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Abstract. This paper will build up the theory of renormalization in dynam-

ical systems of real and complex functions. Two main results are showcased:

first, a proof of the Feigenbaum universality, and second, the presence of mini-
Mandelbrots in the Mandelbrot set. We conclude with an exposition of the

MLC conjecture.

Contents

1. Introduction: A Fibonacci Mystery 1
2. The Logistic Map 5
3. Feigenbaum Universality 10
4. Complex Dynamics 14
5. The Mandelbrot Set 19
6. The MLC Conjecture 24
Acknowledgments 26
References 26

1. Introduction: A Fibonacci Mystery

Let’s make a sequence. Start with any two numbers a1 and a2, and for all other
terms let an = an−1 + an−2. For example, if a1 = a2 = 1, the sequence would look
like

1, 1, 2, 3, 5, 8, 13 . . .

This is the Fibonacci sequence. But the sequence could have also looked like

17, 29, 46, 75, 121, 196, 317 . . .

or

1, 1000, 1001, 2001, 3002, 5003, 8005 . . .

or any other sequence that follows the rule. If we take the ratio of successive terms
in each sequence,

13

8
= 1.625,

317

196
≈ 1.617,

8005

5003
≈ 1.600

they all seem to hover around 1.6. In fact, if we compute a21/a20,

10946

6765
≈ 1.618034,

267262

165177
≈ 1.618034,

6769181

4183584
≈ 1.618034,

the ratio of successive terms seems to converge to a number that looks suspiciously

like the golden ratio φ = 1+
√
5

2 . This phenomenon is an example of a universality
1
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result, where a large portion of the state space ends up tending towards the same
limiting behavior. Why does this happen?

The answer has to do with renormalization, a technique originally from statistical
physics that models how matter changes at different “scales”. Let’s say you want
to model a material made of atoms.

Figure 1. Any material, if you zoom in far enough.

Renormalization allows you to coarse-grain, or “block” groups of atoms together
and treat them like single atoms. Effectively, we can “zoom out”.

Figure 2. The coarse-graining procedure.

When you apply this procedure, your new “atoms” are going to behave differently
from the old ones. Anything that looks like “noise” (like the microscopic “jiggling”
of atoms above absolute zero) will become less and less noticeable as the blocks
get bigger. Therefore, as we repeat this coarse-graining procedure, these effects
will go to 0 in the macroscopic limit, so they are called irrelevant observables.
However, relevant observables (most notably mass and volume, but also properties
like magnetic field strength in magnetic materials) become larger and larger, so they
stay relevant in the macroscopic limit. Renormalization lets us simplify problems
by only considering these relevant parameters.

We can apply this idea to our problem by first encoding any of our sequences

as a vector

[
a2
a1

]
consisting of our first two hand-picked entries. One way we might

“zoom out” of our sequence is by starting it at the second term instead of the first.
This will generate a new sequence that has the same end behavior as the first. We
can define our renormalization operator R as the mapping[

a2
a1

]
7→
[
a3
a2

]
.
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By the nature of our sequence, we can actually write R as a matrix.

R =

[
1 1
1 0

]
R
[
a2
a1

]
=

[
1 1
1 0

] [
a2
a1

]
=

[
a1 + a2
a2

]
=

[
a3
a2

]
What we mean by “the ratio of consecutive terms tends to φ” is that points under

iteration tend towards the span of

[
φ
1

]
. We call this line the unstable manifold of

the system.
Wait, what? Why are points tending towards the unstable manifold? Isn’t that

backwards? It all has to do with the fixed point at the origin.

Notation 1.1. The notation fn refers to the nth iteration of f and not function
multiplication. The notation f−n(x) refers to the nth successive preimage of x
under f (the set of all y such that fn(y) = x) and not 1

fn(x) .

Definition 1.2. The unstable manifold1 of a fixed point p of a function f on a
topological space X is the set of all q in X such that f−n(q) → p as n→ ∞.

Definition 1.3. The stable manifold of a fixed point p of a function f on a topo-
logical space X is the set of all q in X such that fn(q) → p as n→ ∞.

Points in the stable manifold have future iterations in a neighborhood of the fixed
point, while points in the unstable manifold have past iterations in a neighborhood
of the fixed point and future iterations away from it (hence, they are unstable). We
can clarify the words “past” and “future” with the following definition.

Definition 1.4. The forward orbit of a point x is the set
⋃∞

n=0{fn(x)}. The
backward orbit of a point x is the set

⋃∞
n=0{f−n(x)}. The (complete) orbit of x is

the union of the forward and backward orbits of x.

A good idea is to look at the eigenvectors of our linear map, since they have
their past and future iterations on the same span as themselves. We find two.

v⃗1 =

[
φ
1

]
with λ1 = φ.

v⃗2 =

[
−1
φ

]
with λ2 = 1− φ.

Note that the iterations of R push v⃗1 away from the fixed point and v⃗2 towards the
fixed point. This means that v⃗1 is on the unstable manifold and v⃗2 is on the stable
manifold.

These observations hint at a much more general fact about stable and unstable
manifolds which will be important in section 3. Most renormalization operators are
not linear and so do not have eigenvectors. However, any differentiable function f
can be approximated by a linear operator in the neighborhood of a fixed point by
the derivative. We therefore have

1There are some technical restrictions on our function and our space to ensure that these are
manifolds. In this case, they’re lines, and there’s nothing more “manifoldy” than that.
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Key Idea 1.5. The dimensionality and direction of the stable and unstable mani-
folds around a fixed point of f are determined by the eigenvectors of the derivative
Df . Each eigenvector with λ > 1 corresponds to a dimension of the unstable man-
ifold, and each eigenvector with λ < 1 corresponds to a dimension of the stable
manifold.

