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Abstract. This paper provides updated expositions of classical mathematical
concepts like Riemann surfaces, Jensen’s Inequality, and Hoeffding’s Inequal-

ity, linking them to modern machine learning applications. It bridges the

gap between historical mathematical theories and contemporary data science
challenges, refreshing older concepts with current relevance. Beginning with

a historical overview of Riemann surfaces and their role in complex analysis,

the paper explores key geometric properties like conformal maps and the Rie-
mann Mapping Theorem. It then examines the application of these concepts in

machine learning, including variational inference, shape matching, and phase

imaging. By integrating Riemann surfaces with deep learning, optimal trans-
port, and kernel methods, the paper addresses challenges with multi-valued

complex functions and non-Euclidean data, demonstrating their impact on

improving accuracy in computer vision, probabilistic modeling, and data anal-
ysis.
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1. Historical Context

In his 1851 doctoral thesis, Grundlagen für eine allgemeine Theorie der Funk-
tionen einer veränderlichen complexen Größe (”Foundations for a General Theory
of Functions of a Complex Variable”), Bernhard Riemann, a 19th-century German
mathematician, pioneered the study of Riemann surfaces by not only introducing
these surfaces but applying them to address complex analysis problems. In doing
so, he made invaluable progress in solving questions which had been left unsolved
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for centuries due to the inability to project complex functions onto singular sur-
faces. This work has laid the groundwork for core pillars of modern mathematics,
from the Riemann integral to the Riemann Hypothesis.

2. Riemann Surfaces

2.1. Geometric Foundations and Transformations. Riemann’s introduction
to Riemann surfaces begins by describing how complex functions can be mapped
onto multi-sheeted surfaces, aka the Riemann Mapping Theorem.

Theorem 2.1 (Riemann Mapping Theorem). Any simply connected open subset
of the complex plane C, which is not the entire plane, is conformally equivalent to
the open unit disk.

∃ f : U → D such that f is bijective and holomorphic

The theorem shows that if a shape is simply connected (or hole-free), every
loop within it can shrink to a point without leaving the space. Such a shape can
be conformally transformed into a perfect circle, while preserving local angles and
shapes.

Proposition 2.2. The set of complex numbers with positive real parts C+ can be
mapped onto the unit disk D using the Möbius transformation

w =
z − 1

z + 1
.

Proof. For z = 1, w = 0, mapping the real part to the center of the disk. For
z = ∞, w = 1, mapping the far right to the boundary. For z = 0, w = −1,
mapping the imaginary axis to the boundary. This transformation preserves angles
and shapes locally, making it conformal and mapping C+ onto D as required. □

Before we define a Riemann surface, I will define some preliminary terms.

Definition 2.3 (Hausdorff Topological Space). A topological space (X, τ) is called
a Hausdorff space if for every pair of distinct points x, y ∈ X, there exist open
neighborhoods U of x and V of y such that U and V are disjoint.

Definition 2.4 (Homeomorphism). A continuous function with a continuous in-
verse between two topological spaces.

Definition 2.5 (Chart). A homeomorphism from an open subset of a Riemann
surface to an open subset of the complex plane.

Definition 2.6 (Riemann Surface). A Riemann surface is a connected Hausdorff
topological space X equipped with a collection of charts {(Uα, φα)} such that:

(1) Each Uα is an open subset of X, and
⋃

α Uα = X.
(2) Each φα : Uα → Vα is a homeomorphism onto an open subset Vα of the

complex plane C.
(3) If Uα∩Uβ ̸= ∅, then the transition map φβ ◦φ−1

α : φα(Uα∩Uβ) → φβ(Uα∩
Uβ) is holomorphic.

Definition 2.7 (Meromorphic Function). A function f : U → C defined on an
open subset U of the complex plane C is meromorphic on U if it is holomorphic on
U except at a discrete set of isolated points {z1, z2, . . . } ⊂ U , where f(z) has poles.
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Definition 2.8 (Holomorphic Function). A function f : U → C, where U is an
open subset of the complex plane C, is called holomorphic at a point z0 ∈ U if it
is differentiable at that point and in some neighborhood around it. That is, the
complex derivative

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
exists.

A holomorphic function refers to a surface where every point has a well-defined
slope and a holomorphic map can be thought of as a transformation that stretches
or shrinks a space in in a way that maintains angles but not necessarily sizes.

Definition 2.9 (Complex Manifold). A complex manifold of dimension n is a
topological space M such that every point z ∈ M has a neighborhood U which is
homeomorphic to an open subset of Cn.

Definition 2.10 (Holomorphic Map). A holomorphic map is a function f : X → Y
between complex manifolds X and Y that is holomorphic at every point of X. This
means that in local charts, f can be expressed as a holomorphic function, i.e., it re-
spects the complex structure of the manifolds by preserving complex multiplication
and satisfying the Cauchy-Riemann equations.

Lemma 2.11. The complex plane C itself is a Riemann surface with a single chart
(C, id), where id is the identity map.

