(t) + f0(0)e
−

∫ t
0
log v(s)dss

to be the error function in the integral equation of v (2.12). We have that e2(t) is
continuous and that e2(t) ≤ Ce−t.

3. Sharpening convergence estimate when ν ≥ 1

In this subsection, we sharpen the estimate of (2.6) to

||p(t)− p||ℓ1 ≤ C⟨t⟩ 1
2 e−t.(3.1)

Our main tool will be Theorem 11.7.2 [1]. This theorem deals with boundedness of
solutions satisfying a large class of integral equations.

Theorem 3.2 (Theorem 11.7.2 [1]). Assume that δ > 0 and that the following
hold:

(i) For each y ∈ Rn, the function (t, s) 7→ h(t, s, y) is Borel-measurable on
R+ × R+, and for each (t, s) ∈ R+ × R+ the function y 7→ h(t, s, y) is
continuous on Rn. The function b defined by

b(t, s) = sup
|y|≤δ

|h(t, s, y)|, 0 ≤ s ≤ t <∞,

satisfies supt∈R+

∫ t

0
|b(t, s)|ds <∞ and for each t > 0,

lim
τ↓

(∫ t+τ

t

b(t, s)ds+

∫ t

0

sup
|y|≤δ

|h(t+ τ, s, y)− h(t, s, y)|ds

)
= 0.
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(ii) f ∈ BC(R+;Rn) (f is bounded and continuous).

(iii) ||f ||sup(R+) + supt≥0

∫ t

0
|b(t, s)|ds ≤ δ.

Then the equation

x(t) +

∫ t

0

h(t, s, x(s))ds = f(t), t ∈ R+,

has a continuous solution x satisfying supt∈R+ |x(t)| ≤ δ.

Proposition 3.3 (Sharpening convergence estimate of v). Recall that ν = µ +
W0(−µe−µ). For ν ≥ 1, we have the new estimate

|v(t)− eν | ≤ Ce−t.

Proof. By Lemma 2.14, limt→∞ v(t) = eν . Consider x(t) = (v(t) − eν)et. We aim
to show that x(t) is bounded using Theorem 3.2. We rewrite (2.12) as

x(t) = e2(t)e
t − eνet + µ

∫ t

0

[x(s)e−s + eν ]e
−t+s

esds(3.4)

From Lemma 2.13, we have that eν = µ
∫∞
0

(eν)e
−s

e−sds. So (3.4) becomes

e2(t)e
t − µet

∫ ∞

t

eνe
−s

e−sds− µ

∫ t

0

eνe
−t+s

esds+ µ

∫ t

0

[x(s)e−s + eν ]e
−t+s

esds

= e2(t)e
t +

µ

ν

(
1− eνe

−t
)
et + µ

∫ t

0

[
[x(s)e−s + eν ]e

−t+s

− eνe
−t+s

]
esds.

In the notation of Theorem 3.2, we let

f(t) =
[
e2(t) +

µ

ν

(
1− eνe

−t
)]
et and h(t, s, y) = −µ

[
|ye−s + eν |e

−t+s

− eνe
−t+s

]
es.

By (2.10), v is positive for all t > 0. As such, the solutions x(t) to (3.4) must
satisfy x(s)e−s + eν > 0. Therefore, we impose the absolute value on h(t, s, y) so
that y can take on negative value as in the condition of 3.2.

To apply Theorem 3.2, we show that for all sufficiently large δ > 0, (i)-(ii)-(iii)
are satisfied. For (iii) in particular, we show that the left-hand side, as a function
of δ grows slower than δ. So let δ > 0 be in the air for the moment. We have that

(i) For each y ∈ R, (t, s) 7→ h(t, s, y) is continuous (as a composition of con-
tinuous functions) and therefore is Borel measurable on R+ × R+. For
each (t, s) ∈ R+ × R+, y 7→ h(t, s, y) is continuous on R since e−t+s is
non-negative. Define

b(t, s) = sup
|y|≤δ

|h(t, s, y)|, 0 ≤ s ≤ t <∞.

Observe that h(t, s, y) is piecewise differentiable (in y) on R, with a cusp
at y = −eν+s. Furthermore, h is monotonically increasing on the left of
the cusp and monotonically decreasing on the right of the cusp. As such,
the candidates for the maximizer of |h| on [−δ, δ] are −eν+s and ±δ. We
can bound
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b(t, s) ≤ |h(t, s,−δ)|+ |h(t, s, δ)|+ |h(t, s,−eν+s)|.

