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Abstract. Knot Theory’s central question is deceptively simple: when are

two knots equivalent? One approach to this problem is to investigate the fun-

damental group of a knot’s complement. In this expository paper, we introduce
homotopies and fundamental groups, compute them for several knots, and fin-

ish with the construction of the Alexander polynomial, a powerful invariant

arising from these concepts. We assume familiarity with point-set topology
and basic group theory. In the final section we also use some elementary

commutative algebra.
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1. Introduction to Knot Theory

Detangling knots - be they in shoelaces, earbud wires, or necklace chains - is
perhaps one of the most infuriating problems we encounter in our daily lives; and it
is one which mathematicians have been wrestling with for centuries. For instance,
consider the left knot in Figure 1 below:

Figure 1.

With a small amount of effort, this rope could be untied. However, now consider
what were to happen if we glue the two loose ends together, forming the loop to the
right. Suddenly, our problem has become immensely more complex. Are we still
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able to untangle this knot into a simple circle, relying only on pulling, stretching,
and twisting it? The answer, as it turns out, is no. Before we can prove results like
this one, however, we must provide some important background.

Definition 1.1. A knot k is an embedding of the unit circle S1 in R3.

Example 1.2. The most simple example of a knot is a simple unknotted loop.
We call this the unknot. The next two most simple knots, the trefoil and the figure
eight knots, are pictured, along with the unknot (far left) and the more complicated
square knot (far right), in Figure 2.

Figure 2.

Definition 1.3. Two knots k1, k2 are equivalent if there exists some orientation-
preserving homeomorphism f : R3 → R3 such that f(k1) = k2.

Remark 1.4. For the application of some results, it is easier to think of a knot as
S1 embedded in the 3-sphere S3 ∼= R3 ∪ {∞} i.e. the one-point compactification of
R3. For this reason, the two may occasionally be interchanged.

Note that knot equivalence is still well-defined since there exists an orientation
preserving homeomorphism f : R3 → R3 sending k1 to k2 if and only if there
exists such a homeomorphism g : S3 → S3 sending k1 to k2 since the known
homeomorphism can always be extended or restricted by one point.

The knot equivalence problem - determining if two knots are or are not equivalent
- is a central question in Knot Theory. To this end, it is crucial to understand
the intricacies of the above definition. In particular, we note that all knots are
homeomorphic to S1, and thus to each other. So, we are not concerned with the one-
dimensional topology of a knot, which is trivial, but rather with how it is embedded
in space. Our problem is one of three-dimensional topology - of determining how
the knot changes the three-dimensional space around it. In a 1989 paper, C. McA.
Gordon and J. Luecke formalized this point by proving the following statement:

Theorem 1.5. Two knots k1, k2 are equivalent if and only if their complements,
S3 \ k1 and S3 \ k2 are homeomorphic.

The forward direction is simple. Given an orientation-preserving homeomor-
phism f : S3 → S3 such that f(k1) = k2, restricting f to S3 \ k1 yields a home-
omorphism from S3 \ k1 to S3 \ k2. The reverse direction, however, is much more
complex. While we do not include the proof here, it may be found in Gordon and
Luecke’s original paper [1].
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Theorem 1.5 is crucial for the rest of our project. It tells us that, to deter-
mine the equivalence of two knots, we need only consider their complements in
S3. This allows us to draw conclusions by analyzing topological invariants of this
complement.

First, however, we must introduce a few more important ideas.

Definition 1.6. A knot is polygonal if it is the union of a finite number of line
segments. We say a knot is tame if it is equivalent to a polygonal knot. If a knot
is not tame, we say it is wild.

In this paper, we will only consider tame knots. One nice property of tame knots
is that we can easily obtain a two-dimensional representation of them by projecting
them onto a plane. We call this projection the knot diagram or the knot projection.
For instance, the representations of the unknot, the trefoil knot, and the figure-eight
knot in Fig. 2 are all knot diagrams of the knots in question.

It is important to note that two equivalent knots can have different knot dia-
grams. For instance, rotating, twisting, and stretching a knot will all change its
knot diagram, but will not yield a different knot.

Furthermore, when analyzing knot diagrams, we would like to project the knot
in a way such that every point where two strands overlap is an actual crossing. We
formalize this idea in the definition below.

Definition 1.7. We say a polygonal knot k is in regular position if its knot diagram,
P , satisfies the following conditions:

(i) At no point of P do three or more strands of k overlap.
(ii) There are only finitely many points of P where two strands of k overlap.
(iii) No points of overlap occur at a vertex of k.

Figure 3 shows the type of crossing we allow and the types we do not:

Figure 3.

Proposition 1.8. Every polygonal knot is equivalent to a knot in regular position.

The idea behind the proof is that, since a polygonal knot k is the union of
finitely many line segments, if k is not already in regular position, we can rotate it
in space by some arbitrarily small amount. This will eliminate the unwanted points
of overlap. Furthermore, we can always make the rotation small enough so as to
not create any new unwanted points of overlap.
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To fully formalize this requires a fair bit of projective geometry. A full proof can
be found in [2, p. 7].

Corollary 1.9. Every tame knot is equivalent to a knot in regular position.

We now have a sufficient introduction to Knot Theory to begin investigating the
knot equivalence problem. There exist many approaches to differentiating between
knots with combinatorial, algebraic, and topological invariants all being used. It
is the latter two approaches that we will be interested in for the remainder of this
paper. The next section develops the general theory we will use.

2. The Fundamental Group

We will now step away from knots for a moment, and consider an arbitrary
topological space X. A topological invariant of X is a mathematical object or
property associated with X that does not change under a homeomorphism. In this
section, our goal is to find such an invariant that will allow us to distinguish the
complement spaces of various knots. To this end, we will construct the fundamental
group, one of the most powerful invariants used in algebraic topology.

Definition 2.1. A path in X is a continuous map α : [0, 1] → X. We call α(0) and
α(1) the endpoints of α, and say that α is a path from α(0) to α(1).