Proof. C is a complex manifold since every point z ∈ C has a neighborhood that
is homeomorphic to an open subset of C. We also know that the identity map
id : C → C is a holomorphic function as it is differentiable with continuous partial
derivatives. Since the map id acts as a chart on C and the transition function from
id to itself is trivially the identity map (which is holomorphic), this proves that C
with the chart (C, id) is a Riemann surface. □

Lemma 2.12. The Riemann sphere C∗ = C∪ {∞} is a Riemann surface that can
be covered by two charts: (C, id) and (C∗ \{0}, ϕ), where ϕ(z) = 1/z for z ̸= 0, and
ϕ(∞) = 0.

Proof. We verify that the Riemann sphere is a complex manifold covered by holo-
morphic charts. The chart (C, id) covers C except for the point at infinity, with the
identity map id : C → C being holomorphic. The second chart (C∗ \ {0}, ϕ), where
ϕ(z) = 1/z and ϕ(∞) = 0, covers the point at infinity and is also holomorphic.
The transition function z → 1/z between these charts is holomorphic on C \ {0}.
Therefore, the Riemann sphere is a Riemann surface covered by these holomorphic
charts. □

Definition 2.13. A conformal map is a function f : U → V between open subsets
U and V of the complex plane C (or more generally, on Riemann surfaces) that
preserves angles. The function f is conformal at a point z0 ∈ U if:

• f is holomorphic at z0.
• The derivative f ′(z0) ̸= 0.
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A conformal map is holomorphic with a non-zero derivative, meaning it preserves
angles locally but may scale figures. If it is conformal at every point in an open
set, it consistently preserves angles across the whole set.

The simplest conformal map is the identity map:

f(z) = z

Another example is the exponential map:

f(z) = ez

The exponential function ez is holomorphic everywhere in the complex plane;
the derivative is f ′(z) = ez, which is never zero. Thus, f is conformal everywhere.

The möbius transformation is a third example:

f(z) =
az + b

cz + d
where ad− bc ̸= 0.
Möbius transformations are holomorphic except at the point where the denomi-

nator is zero, z = −d
c if c ̸= 0. The derivative is f ′(z) = ad−bc

(cz+d)2 , which is non-zero

where the function is defined, making it conformal on its domain.

Definition 2.14 (Covering Map). Let S and R be Riemann surfaces. A continuous
surjective map π : S → R is a covering map if each point p ∈ R has a neighborhood
U such that π−1(U) is a disjoint union of open sets in S, each of which is mapped
homeomorphically onto U by π.

Definition 2.15 (Covering Transformation). A covering transformation of a cov-
ering map π : S → R is an automorphism ϕ : S → S such that π ◦ ϕ = π. The set
of all covering transformations forms a group called the deck transformation group
of the covering.

A covering map is a function between two Riemann surfaces where surface S
covers surface R. For each small patch on R, there are multiple copies on S that
map perfectly onto the original on R. A covering transformation moves points on
S without changing their images on R, hence describing the set of all the ways
to shuffle S while preserving the covering relationship. Consider the covering map
f(z) = zn from the complex plane S to R, where n is a positive integer. For exam-
ple, with n = 3, the point w = 1 ∈ R has three pre-images in S: 1, e2πi/3, e4πi/3.
A covering transformation cyclically permutes these pre-images without changing
their image in R. Thus, f(z) covers R by mapping multiple points in S to a single
point in R while respecting the covering relationship.

Karl Weierstrass, in introducing the uniformization theorem, shows that every
Riemann surface can be represented by covering maps of simpler surfaces, like the
complex plane or unit disk.

Theorem 2.16 (Uniformization Theorem). Every simply connected Riemann sur-
face is conformally equivalent to one of the following: the Riemann sphere P1(C),
the complex plane C, or the open unit disk D.

An example of this theorem is the open unit disk D, which is a simply connected
Riemann surface. The disk D is conformally equivalent to itself, but it can also be
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seen as conformally equivalent to a different simply connected surface, such as the
upper half-plane H, through a Möbius transformation.

Definition 2.17. For a Riemann surface, the curvature refers to Gaussian curva-
ture, which is a measure of how the surface bends in space at a particular point.
Formally, Gaussian curvature K at a point p on a surface is the product of the
principal curvatures k1 and k2 at that point:

K(p) = k1 · k2
The principal curvatures k1 and k2 describe the maximum and minimum rates

of curvature along orthogonal directions passing through the point.

Positive curvature (K > 0) occurs when both principal curvatures bend in the
same direction (ex: surface of a sphere). The surface curves outward in all direc-
tions. Zero curvature (K = 0) happens on a flat surface, like a plane, where there
is no bending. Negative curvature (K < 0) is when the surface curves in opposite
directions (ex: saddle shape).

Lemma 2.18. Any Riemann surface of genus greater than one admits a unique
conformal metric of constant negative curvature −1, making it a hyperbolic surface.

