
RATIONAL POINTS OF FINITE ORDER ON ELLIPTIC CURVES

MINH-ANH NGUYEN-DANG

Abstract. This paper discusses Rational Points of Finite Order on Elliptic

Curves. Assuming minimal knowledge, this paper goes over the basics of

Projective Geometry, then discusses special points on Elliptic Curves, and

concludes with the Nagell-Lutz Theorem.
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1. Projective Geometry

1.1. Projective Plane. To get an intuitive understanding of the projective plane,

we will discuss both algebraic and geometric definitions of the plane. We will first

start with the algebraic definition.

1.1.1. Algebraic Definition.

Definition 1.1. Let F be a field. The projective plane P2 is the set of equivalence

classes [a, b, c] with a, b, c not all zero and a, b, c ∈ F. Define the equivalence relation

∼ of P2 as

[a, b, c] ∼ [a′, b′, c′] if a = ta′, b = tb′, c = tc′ for some nonzero t.

More generally,
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Definition 1.2. Let n ∈ N. The projective n-space is the set of equivalance classes
of homogeneous n+ 1 tuples:

Pn =
{[a0, a1, ..., an] | a0, a1, ..., an not all zero}

∼
where a0, a1, ..., an ∈ F.

Definition 1.3. A line in P2 is the set of points [a, b, c] ∈ P2 whose coordinates

satisfy an equation of the form

αX + βY + γZ = 0.

1.1.2. Geometric Definition. We have the affine plane A2 as

A2 = {(x, y) | x, y ∈ F}.

Definition 1.4. Thus we define the projective plane to be

P2 = A2 ∪ {the set of directions in A2}.

Definition 1.5. We say a point A is a point at infinity when it is in P2 but not in

A2–these points are associated with directions in A2.

So, a line in P2 then consists of a line in A2 together with the point at infinity

specified by the line’s direction. In the affine plane, two lines are parallel if and

only if they have the same direction. Therefore, in P2, two ”parallel lines” meet at

the point of infinity corresponding to their common direction. Thus there are no

parallel lines at all in P2.

Now we will inspect the set of directions in A2. Since every line in A2 is parallel

to a unique line through the origin, these lines through the origin are given by the

equation

Ay = Bx

with A and B not both zero. Note that, a pair of points (A′, B′) can produce the

same line as (A,B) if A′ = tA and B′ = tB for some t. Therefore, the set of

directions in A2 is naturally described by the set of points [A,B] in P1.

Thus we have

P2 = A2 ∪ P1.

1.1.3. Relating the two definitions together. We associate a point (x, y) ∈ A2 to

the point [x, y, 1] ∈ P2. Similarly, a point [a, b, c] ∈ P2 with c ̸= 0 corresponds to

(ac ,
b
c ) ∈ A2. The points where c = 0 belong to P1.

Now, we will check that the lines match up. A line L ∈ P2, according to definition

(1.3) is the set of solutions [a, b, c] to the equation

αX + βY + γZ = 0.

If α and β are not both zero, then any point [a, b, c] ∈ L with c ̸= 0 is sent to

the point (
a

c
,
b

c

)
on αx+ βy + γ = 0 in A2.
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The point [−β, α, 0] ∈ L is sent to the point in P1, which corresponds to the

direction of the line −βy = αx, which is the line parallel to L.

Now, if α and β are both zero, then L : Z = 0, which is the line that contains

all points at infinity in P2.

1.2. Curves in the Projective Plane.

Definition 1.6. A polynomial F (X,Y, Z) is called a homogeneous polynomial of

degree d if it satisfies

F (tX, tY, tZ) = tdF (X,Y, Z).

The above identity also means that F is a linear combination of monomials

XiY jZk with i+ j + k = d.

Definition 1.7. A projective curve C in P2 to be the set of solutions to a polynomial

equation

C : F (X,Y, Z) = 0,

where F is a non-constant homogeneous polynomial. The degree of the curve is the

degree of the polynomial F .

1.2.1. Dehomogenization. If we define a new, non-homogeneous polynomial f(x, y)

as

f(x, y) = F (x, y, 1),

then the curve f(x, y) = 0 is called the affine part of C.

For a curve C : F (X,Y, Z) = 0, we can write C as the union of its affine part

C0 : f(x, y) = 0 and points pertaining to C0’s direction. The process of replacing

the homogeneous polynomial with its affine part is called dehomogenization.

