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1 Percolation Theory

1.1 Elementary Percolation Theory

Percolation is a stochastic model in graphs that describes spatial disorder, most
often used in a lattice system. The most intuitive way to think of it is through
coffee brewing. In the beginning, water cannot permeate the ground coffee
beans. However, the cohesion is inversely correlated to the temperature. As
the temperature increases, the bonds will randomly break, allowing water to
start seeping through. Then, there exists a temperature at which the cohesion
breaks down enough such that water can fully permeate the coffee, allowing the
brewing process to begin.

We will now go through a rigorous definition of percolation. As in [6], we
will consider percolation on the hypercube lattice vertex-edge set: G = (V,E) ⊂
Ld = (Zd,Ed). Similarly, we will define our percolation process to be an edge
process. As such, each edge e ∈ E is designated 1 (open) with probability p,
or 0 (closed) with probability 1 − p. Our state space is Ω = {0, 1}E , where
elements ω of this space are vectors known as “configurations.” That is, they
denote the 0/1 arrangement on E of open or closed edges. The law of this
Bernoulli (discrete) probability process is Pp:

Pp(ω) =
1

Zp

∏
e∈E

pω(e)(1− p)1−ω(e) (1.1)

where Zp is the normalization constant, and ω(e) is a function that returns 1
if the edge e is open and 0 if e is closed. If an edge is open, this means that
two endpoints are connected. We denote a cluster Kx as the set of all points
reachable from a vertex x. That is, Kx = {y ∈ Zd : x ↔ y}. Let K0 be the
cluster starting from the origin. Here is the primary concern of percolation:
does there exist some infinite cluster containing the origin to infinity? Let
θ(p) = Pp(|K0| = ∞), where this is the probability of the existence of an
infinite cluster starting from the origin.

Definition 1.1. The critical probability pc is the probability that satisfies:

pc = sup{p : θ(p) = 0}. (1.2)

That is, there exists some supercritical regime pc < p, in which the proba-
bility that there exists an infinite open cluster starting at the origin is nonzero.
Similarly, there exists some subcritical regime p < pc in which such a cluster
almost surely does not exist. There are two very important facts to remember
about the infinite open cluster: it is unique and translationally invariant [6].
By ergodicity, this means that the probability that there exists an infinite open
cluster is either 0 in the subcritical case or 1 in the supercritical case because
the probability of an infinite cluster from any x ∈ V is the same.

Let Λm = [−m,m]d ⊂ Ld. In the subcritical regime, an important idea that
we will use is that of exponential decay. That is, for some γ > 0,m ≥ 1,

Pp(0 ↔ ∂Λm) ≤ e−γm. (1.3)
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Essentially, because there is no infinite open cluster, there is some end, and the
longer the cluster goes on, the more there is a ”cost” to keep going.

2 Random Cluster Model

First introduced by Fortuin and Kastelyn [4], the random cluster model is a
generalization of the classical percolation process which attempts to unify many
aspects of random graph theory, including electrical networks and percolation.
Take φp,q to be the law of this process defined on a finite set where:

ϕp,q(ω) =
q|K|

Zp

∏
e∈E

pω(e)(1− p)1−ω(e) (2.1)

where K is the set of all clusters Kx, q is a certain weight attached to cluster
and q|K| reflects the fact that each connected component contributes a factor
of q to the probability measure. When q = 1, we find ourselves back in classic
percolation (1.1). For q > 1 for q ∈ R, we find that opening an edge increases
the likelihood that additional edges are open in the same component. This
introduces a positive “correlation” between edges, which is a fundamental notion
that we will expand upon.

2.1 Random Cluster Measures

We write ϕΛ,p,q when we are concerned with the measure defined on a finite set
Λ = (V,E) ⊂ Ld where F is the σ-field = Power set of {0, 1}E . When dealing
with the laws induced by various systems, how do we compare the various
measures? In this section, we define and prove various concepts that will be
instrumental in helping us work with a changing system, only assuming that
ϕΛ,p,q is strictly positive. That is, ϕΛ,p,q(ω) > 0 for any ω ∈ Ω.

Let ∂eW be the set of all edges with one endpoint in W and one outside W .
That is, ∂eW = {e =< x, y >∈ E|e : x↔ y, x ∈W, y /∈W}. On a finite set, we
call a fixed configuration on ∂eW a “boundary condition.” For some boundary
condition ξ,

ΩξΛ = {ω ∈ Ω : ω(e) = ξ(e) for e ∈ ∂eΛ} (2.2)

we condition on the configuration space Ω to only contain configurations ω
that satisfy a certain requirement on the boundary of Λ. That is, we take the
conditional measure of an event given some restriction on the edges on ∂eW . We
define the random cluster measure conditioned on ΩξΛ as ϕξΛ,p,q. Here, we define
two boundary conditions: ξ = 0, 1. We emphasize that this does not restrict
whether the connections are all closed or open, respectively. Rather, ξ = 0
corresponds to the “free” boundary condition, which means there is no particular
boundary condition imposed, and 1 is the “wired” boundary condition, where
all edges are required to be the same on ∂Λ. This means ω(e) = 0 OR ω(e) =
1 for e ∈ ∂eΛ. These are two specific types of boundary conditions, and we will
define our own whenever necessary.
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Definition 2.1. We define ω ≤ ω′ if ω(e) ≤ ω′(e) for all e ∈ E. A function
f increases if f(ω) ≤ f(ω′) for ω ≤ ω′. Similarly, an event A ⊂ Ω increases if
ω ∈ A and ω ≤ ω′ implies ω′ ∈ A.

By this definition, we note that for two boundary conditions ξ, ψ, ξ ≤ ψ
implies more open edges imposed by the boundary conditions. We also define
a separate boundary condition, ϕpΛ,p,q. In this case, the p in the exponent
corresponds to a “periodic boundary condition. This means that points are
identified on opposite boundaries of the box Λm = {x ∈ Zd|x ∈ [−m,m]} ⊆ Zd,
creating a toroidal structure. Specifically, for any vertex ω ∈ Λm, connections
are determined modulo 2m+ 1. That is, two vertices x1 and x2 are considered
neighbors if:

|xi − xj | ≡ 1 (mod 2m+ 1) for some i, and xj = xj ∀j ̸= i.

This essentially ”wraps” the box Λm, creating a periodic structure. One can
visualize this by imagining Λm as a torus.

Definition 2.2. Let ϕΛ,p,q be a measure on Λ. We say that ϕΛ,p,q is strongly
positively associated if for all F ⊆ E, with the boundary condition ξ where
ϕΛ,p,q(ω) > 0 for all ω ∈ ΩξF , then for all increasing events A,B ⊂ ΩξF ,

ϕξΛ,p,q(A ∩B) ≥ ϕξΛ,p,q(A)ϕ
ξ
Λ,p,q(B).

Otherwise stated, for any boundary condition or regime, ϕΛ,p,q is such that
the measure of two events becomes more likely when they are taken together.
We clarify that this is different than regular positive associativity in that we are
directly involving the probabilities of events as opposed to the expectations of
functions.