Proof. This proof uses the Uniformization Theorem. For a Riemann surface S of
genus g > 1, which differs topologically from spheres and tori as it has more than
one hole, the theorem shows that such surfaces are covered by the unit disk D with

a hyperbolic metric ds2 = 4 |dz|2
(1−|z|2)2 and constant curvature −1. S is represented as

D/Γ, where Γ is a Fuchsian group acting by isometries. This action gives S a unique
hyperbolic metric, as any two conformal metrics of constant negative curvature are
isometric. Thus, every Riemann surface of genus g > 1 admits a unique conformal
metric with curvature −1, classifying it as a hyperbolic surface. □

Definition 2.19 (Biholomorphic Map). A bijective and holomorphic map with a
holomorphic inverse.

Definition 2.20 (Teichmüller Space). Teichmüller space, T (S), is the space of
equivalence classes of marked Riemann surfaces of a given topological type. A point
in T (S) represents a pair (X, f), where X is a Riemann surface and f : S → X
is a homeomorphism. Two pairs (X1, f1) and (X2, f2) are equivalent if there is a
biholomorphic map g : X1 → X2 such that g ◦ f1 is isotopic to f2.

A Teichmüller space is the collection of all possible shapes of a surface that can
be transformed into each other through smooth transformations.

Definition 2.21 (Teichmüller Distance). The Teichmüller distance between two
points (X1, f1) and (X2, f2) in T (S) is

dT ((X1, f1), (X2, f2)) =
1

2
inf logK(f),

where the infimum is over all quasiconformal maps f : X1 → X2 homotopic to
f2 ◦ f−1

1 , and K(f) is the maximal dilatation of f .

Teichmüller distance measures the minimal distortion required to transform one
shape into another.
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Definition 2.22. A homeomorphism f : C → C is called quasiconformal if it
satisfies the following condition: there exists a constant K ≥ 1 such that for every
point z ∈ C, the following inequality holds

|fz|+ |fz|
|fz| − |fz|

≤ K,

where fz and fz are the partial derivatives of f with respect to z and z, respectively.

2.2. Algebraic Structures and Topological Properties.

Definition 2.23. The ramification index eP of a holomorphic map f : X → Y at
a point P ∈ X is the smallest positive integer e such that

(f(z)− f(P )) = c(z − P )e + higher order terms,

where z is a local coordinate around P and c is a nonzero constant. If eP > 1, the
point P is called a ramification point.

Theorem 2.24 (Hurwitz’s Theorem). If f : X → Y is a non-constant holomorphic
map between compact Riemann surfaces of genera gX and gY , respectively, then:

2gX − 2 = deg(f)(2gY − 2) +
∑
p∈X

(ep − 1)

where ep is the ramification index at p.

Hurwitz’s Theorem explains how the genus of a simpler surface changes when
mapped to a more complex one via a holomorphic map. For instance, when mapping
a torus to a sphere, the theorem calculates how the holes and twists of the torus
relate to the simpler shape of the sphere.

Proposition 2.25. Consider a map f : X → Y from a torus X (genus gX = 1)
to a sphere Y (genus gY = 0). Applying Hurwitz’s Theorem, we have

2gX − 2 = deg(f)(2gY − 2) +
∑
p∈X

(ep − 1)

2(1)− 2 = deg(f)(2(0)− 2) +
∑
p∈X

(ep − 1)

0 = −2 deg(f) +
∑
p∈X

(ep − 1)

2 deg(f) =
∑
p∈X

(ep − 1)

This shows that the total contribution from the ramification points on the torus
must equal 2 deg(f).

Oscar Zariski and André Weil connected algebraic geometry with the theory of
Riemann surfaces by demonstrating that every Riemann surface corresponds to an
algebraic curve.

Theorem 2.26 (Riemann-Roch Theorem). For a compact Riemann surface X of
genus g and a divisor D on X, the dimension of the space of meromorphic functions
is given by:

ℓ(D)− ℓ(K −D) = deg(D)− g + 1
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where ℓ(D) is the dimension of the space of meromorphic functions with poles no
worse than D, and K is the canonical divisor.

Consider a compact Riemann surface where poles and zeros can be found. The
Riemann-Roch Theorem tells us how many unique functions we can create to hit
these points in specific ways.

Adolf Hurwitz then developed a formula relating the genera of two Riemann
surfaces connected by a holomorphic map.

Proposition 2.27. For a compact Riemann surface X of genus g, and a divisor
D on X, the dimension of the space of meromorphic functions ℓ(D) minus the
dimension of the space of meromorphic functions ℓ(K−D) is equal to deg(D)−g+1,
where K is the canonical divisor.

Proof. We want to show

ℓ(D)− ℓ(K −D) = deg(D)− g + 1.

Consider the definition of the space of meromorphic functions associated with
a divisor. We know that, for a divisor D on Riemann surface X, the space L(D)
consists of meromorphic functions f such that the divisor of f plus D is effective
s.t. (f) +D ≥ 0. The dimension of this space is denoted by ℓ(D). The canonical
divisor K on X corresponds to the divisor of a non-zero meromorphic 1-form on
X. The space L(K) is the space of holomorphic 1-forms on X, and its dimension
is equal to the genus g of the surface.