1.2.2. Homogenization. Given a polynomial f(x, y) and its corresponding curve C0,

we want to find the projective curve C whose affine part is C0. This is equivalent

to finding the polynomial F (X,Y, Z) such that F (X,Y, Z) = f(x, y).

We have f(x, y) =
∑
aijx

iyj . The degree of f , say d, is the largest value of i+ j

for which the coefficient aij is not zero.

Then, the homogenization of a polynomial f(x, y) of degree d is defined to be

F (X,Y, Z) =
∑
i,j

aijX
iY jZd−i−j .

We see that F is homogeneous with degree d, F (x, y, 1) = f(x, y), and our choice

of d ensures that F (x, y, 0) ̸= Z = 0, so it does not contain the line at infinity.

Through dehomogenization and homogenization, we have established a one-to-

one correspondence between a polynomial’s affine part and projective part.

1.2.3. Tangent line to a curve. If C : f(x, y) = 0 is an affine curve, then implicit

differentiation gives the relation

∂f

∂x
+
∂f

∂y

dy

dx
= 0.
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The tangent line to C at the point (r, s) is given by

∂f

∂x
(r, s)(x− r) +

∂f

∂y
(r, s)(y − s) = 0.

Definition 1.8. A singular point P of a curve C : f(x, y) = 0 if

∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

Definition 1.9. We say the curve C is smooth (or non-singular) if every point on

the curve is smooth.

If C is a curve given by an equation C : f(x, y) = 0, then we factor f into a

product of irreducible polynomials

f(x, y) = p1(x, y)p2(x, y)....pn(x, y).

The irreducible components of curve C are the curves

p1(x, y) = 0, p2(x, y) = 0, ..., pn(x, y) = 0.

If C1 and C2 are two curves, we say that C1 and C2 have no common components

if their irreducible components are distinct.

2. Points on Elliptic Curves

2.1. Point at Infinity on Elliptic Curves. We are considering F = R.
Given a Weierstrass equation

(2.1) y2 = x3 + ax2 + bx+ c,

by letting x = X
Z and y = Y

Z , we get a homogeneous equation:

(2.2) Y 2Z = X3 + aX2Z + bXZ2 + cZ3.

We now want to find the point at infinity O where the cubic (2.2) intersects the

line at infinity Z = 0. When Z = 0, we have X3 = 0, thus X = 0, and so we have

found the point at infinity O : [0, 1, 0]. We can easily check that O is non-singular.

Now, we see that the direction of the line X = 0 is orthogonal to the x−axis, so

all vertical lines (i.e. lines where x is constant) will meet at O per section 1.

So all lines intersect our cubic at three points: the infinity line meets the cubic

three times at O, vertical lines meet the cubic two times in the xy−plane and at

O, and any other line meets the cubic three times in the xy−plane. Note that, a

line tangent to a point P on the cubic will meet the cubic three times, all at P .

2.2. Group of Points on Elliptic Curves. We will prove that the points on the

cubic (2.1) form a group with O as the identity element.

Let P,Q be points on the cubic. Draw a line through P and Q, and denote the

third intersection with the curve as P ∗Q. Let + be an operation defined as follows:

P +Q = O ∗ (P ∗Q).

In words, P +Q is the third intersection point of the cubic and the line through O
and P ∗Q.



RATIONAL POINTS OF FINITE ORDER ON ELLIPTIC CURVES 5

By our definition, we see that + is a binary operation. We will now verify the

identity element O, the existence of inverses, and the associativity of the operation.

(1) O is the identity element:

Proof. Let P be a point on the cubic, and l be the line joining P and O.

Let P ∗ O be the third point of intersection between l and the cubic. We

see that O ∗ (P ∗O) = P , and so P +O = O ∗ (P ∗O) = P . □

(2) The existence of inverses:

Proof. Let P be a point on the cubic. Since a cubic in the Weierstrass

form is symmetric about the x−axis, let P ′ be the reflected point about

the x−axis.

We will show that P +P ′ = O. Indeed, the line l connecting P and P ′ is

vertical, therefore it goes through O and so O is the third intersection point.