Definition 2.3. Let F ⊆ E where Λ = (V,E) ⊂ (Zd,Ed). For ξ, ψ ∈ Ω where

ξ ≤ ψ, we say ϕΛ,p,q is monotonic if ϕξΛ,p,q(A) ≤ ϕψΛ,p,q(A) for all increasing
events A ∈ ΩF .

That is, one measure will tend to give greater values than another. Another
term for this (that we will use from now on) is one “stochastically dominates”
the other. That is, for ξ ≤ ψ and F ⊆ E

ϕξΛ,p,q ≤st ϕ
ψ
Λ,p,q (2.3)

where this is equivalent to

ϕξΛ,p,q(X1 < t) ≤ ϕψΛ,p,q(X2 < t)

for some t ∈ R. We similarly define 1-monotonicity, which is equivalent to (2.3)
except that F = {e}. Finally, we will introduce an inequality about stochastic
domination

Theorem 2.1. (Holley’s inequality) Let ϕ1, ϕ2 be strictly positive probability
measures on Ω. If for ω1, ω2 ∈ Ω, ϕ1, ϕ2 satisfy

ϕ1(max(ω1, ω2))ϕ2(min(ω1, ω2)) ≥ ϕ1(ω1)ϕ2(ω2) (2.4)

Then ϕ2 ≤st ϕ1.
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To clarify, max and min in this case refer to the maximum and minimum
connectivity.

Theorem 2.2. Let ϕ be a strictly positive measure where p, q are omitted. The
following are equivalent:

1. ϕ is strongly positively associated.

2. ϕ satisfies Holley’s inequality.

3. ϕ is monotonic.

4. ϕ is 1-monotonic.

Proof. • (1 =⇒ 2) Let us take ω1, ω2 on Λ that only disagree on two edges,
as any further amount will hold by induction by Theorem 2.2 from [7].
First, let A (B respectively) be the event that the left (right respectively)
vertex is open. By strong positive association,

ϕ(A ∩B) ≥ ϕ(A)ϕ(B) (2.5)

where this is equivalent to

ϕ(11) ≥ [ϕ(10) + ϕ(11)][ϕ(01) + ϕ(11)]. (2.6)

Next, we multiply the LHS by 1 (the summation of all possible events

ϕ(11)[ϕ(10)+ϕ(11)+ϕ(01)+ϕ(00)] ≥ [ϕ(10)+ϕ(11)][ϕ(01)+ϕ(11)] (2.7)

This simplifies to
ϕ(11)ϕ(00) ≥ ϕ(10)ϕ(01)

as required.

• (2 =⇒ 1) Next, we prove (2.1) gives us strict positive association via
a proof in [6]. Here, we define ϕ and ϕ′ to be measures with arbitrary
boundary conditions (BC) ξ. Take f, g to be increasing random variables
and let ω, ω′ be arbitrary configurations. Let

ϕξ
′

F =
g(ω)ϕξF (ω)∑
ω′ g(ω′)ϕξF (ω

′)
.

Because g is an increasing function, we have that by (2.1),

ϕξF ≤st ϕξ
′

F .

This extends to taking the expectation value of a random variable as well.
Therefore, let us take the expectations of f with both measures. This gives
us ∑

ω

f(ω)ϕξF (ω) ≤
∑
ω f(ω)g(ω)ϕ

ξ
F (ω)∑

ω′ g(ω′)ϕξF (ω
′)

.

Strong positive association then follows from our assumption that f, g are
increasing functions.
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• (2 =⇒ 3) Comes from Theorem 4.4 in [6].

• (3 =⇒ 4) Monotonicity trivially proves 1-monotonicity.

• (4 =⇒ 2) This follows from Theorem 2.3 in [7].

2.2 Coupling

What if we wanted to directly relate two measures? In this case, we could
create a joint probability measure in which we condition the two individual
state spaces.

Definition 2.4. Let µ, ν be measures on the space (Ω,F). A coupling κ(µ, ν)
is a joint probability measure in (Ω×Ω), (F ×F) where the marginals of κ are
µ and ν.

Essentially, a coupling allows us to relate two random variables in a certain
way. This paper will use various examples of couplings.

Theorem 2.3. Let ω, ω′ ∈ Ω and κ be a joint probability measure. If there
exists some coupling κ(ω ≥ ω′) = 1, then it follows that if µ (respectively, µ′) is
the measure in ω (respectively, ω′) then µ′ ≤ µ.

Proof. κ(ω ≥ ω′) = 1 implies a general global monotonicity of the configurations
and of the coupling. If the joint distribution is monotonic, this implies that the
marginals µ, µ′ are also monotonic. This inherited monotonicity implies µ′ ≤ µ
as required.

This is a very general proof, and if we wanted to prove this for an explicit
coupling, we would have to define boundary conditions to more directly compare
ω and ω′. Intuitively, if you condition a measure to have greater connectivity,
at the very least the probability of an event happening will not decrease. This
is a direct result of the positive association. Generally, if you condition your
measure on the event that there is more connectivity, that induces a greater
chance of events happening.

3 Ratio Weak-Mixing

An important consequence of the exponential decay of connectivity functions is
that the correlation between subsystems also decreases exponentially. Further-
more, the correlation between two events also decreases exponentially as the
distance increases. Given this correlation decay, we can state that the system
has the “weak mixing” property. Let δ(P,Q) = supA |P (A)−Q(A)| be the total
variation distance, where P,Q are arbitrary measures, and A ∈ Ed. We use the
definition of the weak mixing property as seen in [1].
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Definition 3.1. Let φ be a measure of Ω. We say φ has the weak mixing
property for every F ⊆ E and for any arbitrary boundary conditions ξ, ψ:

δ(φξF , φ
ψ
F ) ≤ C

∑
x∈∆,y∈Λc

exp(−λ|x− y|). (3.1)

This means that the effect of two different boundary conditions ξ, ψ decays
exponentially over a long distance. This implies a far more interesting result,
which is that as the distance between events grows, they become “essentially”
independent. Otherwise, |φ(A ∩ B) − φ(A)φ(B)| is less than or equal to some
exponential decay as in (1.3). (3.1) is an expression of weak-mixing we call
“ratio weak-mixing.” The rest of this section is dedicated to proving the “ratio
weak-mixing” result for our continuum lattice. We only assume that we are in
the subcritical regime (p < pc), such that the weak mixing property holds. For
a proof that the weak mixing property holds, refer to [1].

Let Λm = {x ∈ Zd|x ∈ [−m,m]} ⊆ Zd. We define a path as connected
components on our lattice. We now define two disjoint subsets of Λm, Γand ∆.
We also define D to be a region that “separates” Γ and ∆ in the sense that any
path Γ ↔ ∆ must also pass through D. D is minimal, such that no strict subset
also separates Γ and ∆.