We can visualize our stable and unstable manifolds with the renormalization
group flow,2 which shows how different points behave under iteration.

Figure 3. Renormalization group flow visualized, plotted with

Span

([
φ
1

])
(black) and the forward orbit of

[
1
1

]
(red)

It really does appear that points tend towards the unstable manifold under iter-
ation. To prove this once and for all and finally solve our φ mystery, we just need
to write our sequences in terms of our eigenvalues. Since our eigenvectors form a
basis, we can write any sequence vector a as c1v⃗1 + c2v⃗2. If c1 ̸= 0,3 then we have
for sufficiently large n that

Rna = c1φ
nv⃗1 + c2(1− φ)nv⃗2 ≈ c1φ

nv⃗1

which is in the span of v⃗1 =

[
φ
1

]
. Thus, for almost every sequence, the ratio

of consecutive terms tends to φ. This is again indicative of a general theme of
renormalization.

Key Idea 1.6. Almost every point under iteration by f tends toward the unstable
manifold of f .

Since the dimensionality of the unstable manifold is often much less than the
whole space, renormalization leads to universality results, from macroscopic objects
not needing to be described by the motions of individual atoms to the Feigenbaum
universality, which will be described in the next few sections.

2Nothing to do with group theory. Blame the physicists.
3If you happened to choose the sequence (−φ, 1, . . .) at the beginning and were wondering why

it converged to −φ−1 instead, I’m sorry.
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2. The Logistic Map

Consider the family of functions fr : [0, 1] → [0, 1] with r ∈ [0, 4] defined by

(2.1) fr(x) = rx(1− x)

This map is called the logistic map, so named because it can be thought of as the
discrete analog of the logistic differential equation y′ = ry(1 − y). What happens
when you iterate fr? The answer ends up being very sensitive to your choice of r.

y

x

(a) r = 2.5. Attracting fixed point.

y

x

(b) r = 3.2. Attracting 2-cycle.

y

x

(c) r = 3.55. Attracting 8-cycle.

y

x

(d) r = 3.7. Chaos.

Figure 4. Cobweb plots for different values of r, featuring y = x
(green), y = fr(x) (blue) and the forward orbit of 1

2 (magenta).

Definition 2.2. A point x is part of an n-cycle if n is the smallest positive integer
such that fn(x) = x. We say the cycle has period n and x is n-periodic.

Definition 2.3. x is a fixed point if it is 1-periodic.

Definition 2.4. An n-cycle is attracting if for any x in the cycle |(fn)′(x)| < 1,
repelling if |(fn)′(x)| > 1 and indifferent if |(fn)′(x)| = 1.

Remark 2.5. Attracting cyles “pull” nearby points “in”, while repelling cycles
“push” nearby points “away”. This is because if x is n-periodic then for a sufficiently
nearby point y

|fn(y)− x| = |fn(y)− fn(x)| ≈ |(fn)′(x)||y − x|
so if the cycle is attracting |fn(y)−x| < |y−x| and if repelling |fn(y)−x| > |y−x|.
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Theorem 2.6. For r ∈ [0, 1) , fr has an attracting fixed point at 0. Moreover,
every point x ∈ [0, 1] tends toward 0 under iteration.

Proof. Note that fr(0) = 0 and |f ′r(0)| = r < 1. To finish off the proof, it suffices to
see that 0 ≤ fr(x) ≤ rx < x, so 0 ≤ fnr (x) ≤ rnx → 0, guaranteeing convergence.

□

This result also holds for r = 1, with the exception that 0 is an indifferent fixed
point. However, we start to get different behavior when r > 1.

Theorem 2.7. For r ∈ (1, 3) , fr has a repelling fixed point at 0 and an attracting
fixed point at r−1

r .

Proof. With the tools presented so far, this follows from straightforward computa-
tion. □

When talking about limits under iteration, generally we care much more about
attracting cycles compared to repelling ones. This is because, unlike attracting
cycles, repelling cycles are highly sensitive to our initial conditions. Thus, although
our function technically has two fixed points, the set which tends to 0 (which is
just {0, 1}) does not need to be considered.

Is it true, though, that every other point tends to r−1
r ? How do we know there

isn’t an attracting cycle of any other period hiding somewhere? The easiest way
to answer this question is to break out an incredibly powerful tool from complex
dynamics.

Definition 2.8. A critical point of a differentiable function f is a point z where
f ′(z) = 0.

Theorem 2.9. For every attracting cycle of a polynomial f : Ĉ → Ĉ with degree
≥ 2 there exists a critical point that falls into it.

Further discussion of complex dynamics (including a proof of Theorem 2.9) will
be in section 4. Since our function is restricted to mapping [0, 1] into itself, and
there is only one critical point of fr in [0, 1] (namely, 1

2 ), we know there is only one
attracting cycle, and it’s the period 1 one we already found.

We can begin to plot the attracting behavior of fr for different values of f . For
r ∈ [0, 1] we’ll plot 0 and for r ∈ (1, 3] we’ll plot r−1

r .

Figure 5. The first part of our plot, with 0 ≤ r ≤ 3.
r value (x-axis) plotted against attracting points (y-axis).
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Let’s keep going. Something interesting happens again for r > 3, since our
fixed point at r−1

r is no longer attracting. However, we start getting an attracting

2-cycle. If we look at f2r (x), we find two additional attracting fixed points.

y

x

Figure 6. y = f23.2(x). Two attracting fixed points.