Additionally, we will define the path α−1 : [0, 1] → X by

α−1(t) = α(1− t)

Definition 2.2. Let α, β : [0, 1] → X be two paths in X such that α(1) = β(0).
We define the path α ∗ β : [0, 1] → X as follows:

(α ∗ β)(t) =

{
α(2t) 0 ≤ t ≤ 1

2

β(2t− 1) 1
2 < t ≤ 1

We call this operation concatenation of paths.

The concatenation of α with β traverses α and then β, each at twice the speed.
Intuitively, it is the pasting of two paths together, one after another.

We now state a particularly important definition:

Definition 2.3. Let f, g : X → Y be continuous maps. A homotopy from f to g
is a continuous map

F : [0, 1]×X → Y

such that F (0,−) = f and F (1,−) = g. If such a map exists, we say that f and g
are homotopic.

For some B ⊆ X such that for all x ∈ B, f(x) = g(x), we say that f and g are
homotopic with respect to B if there exists a homotopy F from f to g such that
F (s, x) = f(x) = g(x) for all s ∈ [0, 1] and x ∈ B.

For our purposes, we are specifically concerned with homotopies between paths
which fix their endpoints. Such a homotopy is essentially a path of paths from a
path α to a path β, since for any fixed value of s ∈ [0, 1], h(s,−) is a path from
α(0) = β(0) to α(1) = β(1). If there exists a homotopy from α to β then we say
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Figure 4.

that α and β are homotopic, denoted α ≃ β. We now provide a short example
illustrating this concept.

Example 2.4. Consider the paths α, β : [0, 1] → R2 where α(t) = (t, t) and
β(t) = (t, t2) (pictured on the left in Fig. 4). Then the map h : [0, 1]× [0, 1] → R2

where

h(s, t) = (t, t+ s(t2 − t))

defines a homotopy from α to β.

Definition 2.5. A path γ : [0, 1] → X is a loop if γ(0) = γ(1). We call the point
γ(0) = γ(1) the basepoint of the loop γ. The space of loops in X with basepoints
at some fixed x ∈ X is denoted Ω(X,x).

Homotopies between two loops with the same basepoint are defined in the same
way as path homotopies. Consider the following example:

Example 2.6. Let γ1, γ2 : [0, 1] → R2 be loops in the real plane such that

γ1(t) = (cos(2πt) + 1, sin(2πt) + 1) and γ2(t) = (2 cos(2πt) + 2, 2 sin(2πt) + 2)

(pictured on the right in Fig. 4). In other words, γ1 and γ2 are the circlular
loops with basepoints at (0, 0) and radii of 1 and 2 respectively. Then, the map
h : [0, 1]× [0, 1] → R2 where

h(s, t) = ((2− s) cos(2πt) + (2− s), (2− s) sin(2πt) + (2− s))

defines a homotopy from γ2 to γ1. Here, h is shrinking γ2 to γ1, such that for each
fixed s ∈ [0, 1], the map h(s, t) defines the circle with basepoint (0, 0) and radius
2− s.

Now, consider what would happen in the above example if we were to remove
the point (0, 3) from R2. We can then see γ1 and γ2 are no longer homotopic in
this punctured plane, since any homotopy between them must pass through (0, 3).
This suggests that ”breaking” our space in some way alters which loops will be
homotopic to one another.

Lemma 2.7. Let X,Y be two topological spaces. Let f : X → Y be a continuous
map between them such that for some x ∈ X and y ∈ Y , f(x) = y. Now, consider
two loops γ1, γ2 in X based at x. Then, their images under f , f ◦γ1 and f ◦γ2, are
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loops in Y based at y. Furthermore, if γ1 and γ2 are homotopic, then f ◦ γ1 and
f ◦ γ2 are homotopic.

Proof. The first part of the statement is easy to see: since f, γ1, γ2 are all continu-
ous, we have that f ◦ γ1 and f ◦ γ2 are both continuous as well. Then, since γ1 is
a loop, we know that γ1(0) = x = γ1(1) meaning that

(f ◦ γ1)(0) = f(γ1(0)) = f(x) = f(γ1(1)) = (f ◦ γ1)(1)
giving us that f ◦ γ1 is a loop in Y based at f(x) = y. By the same argument,
f ◦ γ2 is also a loop in Y based at y.

Now, we will prove the second part of the statement. Let h : [0, 1]×[0, 1] → X be
a homotopy from γ1 to γ2. Then, consider the map f ◦h : [0, 1]× [0, 1] → Y . First,
by continuity of both f and h we know that f ◦ h is continuous. Furthermore,
by definition, h(0, t) = γ1(t) meaning that (f ◦ h)(0, t) = (f ◦ γ1)(t). Similarly,
(f ◦ h)(1, t) = (f ◦ γ2)(t). So, we have that f ◦ h is a homotopy from f ◦ γ1 to
f ◦ γ2. □

This behavior suggests that homotopy could be the basis for a topological in-
variant of the space X. This turns out to be precisely the case. Before we can
construct this invariant, however, we must make the following key observation.

Proposition 2.8. Let X be a topological space, and fix a basepoint x ∈ X. Then
≃ defines an equivalence relation on Ω(X,x).

Proof. We need to show that ≃ satisfies reflexivity, symmetry, and transitivity:
Consider some γ1 ∈ Ω(X,x). Then, the map h : [0, 1] × [0, 1] → X where

h(s, t) = γ1(t) defines a homotopy from γ1 to itself. So, we have that γ1 ≃ γ1.
Now, take some other γ2 ∈ Ω(X,x). Suppose that γ1 ≃ γ2 and let h be a

homotopy from γ1 to γ2. Then, the map h−1 : [0, 1] × [0, 1] → X defined by
h−1(s, t) = h(1− s, t) is a homotopy from γ2 to γ1. Thus, γ2 ≃ γ1.