Theorem 3.1. (Ratio weak-mixing) Let Γ ⊆ Λ be measurable where Λ is finite,
let ∆ ⊆ Λ be finite such that ∆ ∩ Γ = ∅, and let D be a linear subset of Λ that
separates ∆ and Γ. Let λ,C ∈ (0,∞). Let t(λ,C,Λ,Γ) = Ce−λ|x−y| for x ∈ ∆,
y ∈ Γ. If ΣΓ (Σ∆) is the state space of Γ (∆ respectively), then for τ, τ ′ ∈ ΣΓ

and α∆ ∈ Σ∆, ∣∣∣∣ ϕτΛ(σ∆ = α)

ϕτ
′

Λ (σ∆ = α)
− 1

∣∣∣∣ ≤ t(λ,C,Λ,Γ) (3.2)

whenever the right side is less than or equal to 1.

This is the form we will use for the proof, but a more enlightening version
is obtained as we average out over τ ′, leaving us with just

ϕτΛ(σ∆ = α)

ϕΛ(σ∆ = α)
.

We then use the following conditional relation:

ϕβ,nΛ (σ∆ = α) =
ϕnΛ(σ∆ = α, σΓ = β)

ϕnΛ(σΓ = β)

and define F∆ (FΓ) to be the sigma-fields of ∆ (respectively, Γ). Now, we
generalize and state that for any A ∈ F∆, B ∈ FΓ,∣∣∣∣ ϕΛ(A,B)

ϕΛ(A)ϕΛ(B)
− 1

∣∣∣∣ ≤ t(λ,C,Λ,Γ). (3.3)

For the proof that follows, the reader can find alternate formulations in [1]
and [9].
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Proof. Let I (respectively, E) be the region of Λ that is reachable from ∆
(respectively, Γ) along the paths of Λ that do not intersect D. From Theorem
(2.3), we know that φb ≤st φξ if b ≤ ξ. The important consequence of this is
that, for ω, ω′, ω′′ ∈ ΩΛ, where ω

′, ω′′ ≤ ω, we can create a coupling such that
κ(ω ≥ ω′, ω′′) = 1. Let φ be the law of ω, and let φαΛ (respectively, φηΛ) be the
law of ω′ (respectively, ω′′). Furthermore, we construct ω and ω′ in such a way
that if ω̄ ∈ E2 = {D ↔ Γ}, then ω̄, ω, and ω′ are identical on D ∪ I. For the
clusters of ω, ω′, ω′′ we assign spins σ, σ′, σ′′, respectively, such that: on event
E2, the functions σ, σ′, σ′′ are equal on D ∪ I. Let H be an event that satisfies

H ⊂ {σ∆ = σ′
∆}. (3.4)

For the moment, let us assume that the following equations hold:

κ(σ∆ = α∆), κ(σ
′
∆ = α∆) > 0 (3.5)

κ(HC |σ∆ = α∆), κ(H
C |σ′

∆ = α∆) ≤
t

2
(3.6)

where κ is the appropriate measure. Using the fraction from (3.3), we state:

κ(σ∆ = α∆)

κ(σ′
∆ = α∆)

=
κ(H ∩ {σ∆ = α∆})
κ(H ∩ {σ′

∆ = α∆})
· κ(H ∩ {σ′ = α∆})
κ(H | σ∆ = α∆)

(3.7)

=
κ(H | σ′

∆ = α∆)

κ(H | σ∆ = α∆)
. (3.8)

where in (3.7) we simply turned each individual measure into a fraction using
the definition of conditional probability and the fact that, by definition,

H ∩ {σ∆ = α∆} = H ∩ {σ′
∆ = α∆}.

If (3.5),(3.6) hold, then it follows that (3.8) is bounded below by 1 − 1
t and

above by 1 + t. As such, (3.1) follows.
The rest of the proof is dedicated to proving (3.6). If the reader is curious

to understand why (3.5) is true, consult [1]. First, we note that (3.1) implies
that the variance between the two configurations ω, ω′ is less than or equal to
some exponential decay. Define

t1 = φ(∆ ↔ D)

and
t2 = φ(Γ ↔ D).

Therefore,
κ(σD ̸= σ′

D) ≤ 1− t1. (3.9)

We note that due to our prior definition of κ(σ, σ′), we let t1 ≤ t2. Similarly,

κ(σD = σ′
D) ≥ 1− t2. (3.10)
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Next, let FD(FD) be the sigma-field generated by σD, σ
′
D. We define

q = κ(σD ̸= σ′
D|FD), q′ = κ(σD ̸= σ′

D|F ′
D).

We let a > 0. We redefine H = Ha:

Ha = {σD = σ′
D} ∩ {q ≤ a} ∩ {q′ ≤ a}.

We see that this redefinition of H is fine with our previous definition from (3.4).
We will assign a value to a later on. Since we are in a regime with weak-mixing,
for every A ∈ FD

κ(σD ∈ A|σ∆ = α∆) ≤ κ(σD ∈ A) + t1 (3.11)

where t1 comes from the fact that the asymptotic independance can be char-
acterized by the exponential decay of the connectivity. By (3.9) and Markov’s
inequality:

κ(q > a) ≤ 1

a
Eκ(q) ≤

1

a
t2 (3.12)

where Eκ is the expectation with respect to κ. We then state that because the
event {q > a} ∈ FD, we can use (3.11) and (3.12) to get:

κ(q > a|ρ∆ = α) ≤ κ(q > a) + t1

≤ 1

a
t2 + t1 (3.13)

Because of our assumption of ω, ω′ being identical on D ∪ I, we determine that
whatever we prove for σD, we prove for σ

′
D. Next, we use the essential supremum

and convenient upper bound we can derive by definition to state

κ(σD ̸= σ′
D, q ≤ a|σD) ≤ ess sup{κ(σD ̸= σ′

D|GD)1{q ≤ a}}

≤ a. (3.14)

Giving our conditioning on D, we know that

{σ∆ = α∆} ∩ {σD = α′
D} = {σ′

∆ = α∆] ∩ [σD = α′
D}. (3.15)

Next, let us analyze the probability of q and q′ on other conditional events. By
(3.15) and basic inequalities concerning intersections versus conditions, we have:

κ(q′ > a, σD = σ′
D | σ∆ = α∆) ≤ κ(q′ > a | σ′

∆ = α∆, σD = σ′
D). (3.16)

Next, we use the law of total probability, set a = t2, and finally use (3.14) and
(3.16):

κ(q′ > a | σ′
∆ = α∆, σD = σ′

D) ≤
κ(q′ > a | σ = α∆)

κ(q′ > a | σD = σ′
D)

≤ t1 + t2
1− t1 − 2t2

. (3.17)
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Similarly, (3.17) holds with q′ instead of q. Finally we combine ,(3.13),(3.14),
(3.9), and (3.17) to get

κ(HC |σ∆ = α∆) ≤ t1 + 3t2 +
t1 + t2

1− t1 − 2t2
. (3.18)

Similarly, κ(HC |σ′
∆ = α∆) from (3.6) also holds. Setting the RHS equal to t

then concludes our proof.