Connecting O and O gives the line of infinity, and the third intersection is

again O. Therefore, P + P ′ = O ∗ (P ∗ P ′) = O ∗ O = O. □

(3) Associativity of the operation:

Let P,Q,R be points on the cubic. We want to prove that

(P +Q) +R = P + (Q+R).

Due to the way the operation + is defined, it makes sense for us to prove

(2.3) (P +Q) ∗R = P ∗ (Q+R).

On the left hand side, we have lines

• l1: connecting P and Q, and so contains P ∗Q
• l2: connecting P ∗Q and O, thus contains P +Q

• l3: connecting P +Q and R, thus contains (P +Q) ∗R.
On the right hand side, we have lines

• l4: connecting Q and R, and so contains Q ∗R
• l5: connecting Q ∗R and O, thus contains Q+R

• l6: connecting Q+R and P , thus contains P ∗ (Q+R).

Now, to prove (2.3), we want to prove the intersection K of l3 and l6

lies on the cubic. We observe that there are nine points in consideration

O, P,Q,R, P ∗Q,P +Q,Q ∗R,Q+R,K.

The first eight have already belong to the curve, and now we want the

ninth to also be on the curve. It is natural for us to use the Cayley-

Bacharach Theorem.

Theorem 2.4 (Cayley-Bacharach Theorem). Let C1 and C2 be projective

curves with no common components with respective degrees d1 and d2. Let

D be a curve in P2 with degree d1 + d2 − 3. If D passes through all but

one of the points in C1 ∩C2, then D must also pass through the remaining

point.
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We now want to construct C1 and C2 going through all nine points.

Through multiplying three linear equations we get a cubic equation–so by

multiplying the equations of l1, l3, l5 together and l2, l4, l6 together, we get

two cubics and two corresponding curves C1 and C2 that go through all

nine points. Since P,Q,R are all distinct points, the two curves C1 and C2

have no common components. Now, the original curve C goes through the

first eight, and so by the Cayley-Bacharach Theorem, C also goes through

the ninth.

Therefore, the operation + satisfies associativity.

2.3. Points of Order Two and Three.

Theorem 2.5. Let C be a non-singular cubic curve

C : y2 = f(x) = x3 + ax2 + bx+ c.

a. A point P : (x, y) ̸= O on C has order two if and only if y = 0.

Proof. P ̸= O is a point on C with order two if and only if 2P = O. This

means P = −P , so (x, y) = (x,−y), and therefore y = 0. □

b. The curve C has only four points of order dividing two. These four points

form a group that is a product of two cyclic groups of order two.

Proof. From part a, we conclude that points of order two are roots of f(x).

Since f(x) has three distinct roots due to the non-singularity of C, we

have three points P1, P2, P3 corresponding to the three roots, and so they

are points of order two.

Also, note that since O is the identity element of C, O also has order

dividing two.

Therefore, the curve C has four points of order dividing two: O, P1, P2, P3.

□

c. A point P : (x, y) ̸= O on C has order three if and only if x is a root of the

polynomial

ψ3(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2.

Proof. A point P : (x, y) ̸= O has order three if and only if 2P = −P ,
which means x(2P ) = x(−P ).

Using the duplication formula, we have the x−coordinate of a point 2P

equals:
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
.

and so since x(2P ) = x(−P ), we have

x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
= x.
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Multiplying each side with 4x3 + 4ax2 + 4bx+ 4c, we have

x4 − 2bx2 − 8cx+ b2 − 4ac = 4x4 + 4ax3 + 4bx2 + 4cx

and so

3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2 = 0,

which means x is the root of the polynomial

ψ3(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2.

□

d. The curve C has exactly nine points of order dividing three. These nine

points form a group that is a product of two cyclic groups of order three.

Proof. We have x(2P ) equals

f ′(x)2

4f(x)
− a− 2x,

and so since x(2P ) = x(P ), we can substitute into ψ3(x) and attain

ψ3(x) = 2f(x)f ′′(x)− f ′(x)2.

Now, we will prove that ψ3(x) has four distinct roots by showing that

ψ′
3(x) and ψ3(x) have no common roots.

We have

ψ′
3(x) = 2f(x)f ′′′(x) = 12f(x),

and so if ψ3(x) and ψ′
3(x) were to have a common root, it would be a

common root of f(x) and f ′(x), whicih is a contradiction to the fact that

C is non-singular.