Since our critical point falls into this cycle, the 2-cycle is the only attracting end
behavior. In fact, we can take a closer look at our critical point.

y

x

y

x

Figure 7. The right plot is a scaled and rotated version of the
left plot y = f23.2(x).

The scaled and rotated plot looks kind of like fr′ for a smaller value r′! There’s
a similarity between f2r and a scaled version of a different fr, which means we can
try applying our coarse-graining procedure from Section 1. Instead of looking at
one iteration at a time, we can look at iterations of f2r .

Let’s formalize what it means for a map to be “like” another map.

Definition 2.10. A function f is conjugate to another function g if there exists a
map T of the form z 7→ az+b

cz+d with ad− bc ̸= 0 such that g = T ◦ f ◦ T−1.

Maps like T are called Möbius transformations and they play a very important
role in complex dynamics (Theorem 4.2). Of importance to us is that T can be a
linear (affine) function if c = 0.

Theorem 2.11. If f is conjugate to g then g is conjugate to f .
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Remark 2.12. Conjugate maps have “the same dynamics” in the sense that for
all n, gn = T ◦fn ◦T−1, so there is an easy map between the orbits of points under
f and under g.

We’ll want to find a conjugacy map that sends the key features of f2r to the key
features of fr′ . Both f

2
r and fr′ have critical points at 1

2 , so that should be a fixed

point of T . Then, note that f2r has a repelling fixed point at r−1
r , so that should be

mapped to the repelling fixed point at 0 of fr′ . In the end we can define our map
as follows:

(2.13) T : x 7→ 1

2− r
(xr − r + 1), T−1 : x 7→

(
2

r
− 1

)
x− 1

r
+ 1,

(Rf2r )(x) = T (f2r (T
−1(x))).

This new function is called a renormalization of f2r . There’s one small problem
with our renormalization: it’s not quadratic. That is, it’s not actually equal to fr′

for any r′. We can work around this, though.

Definition 2.14. A quadratic-like map is a differentiable map f : U → U ′ such
that

• U and U ′ are open and connected and U is compactly contained in U ′

(there exists an compact set K such that U ⊂ K ⊂ U ′).
• f contains a single critical point, and for all other points f is a 2-to-1
mapping.

Definition 2.15. A quadratic polynomial f is renormalizable if for some fn where
n > 1 there is a domain restriction such that fn is a quadratic-like map.

When this quadratic-like map has an attracting fixed point, then our fr has an
attracting cycle of period 2, so we can add that to our plot.

Figure 8. The 2-cycles.

For r > 1 +
√
6, the fixed point of the quadratic-like map becomes repelling.

What happens next?
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Figure 9. The 4-cycles.

Amazingly, just as our original fixed point of fr became a 2-cycle at r = 3, our
fixed point of the renormalized quadratic-like map becomes a 2-cycle at r = 1+

√
6,

causing fr to have a 4-cycle. By coarse-graining in time, since our renormalized
map is so close to the original map, the cycles just continue to double. Our 4-cycle
becomes an 8-cycle, 16-cycle, and so on. This period-doubling cascade continues to
infinity.

Figure 10. The period-doubling cascade.

“Infinity”, as it turns out, occurs at r ≈ 3.56995. After this point, chaos ensues.

Figure 11. Our final plot.



10 RYAN O’FARRELL

There are points where there is a stable 3-cycle (visible in the plot), 5-cycle, or (as
it turns out) n-cycle for any n, corresponding to points where fnr is renormalizable.
In fact, the set of parameters where there is a finite stable cycle is open and dense
(Theorem 6.11). However, typically (measure-wise) there is no stable cycle at all,
and this continues until r = 4, past which the interval [0, 1] no longer maps into
itself.

Let’s take a closer look at that period-doubling cascade, though.

3. Feigenbaum Universality

In 1975, Mitchell Feigenbaum discovered something striking: if you measure the
distance between two period doublings, the ratio of consecutive distances appeared
to converge to a constant value δ = 4.669 . . .

Figure 12. dn

dn+1
→ δ ≈ 4.669 . . .

But wait, there’s more! This same constant seemed to appear no matter which
family of quadratic-like maps was considered.

Figure 13. Bifurcation diagram for gr(x) = r
4 sin(πx). Notice

the similarities.

Seeing this behavior, he proposed a set of conjectures that would explain it. To
make sense of these conjectures, it would be a lot easier if our critical point was at
0. Fortunately,
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Theorem 3.1. A map of the form fr(x) = rx(1 − x) with r > 2 is conjugate to

exactly one map of the form gµ(x) = 1− µx2 with µ = r2

4 − r
2 .

Proof. Verify that with

T (x) =
2

r − 2
(2x− 1)

we have that gµ = T ◦ fr ◦ T−1. □

We can then define a renormalization operator similar to (2.13) which acts on a
very particular space.

Notation 3.2. Let h be an analytic even map with h(0) = 1 and xh′(x) < 0.
Denote by B the space of all such h.

Every gµ is in B, and in general elements of B are even and have a single “peak”
at 0. If h is renormalizable (in the sense of Definition 2.15) then we can define a
renormalization operator R on B as follows:

(Rh)(x) = 1

h(1)
h2(h(1)x)

Feigenbaum conjectured three things about R, all of which were later proven.

Theorem 3.3. R has an analytic fixed point ϕ.