Observe that eν+s ≤ δ only when s ≤ log(δ) − ν. As such, this bound is
only significant for t ≤ log(δ)− ν. We compute separately

∫ 0∧(log(δ)−ν)

0

|h(t, s,−eν+s)|ds = µ

∫ 0∧(log(δ)−ν)

0

eνe
−t+s

esds

≤ µ

∫ 0∧(log(δ)−ν)

0

eνesds

≤ µeν |δe−ν − 1|,
= µ|δ − eν |(3.5)

∫ t

0

|h(t, s,±δ)|ds = µ

∫ t

0

∣∣∣| ± δe−s + eν |e
−t+s

− eνe
−t+s

∣∣∣ esds
≤ µ

∫ t

0

|δe−s|e
−t+s

esds+ 2µ

∫ t

0

eνe
−t+s

esds(3.6)

≤ µδ + 2µeν

Thus, supt∈R+

∫ t

0
b(t, s)ds ≤ µ(δ+5eν) <∞. Finally, observe that h(t, s,±δ)

and h(t, s,−eν+s) are continuous in s, and are bounded and continuous in
t. As such

lim
τ→0

(∫ t+τ

t

b(t, s)ds+

∫ t

0

sup
|y|≤δ

|h(t+ τ, s, y)− h(t, s, y)|ds

)
= 0.

(ii) From Lemma 2.15, we have that e2(t) is continuous and that e2(t) ≤ µe−t.
Next, we use the Taylor expansion to rewrite

µ

ν
(1− eνe

−t

) = −µ
ν

(
νe−t +O(e−2t)

)
= −µe−t +O(e−2t)

This suffices to show that f ∈ BC(R+;Rn)
(iii) Using (3.5), (3.6) and the fact that f is bounded, we rewrite condition (iii)

as

||f ||sup(R+) + sup
t∈R+

∫ t

0

|b(t, s)|ds ≤ ||f ||sup(R+) + sup
t∈R+

∫ t

0

|h(t, s,−eν+s)|ds

+ sup
t∈R+

∫ t

0

|h(t, s,−δ)|ds+ sup
t∈R+

∫ t

0

|h(t, s, δ)|ds

≤ ||f ||sup(R+) + 5µeν + 2µ sup
t∈R+

∫ t

0

|δe−s|e
−t+s

e−sds

= C + 2µ sup
t∈R+

a(t, δ) ≤ δ.(3.7)
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To show that there exists a δ such that δ−2µ supt∈R+ a(t, δ) ≥ C, it suffices

to show that supt∈R+ a(t, δ) grows slower than δ
2µ . This is the content of

Appendix A.

Having checked conditions (i)-(ii)- (iii), we obtain the estimate supt∈R+ |x(t)| ≤ δ
for some δ > 0. Equivalently, we get that |v(t) − eν | ≤ δe−t for all t ≥ 0, as
desired. □

Proposition 3.8. There exists constant C > 0 depending on µ such that

y2(t) + |v(t)− eν |+ |v′(t)| ≤ Ce−t.

Proof. First, we have that

y2(t) =

∫ t

0

|v(s)− eν |e−2t+2sds ≤
∫ t

0

Ce−se−2t+2sds ≤ Ce−t.

For the derivative estimate, we differentiate v using (2.12) and get

v′(t) = e′2(t) + µv(t)− µ

∫ t

0

[v(s)]e
−t+s

e−t+sds− µ

∫ t

0

[v(s)]e
−t+s

log(v(s))e−2t+2sds

= e′2(t) + (µ− 1)v(t) + µe2(t)− µ

∫ t

0

[v(s)]e
−t+s

log(v(s))e−2t+2sds,

in which

e′2(t) = −f ′0(t)− f0(0) exp

(
−
∫ t

0

log v(s)ds

)
log v(t) = O

(
e−t
)
.

Note that x 7→ xα log x is Lipschitz on [1, eµ] uniformly for α ∈ [0, 1], hence∣∣∣∣µ∫ t

0

[v(s)]e
−t+s

log(v(s))e−2t+2sds− µ

∫ t

0

νeνe
−t+s

e−2t+2sds

∣∣∣∣.
≤ Cµ

∫ t

0

|v(s)− eν |e−2t+2sds = Cy2(t).