4 Quantum Ising Model

Define a graph G = (V,E). For each vertex v ∈ V we assign Σ = {−1, 1}V as
before, but these are no longer the same quantities as before. In the quantum
setting, we operate in a Hilbert space, a complete vector space equipped with an
inner product where elements are vectors representing possible configurations of
the system. To obtain the necessary configuration space Σ, the relevant Hilbert
space will be C2, where elements are complex-valued two-dimensional vectors.
As such, to properly define our configuration space with multiple vectors (cor-
responding to the vertices), our Hilbert configuration space: H = ⊗v∈V C2 and
⊗ is the tensor product, which ensures that every site can still be described
individually.

Now, we define SU(2) as the set of all 2×2 unitary matrices with determinant
1, which control rotations in C2. Its Lie algebra su(2) is spanned by the Pauli
matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
governing spin transformations. By convention, we choose σz to be our “mea-
surement basis” such that the bases of C2:

0 =

[
1
0

]
, 1 =

[
0
1

]
correspond to the eigenvectors of σz, and the eigenvalues of σz, {−1, 1}, rep-
resent the physical measurement outcomes. Then, this structure allows us to
define Σ on H.

We call elements of H “wavefunctions”, which we denote via the “ket”: |·⟩,
and we denote elements of the dual space H′ via the “bra”: ⟨·|. Let |ψ⟩ ∈ H be
the linear combination:

|ψ⟩ =
∑

σ∈{−1,1}V

cσ |σ⟩ (4.1)

where cσ ∈ C represents an assignment of {−1, 1} to each vector. To recover
the classical notion of probability, we use the Born rule, which states that in
quantum mechanics, the probability pi is given by:

pi = |ci|2 (4.2)
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We define the density matrix ρ as a positive semi-definite, trace-1 operator
which is the outer product between |ψ⟩ with its dual conjugate, which we denote
as:

ρ = |ψ⟩ ⟨ψ| (4.3)

We define each element in the density matrix as

ρi,j = ⟨i|ρ|j⟩

where we can similarly define this as

ρi,j = e∗i ρej ,

where ei represents the ith basis vector, and e∗j the jth conjugate basis vector.
By (4.2), it follows that the diagonals correspond to the probability of state |i⟩.
Given this, the proper way to normalize a density matrix must be to take its
trace

trace(ρ) =

n∑
i=1

⟨i|ρ|i⟩

assuming |ψ⟩ is a n-dimensional vector. Define

β =
1

kBT
(4.4)

as the inverse temperature and H as the Hamiltonian operator, a matrix de-
scribing the energy of a specific configuration on Σ:

H(σ) = −1

2
λ

∑
e=⟨i,j⟩∈E

σzi σ
z
j − δ

∑
j∈V

σxj . (4.5)

Given β and H, the density matrix can be similarly defined as:

ρβ,λ,h(σ) =
1

Z
e−βH(σ) (4.6)

where ρβ,λ,h(·) is the probability mass function on the graph. The 1
2 comes from

the spin value of the electrons. σz, σx correspond to the spin algebras, in this
case the z and x bases of the Pauli matrices. We interpret the left summation
in (4.5) to be the edge operator, acting on the interaction of spins between two
sites. However, by the properties of the spin operators:

[σzi , σ
x
i ] = 2iσy.

Because they do not commute, the z and x bases can not be simultaneously mea-
sured, implying that they do not have the same eigenbases. Since simultaneous
eigenstates do not exist, applying the x-basis at a vertex induces a transition
to the other basis state. As such, we can interpret the x basis as an operator
denoting “quantum fluctuations.”

11



We interpret λ (respectively δ) to be the strength of spin-coupling between
two sites (respectively, the intensity of quantum fluctuations). However, it is
important to mention that anticommutativity only holds if applied at the same
site. If i ̸= j, then

σzi σ
x
j = σxi σ

z
j . (4.7)

This commutation implies that operators are independent of each other if ap-
plied to different sites or edges. Finally, Z is the partition (normalization)
function of the density matrix:

Z = trace(e−βH). (4.8)

5 Unifying the Ising Model and Percolation

5.1 Edwards-Sokal Representation

It is possible to unite the Ising and random cluster models through a joint
probability distribution known as the Edwards-Sokal representation. Define the
coupling µ as taking from the probability distribution Ω×Σ where Ω is our edge

configuration state space Ω = {0, 1}Ed

as before, and Σ is a vertex configuration
space Σ = {1, 2, ..., q}V where q could denote some characteristic like spin, color,
etc. We define the law of the coupling µ as:

µ(σ, ω) =
1

Zp,q
ρ(σ)ϕp,q(ω)1F . (5.1)

where F is the event where if for ω(e) = 1, then σx = σy. That is, they are part
of the same cluster. Now, we show that the marginal distributions in σ, ω give
us the Ising model and the percolation, respectively.

The marginal over Ω is only constrained by the requirement that σ is con-
stant on clusters. Therefore, this is a summation of all the clusters, which is
equal to some weight of possible values raised to the amount of clusters, this be-
ing q|K| where K is the set of clusters. Therefore, this gives us back the random
cluster model. To compute the marginal distribution Σ, we will require the use
of

δe(σ) = δσx,σy

where δu,v is a delta function. This leaves us with∏
e∈E

1

Z
(1− p)1−δe(σ).

If we take the density p to be 1− e−βλ, then our marginal distribution becomes
proportional to

µ(σ, ·) = 1

Z
exp{βλ

∑
e∈E

δe(σ)}.
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This gives us a generalized version of the Ising model known as the Potts model,
where there are an arbitrary amount of values (which we denoted as q) the spin
can take. If we are to take q = 2 and let δe(σ) =

1
2 (1 + σiσj), then the measure

reduces to

µ(σ, ·) = 1

Z
eβλ

∑
<i,j>∈E σiσj (5.2)

which is the Ising model as required. Via the construction proposed in [2], it is
possible to construct an Edwards-Sokal representation that includes a general-
ized Potts model, with the necessary site operator. Therefore, we have recovered
the Ising model via the marginal distribution on Σ. The importance of this re-
sult is that the long-range order of correlations in the quantum Ising model is
equivalent to a percolation process.

Now, if we want to properly use percolation theory, we need to adapt certain
other ideas like the connectivity function. The following theorem explains how
to translate the connectivity in the percolation theory to that of the Ising /
Potts models.

Theorem 5.1. For q ∈ {2, 3...} and β ≥ 0, the connectivity function in τβ,q is
given by

τβ,q(x, y) = (1− 1

q
)φp,q(x↔ y).

Proof. Let πβ,λ,δ be the law of the generalized Potts model. Here, we take the
mean value of some observable τ : Ω → R

πβ,λ,δ(τ) =
∑
σ

τ(σ)πβ,λ,δ(σ).