Theorem 3.4. The derivative of R at ϕ has one eigenvalue equal to δ ≈ 4.669 > 1,
and all other eigenvalues lie in the open unit disk.

Just as in Key Idea 1.5, this would imply that the unstable manifold Wu is
one-dimensional.

Theorem 3.5. The unstable manifold intersects the space of functions h such that
h(1) = 0 transversally.

Functions in this space are called superstable.

Definition 3.6. A quadratic-like map is called superstable if the critical point is
part of an attracting cycle.

The proposed mechanism is follows. Theorem 3.3 guarantees that we have a
fixed point ψ of our renormalization operator in B. By Theorem 3.4, we have a
local unstable manifold of dimension 1 around our fixed point and a local stable
manifold of codimension 1 (effectively the whole space minus one dimension). By
Theorem 3.5 the unstable manifold extends to intersect the superstable manifold.

Now consider any family of functions that intersects both the stable and super-
stable manifold. The action of R on this family “drags” it closer to the unstable
manifold. For any parameters sufficiently close to the fixed point along the unstable
manifold, the action of R “stretches” it by a factor of δ.

Consider the set of all parameters such that the function has an attracting 2n-
cycle for n ≫ 1. Sufficient iteration of R will map these parameters extremely
close to the unstable manifold and to functions with 2m-cycles, with 1 ≪ m < n.
Once sufficiently close to the unstable manifold, the action of R will both map
these functions to functions with 2m−1-cycles and stretch them out by a factor of
δ. Therefore, no matter what the starting family is, the “width” of the parameters
corresponding to 2m−1-cycles will always be δ = 4.669 . . . times greater than the
“width” of the parameters corresponding to 2m-cycles.
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Figure 14. The action of R on our space.

The proofs presented here will mostly follow [2] with details filled in. The overall
theme of these proofs is to first use a computer to approximate our desired property,
and then use rigorous bounds and estimates to say “Well, it’s got to be in there
somewhere!”

Proof of Theorem 3.3. Our first step is to guess. We can use a computer to generate
the polynomial

ψ0(x) = 1− (1.5276329970 . . .)x2 + (0.1048151947 . . .)x4+

· · ·+ (−2.7730511607 . . . · 10−10)x20

The full list of coefficients is [2].
This is pretty close to a fixed point. How close? Well, we first have to define a

norm. We can associate any element ψ of B to an element (u, (vn)) of (R× ℓ1) by
the following:

ψ(x) = 1− x2

(
u

10
+

∞∑
n=1

vn

(
x2 − 1

2.5

)n
)
,

where we single out that first coefficient for convenience. We can then define the
norm

|ψ| = |u|+
∑

|vn|
We need this weird norm because most norms aren’t “strong enough” to give us the
bounds we want. Specifically B is complete under this norm, which follows from
the completeness of ℓ1. This fact will come in handy later.

Next, take the derivative of R at ψ.
Wait, what? Derivative of an operator? What does that mean? We can think of

R as a function from R× ℓ1 to R× ℓ1. In this way, we can write DR as a (block)
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matrix [
α(ψ) β(ψ)
γ(ψ) δ(ψ)

]
where α is a real number, β is a linear map ℓ1 → R, γ is in ℓ1, and δ a linear map
ℓ1 → ℓ1.

To find a fixed point, we just need to solve Rψ − ψ = 0. Inspired by Newton’s
method, we might take a look at the map

Φ̃(ψ) = ψ − (DR− 1)−1(Rψ − ψ)

We can replace DR with the approximation

DR ≈
[
4.669 0
0 0

]
=⇒ (DR− 1)−1 ≈

[
1

3.669 0
0 −1

]
= J

and define

Φ(ψ) = ψ − J(Rψ − ψ).

Note that since J is invertible, any fixed point of Φ must solve Rψ − ψ = 0, so it
must also be a fixed point of R.

Lemma 3.7. Φ is a contraction mapping on the ball |ψ − ψ0| ≤ 0.01.

Proof. Note that

DΦ = 1− J(DR− 1).

We’re going to need to use two estimates that, while beyond the scope of this paper,
can be obtained by very careful computing. The first one is

Estimate 3.8. If |ψ−ψ0| < 0.01 then |α− 4.669| < 0.148, |β| < 0.560, |γ| < .756,
and |δ| < .719.

Using careful calculation, we can find the operator norm of DΦ.

Definition 3.9. The operator norm of DΦ is the maximum value of |(DΦ)(x)|
|x| . In

essence, it’s the maximum “stretch” of the input values.

Writing x = (u, vn) we have that

|(DΦ)(x)| = |(1− J(DR− 1))x)|

=

∣∣∣∣(1−
[

1
3.669 0
0 −1

] [
α− 1 β
γ δ − 1

])[
u
vn

]∣∣∣∣
=

∣∣∣∣([1 0
0 1

]
−
[

α−1
3.669

β
3.669

−γ 1− δ

])[
u
vn

]∣∣∣∣
=

∣∣∣∣[ 4.669−α
3.669

−β
3.669

γ δ

] [
u
vn

]∣∣∣∣
=

∣∣∣∣[ 4.669−α
3.669 u− β

3.669vn
γu+ δvn

]∣∣∣∣ = 1

3.669
|(4.669− α)u− βvn|+ |γu+ δvn|

≤ 1

3.669
(0.148|u|+ 0.560|vn|) + 0.756|u|+ 0.719|vn|

< 0.9(|u|+ |vn|) = 0.9|x|.
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so |DΦ| < 0.9. Thus, Φ “squishes” the space by at least a factor of 0.9. To show
that it is a contraction mapping, we just need to show that it maps the ball into
itself, which can be shown by demonstrating that

|Φ(ψ0)− ψ0|
1− 0.9

< 0.01

In fact, we have

Estimate 3.10. |Φ(ψ0)− ψ0| < 4 · 10−6.