Riemann-Roch theorem provides the relationship

ℓ(D)− ℓ(K −D) = deg(D) + 1− g.

Construct a meromorphic 1-form ω s.t. its divisor is K. Using Serre duality,
which relates the space L(K −D) to the space of 1-forms with poles restricted by
D, consider the space of meromorphic forms L(K −D), consisting of meromorphic
1-forms ω for which the divisor (ω) + (D) ≥ 0.

Take the Euler characteristic of O(D), defined as

χ(D) = h0(D)− h1(D),

where h0(D) = ℓ(D) and h1(D) = ℓ(K − D). According to Riemann-Roch, the
Euler characteristic can be expressed as

χ(D) = deg(D)− g + 1.

Substituting into the Euler characteristic formula, we then have

ℓ(D)− ℓ(K −D) = χ(D) = deg(D)− g + 1.

□

Definition 2.28 (Algebraic Morphism). Let X and Y be algebraic varieties over
an algebraically closed field K. A map ϕ : X → Y is called an algebraic morphism
(or simply a morphism) if for every open subset U ⊆ Y and every regular function
f ∈ OY (U), the composition f ◦ ϕ is a regular function on ϕ−1(U), that is, f ◦ ϕ ∈
OX(ϕ−1(U)). In affine varieties, a map ϕ : An → Am given by ϕ(x1, x2, . . . , xn) =
(f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)) is a morphism if each fi is a polynomial
in the coordinate functions x1, x2, . . . , xn.
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An algebraic morphism is a function between two algebraic varieties X and Y ,
which are sets of solutions to polynomial equations defined over an algebraically
closed field K. In the context of affine varieties, which are varieties that can be
embedded in an affine space, a map ϕ : An → Am given by

ϕ(x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn))

is a morphism if each function fi is a polynomial in the coordinate functions
x1, x2, . . . , xn.

In simpler terms, an algebraic morphism ensures that the transformation between
X and Y keeps the polynomial nature intact. When we are dealing with affine
varieties, which can be thought of as varieties that can be embedded in some higher-
dimensional space, a map between them is a morphism if it is given by polynomials
in terms of the coordinates of the space.

Proposition 2.29. There is no biholomorphic (holomorphic and bijective with
a holomorphic inverse) map between two compact Riemann surfaces of different
genus.

Proof. Suppose, for contradiction, that there exists a biholomorphic map f : X →
Y between compact Riemann surfaces X and Y with different genera gX and gY .
Since f is a homeomorphism, it induces an isomorphism between the fundamental
groups π1(X) and π1(Y ). The fundamental group of a compact Riemann surface
of genus g is

π1(Σg) = ⟨a1, b1, . . . , ag, bg |
g∏

i=1

[ai, bi] = 1⟩,

with rank 2g. Therefore, 2gX = 2gY , implying gX = gY , a contradiction. Biholo-
morphic maps preserve the space of holomorphic 1-forms, which has dimension g
by the Riemann-Roch theorem. Since the dimension of these spaces, h0(KX) and
h0(KY ), must be equal, gX = gY . Thus, no biholomorphic map can exist between
surfaces with different genera, confirming that genus is an invariant of biholomor-
phic equivalence for compact Riemann surfaces. □

For the remainder of the paper, I will now shift our focus to examining how
Riemann surfaces intersect with various fields of machine learning.

3. Jensen’s Inequality

Jensen’s Inequality is fundamental in machine learning, particularly in the anal-
ysis of algorithms and probabilistic models.

Lemma 3.1 (Jensen’s Inequality). Let f : R → R be a convex function and let X
be a random variable. Then, the following inequality holds

f(E[X]) ≤ E[f(X)].

Proof. Since f is convex, for any x0 in the domain of f , there exists a subgradient
g ∈ ∂f(x0) such that for all x,

f(x) ≥ f(x0) + g(x− x0).

Taking expectation with respect to X on both sides, we have

E[f(X)] ≥ E[f(x0) + g(X − x0)] = f(x0) + g(E[X − x0]) = f(x0) + g(E[X]− x0).
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Setting x0 = E[X] gives us

E[f(X)] ≥ f(E[X]).

□

Consider a probabilistic model where we need to approximate an intractable
posterior distribution p(z | x). In variational inference, we introduce a simpler dis-
tribution q(z) to approximate the true posterior, minimizing the Kullback-Leibler
(KL) divergence

KL(q(z) ∥ p(z | x)) = Eq(z) [log q(z)− log p(z | x)] .

Instead of minimizing the KL divergence directly, we derive a tractable lower bound
using Jensen’s Inequality, leading to the Evidence Lower Bound (ELBO) for the
log likelihood

log p(x) ≥ Eq(z) [log p(x, z)− log q(z)] .

This inequality stems from applying Jensen’s Inequality to the expectation under
q(z)

logEq(z)

[
p(x, z)

q(z)

]
≥ Eq(z)

[
log

p(x, z)

q(z)

]
.