Therefore, ψ3(x) have four distinct roots. Let x1, x2, x3, x4 be the four

distinct roots of ψ3(x) and yi =
√
f(xi) for i ∈ {1, 2, 3, 4}. From part c,

we know that the set

{(x1,±y1), (x2,±y2), (x3,±y3), (x4,±y4)}

is the complete set of points of order three on C. Also note that there are

no yi that can equal to 0, since that would mean the point would have order

two.

The only other point with order dividing three is O.

Finally, note that the group

{(x1,±y1), (x2,±y2), (x3,±y3), (x4,±y4),O}

is the product of two cyclic groups of order three. □

3. The Nagell-Lutz Theorem

Theorem 3.1. (Nagell-Lutz Theorem) Let

y2 = f(x) = x3 + ax2 + bx+ c
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be a non-singular cubic curve with integer coefficients a, b, c and let D be the dis-

criminant of the polynomial

D = −4a3 + a2b2 + 18abc− 4b3 − 27c2.

Let P = (x, y) be a rational point of finite order. Then x and y are integers, and

either y = 0 or y divides D.

We will tackle this theorem in several steps:

(1) We will show that if P = (x, y) is a rational point of finite order, then x

and y are integers.

(2) If P has order two, then y(P ) = 0, or we will show that y(P ) divides D.

3.0.1. Rational Points of Finite Order are Integers. Let P : (x, y) be a rational

point with finite order on the curve C for x = a
b and y = c

d . We will show that x

and y are integers by showing that for every prime number p, p ∤ b and p ∤ d.
Now, for every prime number p and a non-zero rational number x, we can express

x =
m

n
pv

for m,n are integers prime to p and the fraction m
n is at its lowest terms. We will

now introduce a definition:

Definition 3.2. The order of a rational number is the exponent v. This order

depends on the choice of p.

We will prove that rational points of finite order are integers through the follow-

ing proposition:

Proposition 3.3. Let p be a prime, and let R be the ring of rational numbers with

denominator prime to p. Let C(pv) be the set of rational points (x, y) on our curve

for which x has denominator divisible by p2v together with the point O.

a. C(p) contains all rational points (x, y) for which the denominator of either

x or y is divisible by p.

b. For every v ≥ 1, the set C(pv) is a subgroup of the group of rational points

C(Q).

We will first prove part a. We can easily see the inclusion

C(Q) ⊃ C(p) ⊃ C(p2) ⊃ ....

and now we will prove that if the denominator of y is divisible by p, then the

denominator of x is divisible by p2.

Let (x, y) be a rational point on the curve with the denominator of y divisible

by p. Thus we can express

x =
m

npi
and y =

u

wpk

where k > 0 and m,n, u, w are prime to p.
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Plugging this point into our cubic equation, we get

(3.4)
u2

w2p2k
=
m3 + am2npi + bmn2p2i + cn3p3i

n3p3i
.

Since p ∤ u2 and p ∤ w2,

(3.5) ord

(
u2

w2p2k

)
= −2k < 0.

Assume for the sake of contradiction that i ≤ 0, and so our right hand side of

(3.4) will have a non-negative order, which is a contradiction to (3.5). Therefore,

i > 0. Note that p ∤ m3, so

(3.6) ord

(
m3 + am2npi + bmn2p2i + cn3p3i

n3p3i

)
= −3i.

Combining (3.5) and (3.6), we get that 2k = 3i, so i is divisible by 2. Hence

i ≥ 2.

Turning to part b, since we want to prove that C(pv) is closed under the operation

+, we now want the point at infinity O at a finite place so we can perform the

operation more efficiently.

We hope to move the point of infinity O to the point (0, 0) through a change of

coordinates. Let

(3.7) t =
x

y
and s =

1

y
.

Then y2 = x3 + ax2 + bx+ c becomes

s = t3 + at2s+ bts2 + cs3

in the (t, s)-plane. We can check that the zero element O is at (0, 0) in the

(t, s)−plane. Note that the (t, s)−plane excludes points where y = 0, i.e., points of

order two.

Going from the (t, s)−plane back to the (x, y)−plane is also easy, as y = 1
s and

x = t
s . Therefore, there is a one-to-one correspondence between the (t, s)-plane and

the (x, y)-plane, except for points of order two.

Now we check if a line in the (x, y)−plane corresponds to a line in the (t, s)−plane.