Since our guess ψ0 is so close to a fixed point, Φ is indeed a contraction mapping,
proving the lemma. □

Since B is complete under this norm, by the Banach Fixed-Point Theorem and
Lemma 3.7, we immediately know there is an analytic fixed point within the ball,
proving Theorem 3.3. □

Proof of Theorem 3.4. Seeing that DR has an expanding subspace is easy. Note
that even with the worst-case estimate |(DR)(1, 0)| > |(1, 0)|. To see that this
subspace is one-dimensional, consider the operator

D̃ =

[
1

100 0
0 1

] [
α β
γ δ

]
=

[
α
100

β
100

γ δ

]
.

In a similar way to the proof of Theorem 3.3 it can be seen that D̃ is a contraction
mapping, so its spectrum is entirely contained in the unit disk. Since[

100 0
0 1

]
only expands in one dimension, the operator

DR =

[
100 0
0 1

]
D̃

can only expand in at most one dimension. □

Proof of Theorem 3.5. In fact, it’s possible to construct the unstable manifold
explicitly. However, this relies on an entirely separate set of more complicated
numerical estimates. Details are in [3]. With this last detail filled in, this completes
the proof of the Feigenbaum conjectures. □

4. Complex Dynamics

We’re left with one dangling thread. What about the proof of Theorem 2.9?
We’re going to need to dive into the world of complex-valued functions.

The complex plane C is big. It would be nicer if there was a way to curl it up
into something more manageable. Fortunately, we can use stereographic projection,
which maps C to the unit sphere.

The idea is to place a unit sphere centered at 0 in the complex plane. To figure
out where a point Z on the plane maps to, draw a line from the north pole towards
Z. This line intersects the sphere at exactly one place, which is the image under
stereographic projection.



RENORMALIZATION AND UNIVERSALITY IN DYNAMICS 15

Figure 15. Stereographic projection maps Z to P . [4]

If Z = x+ yi, the image of Z is given by

Z 7→ 1

1 + |Z|2
(2x, 2y, |Z|2 − 1) ∈ R3.

We don’t get the whole sphere, though. We’re missing the north pole, and
something interesting happens when we fill it in. Any sequence that diverges (to
infinity) in the complex plane converges on the sphere to the north pole. In a sense,
the north pole acts like a “point at infinity”.4 What we’ve created is C∪{∞}, called
the Riemann sphere or Ĉ.

Figure 16. The Riemann sphere. [5]

What makes the stereographic projection nice is that it’s conformal, which means
it preserves angles and orientations. Conformal maps are very important in complex
analysis for the following reason.

Theorem 4.1. A map f : U ⊆ Ĉ → V ⊆ Ĉ is conformal at z0 if it is holomorphic
(complex differentiable, equivalently analytic) at z0 and f ′(z0) ̸= 0.

Proof. What it means for a function to be holomorphic at z0 is that in a neighbor-
hood around z0 it locally “looks like” multiplication by the complex number f ′(z0),

4If you’ve been fed the lie that “infinity is not a number”, I would recommend looking into
projective geometry, a field which deals with ∞ just like any other number.
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which when f ′(z0) ̸= 0 “looks like” scaling and rotation, which are both conformal,
which means that f is locally a conformal map at z0. □

The Riemann sphere lets us see what’s so special about Möbius transformations.

Theorem 4.2. Möbius transformations are the only conformal homeomorphisms
from Ĉ to itself.

Proof. We can see that they are conformal homeomorphisms by noting that if
f = az+b

cz+d with ad− bc ̸= 0, then f is bijective and differentiable with5

f−1(z) =
dz − b

−cz + a
, f ′(z) =

ad− bc

(cz + d)2
.

Since f ′(z) exists and is nonzero everywhere (even at ∞), f is a conformal homeo-
morphism.

The proof that these are the only ones is trickier. The two key ingredients are

Theorem 4.3. If f : Ĉ → Ĉ is a holomorphic map then f is a rational function

of the form P (z)
Q(z) , where P and Q are polynomials.

Definition 4.4. The degree of a rational map is the maximum of the degrees of P
and Q

Theorem 4.5. A rational map of degree d has exactly d preimages for every point
up to multiplicity.

These results will not be proven here, but together they rule out every other
type of function from being a conformal homeomorphism. □

Now that we have a sensible picture of “converging to infinity”, we can take a
look at what small neighborhoods look like under iteration. Some neighborhoods
stay bounded while others don’t.

(a) Neighborhoods that stay
bounded on the sphere.

(b) Neighborhoods that become un-
bounded.

Figure 17. Neighborhoods under iteration of z 7→ z2

5If these look “matrix-y” to you, you’d be right. The key word is PGL(2,C).
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We can formalize this with equicontinuity.

Definition 4.6. A family of functions {fn} is equicontinuous if for every ϵ > 0,
there exists one δ such that for each member of the family

d(x, y) < δ =⇒ d(fn(x), fn(y)) < ϵ.

The metric d being used is the chordal metric, the straight-line distance through
the Riemann sphere.

Definition 4.7. The Fatou set F of f is the largest open subset of Ĉ such that
the iterates {fn} are equicontinuous on that set.

Definition 4.8. The Julia set J of f is the complement of the Fatou set.