Finally, all that remains to check is transitivity. Consider a third γ3 ∈ Ω(X,x)
and suppose that γ1 ≃ γ2 and γ2 ≃ γ3 with h1, h2 being homotopies between them
respectively. Then, we will define h3 : [0, 1]× [0, 1] → X as follows:

h3(s, t) =

{
h1(2s, t) 0 ≤ s ≤ 1

2

h2(2s− 1, t) 1
2 < s ≤ 1

It is clear that h3 defines a homotopy from γ1 to γ3 meaning that γ1 ≃ γ3. □

Now, consider the quotient space Ω(X,x)/ ≃. We can then make the following
observation: given loops f, f ′, g, g′ in X based at the point x such that f ≃ f ′ and
g ≃ g′, we have that f ∗ g ≃ f ′ ∗ g′ (we leave checking this as an easy exercise for
the reader). We can then adapt our definition of the operation ∗ as follows: given
representatives f and g of two equivalence classes [f ], [g] ∈ Ω(X,x)/ ≃ we say that
[f ] ∗ [g] = [f ∗ g].

If f(t) = x for all t ∈ [0, 1] we call f the constant loop at x and we have the
property that [f ] ∗ [g] = [g] = [g] ∗ [f ] for all [g]. Furthermore, for any [g] we have
that [g] ∗ [g−1] = [f ] = [g−1] ∗ [g] where f is again the constant loop at x. Checking
that these properties hold, as well as verifying the associativity of ∗ will be left as
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a short exercise for the reader. We now have all of the necessary information to
define our invariant.

Definition 2.9. The fundamental group of X with basepoint x, denoted π1(X,x),
is the group consisting of the set of equivalence classes of Ω(X,x)/ ≃ with the
operation ∗.

We will first prove two important theorems about the fundamental group and
then finish the section by giving a few examples of π1(X,x) for different spaces.

Theorem 2.10. Suppose X is path-connected. Then, for any two points x1, x2 ∈ X
we have that π1(X,x1) ∼= π1(X,x2).

Proof. Let α : [0, 1] → X be a path from x1 to x2. Then, for any loop γ based at
x1 we have that α−1 ∗ γ ∗ α is a loop based at x2. We can then define the map
ϕ : π1(X,x1) → π1(X,x2) where

ϕ([γ]) = [α−1 ∗ γ ∗ α]
To verify that ϕ is a group homomorphism we will consider some [γ1], [γ2] ∈
π1(X,x1). Then,

ϕ([γ1] ∗ [γ2]) = ϕ([γ1 ∗ γ2]) = [α−1 ∗ γ1 ∗ γ2 ∗ α] = [α−1 ∗ γ1 ∗ α ∗ α−1 ∗ γ2 ∗ α] =
[α−1 ∗ γ1 ∗ α] ∗ [α−1 ∗ γ2 ∗ α] = ϕ([γ1]) ∗ ϕ([γ2])

meaning that ϕ is in fact a group homomorphism.
We will leave it to the reader to verify that ϕ is a bijection, and thus defines an

isomorphism between π1(X,x1) and π1(X,x2). □

Result Theorem 2.10 tells us that, for path connected spaces, our choice of
basepoint does not matter. In this case, we can simply denote the fundamental
group of X by π1(X). However, note that when defining our isomorphism ϕ, no
canonical choice of path α exists.

We have now established the fundamental group to be a well-defined object
which we can associate with any path-connected space (which every space in this
paper will be). Now, all that remains is to prove that the fundamental group of a
space is invariant under homeomorphism.

Definition 2.11. Let X and Y be topological spaces with basepoints x and y,
respectively. Let f : X → Y be a continuous map such that f(x) = y. Then,
Lemma 2.7 tells us that the map f∗ : π1(X,x) → π1(Y, y) where for [γ] ∈ π1(X,x)
we have that f∗([γ]) = [f ◦γ] is well-defined. We call f∗ the homomorphism induced
by f .

Observe that for [γ1], [γ2] ∈ π1(X,x) this means that f∗([γ1] ∗ [γ2]) = [f ◦ (γ1 ∗
γ2)] = [(f ◦ γ1) ∗ (f ◦ γ2)], meaning that f∗ is indeed a group homomorphism.

Remark 2.12. Suppose f, g : X → Y are two continuous, homotopic maps such
that f(x) = g(x) = y. Let F : [0, 1] ×X → Y be a homotopy from f to g. Then,
for any [γ] ∈ π1(X,x) we have that F ◦ γ defines a homotopy from f ◦ γ to g ◦ γ,
meaning that f∗([γ]) = g∗([γ]). So, f and g induce the same homomorphism.
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Theorem 2.13. Let X,Y be two topological spaces and let f : X → Y be a home-
omorphism between them. Consider points x ∈ X and y ∈ Y such that f(x) = y.
Then the induced homomorphism

f∗ : π1(X,x) → π1(Y, y)

is an isomorphism.

Proof. All we must check is that f∗ is a bijection. Note that for any [γ′] ∈ π1(Y, y)
we have that f∗([f

−1 ◦ γ′]) = [γ′] where [f−1 ◦ γ′] ∈ π1(X,x). So, f∗ is surjective.
Additionally, if f∗([γ1]) = f∗([γ2]) for some [γ1], [γ2] ∈ π1(X,x), then [f ◦ γ1] =
[f ◦ γ2]. By Lemma 2.7 we get that [γ1] = [γ2]. Therefore, f∗ is also injective. This
completes the proof. □

Theorem 2.13 allows us to conclude that π1(X) is a topological invariant. In
other words, if two spaces are homeomorphic to one another, then they will have
isomorphic fundamental groups. However, we caution that the converse is not true:
two spaces with isomorphic fundamental groups need not be homeomorphic.

Now, before attempting to use fundamental groups to distinguish knots, we will
first give examples of π1(X) for some simpler spaces.

Example 2.14. Let X = R2 ∼= C. Then, π1(X) is trivial since every loop in R2 is
homotopic to the constant loop.

Note that R2 is a path-connected space with trivial fundamental group. We call
such a space simply connected.