πβ,λ,δ(σ) represents the distribution on Σ. However, we can represent πβ,λ,δ(σ)
as a conditional measure of the coupling µ(σ, ω). Given ω, the conditional mea-
sure in Σ is performed by uniformly placing spins on clusters k(ω). Therefore,
the conditional measure gives us an expression of the connectivity of specific
clusters. Therefore,

πβ,λ,δ(τ) =
∑
σ,ω

τ(σ)µ(σ|ω)φ(ω). (5.3)

Let us define τ as the two-point connectivity operator:

τβ,q(x, y) = δx,y(σ)−
1

q
, (5.4)

where q−1 represents the probability that two independent sites have the same
spin. Remembering that µ(σ|ω) gives us an expression of the connectivity of
two points, we use (5.4) and (5.3) to get:

πβ,λ,δ(τ) =
∑
ω

µ(τ |ω)φ(ω) =
∑
σ,ω

τ(σ)µ(σ|ω)φ(ω) = (1− 1

q
)φp,q(x↔ y) (5.5)

as required.
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5.2 Critical Probability of the Quantum Ising Model

Something we have not yet addressed is that although percolation can be con-
nected to the Quantum Ising model via the Edward-Sokal representation, we do
not actually have the necessary conditions for it. If we have a finite lattice, even
in the subcritical phase, there is a non-zero probability that all edges are open.
Therefore, percolation is only well defined in the infinite case. This is tricky
for a random cluster measure, as the existence of boundary conditions requires
extra care in this “infinite-volume limit”. In fact, it is possible to find that the
infinite limit of the measure depends on which boundary condition you define
on your measure. Refer to [6] for further information on the limit and when it
is unique.

If percolation is achieved in the limit of the random cluster measure, then
we similarly have long-range order in the Quantum Ising model. This implies
that we can use the same theorems and concepts we have developed up until
now in the Ising regime. This includes the idea of the critical probability. From
[3], we can show that, using the notation from (4.5), for any δ < δc, there
exists a λc < λ such that the Quantum Ising model expresses global correlation
between spins, which we call “long-range order”. This result implies that in the
Quantum Ising Model, it is neither λ nor δ that matters, but rather the ratio

θ = λ/δ (5.6)

that determines long-range order. Henceforth, we shall only concern ourselves
with θc. The rest of this section will be dedicated to an analysis of θc and the
subcritical regime θ < θc.

Theorem 5.2. The critical ratio of the Quantum Ising model is the self-dual
point θ = 2

We will need to use the concept of ”planar duality” to prove this. The dual
graph of any lattice Λ,Λd is defined by placing a vertex in every face of Λ. For
each edge e ∈ E and ed ∈ Ed, ed is open if and only if the corresponding e in
the primal (original) graph is also open. This implies that if long-range order is
not possible, then every finite open cluster is enveloped by a closed cycle in the
dual graph. There also exists the notion of a self-dual point, psd. That is, the
probability at which there is a natural isomorphism from the vertex-edge set to
its dual set.

Proof. 1. Assume θsd ≤ θc
Let θ = θsd. Define a sublattice Λm = [−m,m]2 where on Λ we define

mutually exclusive events A, corresponding to a horizontal open crossing in the
primal graph, and B, a vertical close crossing in the dual graph. By the isomor-
phism from Λ to Λd, there is a ”scale invariance” in the equality of probability
for any square lattice Λm. That is, self-duality ensures symmetry between the
primal and dual crossings:

φ(A) = φ(B). (5.7)
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By (1.3), there exists some γ > 0 such that there is an exponential decay in the
primal graph such that

φp,q(0 ↔ ∂(Λm)) ≤ Ce−mγ . (5.8)

However, the isomorphism implies that there would also be an exponential decay
in the dual graph as we go to large m. However, by scale invariance the distance
does not matter. Therefore θc ≤ θsd.

2. Assume θc ≤ θsd
Let θ = θsd. Define a sublattice Λm = [−m,m]2. Let there be an event

that horizontally running through this sublattice is an infinite open cluster that
stretches to infinity in both directions. By the isomorphism from Λ to Λd, there
similarly exists the event that vertically running through the sublattice is an
infinite closed cluster in the dual graph. Within Λm a horizontal open crossing
is mutually exclusive with a vertical closed crossing. In the event that there is a
horizontal crossing, this prevents a vertical closed path. This forces the infinite
closed cluster to be divided into 2. By the uniqueness of the infinite open cluster
(proven in [8]), this is impossible. Therefore, θsd ≤ θc.

Therefore, θsd = θc.

5.3 Continuous Time percolation

We take the graph G = (V,E) as before. The quantum Ising model naturally
evolves in time, necessitating the development of a continuous-time percolation
process to describe its dynamics. Unlike classical percolation, where connections
form independently based on a fixed probability, the quantum setting introduces
a temporal component where transitions occur stochastically according to Pois-
son processes.

For any observable A, the projective expectation value ⟨η′|A|η⟩ is 1 if and
only if ηi’=ηi. This can be interpreted as the probability that a given quantum
state remains unchanged during the evolution. For the density matrix ρ, recall-
ing the Hamiltonian form in (4.5), we express the σz (respectively σx) operators
as a bridge (respectively cut) operator in a Poisson process with intensities λ
(respectively δ). The bridge operator Be, for e = ⟨i, j⟩ ∈ E creates a connection
between two sites that share the same eigenvalue in the computational basis, re-
inforcing coherence between states. In contrast, the cut operator Dx, for x ∈ V
represents a quantum fluctuation that flips the eigenvalue, effectively breaking
correlations between connected clusters.

Therefore, ⟨η′|ρ|η⟩ quantifies the probability that, given the stochastic effects
of cuts and bridges, each element in the quantum state remains unchanged.
This formulation provides an intuitive path integral representation, where the
evolution from an initial quantum state η to a final state η is governed by
a sum over possible percolation histories in time. This perspective links the
probabilistic structure of percolation with the quantum mechanical evolution of
the Ising model.
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5.4 Reduced Density Matrix

As quantum systems grow, their Hilbert spaces expand exponentially, making
direct analysis intractable. To manage this complexity, we employ a technique
inspired by Markov chains: rather than analyzing the full state space, we focus
on a reduced section. While we lose information, it sometimes gives us more
than we originally thought: how much what is left of the system depended on
what we conditioned over. Let W ⊂ G = (V,E). We define the reduced density
matrix:

ρWG = traceG\W (ρ). (5.9)

Similarly, we adapt the continuous-time percolation to the reduced case to find:

⟨η′|ρWG |η⟩ =
φG,β(σV \W,0 = σV \W,β |F )

φG,β(σ0 = σβ |F )
. (5.10)

where F = {σV \W,0 = σV \W,β} To see how this works, imagine a partially
periodic boundary condition. That is, impose periodicity on the original set G,
now remove W from it. This will produce a hole in the cylinder that represents
G \W . This will become a very important notion shortly.