Remark 4.9. On the Fatou set, small neighborhoods tend to “stick together”
and have the same limiting behavior. On the Julia set, small neighborhoods tend
to “drift apart” and in a sense (Corollary 4.16) behave almost as chaotically as
possible.

Corollary 4.10. Attracting cycles are in F and repelling cycles are in J .

Theorem 4.11. F and J are “completely invariant”. If x ∈ F , then f(x) ∈ F
and f−1(x) ⊂ F , and similarly for J .

Proof. Follows from the definition. Adding or removing one function from the
family does not change equicontinuity. □

Theorem 4.12. If deg f ≥ 2, then J is nonempty and infinite.

Proof. First, assume that J is empty. Then {fn} is equicontinuous on Ĉ, so we can
use a variant of the Arzela-Ascoli theorem to say that a subsequence (fni) converges
to a rational map R. Since the degree function is continuous ([6]), deg(fni) →
degR. However, the left side diverges to ∞, which is a contradiction because the
right side is finite. Thus, we have at least one point z0 ∈ J .

Next, assume the complete orbit of z0 is finite. If deg f ≥ 2, then we know each
point in the orbit has to be a critical point, since otherwise it would have 2 or more
preimages. However, then it would form an attracting cycle (since the derivative
of the map at the critical point is 0), which means it would be in F . Thus, the
complete orbit is infinite, so J is infinite. □

Remark 4.13. Note that the previous result is not true for F . The Lattés map

z 7→ (z2 + 1)2

4z(z2 − 1)

has an empty Fatou set [6].

Let’s take a look at what the Julia set for one of our logistic map equations looks
like. For f3.2, we know the repelling fixed points at x = 0 and x = 11

16 are in J , and
since f(1) = 0, 1 ∈ J . What about complex-valued inputs?
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Figure 18. Computer-generated Julia set for f3.2 in the complex
plane.

Wow.
Before we prove Theorem 2.9, we need one last fact about critical points.

Theorem 4.14. z is a critical point of f ⇐⇒ f is not locally injective at z.

Proof. If f ′(z) = λ ̸= 0, then f can be expanded locally as f(z + h) ≈ f(z) + λh,
which is injective. If f ′(z) = 0, then f can be expanded locally as f(z + h) ≈
f(z) + chd for d > 1, which is a d-to-1 mapping and so is not injective. □

With all of that said, we’re finally ready for the proof of Theorem 2.9.

Proof of Theorem 2.9. First, note that a critical point falling into an attracting
n-cycle of f is equivalent to a critical point falling into an attracting fixed point
of fn. Therefore, we only need to consider attracting fixed points instead of n-
cycles. If our attracting fixed point happens to be a critical point, then we’re done.
Otherwise, consider a small ball B around the fixed point. Since the Fatou set is
open, we can choose to make this ball entirely in F .

Next, we can take a look at the preimage of B under f . Note that any polynomial
of degree d is a d-to-1 mapping except at critical points. Assuming the preimage
doesn’t contain a critical point, the branches of this preimage are disjoint. Let us
choose the branch of f−1 that maps the fixed point to itself. We can then repeat
this to form an infinite family (f−n).

Note that by complete invariance f−n(B) contains none of the points in the Julia
set. This means we can use an incredibly powerful theorem.

Theorem 4.15. (Montel’s Theorem, or the Fundamental Normality6 Test) Any

family of holomorphic functions on an open domain D ⊆ Ĉ whose ranges all do not
include at least three points is equicontinuous.

Proof. Long. Included in [7]. □

This theorem can seem very counterintuitive since there is no analog for real
functions. I highly recommend taking a moment to consider families of holomor-
phic functions to get a feel for it. For example, take the family {zn}. It can be
verified that any open domain D that doesn’t intersect the unit circle z = eiθ is

6“Normal” in this context means equicontinuous on compact sets. I have avoided using it in
this paper because it is perhaps the most overloaded word in mathematics.
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equicontinuous with respect to the spherical metric. However, if D intersects the
unit circle, then the family is no longer normal, and so

⋃∞
n=0D

n ends up being

almost the entirety of Ĉ, with the only possible exceptions being 0 and ∞ if they
are not included in D.

In fact, there is a straightforward corollary of Montel’s theorem.

Corollary 4.16. (“Stuff Goes Everywhere”7) If W is an open set that contains at
least one point in J then

∞⋃
n=0

fn(W )

contains every point in Ĉ with at most two exceptions.

Proof. Since W intersects the Julia set, Rn must not be equicontinuous on W .
Therefore, the images of fn cannot exclude three or more points in the complex
plane. □

Returning to our proof, since every (f−n) misses the Julia set, which contains at
least three points, they form an equicontinuous family. However, if our fixed point
is z0 it follows from the Chain Rule that

0 < |f ′(z0)| = λ < 1

|(f−1)′(z0)| = λ−1

|(f−n)′(z0)| = λ−n → ∞
which contradicts equicontinuity. By this contradiction, a critical point must be in
the basin of attraction. □

5. The Mandelbrot Set

We are slowly inching back towards the question of which values of r cause fr
to have an attracting cycle. However, now we can include complex values of r. To
make things easier, we’ll conjugate our map again.

Theorem 5.1. A map of the form fr(x) = rx(1 − x) with r > 2 is conjugate to

exactly one map of the form qc(z) = z2 + c with c = r
2 − r2

4 .

Proof. Verify that with T : z 7→ −rz + r
2 we have that

qc = T ◦ fr ◦ T−1.