Example 2.15. Let X = R2 \ {(0, 0)}. In this case, it is easy to see that we no
longer have a trivial π1(X), since any loop which winds around (0, 0) will not be
homotopic to the constant loop.

In fact, the homotopy class of a loop in X will directly correspond to the number
of times that it winds around the point (0, 0) in the counter-clockwise direction
(winding around (0, 0) in the clockwise direction would correspond to ”negative
times” winding around). While this is somewhat intuitive, the proof requires some
technical details, so we will omit it here. A good reference is [4, Theorem 3.2.7].

However, now we are virtually done, since this tells us that π1(X) ∼= Z. This
is because any loop winding around (0, 0) multiple times can be expressed as the
concatenation of loops winding around (0,0) once and their inverses. So, π1(X) will
be the infinite cyclic group generated by such a loop.

Example 2.16. Let X be T 2 ∼= S1 × S1 i.e. the one-holed torus, pictured in Fig.
5.

Let [a] denote the homotopy class of loops circling the outside of the torus once
(pictured in green) and [b] denote the homotopy class of loops circling once through
the inner hole of the torus (pictured in red). We then have that π1(T

2) is generated
by [a] and [b]. Observe that [a] and [b] each intuitively correspond to a loop around
one copy of S1.

Now, consider the loop a ∗ b. This loop will be easiest to visualize on the square
representation of the torus (pictured on the right). We let the basepoint be the
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Figure 5.

bottom left corner of the square. Then, the path a ∗ b first traverses the bottom
edge, then the right edge.

We are then able to ”drag” this loop across the square by fixing its endpoints at
the bottom left/top right corners and sliding the bottom right corner diagonally to
the top left (drawn in grey). Note that this action is continuous and preserves the
loop structure.

The resulting loop traverses the left edge and then the top edge. In other words,
the resulting loop is b ∗ a. So, we have that [a ∗ b] = [b ∗ a]. In other words, π1(T

2)
is an abelian group. So, we can conclude by saying that π1(T

2) ∼= Z× Z.

3. Seifert-Van Kampen Theorem

Before we can begin computing the fundamental groups of knot complements,
we will need a very important result. While we will not be proving the original
statement, we will be proving a refinement of it which will be essential for our
project.

Theorem 3.1. (Seifert - Van Kampen Theorem) [5] Let X be a topological space
and let U1, U2 be open, path-connected subspaces of X such that U1 ∩ U2 ̸= ∅,
U1 ∪U2 = X, and U1 ∩ U2 is path-connected. Let x ∈ U1 ∩ U2 be a basepoint of X.
Then,

π1(X,x) ≃ π1(U1, x) ∗π1(U1∩U2,x) π1(U2, x).

First, we will deconstruct what the Seifert-Van Kampen Theorem says. Here,
π1(U1, x) ∗π1(U1∩U2,x) π1(U2, x) is the amalgamated product. What it means is that
π1(X,x) is the group determined by the generators of π1(U1, x) and π1(U2, x) with
the following set of relations: the relations of π1(U1, x); the relations of π1(U2, x);
and the amalgamated relations.

Essentially, the amalgamated relations are included to resolve any disagreement
between π1(U1, x) and π1(U2, x). For every generator γ of π1(U1 ∩ U2, x), the
corresponding amalgamated relation is [γ]1 = [γ]2 where [γ]1 and [γ]2 are the
homotopy classes of γ in π1(U1, x) and π1(U2, x) respectively [5]. Together, the
amalgamated relations determined by each of the generators of π1(U1∩U2, x) define
the amalgamated product.

Now, in many cases, including that of knot complements, it is much easier to
find suitable closed subspaces U1, U2 than open ones. To this end, we need to refine
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the Seifert-Van Kampen Theorem to allow for such a choice of U1, U2. This will be
done as follows:

Definition 3.2. Let X be a topological space and U ⊂ X be a subspace. Then a
retraction f : X → U is a continuous map such that the restriction of f to U is the
identity map. We call U a retract of X if such a map exists.

Definition 3.3. Let f : X → U be a retraction. We say that f is a deformation
retraction if there exists a homotopy F : [0, 1] × X → X from f to the identity
map. In other words, F is continuous and F (0, x) = f(x) and F (1, x) = x for all
x ∈ X. We call U a deformation retract of X if such a homotopy F exists.

We say that f is a strong deformation retraction if f is homotopic to the identity
map with respect to U .

Remark 3.4. Suppose U ⊆ X is a deformation retract of X. Then, Remark 2.12
tells us that π1(X) ≃ π1(U).

Definition 3.5. We say U is a neighborhood deformation retract of X if there exists
some open neighborhood V ⊆ X of U such that U is a strong deformation retract
of V .

Using this new terminology, we will now prove an adapted version of the Seifert-
Van Kampen Theorem:

Corollary 3.6. Let X be a topological space and let U1, U2 be closed, path-connected
subspaces of X such that U1 ∩U2 ̸= ∅, U1 ∪U2 = X, U1 ∩U2 is path-connected, and
U1 ∩ U2 is a neighborhood deformation retract of both U1 and U2. Let x ∈ U1 ∩ U2

be a basepoint of X. Then,

π1(X,x) ≃ π1(U1, x) ∗π1(U1∩U2,x) π1(U2, x).

[6]

Proof. Let V1 ⊆ U1, V2 ⊆ U2 be the neighborhoods of U1 ∩ U2 such that U1 ∩ U2 is
a strong deformation retract of V1 and V2.

Now, let U ′
1 = U1∪V2 and U ′

2 = U2∪V1. Then, sinceX\U1 ⊆ U2 andX\U2 ⊆ U1

we have that U ′
1 = (X \ U2) ∪ V2 and U ′

2 = (X \ U1) ∪ V1. So, U ′
1 and U ′

2 are open
subsets of X. Furthermore, U ′

1 ∪ U ′
2 = U1 ∪ U2 = X. Finally, we note that V1 and

V2 must be path connected, since U1 ∩U2 is path connected, and path connectivity
is preserved by homotopies.