Now, consider p(z | x) and q(z) on a Riemann surface S. The posterior distri-
bution may have branch points or multi-valued functions, resolved by the complex
structure of the surface. By lifting q(z) onto the covering space of S, we han-
dle these singularities. Applying Jensen’s Inequality on S maintains the ELBO
approximation:

logEq(z)

[
p(x, z)

q(z)

]
≥ Eq(z)

[
log

p(x, z)

q(z)

]
,

where z lies on the Riemann surface. The geometry of S preserves the accuracy of
the variational inference, even in complex geometries.

Jensen’s Inequality has profound implications in various real-world contexts. For
instance, in finance, it is often applied to the valuation of risky assets.

Example 3.2. The Black-Scholes model is a standard method for pricing European
options. It assumes the underlying asset price follows a geometric Brownian motion
with constant volatility and no jumps

dSt = µSt dt+ σSt dWt,

where St is the asset price at time t, µ is the drift (expected return), σ is the
volatility, and Wt is a Wiener process (Brownian motion). When options approach
expiration, complexities such as discontinuities and rapid volatility challenge the
Black-Scholes assumptions, which can lead to mispricing. By interpreting the as-
set price as moving across different multi-sheeted Riemann surfaces connected by
algebraic morphisms, we capture the complex behavior of the asset in scenarios
where the standard assumptions break down. Applying Jensen’s Inequality to the
Riemann surface provides a more accurate ELBO for the option’s price, therefore
ensuring q(z) accounts for dynamics in such scenarios.
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3.1. Case Study: Probabilistic Models. The above approach mirrors tech-
niques used in advanced probabilistic models, where similar mathematical tools
are employed to handle data on complex geometries. For example, in ”Variational
Inference on Manifolds” (2018), Hauberg extended variational inference to non-
Euclidean spaces using Jensen’s Inequality and Riemann surface theory. This adap-
tation allowed for modeling curved data while preserving geometric relationships,
addressing the challenge of maintaining the posterior distribution’s structure on
non-Euclidean surfaces by incorporating Jensen’s Inequality to derive a tractable
ELBO, improving inference for data with inherent curvature, like human body
shapes.

Mathematical Overview The posterior p(z | x) is defined on a Riemannian
manifold M, with a prior respecting the manifold’s geometry:

p(z) ∝ e−
1
2∥z∥

2
g ,

where ∥z∥2g is the Riemannian norm. Applying Jensen’s Inequality, the ELBO is
derived on the Riemannian manifold

log p(x) ≥ Eq(z) [log p(x | z) + log p(z)− log q(z)]− 1

2
log det g(z),

where g(z) represents the manifold’s metric tensor. The KL divergence is minimized
using variational distributions adapted to the manifold

KL(q(z) ∥ p(z | x)) =
∫
M

q(z) log
q(z)

p(z | x)
dVol(z).

Hence, as shown, by mapping the data onto Riemann surfaces into the variational
inference process, the authors preserved the geometric integrity of the data during
inference, allowing for a more precise machine learning model.

4. Hoeffding’s Inequality

Hoeffding’s Inequality provides a bound on the probability that the sum of
bounded random variables deviates from its expected value. This is crucial as
it helps ensure that the performance of a model on a training set will generalize
well to new data by quantifying the risk of large deviations.

Lemma 4.1 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random
variables such that ai ≤ Xi ≤ bi almost surely. Define Sn =

∑n
i=1 Xi. Then, for

any t > 0,

P (Sn − E[Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Proof. Consider the moment generating function of the centered random variable
Yi = Xi − E[Xi], which satisfies ai − E[Xi] ≤ Yi ≤ bi − E[Xi]. The cumulant-
generating function of Yi is bounded by

E[eλYi ] ≤ exp

(
λ2(bi − ai)

2

8

)
for λ ∈ R. Using the Chernoff bound and the independence of Xi, we have

P (Sn − E[Sn] ≥ t) ≤ inf
λ>0

e−λt
n∏

i=1

E[eλYi ] ≤ inf
λ>0

e−λt exp

(
n∑

i=1

λ2(bi − ai)
2

8

)
.
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Optimizing over λ gives the result.
Consider random variables X1, X2, . . . , Xn as measurements on a Riemann sur-

face S, with distances calculated using the hyperbolic metric ds2 = 4 |dz|2
(1−|z|2)2 , where

z ∈ D. The bounds ai and bi depend on the surface’s geometry. For hyperbolic
surfaces, the curvature K = −1 affects these bounds, refining Hoeffding’s Inequality
to

P (Sn − E[Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2curved

)
,

where (bi − ai)curved reflects the influence of the hyperbolic geometry. □

Example 4.2. In wireless communication networks, Hoeffding’s Inequality is im-
portant as it provides bounds on the probability of significant deviations in signal
strength. However, in environments with obstacles or varying distances, signal
propagation does not follow a simple Euclidean path. By mapping the signal prop-
agation process onto a Riemann surface, the holomorphic maps and conformal
transformations involved enable us to model the signal propagation more accu-
rately. Applying Hoeffding’s Inequality on this Riemann surface allows us to derive
more precise bounds on the signal strength and interference probabilities, consid-
ering the nature of real-world environments.