□

Since 0 is the only critical point of qc, by Theorem 2.9, we only need to look at
the forward orbit of 0 to find an attracting cycle. Consider the set

(5.2) M ′ = {c ∈ C | 0 falls into an attracting cycle of qc}.
This set ends up being annoying to work with, so we can consider the similar set

(5.3) M = {c ∈ C | the forward orbit of 0 under qc stays bounded}.
The set M is called the Mandelbrot set. M is similar toM ′, and it can be seen that
M ′ ⊂M , but M also contains points like i where the orbit of 0 is periodic but not
attracting.

7Named by mathematics YouTuber 3Blue1Brown.
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Figure 19. Julia set and forward orbit of 0 for z 7→ z2 + i.

The definition is equivalent to 0 being in the filled Julia set.

Definition 5.4. The filled Julia set K is the set of all points that remain bounded
under iteration. It includes the Julia set and bounded components of the Fatou set.

What does M look like?

Figure 20. The Mandelbrot set (black region). Color added for
dramatic effect.8 [8]

Wow. Let’s zoom in.

8Not really. The color represents the escape time for points in MC . Blue points diverge faster
than orange points.
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Figure 21. Right plot is a scaled version of the left plot.

It’s a small copy of our Mandelbrot set! To find out what’s so special about this
location, we can use Theorem 5.1 and plot the special points of the logistic map on
our Mandelbrot set.

Figure 22. Notable points.

It seems like our mini-Mandelbrot corresponds somehow to the period 3 cycle!
In fact, there is a general connection between attracting periodic cycles and home-
omorphisms of the Mandelbrot set, and we can use renormalization to study these
attracting cycles. Specifically, in analogy with the real case, we can define a renor-
malization operator that sends a neighborhood of points to a family of quadratic-like
maps.

In this case, our renormalization just consists of picking the right domain U . We
don’t need to worry about rescaling since it doesn’t affect the dynamics. These
quadratic-like maps are not conjugate to any quadratic polynomial. However, they
can get pretty close. For complex functions f that are not necessarily conformal
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we can define two operators called the Wirtinger derivatives:

∂f =
1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂̄f =
1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

If f is conformal then by the Cauchy-Riemann equations we have that ∂f = f ′ and
∂̄f = 0. We can check if any function satisfies the Beltrami equation for some µ(z):

∂̄f = µ(z)∂f.

For any conformal map, µ = 0 everywhere. If µ ̸= 0, then it measures how far a
function is from being conformal. The case we’re interested in is

Definition 5.5. A function f is quasiconformal if it satisfies the Beltrami equation
and |µ|sup < 1.

Conformal maps send small circles to small circles. Quasiconformal maps send
small circles to small ellipses with bounded eccentricity.

We can do slightly better than just replacing our Möbius transformations with
quasiconformal maps, though.

Definition 5.6. Two quadratic-like maps g and h are hybrid equivalent if there
exists a quasiconformal map ϕ such that ϕ ◦ g ◦ ϕ−1 = h and ∂̄ϕ = 0 almost
everywhere on the filled Julia set of g.

These hybrid equivalences turn out to be just rigid enough to give us an incredibly
useful result first stated in [9].

Theorem 5.7. (the Straightening Theorem) Every quadratic-like map is hybrid
equivalent to a unique quadratic polynomial up to (conformal) conjugacy.

We call the map χ that sends a quadratic-like map to its hybrid-equivalent
quadratic of the form z2 + c the straightening map. With this, we can state our
most powerful universality result. Consider a family f = {fλ : Uλ 7→ U ′

λ} of
quadratic-like maps, where λ is a parameter in some closed Jordan disk Λ (a subset
of the parameter space homeomorphic to the closed unit disc with a boundary that
is a Jordan curve). Suppose this family satisfies the following conditions:

• The disks Uλ and U ′
λ move holomorphically over λ

• The family is proper in that fλ(0) ∈ ∂U ′
λ for all λ ∈ ∂Λ.

• The family is unfolded in that the critical value fλ(0) winds once around 0
as λ goes around ∂Λ.

In this case, we can define a Mandelbrot-like set Mf ⊆ Λ as the set of all λ such
that 0 is in the filled Julia set of fλ, which for quadratic-like maps means the set
of all points that stay within U under iteration. Then

Theorem 5.8. There exists a homeomorphism of Λ onto a neighborhood of M
that coincides with a homeomorphism of Mf onto M . Moreover, this homeomor-
phism is given exactly by the straightening map χ and is conformal on int M and
quasiconformal on Λ \M .

Ths result is given in [10]. This shows that the Mandelbrot set is “universal” in
the sense that any other Mandelbrot-like set is topologically equivalent to M .
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Just as in the real case, if a qc has an attracting k-cycle, then qkc can be renor-
malized to a quadratic-like map with a suitable choice of domain. Note that we’re
ignoring the “scaling” factor in the real case, since it doesn’t affect the dynamics.
We can define

Definition 5.9. A hyperbolic component H of intM is one where every parameter
c ∈ H has an attracting cycle.

If we apply this renormalization procedure and then straighten, we get a new map
χ̃ that sends qc in some hyperbolic component to a different qc′ . The center of this
hyperbolic component is the value c0 that will be mapped by χ̃ to 0. The behavior
of the Mandelbrot set around the hyperbolic components depends specifically on
the value c1 such that χ̃(qc1) = q 1

4
.

Definition 5.10. If c1 borders a hyperbolic component other than the one with
center c0, then it is a satellite component. Otherwise, it is a primitive component.