So, by the Seifert-Van Kampen Theorem we have that

π1(X,x) = π1(U
′
1, x) ∗π1(U ′

1∩U ′
2,x)

π1(U
′
2, x).

But now, we know that U1 and U2 are retracts of U ′
1 and U ′

2 respectively since
V1, V2 retract to U1 ∩U2 Thus, by Remark 3.4, we know that π1(U

′
1, x) = π1(U1, x)

and π1(U
′
2, x) = π1(U2, x). Additionally, it is easy to see that U ′

1 ∩ U ′
2 = U1 ∩ U2.

This gives us that

π1(X,x) = π1(U1, x) ∗π1(U1∩U2,x) π1(U2, x).

□
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4. Knot Groups

We will now apply fundamental groups to the problem of distinguishing knot
types.

Definition 4.1. Let k be a knot in S3. Then, we call π1(S
3 \ k) the knot group of

k.

Recall that Theorem 1.5 says that two knots k1 and k2 are equivalent if and only
if their complements are homeomorphic. Then, Theorem 2.11 tells us that if k1 and
k2 are equivalent, their knot groups must be isomorphic. We will now explain how
to compute knot groups, and then use these tools in some examples.

Let k be a knot in S3. Without loss of generality, we can take k to be in the
closed upper space of S3, which we denote S3

+. In other words, k ⊆ {(x, y, z) ∈
S3 | z ≥ 0}. Furthermore, by Corollary 1.9, there is no loss of generality in taking
k to be in regular position with respect to the plane z = 0. We now modify our
knot in such a way as to be able to apply Corollary 3.6.

To do this, we first divide our knot into overpasses and underpasses using its
knot diagram as done in Fig. 6 for the trefoil, figure eight, and square knots. For
each crossing on the diagram, we label the part crossing over an overpass (colored
red in Fig. 6) and the part crossing under an underpass (colored green in Fig. 6).
We then add in underpasses and overpasses as necessary so that each overpass is
next to two underpasses and vice versa.

Figure 6.

Now, we can delete the underpasses, instead replacing them with their projec-
tions onto the plane z = 0. We then connect these curves to their neighboring
overpasses by vertical line segments (see Fig. 7).

We call this resulting knot k′. Since we took k to be in regular position, k′

is equivalent to k, as the former is simply a ”stretching” of the latter. Thus, to
compute the knot group of k, we just need to compute the knot group of k′, which
is much simpler to do.

For our final technical adjustment, we take an open tubular neighborhood of k′ in
R3 such that no self-intersections are created (the existence of such a neighborhood
follows from the fact that k is tame). In other words, we are ”thickening” k′ by an
infinitesimally small amount, and then taking the interior of this region, leaving us
with a knotted open tube. We will call this new object k∗. Since we did not create
any new self-intersections, it follows that the fundamental group of S3 \ k∗ will be
isomorphic to that of S3 \ k′ and thus to that of S3 \ k, see [7, p. 217].

Now, let U0 be the closed set S3
+ \ k∗ and fix some basepoint x ∈ U0 (at this

stage, since U0 is path-connected, the choice of basepoint does not matter). Observe
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Figure 7.

that each overpass and its adjacent vertical segments defines an arch which is being
removed from S3

+. Let γi be a loop based at x winding around the ith overpass of
k from the right-hand side (relative to the orientation of k) (see Fig. 8). Note that
we can continuously drag γi along the arch defined by that overpass, meaning that
γi will be homotopic to any other loop winding around the arch in this way. We
will call this homotopy class [γi]. Then, a simple application of Corollary 3.6 gives
us that π1(U0, x) is the free group generated by [γ1], ..., [γn].

Figure 8.

Now, we need to add in the remainder of S3 using Corollary 3.6. To make
the process simpler, we add in each underpass one by one as follows: number the
underpasses 1, ..., n so that the ith underpass lies between the ith and i + 1th
overpasses (see Fig. 6).

Next, consider the ith underpass and take a small closed path-connected neigh-
borhood around it as pictured in Fig. 9. From this neighborhood, we then remove
its intersection with k∗ and call the resulting region Ui. We apply Corollary 3.6 to
the union of U0 and Ui. Note that, as in Fig. 9, Ui ⊆ R3

− = {(x, y, z) ∈ R3 | z ≤ 0}.

By construction, we have that both U0 and Ui are path-connected. Furthermore,
if k∗ has radius of ϵ, then we can let βi and βi be neighborhoods containing Bi∩U0

of Ui and U0 respectively such that for all (x, y, z) ∈ βi ∪ βi we have that |z| < ϵ

(see right image of Fig. 9). Then, the maps fi : βi → Ui ∩U0 and fi : βi → Ui ∩U0

defined by fi(x, y, z) = (x, y, 0) and fi(x, y, z) = (x, y, 0) are strong deformation
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Figure 9.

retractions, of βi and βi resepectively, onto U0 ∩ Ui. In this way, we have that
Ui ∩ U0 is a neighborhood deformation retract of both U0 and Ui.

We are now able to apply Corollary 3.6 to find π1(Ui ∪ U0). First, we fix some
basepoint xi ∈ Ui ∩ U0. As we established, π1(U0) is generated by [γ1], ..., [γn].
Additionally, it is easy to see that π1(Ui) is trivial.

All that remains is to consider the relations determined by the intersection. To
do so, we first notice that π1(Ui ∩ U0) ∼= Z (by the same reasoning as that used
in Example 2.15 to compute π1(R2 \ {(0, 0)})). So, all we need is to consider the
relation determined by [γ] where γ is a loop in Ui ∩ U0 based at xi which winds
around the underpass once. Recall that this relation is of the form [γ]i = [γ]0 where
[γ]i and [γ]0 are the homotopy classes of γ in π1(Ui) and π1(U0) respectively. Since
π1(Ui) is trivial, we have that [γ]i = e.