4.1. Case Study: Stochastic Processes. The above adaptations are directly rel-
evant to the discussion in ”Concentration Inequalities on Manifolds” by M. Ledoux
(2001), where classical inequalities are extended to Riemannian manifolds. The
goal of this paper was to adapt probabilistic bounds to curved spaces, ensuring
they hold under non-Euclidean geometries.

Mathematical Overview The inequality was extended to Riemannian mani-
folds M, adjusting the variance based on the manifold’s geometry

P (Sn − E[Sn] ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2manifold

)
.

The KL divergence was computed by integrating over the manifold’s volume form,
ensuring correct probability calculations on M

KL(q(z) ∥ p(z | x)) =
∫
M

q(z) log
q(z)

p(z | x)
dVol(z).

Hence, by adapting Hoeffding’s Inequality to Riemannian manifolds, the authors
improved generalization in machine learning models dealing with non-Euclidean
data as the refined concentration bounds accounted for the manifold’s curvature,
leading to better performance in applications involving curved data.

5. Itô Calculus

Itô calculus provides a framework for dealing with stochastic processes, partic-
ularly those involving Brownian motion, when applied with Riemann surfaces, it
can help describe the evolution of stochastic processes that are affected by complex
geometries.
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Lemma 5.1. Let f : S → C be a smooth function on a Riemann surface S and let
Xt be a stochastic process on S, which evolves according to the stochastic differential
equation

dXt = µ(Xt) dt+ σ(Xt) dBt,

where Bt is a standard Brownian motion. Then, Itô’s Lemma states that the dif-
ferential of f(Xt) is given by

df(Xt) =

(
µ(Xt)

∂f

∂x
+

1

2
σ2(Xt)

∂2f

∂x2

)
dt+ σ(Xt)

∂f

∂x
dBt.

Proof. Consider the smooth function f on the Riemann surface S. Using Itô’s
Lemma for a function of a stochastic process, we expand df(Xt) as a Taylor series
in the infinitesimal increments dXt. Applying the chain rule for stochastic calculus,
we obtain

df(Xt) =
∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2.

Substituting dXt = µ(Xt)dt+ σ(Xt)dBt and recalling that (dBt)
2 = dt, we get

df(Xt) =
∂f

∂x
(µ(Xt)dt+ σ(Xt)dBt) +

1

2

∂2f

∂x2
σ2(Xt)dt

=

(
µ(Xt)

∂f

∂x
+

1

2
σ2(Xt)

∂2f

∂x2

)
dt+ σ(Xt)

∂f

∂x
dBt

Now, consider the case where the stochastic process Xt evolves on a Riemann
surface S. In this scenario, the function f respects the complex structure of the
surface, and the partial derivatives are computed with respect to local coordinates
on S. The geometry of the Riemann surface influences the drift µ and the volatility
σ, which may depend on the curvature and other geometric properties of S. Con-
sequently, Itô’s Lemma is adapted to account for the underlying geometry of the
surface when describing the evolution of stochastic processes on it. □

Example 5.2. Say one wants to model the evolution of asset prices using Ito’s
calculus and runs into the issue that such prices are influenced by stochastic pro-
cesses and complex geometries. Under standard models, the complexity of this
data may not be properly understood, hence leading to inaccuracies. Mapping the
data onto Riemann surfaces can incorporate both the random fluctuations and the
complex geometric structure of the market, resulting in more accurate pricing and
risk assessments in an environment with such complex underlying dynamics.

5.1. Case Study: Itô’s Lemma. The paper ”Stochastic Processes on Riemann
Surfaces: Applications in Machine Learning” by Y. Zhang and L. Hauberg (2019)
demostrates the above idea as the authors extended classical stochastic differential
equations (SDEs) to Riemann surfaces using Itô calculus with the goal of modelling
complex data that lies on non-Euclidean surfaces while accounting for the stochastic
nature of the data.

Mathematical Overview The authors applied Itô’s Lemma to stochastic pro-
cesses on Riemann surfaces, adjusting the drift and diffusion terms according to
the surface’s curvature:

dXt = µ(Xt) dt+ σ(Xt) dBt,
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where µ and σ are curvature-dependent. They adapted the stochastic integral to
respect the surface’s geometry and solved the drift-diffusion equation numerically
using a discretization scheme tailored for Riemann surfaces.

Extending Itô calculus to Riemann surfaces improves the ability of machine
learning models to manage stochastic data while preserving geometric structures.

6. Representer Theorem

The Representer Theorem is critical in kernel methods, showing that the solution
to many regularized learning problems can be expressed as a linear combination of
training samples.

Lemma 6.1 (Representer Theorem). Consider a regularized empirical risk mini-
mization problem of the form

min
f∈H

n∑
i=1

L(yi, f(xi)) + Ω(∥f∥H),

where H is a reproducing kernel Hilbert space (RKHS) with kernel k, L is a loss
function, and Ω is a strictly monotonically increasing function. Then, the solution
f∗ ∈ H admits a representation of the form

f∗(x) =

n∑
i=1

αik(x, xi),

for some coefficients αi ∈ R.