Therefore,

|v′(t)| ≤|e′2(t)|+ (µ− 1)|v(t)− eν |+ µe2(t) + Cy2(t)

+ (µ− 1)eν − µν

∫ t

0

eνe
−s

e−2sds

≤ |e′2(t)|+ (µ− 1)|v(t)− eν |+ µe2(t) + Cy2(t) + µν

∫ ∞

t

eνe
−s

e−2sds

≤ Ce−t.

This completes the proof. □

As a corollary, we deduce the following convergence rate of p1(t) → µ − ν as
t→ ∞.

Corollary 3.9. For t ≥ 0, we have

|p1(t)− µ+ ν| ≤ Ce−t, ν ≥ 1.
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Proof. It suffices to notice that µ− p1(t) can be recovered from v via

µ− p1(t) =
v′(t)

v(t)
+ log v(t).

Since both v′(t)
t→∞−−−→ 0 and v(t)

t→∞−−−→ eν occur at this rate, the result follows. □

Theorem 3.10. Let ν ≥ 1. Recall that

||p(t)− p||2ℓ2 =

∞∑
n=0

(pn(t)− pn).

There exists a constant C depending on µ such that for all t ≥ 0, it holds that

||p(t)− p||2ℓ2 ≤ Ce−t.

Proof. We first recall the classical Parseval’s identity:

||p(t)− p||2ℓ2 =
1

2π

∫ 2π

0

∣∣G(t, eiθ)−Gp(e
iθ)
∣∣2 dθ.

By Lemma 2.9, we have

(G(t, 1− z)− 1)[v(t)]z = G(0, 1− ze−t)− 1− µz

∫ t

0

[v(s)]ze
−t+s

e−t+sds

for all z ∈ C with |z − 1| ≤ 1. Notice that

|G(0, 1− ze−t)− 1| ≤ ∂zG(0, 1)|z|e−t ≤ Ce−t,∣∣∣∣∫ t

0

[v(s)]ze
−t+s

e−t+sds−
∫ t

0

eνze
−t+s

e−t+sds

∣∣∣∣ ≤ C|z|
∫ t

0

|v(s)− eν |e−2t+2sds ≤ Cy2(t),∣∣∣∣µ∫ t

0

eνze
−t+s

e−t+sds− ψ (eνz)

∣∣∣∣ ≤ e−t
∣∣∣ψ (eνze−t

)∣∣∣ ≤ Ce−t.

On the other hand, we know for z ∈ C with |z − 1| ≤ 1 that

|(G(t, 1− z)− 1)[v(t)]z − (G(t, 1− z)− 1)eνz| ≤ C|v(t)− eν |.
Assembling these estimates, we proved for z ∈ C with |z − 1| ≤ 1 that

|(G(t, 1− z)− 1)eνz + zψ (eνz)| ≤ Ce−t.

Since

Gp(1− z) =
1

eν − 1

∞∑
n=1

νn

n!
(1− z)n =

eν(1−z) − 1

eν − 1
= 1− eνzzψ (eνz) ,

the above implies uniform convergence of G(t, 1−z) to Gp(1−z) for all z ∈ C with
|z − 1| ≤ 1, which shows that p(t) converges to p in ℓ2 by Parserval’s identity.

□
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Corollary 3.11. Let ν ≥ 1. There exist a constant C depending on µ such that
for all t ≥ 0, it holds that

||p(t)− p||ℓ1 ≤ C⟨t⟩ 1
2 e−t.

Proof. For x ∈ N to be specified later, we have

||p(t)− p||ℓ1 ≤ ||p(t)− p||ℓ1([0,x]) + ||p(t)− p||ℓ1([x,∞))

≤ 2||p(t)− p||ℓ1([0,x]) + 2||p||ℓ1([x,∞))

The first term is easily controlled by the ℓ2 norm:

||p(t)− p||ℓ1([0,x]) ≤
√
x||p(t)− p||ℓ2 .

The second term is amenable to explicit computations, leading us to

||p||ℓ1([x,∞]) =

∞∑
n=x

pn =
1

eν − 1

∞∑
n=x

νn

n!
.

Thanks to the Chernoff bound for the Poisson distribution, for x ≥ ν it holds that

∞∑
n=x

νne−ν

n!
≤ (eν)xe−ν

xx
.