We now have two cases. The first, simpler case is where the ith underpass does
not have an overpass crossing over it (top of Fig. 10). Instead, it merely exists to
separate two adjacent overpasses. In this case, ”pinching” the loop as depicted in
Fig. 10 shows that γ is homotopic to γi ∗ γ−1

i+1. So, we get the following relation:

[γi][γi+1]
−1 = e.

In the second case, the ith underpass has an overpass passing over it (bottom of
Fig. 10). We say this overpass is the jth overpass. In this case, pinching γ on either
side of the overpass as shown in Fig. 9 reveals that γ is homotopically equivalent
to first traversing γi, then γj , then γi+1 in the inverse direction, and, finally, γj in
the inverse direction. This yields the following relation:

[γi][γj ][γi+1]
−1[γj ]

−1 = e.

This procedure gives us that π1(Ui ∪ U0) is the group given by the generators
[γ1], ..., [γn] and one of the two previous relations. We can then repeat these for each
underpass, obtaining a new relation from each one. All one has to do is determine
whether the underpass in question falls into the first case or the second, then note
the resulting relation. This gives us a complete presentation for π1(S

3 \ k∗) since
the remaining piece does not contain any part of k∗.

Below, we present a series of examples for some of the knots we have discussed
thus far to enhance the reader’s understanding of the knot group computation.
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Figure 10.

Example 4.2. Let k be the unknot. Then, we can label k as being one overpass
itself (see Fig. 11). So, we have that π1(S

3 \ k) is generated by [γ1] where [γ1] is a
loop winding through k once.

Since k has no underpasses, there are no relations to add in, meaning that
π1(S

3\k) is the infinite cyclic group generated by [γ1]. In particular, π1(S
3\k) ∼= Z.

Figure 11.

Example 4.3. Now, let k be the trefoil knot (see Fig. 12). It has 3 overpasses,
which give us three generators: [γ1], [γ2], and [γ3]. Furthermore, it has three
underpasses which give us the following relations:

[γ1][γ2] = [γ2][γ3]

[γ3][γ1] = [γ1][γ2]

[γ2][γ3] = [γ3][γ1].

Note that the third relation can be deduced from the first two. It turns out
that this is always the case - if there are n underpasses, then taking the relations
determined by n−1 of them is sufficient. The remaining relation will always follow
from the others, see [7, p. 220].
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We now have a complete presentation of the knot group of k. However, we
are able to simplify it further. For instance, the first two relations tell us that
[γ1][γ2][γ1]

−1 = [γ3] = [γ2]
−1[γ1][γ2]. This tells us that [γ1] and [γ2] are generators

of π1(R3 \ k) and that [γ2][γ1][γ2] = [γ1][γ2][γ1] (simply a rewriting of the first two
relations).

So, we can say that

π1(S
3 \ k) := ⟨a, b | aba = bab⟩.

Note that we have already made some progress in our problem of differentiating
knots. We previously said that the knot group of the unknot was isomorphic to
Z. It is evident that the trefoil’s knot group cannot be (for one, it is not abelian).
This tells us that the two knots are not equivalent.

Figure 12.

While computing knot groups in this way can be useful for distinguishing the
unknot from more complicated knots, when it comes to more complex problems
this method proves to not be particularly effective. This is due to how difficult it
is to check whether or not two groups are isomorphic. For instance, consider the
following attempt to differentiate between the knot groups of the trefoil and the
figure eight knot:

Example 4.4. Let k be the figure eight knot. We first divide k into underpasses and
overpasses (see Fig. 13). This gives us a set of four generators: [γ1], [γ2], [γ3], [γ4]
and the following relations:

[γ3][γ1] = [γ1][γ4]

[γ1][γ2] = [γ2][γ4]

[γ1][γ3] = [γ3][γ2]

[γ2][γ4] = [γ4][γ3]

Recall that it is sufficient to consider only the first three relations. We can solve
the second and third to get that [γ4] = [γ2]

−1[γ1][γ2] and [γ3] = [γ1][γ4][γ1]
−1 =

[γ1][γ2]
−1[γ1][γ2][γ1]

−1. In other words, we have that [γ1] and [γ2] are generators
for π1(S

3 \k). Finally, substituting in the previous expression for [γ3] into the third
relation gives us the following presentation for the knot group of k:

{a, b | ab−1ab = b−1aba−1ba}

While at first glance this presentation indeed does not look like that of the
trefoil’s knot group, proving they are not isomorphic is a difficult, and for more
complex knots often impossible, task. So, while the knot group is a powerful in-
variant - in the sense that it can distinguish between many knots - in practice it is
very difficult and inefficient to use. In the final section, we see a way of using basic
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Figure 13.

commutative algebra to address this problem, allowing us to extract information
from the knot group in a more easily comparable form.

5. The Alexander Polynomial

We now begin the construction of our invariant. First, we make a small remark:
in this section we construct the Alexander Polynomial without a great deal of
explanation as to why we decided to go down the path in question. In fact, much
of the following stems from an analysis of an object called the ”universal covering
space” of S3 \ k. We will not touch on this topic, but for those who wish to read
about this background, a great reference is [7, p. 227].

We begin by letting k be a knot in S3 as before. We let K denote the knot group
of k and K ′ denote the commutator subgroup of K. Our first goal is to investigate
the group structure of K ′. Recall from Section 4 that K has generators [γ1], ..., [γn].
An alternate set of generators is given by

γ = [γn], x1 = [γ1][γn]
−1, x2 = [γ2][γn]

−1, . . . , xn−1 = [γn−1][γn]
−1

Lemma 5.1. The elements x1, ..., xn−1 and their conjugates by powers of γ gen-
erate K ′.

Proof. Let H be the subgroup of K generated by x1, ..., xn−1 and their conjugates
by powers of γ. We wish to show that H is the commutator subgroup of K.