Figure 23. Examples of primitive (green) and satellite (yellow)
components.

Theorem 5.11. (Tuning Theorem for primitive components) If W is a primitive
component of M , then there exists a closed Jordan disk Λ in a neighborhood of W
such that renormalizations of {qc | c ∈ W} form a Mandelbrot-like family. Thus,
W is homeomorphic to M by the χ, and this homeomorphism is conformal on int
M and quasiconformal on Λ \M .
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The crux of the proof is in the construction of suitable Uc, U
′
c, and Λ, which relies

on the theory of external rays. This construction is only possible for quadratic-like
maps, since for polynomial-like maps of higher degree (defined analogously), the
filled Julia sets depend discontinuously on the parameter. It’s therefore impossible
to choose the Uc so they vary holomorphically. Details of the proof can be found
in [11] and[12], with a proof of conformality and quasiconformality in [13].

Theorem 5.12. (Tuning Theorem for satellite components) If W is a satellite
component of M , then there exists a Jordan disk Λ in a neighborhood of W \ c1
such that χ̃ induces a homeomorphism between Mf and M − { 1

4}.

This proof is very similar to the previous one. Together, these let us get a very
clear picture of the self-similarity of the Mandelbrot set.

6. The MLC Conjecture

Despite all that we can say about the structure of the Mandelbrot set, there’s
one question about it that has eluded mathematicians so far, and it has become
one of the most important open problems in complex dynamics.

Conjecture 6.1. (The MLC conjecture) The Mandelbrot set is locally connected.

This last section is intended to provide a survey of implications and partial
results regarding the MLC conjecture. Here are some interesting implications.

Theorem 6.2. (Density of Hyperbolicity) MLC =⇒ M ′ (as defined in 5.2) is
exactly the interior of M .

Proof. Requires almost 200 pages of background. Given in [14]. □

Theorem 6.3. MLC ⇐⇒ a homeomorphism f : Ĉ−D → Ĉ−M extends to give
a computable Fourier series for the boundary of M .

Proof. The Laurent series for this map f is known, proven and given in [15].

(6.4) f(z) = z +

∞∑
n=0

bnz
−n = z − 1

2
+

1

8
z−1 − 1

4
z−2 + · · ·

The Fourier series would then be given by f(eiθ). The double implication is a
consequence of the Carathéodory-Torhorst theorem. □

This result is particularly impressive because

Theorem 6.5. [16] The boundary of M has Hausdorff dimension 2.

The Lebesgue measure is still unknown, but in a sense it’s as complicated as a
boundary in the plane can be. The last section of this paper will detail some partial
results towards MLC.

Theorem 6.6. The Mandelbrot set is connected.

Proof. Follows from (6.4), but first we need two lemmas.

Lemma 6.7. M is compact
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Proof. It suffices to show that M is closed and bounded in C. To see that it is
bounded, note that if |c| > 2 then the forward orbit of 0 under qc tends to ∞, so
M is a subset of the closed ball |c| ≤ 2.

To see that it is closed, consider qnc (0). This will always be a polynormial in
terms of c. For example,

qc(0) = c,

q2c (0) = c2 + c,

...

qn+1
c (0) = (qnc (0))

2 + c.

Denote Pn(c) = qnc (0). c ∈MC is equivalent to there being an n such that |Pn(c)| >
2. Thus, if W = {z ∈ C | |z| > 2}, we can write

MC =

∞⋃
n=1

P−1
n (W ),

which is the union of open sets. Therefore, MC is open, which implies that M is
closed. □

Lemma 6.8. If the complement E of a simply connected subset of Ĉ is compact,
then it is connected.

Proof. Since E has n > 1 connected components, all of which are compact, we
can use stereographic projection to send one of the components to a neighborhood
around ∞. We then have n− 1 connected components in the plane whose comple-
ment is simply connected. Since each of the components has an open neighborhood
that is disjoint from the others, it’s easy to draw a loop inside both one of the
neighborhoods and EC that can’t be contracted to a point, which is a contradic-
tion. □

Remark 6.9. The “compact” requirement is not necessary. In fact, some sources
in complex analysis define simple connectedness as having a connected complement
in Ĉ.9

Since Ĉ−M is homeomorphic to Ĉ−D by (6.4) and therefore simply connected,
M is connected. □

Our next result connects the MLC conjecture to renormalization.

Theorem 6.10. (Yoccoz) The Mandelbrot set is locally connected at all points that
are not infinitely renormalizable.

This result is found in [17]. By Theorem 5.7 any point in a hyperbolic com-
ponent is finitely but not infinitely renormalizable. An example of an infinitely
renormalizable component is the Feigenbaum parameter c = −1.401155 . . ., which
corresponds to the logistic map with r = 3.56995 . . .. This function was on the
stable manifold, so iterations always stayed in the domain of the renormalization
operator. For all real values of c, though, we also have a partial result in the style
of Theorem 6.2.

9This is so they can partake in the time-honored tradition of hand-waving away the full proof
as “algebraic topology mumbo jumbo”. This tradition will be honored here.
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Theorem 6.11. [18] Hyperbolic parameters are dense in [−2, 14 ] on the real line.
Equivalently, the values of r such that fr has an attracting cycle form an open and
dense set in [0, 4]

Despite the regime past the Feigenbaum parameter seeming “chaotic”, there is
actually an open, dense set of non-chaotic periodic parameters.

There are more parameters whereM is known to be locally connected. However,
despite all of this progress, the full MLC conjecture remains a mystery.
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