Proof. Consider any function f ∈ H. By the reproducing property, f can be
decomposed as f = f0 + f⊥, where f0(x) =

∑n
i=1 βik(x, xi) and f⊥ is orthogonal

to the span of {k(·, xi)}ni=1 in H. Then, we can write

f(x) =

n∑
i=1

βik(x, xi) + f⊥(x).

Substituting this into the objective function, the loss term depends only on βi,
while the regularization term is given by ∥f∥2H = ∥f0∥2H + ∥f⊥∥2H. Since Ω is
strictly increasing, minimizing the regularization term requires f⊥ = 0, leading to
f∗(x) =

∑n
i=1 αik(x, xi).

Suppose the inputs xi correspond to points on a Riemann surface S. The ker-
nel function k(x, xi) is adapted to the geometry of S, incorporating curvature or
complex structure. For example, in the hyperbolic plane, the kernel depends on hy-
perbolic distances, making the learning process sensitive to the surface’s geometry.
By minimizing the regularization term, we find that the optimal function f∗(x) is
a linear combination of geometry-aware kernel evaluations:

f∗(x) =

n∑
i=1

αik(x, xi).

Hence, machine learning models can adapt to non-Euclidean geometries, improving
performance on tasks involving curved surfaces. The Representer Theorem reduces
the search space, while a geometry-sensitive kernel boosts accuracy in computer
vision, NLP, and manifold learning tasks.
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6.1. Case Study: Kernel-Based Learning. In ”Kernel Methods on Riemannian
Manifolds” by X. Pennec et al. (2006), the authors extended kernel-based machine
learning methods, grounded in the Representer Theorem, to data distributed on
Riemannian manifolds. Their goal was to adapt kernel functions to respect the
geometry of curved spaces, improving the accuracy and generalization of models on
non-Euclidean data, such as in computer vision and medical imaging.

Mathematical Overview The Representer Theorem was applied to regularized
empirical risk minimization on Riemannian manifolds M, where the solution f∗(x)
could be expressed as:

f∗(x) =

n∑
i=1

αik(x, xi),

with kernel functions k(x, xi) adapted to the manifold’s geometry. For example,
in hyperbolic space, the kernel would depend on the hyperbolic distance between
points:

k(x, xi) = exp
(
−d2M(x, xi)

)
.

A short example of this theory is below.
Given data points x and xi in hyperbolic space H2 with curvature K = −1, the

geodesic distance dM (x, xi) is

cosh(dM (x, xi)) ≈ cosh(1) cosh(2)− sinh(1) sinh(2) cos(60◦) ≈ 3.671.

So, we have
dM (x, xi) = cosh−1(3.671) ≈ 1.686.

Hence, the corresponding kernel function is

k(x, xi) = exp(−d2M (x, xi)) ≈ exp(−2.844) ≈ 0.058.

This function is sensitive to the curvature of hyperbolic space, hence improving
the accuracy of the model by capturing the non-Euclidean geometry of the data.

7. Complex-Valued Data Analysis

Riemann surfaces provide a framework for understanding and visualizing multi-
valued complex functions as they allow us to convert these functions into single-
valued ones by organizing their branches in a coherent and structured manner.

To analyze the multi-valued function f(z) =
√
z, which has a branch point at

z = 0, we construct its Riemann surface using two sheets of the complex plane
joined along a branch cut from z = 0 to z = ∞ on the negative real axis. One sheet
defines the square root with positive imaginary parts, and the other with negative
imaginary parts.

Lemma 7.1. Show that the function f(z) =
√
z can be made single-valued on a

Riemann surface constructed with two sheets, and determine its behavior on this
surface.

Proof. To construct a continuous, single-valued Riemann surface for
√
z, we define

two sheets in the complex plane. The principal branch is defined for z = reiθ with
−π < θ ≤ π, where f(z) =

√
reiθ/2. A second sheet is introduced for π < θ ≤ 3π,

where f(z) = −
√
reiθ/2. The branch cut along the negative real axis connects

points at θ = ±π, transitioning between the two sheets as the function crosses
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the cut. This construction creates a continuous path around the branch point at
z = 0, allowing

√
z to be treated as single-valued and continuous on the Riemann

surface. □

Each complex number has two square roots, leading to discontinuities in the
square root function. A two-sheeted Riemann surface resolves this by assigning
each value to a different sheet, ensuring continuity. In machine learning, Riemann
surfaces handle complex-valued data, ensuring smooth transformations in tasks like
image processing and improving performance on complex datasets.

Proposition 7.2. Let S be a compact Riemann surface, and let {f1, f2, . . . , fn} be
a set of complex-valued functions defined on S. Our goal is to classify each function
as either meromorphic (Class 1) or holomorphic (Class 2).