First, we show that H is normal. It is easy to see1 that it is sufficient to show
that H is invariant under conjugation by the generators of K : [γ1], ..., [γn]. So, we
consider any [γi]. We first show the inclusion [γi]H[γi]

−1 ⊆ H: in the case where
i = n, the inclusion is trivial. For i ̸= n, consider some h ∈ H and observe the
following: [γi]h[γi]

−1 = xiγhγ
−1x−1

i which means that [γi]h[γi]
−1 ∈ H. This gives

us that [γi]H[γi]
−1 ⊆ H. To show the reverse inclusion, H ⊆ [γi]H[γi]

−1, we must
show that for any h ∈ H, there exists some g ∈ H such that [γi]g[γi]

−1 = h. If i = n
then we just have g = γ−1hγ. For i ̸= n, letting g = γ−1x−1

i hxiγ = [γi]
−1h[γi]

satisfies this condition. Therefore, we have that H = [γi]H[γi]
−1 for all γi, giving

us that H is normal.
Next, we wish to show that K/H is abelian. It turns out that this is not at all

difficult to see. For all i, j = 1, . . . , n we have that
[
[γi], [γj ]

]
= [γi][γj ][γi]

−1[γj ]
−1.

For i, j ̸= n this expression is equal to xiγxjγγ
−1x−1

i γ−1x−1
j which is evidently an

1If we know, for some u, v ∈ K, that uHu−1 = H and vHv−1 = H, then it follows that
uvHv−1u−1 = H and u−1Hu = H.
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element of H. If i = n then we have that
[
[γi], [γj ]

]
= γxjγγ

−1γ−1x−1
j which is

also in H. This gives us that in K/H all the generators commute, hence K/H is
abelian.

So, we have shown that H is a normal subgroup such that K/H is abelian, giving
us the inclusion K ′ ⊆ H. We now wish to show that H ⊆ K ′.

To do so, we recall that all2 our relations were of the form [γi][γj ][γi+1]
−1[γj ]

−1 =
e. We thus have the following two equalities:

[γi] = [γj ][γi+1][γj ]
−1 and [γi+1] = [γj ]

−1[γi][γj ].

First, consider x1. We know that, for some fixed k, [γn][γk][γ1]
−1[γk]

−1 = e
meaning that

x1 = [γ1]γ
−1 = [γ1][γk][γ1]

−1[γk]
−1 =

[
[γ1], [γk]

]
.

So, x1 ∈ K ′. We will now show that x2 ∈ K ′. We know that there exists some
j such that [γ2] = [γj ]

−1[γ1][γj ]. We then have the following:

x2 = [γ2]γ
−1 =

(
[γj ]

−1[γ1][γj ]
)(
[γk][γ1]

−1[γk]
−1

)
=(

[γj ]
−1[γ1][γj ]

)(
[γ1]

−1[γ1]
)(
[γk][γ1]

−1[γk]
−1

)
=

[
[γj ]

−1, [γ1]
][
[γk], [γ1]

−1
]

giving us that x2 ∈ K ′. The reader can check that x3, ..., xn−1 ∈ K ′ through an
analogous procedure.

So, we have that x2, ..., xn−1 ∈ K ′, and it follows that their conjugates by powers
of γ are also in K ′. This gives us that H ⊆ K ′ and allows us to conclude that
H = K ′. □

Now, let K ′′ be the commutator subgroup of K ′. We are now going to look at
the abelianization of K ′: K ′/K ′′. First, consider the following map:

T : K ′/K ′′ → K ′/K ′′

xK ′′ 7→ γxγ−1K ′′

where xK ′′ is an element of K ′/K ′′. Since K ′ is a normal subgroup of K, it is easy
to check that T is well-defined and is, in fact, a bijection.

We now wish to consider the ring of Laurent Polynomials of t, denoted Z[t, t−1].
We define multiplication Z[t, t−1]×K ′/K ′′ → K ′/K ′′ as follows: for some xK ′′ ∈
K ′/K ′′, we have that P (t) · xK ′′ = P (T )(xK ′′). Then, one can check that the
group K ′/K ′′ is a module over the ring Z[t, t−1] with multiplication defined in this
way. We call this module the Alexander Invariant of k and denote it M .

Before proceeding further, we briefly review some ideas about modules and pre-
sentation matrices. We consider a finitely generated module, N , over a ring, R,
and let y1, ..., yn be generators of N .

We can define a map φ : Rn →M as follows:

φ(a1, ..., an) =

n∑
i=1

aiyi.

In this case, kerφ consists of the relations which define N . So (by the First Iso-
morphism Theorem), we have that N ≃ Rn/ kerφ. Moreover, we can take N to

2For simplicity, if we have a relation of the form [γi] = [γi+1] we can re-index our generators

so as to not include [γi] twice.
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be finitely presented, giving us that kerφ is finitely generated. This allows us to
consider a set of generators z1, ..., zm for kerφ and take the following matrix:

Z =

 | | |
z1 z2 · · · zm
| | |


We call Z a presentation matrix of N . Essentially, each column in the presen-

tation matrix represents a relation among y1, ..., yn. For instance, consider some
column of Z: 

a1
·
·
·
an


The relation represented by this column is

∑n
i=1 aiyi = 0. Together, the relations

represented in the presentation matrix generate all the relations among y1, ..., yn.
Now, the matrix Z allows us to define another map ψ : Rm → Rn as follows:

v
ψ7→ Zv.

By construction, we have that im ψ = kerϕ giving us that N ≃ Rn/im ψ. We call
ψ a presentation of N . Note that Z, and thus ψ, are not unique - a given module
can have many different presentations.

We now return to our Alexander Module, M . Recall that K ′ has generators
x1, ..., xn−1 and their conjugates by powers of γ. However, when we consider M ,
multiplying some xiK

′′ by t gives us precisely the conjugate. So, we have thatM is
generated by x1K

′′, . . . , xn−1K
′′. Since we have n−1 generators and n−1 relations

which define K, this will give us a (n − 1) × (n − 1) presentation matrix for M ,
which we call an Alexander Matrix.

At first glance, we face many of the same difficulties with the module M as we
did with K. However, the structure ofM as a module over a polynomial ring allows
us to extract information about it in the form of an ideal. In particular, our goal
is to obtain an invariant of M which is independent of our choice of presentation.
We now introduce one method of doing this.