Let y = λx+ v be a line in the (x, y)−plane. Divding the line by vy, we get

1

v
=
λx

vy
+

1

y
, so s = −λ

v
t+

1

v
.

Having checked both points and lines in the (t, s)−plane, we can ”add” points

in the (t, s)−plane under the same operation + in (x, y)−plane.

Now, let v ∈ N. Let (x, y) be a rational point in the (x, y)−plane lying in C(pv),

so we can write

x =
m

np2(v+i)
and y =

u

wp3(v+i)
.

Then

t =
x

y
=
mw

nu
pv+i and s =

1

y
=
w

u
p3(v+i).
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Until now we only have definitions that concern with p in the denominator, and

here we see p in the numerator. We also want to work with another structure bigger

than groups for the sake of convenience. Therefore it is natural to consider the ring

Rp which contains all rational numbers with no p in the denominator–one can easily

check that these rational numbers indeed form a ring. The units in R are just the

rational numbers with both the numerator and the denominator prime to p.

Thus our point (t, s) is in C(pv) if and only if t ∈ pvR and s ∈ p3vR. This means

pv divides the numerator of t and p3v divides the numerator of s. Moving to this

ring will enable us, as we will see later, to prove closeness of the operation more

seamlessly.

Let P1 = (t1, s1) and P2 = (t2, s2) be distinct points in C(p
v). We will now, step

by step, find the explicit formula for P1 + P2.

The first step is to find the line that goes through P1 and P2. There are two

cases, the first one being t1 = t2 and the second one being t1 ̸= t2.

If t1 = t2, then the vertical line t = t1 meets C1 at the third point P3 = (t1, s3),

where P3 may equal P1 or P2. So P1+P2 will be (−t1,−s3), so the t(P1+P2) ∈ pvR,

and we attain P1 + P2 ∈ C(pv).

Now, if t1 ̸= t2, we let s = αt+ β be the line through P1 and P2, where

(3.8) α =
s2 − s1
t2 − t1

.

On the other hand, notice that (t1, s1), (t2, s2) satisfy the equation

s = t3 + at2s+ bts2 + cs3,

and so

s2 − s1 = (t2
3 − t1

3) + a(t2
2s2 − t1

2s1) + b(t3s2
2 − t1s1

2) + c(s2
3 − s1

3).

Subtituting the above into (3.8) we get

(3.9) α =
t2

2 + t1t2 + t1
2 + a(t2 + t1)s2 + bs2

2

1− at1
2 − bt1(s2 + s1)− c(s22 + s1s2 + s12)

.

Note that if P1 = P2, then the slope of a tangent line to C at P1 is

α =
ds

dt
(P1) =

3t1
2 + 2at1s1 + bs1

2

1− at1
2 − 2bt1s1 − 3cs12

,

which is the same as subtituting t1 = t2 and s1 = s2 into (3.9).

Now that we have roughly determined the line intersecting P1 and P2, we will

now want to compute P1 + P2. Let P3 = (t3, s3) be the third point of intersection

of the line s = αt+ β with the curve. Subtituting s = αt+ β into (3.7), we get

αt+ β = t3 + at2(αt+ β) + bt(αt+ β)2 + c(αt+ β)3

and so

(3.10) 0 = (1 + aα+ bα2 + cα3)t3 + (αβ + 2bαβ + 3cα3 + β)t2 + ...
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Note that the equation on the right hand side of (3.10) has roots t1, t2, t3, which

means it equals to

C · (t− t1)(t− t2)(t− t3)

for C as some constant. Multiplying out, the equation above equals

C · (t3 − (t1 + t2 + t3)t
2 + ...).

Comparing coefficients of t3 and t2, we get

t1 + t2 + t3 = −αβ + 2bαβ + 3cα2β

1 + aα+ bα2 + cα3
.

If t1 + t2 + t3 ∈ p3vR, then we immediately get t3 ∈ p3vR since t1, t2 ∈ p3vR. So

now we will look at α and β. Revisiting (3.9):

α =
t2

2 + t1t2 + t1
2 + a(t2 + t1)s2 + bs2

2

1− at1
2 − bt1(s2 + s1)− c(s22 + s1s2 + s12)

.

we can conclude that the numerator of α is in p2vR because each of t1, s1, t2, s2 is

in pvR. Similarly,

−at13 − bt1(s2 + s1)− c(s2
2 + s1s2 + s1

2) ∈ p2vR

and so the denominator of α is a unit in R. Hence, α ∈ p2vR. Next, we have β is

obtained by s1 −αt1. Note that since s1 ∈ p3vR, α ∈ p2vR and t1 ∈ pvR, it follows

that β ∈ p3vR.