Proof. We classify a function f as meromorphic if it has isolated poles on S, and as
holomorphic if it is analytic everywhere on S. The Riemann-Roch theorem states
that for a divisor D on a compact Riemann surface S of genus g, the dimension
l(D) of the space of meromorphic functions with poles bounded by D satisfies:

l(D)− l(K −D) = deg(D) + 1− g,

where K is the canonical divisor and deg(D) is the degree of D. To classify a
function f , we construct its divisor

D(f) =
∑

nipi −
∑

mjqj ,

where pi are poles with multiplicities ni and qj are zeros with multiplicities mj .
Using Riemann-Roch: (1) if deg(D(f)) > 0, indicating the presence of poles, f
is meromorphic, (2) if deg(D(f)) ≤ 0, implying no poles, f is holomorphic. For
example, f1(z) =

1
z2+1 has divisor D(f1) = (i) + (−i) − 0, so f1 is meromorphic.

For f2(z) = ez, the divisor is D(f2) = 0, so f2 is holomorphic. □

7.1. Case Study: Manifold Learning. In ”Deep Learning-Based Phase Un-
wrapping for Quantitative Phase Imaging” (Zhang et al., 2021), the authors used
Riemann surfaces to address phase unwrapping challenges in QPI, managing multi-
valued complex functions. By mapping distinct branches of the phase function onto
different sheets, they ensured continuity across these branches, similar to handling
multi-valued functions like f(z) =

√
z.

Mathematical Overview In interferometry, the measured phase ϕ is wrapped
within [−π, π], causing ambiguities in reconstructing the unwrapped phase Φ. The
goal is to find Φ(x) = ϕ(x) + 2kπ, where k resolves the discontinuity. Riemann
surfaces are used to handle the multi-valued nature of phase data, with each branch
corresponding to a different sheet. The Riemann surface ensures smooth transitions
between sheets. A deep learning model was trained to identify the correct sheet for
each point x and predict the unwrapped phase by minimizing:

L(Φ) =
∑
i

∥Φ(xi)− ϕ(xi)− 2kiπ∥2,

where ki adjusts the sheets as needed. The phase unwrapping algorithm is dis-
cretized over a pixel grid, with the Riemann surface structure guiding the correct
choice of phase sheet.
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This study demonstrates the practical application of Riemann surfaces in ma-
chine learning to handle complex-valued data, enhancing algorithm performance in
quantitative imaging.

8. Computer Vision

In computer vision, preserving local features like edges and corners is crucial,
especially in tasks like facial recognition where relative angles between features
matter. Conformal mappings can be used as a preprocessing step to transform
images while preserving angles and local geometry, ensuring consistency of key
features for algorithms.

Example 8.1. Consider the problem of stitching images captured with a wide-
angle or fisheye lens to create a seamless 360-degree panoramic image, a task which
requires mapping flat images onto a spherical surface while preserving local angle
measurements.

Let S be a Riemann surface that represents the spherical geometry of the panoramic
image and define f : C → S as a holomorphic function, where C is the complex
plane and S is the Riemann sphere. The conformal mapping we use in this case
is a stereographic projection, which projects points from the complex plane to a
Riemann sphere and is defined

f(z) =
2z

1 + |z|2
+ i

1− |z|2

1 + |z|2
.

For a holomorphic function f , if f ′(z0) ̸= 0 at a point z0, then f is conformal at
z0. First, we find the derivative of f

f ′(z) =
2(1− |z|2)− 2z · z · (2z)

(1 + |z|2)2
+ i

2z · (1 + |z|2)− 2z · (1− |z|2)
(1 + |z|2)2

.

f ′(z) =
2

(1 + |z|2)2
.

Since f ′(z) ̸= 0, f is conformal. Therefore, f preserves angles between curves in
the mapping process.

In computer vision, conformal mappings on Riemann surfaces preserve angles,
crucial for tasks like panoramic stitching and self-driving cars. They ensure seamless
image alignment, preventing distortions in features such as road edges, and improve
accuracy in perception, recognition, and navigation.

8.1. Case Study: Geometric Transformations. In ”Optimal Mass Transport
for Shape Matching and Comparison” (IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2015), Z. Su and Y. Wang used conformal mappings based on
Riemann surface theory for surface registration, ensuring angle preservation during
transformations. They applied optimal mass transport to match and compare 3D
shapes while preserving geometric correspondence.

Mathematical Overview Given two shapes, represented by distributions of
mass µ(x) and ν(y), their goal was to find a transformation T : R2 → R2 that maps
µ to ν while minimizing a cost function, typically defined as the total transportation
cost:

min
T

∫
R2

c(x, T (x)) dµ(x),
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where c(x, T (x)) is the cost to move mass from x to T (x).
By combining conformal maps, Riemann surface theory, and optimal mass trans-

port, the study enhanced shape registration accuracy and offered a robust frame-
work for complex transformations in 3D reconstruction and panoramic image stitch-
ing.

9. Conclusion

Hence, by integrating such probability theory with the geometric framework of
Riemann surfaces, we can create powerful models that can accurately predict and
manage uncertainties in complex, real-world scenarios, from the financial markets
to self-driving cars.
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