Definition 5.2. Let N be a finitely generated module over a ring R with a pre-
sentation ϕ : Rm → Rn. Let Aϕ be the corresponding n ×m presentation matrix.
Then, for −∞ < k ≤ m, Ik(ϕ) is the ideal generated by all k-minors of Aϕ, with
the convention that Ik(ϕ) = R if k ≤ 0.

For every 0 ≤ i <∞ we call In−i(ϕ) the ith Fitting ideal of N , denoted Fitti(N),
see [8].

In the definition above, we chose a presentation ϕ when defining Aϕ and its
ideals. However, it turns out that the Fitting ideals Fitti(N) are independent of
the choice of ϕ, see [8, Cor. 20.4].

Definition 5.3. Let k be a knot with Alexander InvariantM . Then, the Alexander
Polynomial of k is a generator of Fitt0(M).
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Note that Fitt0(M) is the ideal generated by the determinant of the n−1×n−1
Alexander Matrix. This makes it a principal ideal, meaning it is generated by a
single element. Since Z[t, t−1] is a domain and Fitt0(M) is independent of presen-
tation, this means that the generator of Fitt0(M) is unique up to multiplication by
an invertible element of Z[t, t−1]. Thus, the Alexander Polynomial is unique up to
multiplication by ±tk for k ∈ Z.

We now briefly describe the procedure for computing the Alexander Polynomial,
before walking the reader through a few examples. Our first step is to write down
a presentation matrix for M . To do so, we must understand how the relations in
the presentation of K translate to M . For instance, consider the following relation:

[γi][γj ][γi+1]
−1[γj ]

−1 = e.

To understand it as a relation of M , we first wish to rewrite it in terms of γ and
x1, ..., xn−1:

xiγxjγγ
−1x−1

i+1γ
−1x−1

j = e.

Then, finally, we rewrite it again, this time in the language of the module M :

xiK
′′ + t · xjK ′′ + t−1 · xi+1K

′′ − xjK
′′ = xiK

′′ + (t− 1)xjK
′′ + t−1xi+1K

′′.

So, the column of the presentation matrix corresponding to this relation would have
1 in the ith position, t−1 in the (i + 1)th position, t − 1 in the jth position, and
zeros everywhere else. Repeating this procedure for all n− 1 relations will give us
our (n − 1) × (n − 1) Alexander Matrix. Taking the determinant of this matrix
yields the Alexander Polynomial.

Example 5.4. Let k be the unknot. Recall from 4.2 that its knot group K =
π1(R3 \ k) ∼= Z. In this case, M is the zero module and its presentation matrix is
a 0× 0 matrix. So, by definition, the Alexander Polynomial of k is 1.

Example 5.5. Let k be the trefoil knot. Recall from 4.3 that we had the following
original presentation for its knot group, K:

{[γ1], [γ2], [γ3] | [γ1][γ3][γ2]
−1[γ3]

−1 = e, [γ2][γ1][γ3]
−1[γ1]

−1 = e}

So, we let γ = [γ3], x1 = γ1γ
−1, and x2 = γ2γ

−1. Now, we consider the first
relation. Rewriting it in terms of γ, x1, and x2 gets us x1γx

−1
2 γ−1. In the language

of the module M this is equal to x1K
′′ − t · x2K ′′. So, the first column of our

presentation matrix is

[
1
−t

]
.

Performing the same operations on the second relation gets us that [γ2][γ1][γ3]
−1[γ1]

−1

becomes x2γx1γ
−1x−1

1 which in turn is equal to x2K
′′+(t−1) ·x1K ′′. So, we have

the following Alexander Matrix: [
1 t− 1
−t 1

]
.

Taking the determinant of this matrix gives us the Alexander Polynomial for the
trefoil knot:

t2 − t+ 1.
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Now, recall that our construction of the Alexander Polynomial stemmed from
the difficulties of comparing presentations of knot groups; in particular, the presen-
tations of the trefoil and figure-eight knots. In the following example, we see that
the Alexander Polynomial is, in fact, capable of easily differentiating between the
two.

Example 5.6. Let k be the figure-eight knot. Recall, we had the following pre-
sentation for K:{
[γ1], [γ2], [γ3], [γ4] | [γ3][γ1][γ4]

−1[γ1]
−1 = e, [γ1][γ3][γ2]

−1[γ3]
−1 = e, [γ3][γ4][γ2]

−1[γ4]
−1 = e

}
We then make the substitutions γ = [γ4], x1 = [γ1]γ

−1, x2 = [γ2]γ
−1, and x3 =

[γ3]γ
−1 and get the following three relations:

x3γx1γ
−1x−1

1 = x3K
′′ + t · x1K ′′ − x1K

′′

x1γx3γγ
−1x−1

2 γ−1x−1
3 = x1K

′′ + t · x3K ′′ − t · x2K ′′ − x3K
′′

x3γx
−1
2 γ−1 = x3K

′′ − t · x2K ′′

These relations give us the presentation matrixt− 1 1 0
0 −t −t
1 t− 1 1

 ,
the determinant of which gives the Alexander Polynomial of the figure-eight knot:

t3 − 3t2 + t.

Since the above polynomial for the figure-eight knot is not equivalent to the trefoil
knot through any multiplication by ±tk, we have that the two are not equivalent.
In this way, we see how the Alexander Polynomial greatly simplifies the problem of
comparing knot groups.

That being said, it’s differentiating ability is far from perfect, and even less so
than that of the knot group. Each step - considering K ′, then abelianizing it,
then taking the Fitting Ideal - results in loss of information, meaning it is possible
to have knots with equivalent Alexander Polynomials whose knot groups are not
isomorphic. For instance, there are infinitely many knots, which are not equivalent
to the unknot, yet have Alexander Polynomial 1 [10, p. 167]. Nonetheless, for simple
knots, this invariant is still a powerful one, capable of distinguishing between all
prime knots with up to 8 crossings. [9]
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