Therefore, by a similar argument, we obtain

(3.11) t1 + t2 + t3 ∈ p3vR

and immediately we get t3 ∈ p3vR. The function and the operation + also gives us

the point P1 + P2 = (−t3,−s3), therefore P1 + P2 ∈ p3vR.

Since being in p3vR also means being in C(pv), we have successfully proven that

C(pv) are subgroups of C(Q) for all v ∈ N.
Now we will use the above proposition to prove that if P = (x, y) ∈ C(Q) are

points of rational orders, then x and y are integers.

First, (3.11) is equivalent to

t(P1) + t(P2)− t(P1 + P2) ∈ p3vR,

thus we get

t(P1 + P2) ≡ t(P1) + t(P2) (mod p3vR).

Back to the proof, let P ∈ C(Q) be a point of order m with m ≥ 2. Let p be

a prime. Assume for the sake of contradiction that P ∈ C(p). Let v = 1
2ord(x),

therefore P ∈ C(pv) and P /∈ C(pv+1).

If p ∤ m, then using the congruence

t(P1 + P2) ≡ t(P1) + t(P2) (mod p3vR)

we get

t(mP ) ≡ mt(P ) (mod p3vR.)
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Since mP = O, we have t(mP ) = t(O) = 0. Also since m is prime to p, we attain

0 ≡ t(P ) (mod p3vR).

Therefore, P ∈ C(p3v), contradicting the assumption that P /∈ C(pv+1).

If p | m, we can write m = pn. Consider the point P ′ = (x′, y′) such that

nP ′ = P . Since P has order n, it follows that P ′ has order p. As P ∈ C(p)

and C(p) is a subgroup of C(Q), we have P ′ ∈ C(p). Let v = −1
2 ord(x′), we get

P ′ ∈ C(pv) while P ′ ∈ C(pv+1). By a similar argument as the above scenario, we

have

0 = t(O) = t(pP ′) ≡ pt(P ′) (mod p3v)R.

Therefore

t(P ′) ≡ 0 (mod p3v−1)R.

Since 3v − 1 ≥ v + 1, this contradicts our assumption.

We have proven that if P = (x, y) is a point of finite order, then P /∈ C(p) for all

primes p. It follows that the denominators of x and y are divisible by no primes,

hence x and y are both integers.

This concludes the first part of the theorem.

3.0.2. Y-Coordinates of Rational Points of Finite Order divides D.. We will now

prove the second part of the Theorem.

Let P = (x, y) be a rational point of finite order, so by the first part of our

problem, P has integer coordinates. By section 2, we know that if P has order two,

then y = 0.

Now, assume that y ̸= 0. We will show that y | D.

Recall the discriminant D of our Weirstrass equation is

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

Also recall our polynomial is

f(x) = x3 + ax2 + bx+ c

hence its derivative is

f ′(x) = 3x2 + 2ax+ b.

Let

r(x) = (18b− 6a2)x− (4a3 − 15ab+ 27c)

and

s(x) = (2a2 − 6b)x2 + (2a3 − 7ab+ 9c)x+ (a2b+ 3ac− 4b2).

Notice that r(x) and s(x) are polynomials with integer coefficients. Furthermore,

one can easily check that

(3.12) D = r(x)f(x) + s(x)f ′(x)

Using the duplication formula, we have

2x+X = λ2 − a where λ =
f ′(x)

2y
.
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Since x,X and a are all integers and λ is a rational number, it follows that λ is also

an integer. Now, since 2y and f ′(x) are both integers, we have 2y | f ′(x), which
leads to y | f ′(x). Now, since y2 = f(x) (our Weierstrass equation), we get y | f(x).

Since the polynomials r(x) and s(x) both have integer coordinates, when plug-

ging the integer x into those polynomials, they will take on integer values. Com-

bining with (3.12) and the fact that y | f(x) and y | f ′(x), we get y | D. This

completes the proof.
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