We know for our zero-truncated Poisson distribution that

||p||ℓ1([x,∞]) ≤
1

eν − 1

(eν
x

)x
.

Finally, setting x = [t ∧ νe2] allows us to deduce that ||p||ℓ1([x,∞]) ≤ Ce−t, whence

||p(t)− p||ℓ1 ≤ C⟨t⟩ 1
2 e−t.

□

Appendix A. Growth of a in (3.7)

Lemma A.1. Let 0 ≤ a ≤ b <∞. We have that∫ b

a

ew

w2
dw =

ea

a
− eb

b
+ Ei(b)− Ei(a),

where Ei is the exponential integral.

Proof. By integration by parts, we can write

∫ b

a

ew

w2
dw =

[
−e

w

w

]b
a

+

∫ b

a

ew

w
dw =

ea

a
− eb

b
+ Ei(b)− Ei(a).

□

Lemma A.2. Suppose f1, f2, g1 and g2 are positive functions on R+ such that
f1(x) ≤ O(g1(x)) and f2(x) = O(g2(x)). Furthermore, suppose that f1 is mono-
tonically increasing, g1(cx) = O(g1(x)) for all c > 0 and g2 is unbounded up at
infinity. Then
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f1 ◦ f2 = O(g1 ◦ g2).

Proof. For sufficiently large x, we have that

f1(f2(x)) ≤ f1(Cg2(x)) ≤ C ′g1(Cg2(x)) ≤ C ′′g1(g2(x)).

□

Proposition A.3. Recall the function a(t, δ) from (3.7). We have that supt∈R+ a(t, δ)

grows slower than δ
2µ .

Proof. We can bound

a(t, δ) ≤
∫ t

0

(δ)e
−t+s

e−sds

= e−t

∫ 1

e−t

δu

u2
du =: b(t, δ).(A.4)

For fixed δ, observe that b(t, δ) is differentiable for t ∈ (0,∞). As such, for each
δ ∈ R+, the supremum in t occurs either at 0, +∞ or a stationary point. We show
that at each of these points, b(−, δ) grows slower that than δ

2µ .

First, observe that b(0, δ) = 0. Next, as t goes to infinity, we can split b(t, δ) as

e−t

∫ c

e−t

δu

u2
du+ e−t

∫ 1

c

δu

u2
du ≤ e−t

∫ c

e−t

δc

u2
du+ e−t

∫ 1

c

δ

u2
du

=

(
1− e−t

c

)
δc +

(
1

c
− 1

)
δ

≤ Cδc +

(
1

c
− 1

)
δ

where c ∈ (0, 1) and C is some fixed constant. We can get 1
c − 1 to be arbitrarily

small by taking c close to 1. As such, limt→∞ b(t, δ) has arbitrarily small linear
part. Using Lemma A.1, we can write explicitly

b(t, δ) = e−t
[
δe

−t

et − δ + log (δ)
[
li(δ)− li

(
δe

−t
)]]

,

where li(x) = Ei(log(x)) is the logarithmic integral function. We can now find the
stationary points of f by setting

0 =
∂

∂t
f(t, y) = −e−t

∫ 1

e−t

δu

u2
du+ δe

−t

= −b(t, δ) + δe
−t

= δe−t + e−t log(δ)
[
li
(
δe

−t
)
− li(δ)

]
Rearranging gives us

li(δ)− δ

log(δ)
= li

(
δe

−t
)
.
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By [4], δ 7→ li(δ) − δ
log(δ) grows as O

(
δ

log(δ)2

)
. So for sufficiently large δ, the left-

hand side is arbitrarily large. Since li is bijective for sufficiently large argument, we
can take the inverse li−1 to get that the single stationary point (in t) of b(t, δ) is

t∗ = − log

[
log (B(δ))

log(δ)

]
,

where B(δ) = li−1
(
li(δ)− δ

log(δ)

)
. So for sufficiently large y, we have that

b(t∗, δ) = B(δ).

By [5], li−1(δ) grows as O(δ log(δ)). Using Lemma A.2, we deduce that

B(δ) = O

(
δ

log(x)2
· [log(δ)− 2 log2(δ)]

)
= O

(
δ

log(δ)

)
,

where log2 = log ◦ log. This concludes the proof. □
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