We also introduce another way of stating (5.10). Recalling (4.1), for each
quantum state |η⟩, we can decompose it as |η⟩ =

∑
ψ∈ΣW

c(ψ) |ψ⟩ for c :

{−1,+1}W → C.

⟨η′|ρWG |η⟩ = φm(c(σW,0)c(σW,β))

am,β
(5.11)

where am,β = φm(σW,0 = σW,β). We will use this version of (5.10) to prove our
main result with perturbations of reduced density matrices.

6 Disordered Quantum System

As of now, we have assumed λ, δ are constant throughout our system. We
allow the bond and site intensities λ, δ to be random variables, leading to what
is known as a “disordered system”. Instead of assuming constant intensities
throughout the system, we now index them as λe and δx, summing over edges
and sites. In the previous sections, we have worked with the ratio θ = λ/δ, and
if the event {λe/δx ≤ θ} holds with probability 1, then there is no need to make
adjustments.

However, if we assume that λ = λi,j , δ = δx are independent, identically
distributed random variables, then this ratio is no longer globally well-defined.
Instead, interactions depend only on their immediate neighbors. Another im-
mediate consequence is that we need to modify θ: we define

θ(x) =
1

δ(x)
max

||x−y||2=1
{λ(x, y)} (6.1)

θ(x) =
1

δ(x)
min

||x−y||2=1
{λ(x, y)}. (6.2)
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We are strictly in the subcritical regime, that is, connectivity decays expo-
nentially, when θ(x) < θc and in long-range order, that is, connectivity persists
over large distances, when θ(x) > θc [10]. Although we will not explore them
in this paper, when θ(x) < θc < θ(x), connectivity fluctuates throughout the
system despite global disorder. We call these “Griffiths singularities”, as seen
in [5].

6.1 Multiscale analysis

To analyze subgraphs Λ ⊆ Z× R, we will need to use the following theorem:

Theorem 6.1. Consider continuous percolation on Z × R in a random envi-
ronment satisfying

Γ = max
{
P
(
[ln(1 + Λ)]β

)
, P
(
[ln(1 + ∆−1)]β

)}
<∞

for some

β > 5 +
7

2

√
2. (6.3)

There exists Q = Q(β) > 1 such that the following holds. For q ∈ [1, Q) and
γ > 0, there exists ϵ = ϵ(β,Γ, γ, q) > 0 and η = η(β, q) > 1 such that: if

P
(
[ln(1 + (λ/δ))]β

)
< ϵ, (6.4)

there exist independant, identically distributed, positive random variables
Dx ∈ Lη(P ), x ∈ Z, such that

Pλ,δ((x, s) ↔ (y, t)) ≤ exp[−γdq(x, s; y, t)] if dq(x, s; y, t) ≥ Dx (6.5)

for (x, s), (y, t) ∈ Z× R.
The lower bound (6.3) for β is enough to imply that P (Dη

x) < ∞ for some
η > 1. The larger β, the larger η may be taken.

This is the version of the theorem from [9] and in [10] for d=1 where we are
not as concerned with generality. Here we present the idea for the general proof
as seen in [10].

The proof employs a ”multiscale analysis” approach, where we establish that
exponential decay over different ranges holds even when the decay parameter is
random, provided a suitable bound. The strategy involves an inductive process:

1. Base Case: Define an initial lattice Λ0 and ensure subcritical exponential
decay for connections from any x ∈ Λ0 to ∂Λn. WLOG, we focus on the
origin.

2. Inductive Hypothesis: Assume for scale n, there exists a coefficient mn

and a length scale Ln (in terms of the dimensions of the lattice Λn) such
that exponential decay holds.
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3. Inductive Step: We now define new parameters M < mn and L > Ln
such that M = mn − 1

Lα
n

for some α > r, where r represents the spatial

dimension of Λn. Thus, as we increase the length scale, the decay coeffi-
cient decreases accordingly to keep the decay approximately constant. We
then employ the limit n → ∞ to show that m∞ = limn→∞mn remains
positive such that for all n ∈ N, m∞ ≤ mn. If this holds, it guarantees
that exponential decay persists at arbitrarily large scales.

4. The final step is to show that the number of points x that violate the decay
condition is summable. Since the probability of an exceptional point at
scale n is at most O(Ldne

−cLα
n), if α > d, the sum

∑
n L

d
ne

−cLα
n converges.

By the Borel-Cantelli lemma, only finitely many exceptional points exist
almost surely, ensuring that at sufficiently large scales, exponential decay
holds universally.

6.2 Disordered ratio weak-mixing

We define a slit SL on a lattice Λm to be a rectangle [0, L]× [0, k], where we are
specifically interested in the bottom and top horizontal strips [0, L], [k, k+L] re-
spectively. Using (5.10), our reduced density matrix will impose partial periodic
boundary conditions on the space Λm \ SL, analyzing how our wavefunction on
[0, L] evolves to [k, k+L]. The result we proved about ratio-weak mixing holds
in any environment due to its generality, regardless of how we define λ and δ.
Therefore, it will hold for the slit. However, this is not true for the following
lemmas in [9]. As such, we need to adjust them before we can properly work
with the slits in the disordered quantum system.

Lemma 6.1. Let λ, δ ∈ (0,∞). If θ < 2 and the event AL holds, there exists
α,C,M,m, n ∈ (0,∞), depending on θ only, such that the following holds. There
exists γ(θ) > 0 such that, for all L ≥ 1 and M ≤ m ≤ n <∞,

sup
||c||=1

|
φm(c(σ+

L )c(σ
−
L ))

am
−
φn(c(σ

+
L )c(σ

−
L ))

an
| ≤ CLαe−γm (6.6)

where the supremum is over all functions c : ΣL → R with ||c|| = 1. The
function γ may be chosen to satisfy γ(θ) → ∞ as θ ↓ 0.

Proof. First, define S0,β as the slit box where S0 (Sβ) is region ∆ (Γ respectively)
and ΩL as the separating region. Let Dx be the death random variable (in the
sense of quantum fluctuations destroying a connection as per (4.5)) and D its
distribution as defined in [9]. For the lemma to work, we need there to be no
death on ∆ or Γ:

AL =

L−K⋂
x=K

{Dx ≤ min{x, L− x}}. (6.7)

We know that due to the symmetry of the slit box:

φ(AL) = 1− 2φ(AL) ≥ 1− 2

K∑
x=0

φ(D ≥ x).
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Because of the bound on β and therefore η, we have that φ(Dη) < ∞. Since
Dx is indepandant from each other, by the 2nd Borel-Cantelli lemma:

lim
L→∞

(AL) = 1. (6.8)

Take t1 as in 3.1. By (1.3) and the symmetry of the slit box we have that as
long as AL holds (S is the distance between the slits):

t1 ≤≤ 2

S/2∑
Ce−γi ≤ C ′e−γ

S
2

where the final expression on the right is an expression of the dominance of
the final term, which just has to be shifted by a constant to account for the
approximation. By the symmetry of the slit box, t1 = t2 The claim follows from
(3.1).

Lemma 6.2. Let λ, δ ∈ (0,∞), event BL hold, and θ < 2. Then there exists
constants ρ, C1, C2 ∈ (0,∞) such that, for all L ≥ 0,m ≥ 1, β > 2m + L, and
all ϵ+, ϵ− ∈ ΣL,

C1L
−ρ ≤

φm,β(σ
+
L = ϵ+, σ−

L = ϵ−)

φm,β(σ
+
L = ϵ+)φm,β(σ

−
L = ϵ−)

≤ C2L
ρ. (6.9)

We will not prove the full lemma here. Instead, we will summarize the proof
as seen in [9], and then adapt it to the disordered setting.

Proof. We want to whittle down our slit SL to a suitable region. In this case,
the probability of the event that there is no path from a vertex x to another
part of SL is at least as large as the probability that the first event is a death.
We can express this as

d ≥ xl = { δx
δx + λx,x+1 + λx,x−1

}.

We iterate over all the vertices to get

XL =
∏
x∈SL

{ δx
δx + λx,x+1 + λx,x−1

}. (6.10)

To aid in the analysis of XL, we take the natural logarithm. We rearrange the
expression using the properties of logarithms to find

ln(XL) =

SL∑
ln(1 +

λx,x+1 + λx,x−1

δx
). (6.11)

It is important to note that by (4.7), this is a sequence of 1-dependent random
variables. That is, they only rely on their immediate neighbors. Next we state
via the logarithmic triangle inequality Theorem:

Zx = ln(1 +
λx,x+1 + λx,x−1

δx
) ≤ ln(1 +

λx,x+1

δx
) + ln(1 +

λx,x−1

δx
). (6.12)
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Next, given that we are in a Hilbert space, we want to show that the sec-
ond moment, that is,

√
E(Z2

x), converges. To do this, we use the Minkowski
inequality and (6.12) to get

√
E(Z2

x) ≤
√
E(ln(1 +

λx,x−1

δx
)2) +

√
E(ln(1 +

λx,x+1

δx
)2). (6.13)

Finally, we can apply (6.4) to show√
E(Z2

x) ≤ 2
√
E(ln(1 + (λ/δ))2) <∞. (6.14)

By symmetry, the reduction process proceeds uniformly across the domain.
Since the domain is split into two disjoint regions, we iterate over four steps,
each corresponding to an expectation computed from the origin. We define the
event:

BL = {XL ≥ L−ρ}. (6.15)

where
ρ > 4E(Z0). (6.16)

Since (6.14) ensures the finiteness of E(Z2
x), we apply the the Central-Limit

Theorem of 1-dependent sequences. Under event (6.15), L−ρ provides a both a
lower and upper bound for the measure on the slit, giving us 6.2.

The following lemma is fairly unchanged from the disordered setting.

Lemma 6.3. Let λ, δ ∈ (0,∞) and let the event CL ∩ DL hold. There exists
constants C, γ ∈ (0,∞) that satisfies 0 < γ < 1 when θ < 2 such that: for

all L ≥ 0, m ≥ 1, β ≥ 5em+ 1
2L, all events A ⊆ ΣL × ΣL, and all admissable

random-cluster boundary conditions τ and spin boundary conditions η of Λm,β∣∣∣∣∣ϕαm,β
(
(σ+
L , σ

−
L ) ∈ A

)
ϕm,β

(
(σ+
L , σ

−
L ) ∈ A

) − 1

∣∣∣∣∣ ≤ Ce−
2
7γm, for α = τ, η

whenever the right side of the inequality is less than or equal to 1. The function
γ depends only on θ and ∞ > γ(θ) > 0.

The only thing that is different in this case is the form of the circuit used to
finish the proof. Please refer to [9] for further information.

7 bound on operators in disordered setting

We return to the reduced density matrix. How do we analyze small pertur-
bations in a reduced density matrix? If we recall the definition of the density
matrix in (4.6), we can use the properties of exponential matrices to see

eA = I +A+
A2

2
+ .... (7.1)
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where I is the identity matrix. If we subtract one density matrix from another,
the 0th degree will disappear, and anything above the 1st degree will be very
small. We define the operator norm:

||A|| = sup||Ψ||=1| ⟨Ψ|A|Ψ⟩ |

We let ρLm, ρ
L
n be two reduced density matrices. Using the definition of the

exponential matrix from (7.1) and the reduced density matrix from (5.10) we
have that

||ρLm − ρLn || = β||(Hm −Hn)− o(H2
m)||. (7.2)

The supremum is taken over all vectors ⟨Ψ| ∈ HM , where H is the L2-norm
space belonging to a Hilbert space defined on a spin space M .

Theorem 7.1. Let λ, δ ∈ (0,∞). If θ < 2 and the event E = {AL ∩BL ∩CL ∩
DL} holds, then there exists constants α,C ∈ (0,∞) depending on θ only, and
a constant ∞ > γ(θ) > 0 such that, for all L ≥ 1,

||ρLm − ρLn || ≤ min{2, CLρe−γm}, 2 ≤ m ≤ n (7.3)

This theorem originates from [9] but here, we adapt it to a disordered regime.

Proof. The upper bound of 2 comes from the inherent properties of the operator
norm and the fact that we are taking the supremum over the set of Ψ such that
||Ψ|| = 1. Let θ < θc, and let γ be the same as in lemma 6.1. Let m ≤ n < ∞.
Take the box Λm with configuration ω′, and Λn with configuration ω, where
Λm ⊆ Λn. Define φm,β (φn,β) to be the measure defined on Λm (respectively
Λn). Finally, we also define a box B ⊆ Λm, for which we will also define a
measure φB . We will work within B, using it to compare φm,β , φn,β . By positive
association, it follows that φm,β ≤st φn,β . By 2.3, it follows that we can find
some coupling κ of pairs (ω′, ω) such that (ω′ ≤ ω) = 1. In this coupling, we
may demand the configuration include identical configurations in Λm such that
there exists a set W of all the different configurations (ω′, ω) ∈ Ωn × Ωn where
there exists no path from ∂B to ∂hΛm, where ∂h is the horizontal boundary.
We make no condition on the configuration of B.

Now, define a slit SL ⊆ Λm, where we understand one end as being the
initial state at time t = 0, and the other as the final state at time t = β. Denote
σ0 (respectively σβ) as the spin configuration in the clusters of ω′ (respectively,
ω), whereas we denote σL,0 (respectively, σL,β) for the spin configurations on
the reduced density matrices of ω (respectively, ω′) in the slit SL.

By (5.11), we can define our reduced density matrix on SL as:

⟨ψ|ρLm − ρLn |ψ⟩ =
φm(c(σL,0)c(σL,β))

am,β
− φn(c(σL,0)c(σL,β))

an,β
(7.4)

where c : ΣL → [0,∞) with ||c|| = 1. Similarly, we define the random variable

Sc =
c(σL,0)c(σL,β)

am,β
− c(σL,0)c(σL,β)

an,β
.
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We separate into two cases, one where the spin configurations are in D (coupled
such that they are the same) and one where they are not. Defining κ(f ;F ) =
κ(f1F ):

Sc = κ(Sc;D) + κ(Sc;D). (7.5)

|κ(Sc;D)| ≤

∣∣∣∣∣φm
(
c(σL,0)c(σL,β)

)
am,β

−
φn
(
c(σL,0)c(σL,β)

)
an,β

∣∣∣∣∣
=

∣∣∣∣1− am,β
an,β

∣∣∣∣φm(c(σL,0)c(σL,β)).
Let us first analyze the case of the event D. On the event D: σW,0 = σW,β .

|κ(Sc;D)| ≤

∣∣∣∣∣φm
(
c(σL,0)c(σL,β)

)
am,β

−
φn
(
c(σL,0)c(σL,β)

)
an,β

∣∣∣∣∣
=

∣∣∣∣1− am,β
an,β

∣∣∣∣φm(c(σL,0)c(σL,β)).
(7.6)

Recalling the definition of am,β , an,β from (5.11), we get in the absolute values:

|1− φm(σ0 = σβ)

φn(σ0 = σβ)
|.

By lemma 6.3, we then get that

|1− am,β
an,β

| ≤ C1e
− 1

2γm. (7.7)

Next, we use the definition of the measures to get

φm,β(c(σL,0)c(σL,β)) =
∑

ϵ0,β∈ΣL

(c(ϵ0)c(ϵβ)φm,β(σL,0 = ϵ0, σL,β = ϵβ)) (7.8)

Using Lemma 6.2 we get

φm,β(c(σL,0)c(σL,β)) ≤ C2L
ρϕm,βc(σL,0)c(σL,β)).

In the next step, we first use (7.8), then we apply the symmetry of the system,
and finally use Cauchy Schwartz:

= C2L
ρ

(∑
ϵ∈ΣL

c(ϵ)ϕm,β (σL,0 = ϵ)

)2

≤ C2L
ρ
∑
ϵ∈ΣL

ϕm,β (σL,β = ϵ)
2
, (7.9)

using our assumption that ||c|| = 1. Revisiting the definition of am,β in (5.11)
and using lemma 6.2, we have that

φm,β(σ
+ = σ− = ϵ) ≥ C3L

ρ
∑

φ(σ+ = ϵ)2. (7.10)
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Combining (7.9), (7.7), and (7.10), we get that

κ(Sc;D) ≤ C4L
2ρe−

1
2γm. (7.11)

Now, we focus on κ(Sc;D) as in (7.5). The configurations are no longer con-
ditioned on being equal to each other. As such we can decompose the coupling
into the two possible configurations:

κ(Sc;D) ≤ Am +Bn (7.12)

where

Am =
κ
(
c(σ1

L,0)c(σ
1
L,β);D

)
am,β

, Bn =
κ
(
c(σ2

L,0)c(σ
2
L,β);D

)
an,β

.

We use a another way to state the coupling in Bn via our definition in (7.5):

κ(D)

an,β
κ
(
c(σ1

L,0)c(σ
1
L,β) | D

)
=
κ(D)

an,β
ϕn,β

(
ϕTB

(
c(σ1

L,0)c(σ
1
L,β)

)
| D
)

≤ κ(D)

aB
C5ϕB

(
c(σ1

L,0)c(σ
1
L,β)

)
. (7.13)

We used conditional expectation given the configuration τ on Λm,β \ B in the
intermediate step. By (7.10) and (7.9) applied to the measure ϕB , there exists
C6 = C6(λ, δ) such that

1

aB
ϕB

(
c(σ1

L,0)c(σ
1
L,β)

)
≤ C6L

2ρ. (7.14)

We can undergo a similar procedure with Am. Finally, we use (7.14) and
(7.13) to get a bound of

|κ(Sc;D)| ≤ κ(D)C6L
2ρ. (7.15)

All that is left is to obtain some bound for κ(D). By (1.3) we know that we will
get exponential decay:

κ(D) ≤ C7Le
− 1

2γm. (7.16)

We combine (7.16) and (7.13) to obtain a final bound for the D case of:

|κ(Sc;D)| ≤ C8L
2ρLe−

1
2γm. (7.17)

We combine (7.11) and (7.17) as in (7.5). The constants C, γ may be amended
to obtain the required inequality in Theorem 7.1.
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8 Conclusion

There are two immediate consequences of Theorem 7.1. The first is a bound on
perturbations on the entanglement entropy.

Definition 8.1. The entanglement of the spins of W relative to its complement
V \W is defined as the entropy

SWV = −tr(ρWV log2ρWV ). (8.1)

This definition of entropy is the Von Neumann entropy, which is the quantum
analog to the classical Shannon entropy in information theory. To analyze the
entanglement entropy, we make use of the following theorem:

Theorem 8.1. (Schmidt Decomposition) Let ⟨C| be a pure ground state of the
composite system A ⊗ B. There exist orthonormal bases {|uj⟩ , |vj⟩} for the
states of A,B respectively, such that

⟨C| =
s∑
j=1

√
λ↓j (ρ) |uj⟩ |vj⟩ (8.2)

where s, the Schmidt rank, is given by s = min{2m, 2n}

Essentially, if you are dealing with some lattice C which is a product of A
and B, we denote this as C = A ⊗ B. Summing over elements in C therefore
gives us a tensor which, using Singular-Value Decomposition, allows us to find a
single coefficient for the product of each element. The important result is that
we use the bound on the trace distance to serve as a bound on the summation
on the spectra resulting in the entanglement entropy.

A second interesting consequence of Theorem 7.1 is using the Fannes-Audenärt
inequality.

Theorem 8.2. (Fannes inequality) For any two density matrices ρ, ρ′ of di-
mension d:

|S(ρ)− S(ρ′)| ≤ 2T log2(d)− 2T log2(T )

Where T = 1
2 ||ρ− ρ′||.

The original Fannes inequality provides a bound for small pertubations in
the entropy of density matrices. The important idea is that this holds for any
density matrix, including a reduced density matrix. Please refer to [11] for a
quick proof.

Audenärt amended the proof, finding a completely optimal bound using
completely orthogonal states.

Corollary 8.1. (Fannes-Audenärt inequality) For any two density matrices
ρ, ρ′ of dimension d:

|S(ρ)− S(ρ′)| ≤ T log2(d− 1) +H[{T, 1− T}] (8.3)

Where T = 1
2 ||ρ − ρ′|| and H[{pi}] = −

∑
pilog2(pi) is the classical Shannon

entropy.

24



In either case, the major application is providing a bound on the trace dis-
tance.

However, there still lies the issue of the methodology used to bound the trace
distance. This is not an optimal bound, and merely uses convenient starting
points of both measure theory and disordered systems. The next logical step
would be to sharpen or solve for a completely optimal bound for the trace dis-
tance. In this case, this would help make the applicative bounds more impactful
as well.
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