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Abstract. Since the development of Hausdorff dimension, there have been

many attempts both to calculate the dimension of specific fractals and to find
generalized descriptions of dimension by set transformations, classifications,

etc. These calculation techniques and theorems have formed the basis for the

field of geometric measure theory. More recently, the theory of computation
has provided an alternative way to view this field: through the use of the

point-to-set principle, mathematicians have been able to use the Kolmogorov

complexity of binary strings to further generalize the fascinating theorems of
the field.
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1. Measure Theory

Before we begin applying effective methods to measure theory, we must first
consider what the study of measure theory actually is.
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1.1. Measure Spaces. Measure theory is an incredibly significant tool in modern
probability and analysis. However, it is based on a relatively simple question known
as the problem of measure: is there a suitable way one can assign “volume” or “size”
to subsets of arbitrary spaces?

Definition 1.1. Let X be a set. A σ-algebra M on X is a collection of subsets of
X with the following properties:

(1) X ∈ M
(2) If A ∈ M, then Ac ∈ M (closure under complement)
(3) If A1, A2, ... is a countable sequence of sets in M, then

⋃∞
n=1 An ∈ M

(closure under countable union)

Example 1.2. Some examples of σ-algebras include

• The trivial σ-algebra on any set X, consisting of only the empty set ∅ and
X itself.

• The power set P(X) of any set X, consisting of all possible subsets of X.
• The collection of all countable subsets, along with complements of such
subsets, of any set X.

Definition 1.3. Let M be a σ-algebra on X. Then, the ordered pair (X,M) is
called a measurable space. The sets in M are called the measurable sets of X.

Notice that a measurable space has no notion of how to actually “measure” the
sets it labels as “measurable.” It merely formalizes intuitive notions of what sets
can be measured: e.g., the whole space may be measured, the union of two disjoint
sets whose measures are known may be measured, etc.

To actually measure sets, we must define a set function that assigns such a value
to each set we are concerned with (i.e., those in the σ-algebra). The set function
must satisfy certain desirable properties, however.

Definition 1.4. Let (X,M) be a measurable space. A function µ : M → [0,∞]
on (X,M) is called a (positive) measure if it satisfies the following properties:

(1) µ(∅) = 0
(2) If A1, A2, ... is a countable sequence of pairwise disjoint sets in M, then

µ(
⋃∞

n=1 An) =
∑∞

n=1 µ(An) (countable additivity)

Example 1.5. Some examples of measure include

• The counting measure on any set X, which is defined by µ(S) being the
number of elements in any subset S ⊆ X.

• The Dirac measure on any set X, which is defined by fixing a point a ∈ X
and letting δa(S) = 1 if a ∈ S but δa(S) = 0 if a /∈ S for any subset S ⊆ X.

• The Lebesgue measure on Rn, which generalizes the notion of length of
intervals or volume of products of intervals to a large class of sets.

Definition 1.6. Let µ be a measure on (X,M). Then, the ordered triple (X,M, µ)
is called a measure space.

Proposition 1.7. Let X be a set, and let F be a family of subsets in X. Then,
there exists a smallest σ-algebra M on X such that F ⊆ M.
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Proof. Let Y be the collection of all σ-algebras that contain F . Y is clearly non-
empty as it contains the power set P(X). Then, let:

M =
⋂
Σ∈Y

Σ

I claim that M is the smallest σ-algebra that contains F . First, we see that M
satisfies all the conditions of a σ-algebra:

• Since X ∈ Σ for all Σ ∈ Y, X ∈ M.
• Fixing A ∈ M, A ∈ Σ for all Σ ∈ Y. Thus, by definition, Ac ∈ Σ for all
Σ ∈ Y, and so Ac ∈ M.

• Fixing a countable sequence A1, A2, ... of sets in M, A1, A2, ... are in Σ
for all Σ ∈ Y. Thus, by definition,

⋃∞
n=1 An ∈ Σ for all Σ ∈ Y, and so⋃∞

n=1 An ∈ M.

Then, we see that F ⊆ Σ for all Σ ∈ Y, so naturally F ⊆ M. Moreover, any
σ-algebra containing F is at least as large as M since M is contained in any such
σ-algebra. □

Definition 1.8. We refer to the smallest σ-algebra containing all the open sets of
some topological space X as the Borel σ-algebra, which we denote B.

Most of the sets in Rn that we can readily think of as mathematicians are Borel:
that is, such sets are the result of a countable sequence of basic set operations
(union, intersection, and complement) on open and closed sets. This makes the
Borel σ-algebra a very useful σ-algebra to make measurable and to equip with a
measure, so much so that we give it its own name.

Definition 1.9. A Borel measure µ on a topological space X is one that is defined
on all the open sets of X.

1.2. Outer Measures. To come up with a useful measure out of thin air is difficult.
It must satisfy countable additivity, which is often tedious to verify due to the need
for a strict equality, on a very specific collection of subsets of X.

A remedy to this is Carathéodory’s process for the construction of measures. It
makes use of a set function defined on all subsets of X, called an outer measure,
which can become a measure when restricted to a particular σ-algebra. Before
stating the theorem concerning this process, we lay out some necessary definitions.

Definition 1.10. Let X be a set. A function µ∗ : P(X) → [0,∞] is called an outer
measure on X if it satisfies the following properties:

(1) µ∗(∅) = 0
(2) If A ⊆ B, then µ∗(A) ≤ µ∗(B) (monotonicity)
(3) IfA1, A2, ... is a sequence of subsets ofX, then µ∗(

⋃∞
n=1 An) ≤

∑∞
n=1 µ∗(An)

(countable subadditivity)

These should intuitively feel like easier conditions to satisfy for arbitrary subsets
of X, compared to the condition of strict additivity for a particular collection of
subsets of X (as with a measure).

Definition 1.11. Let µ∗ be an outer measure on X. A set E ⊆ X is called
(Carathéodory) measurable if we have

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

for all A ⊆ X.
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Clearly, to show that E is measurable with respect to µ∗, it suffices to shows that
µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec) for an arbitrary subset A as the other direction
of inequality follows from subadditivity.

With this, we state Carathéodory’s main theorem.

Theorem 1.12. Let µ∗ be an outer measure on X, and let M be the set of all
measurable subsets of X. Then, µ∗ restricted to M, denoted by µ, is a measure on
X.

The proof of this theorem is involved but can be found in many introductory
texts on measure theory, including [7].

It now helps to have a way to ensure our measures are useful in some way. The
concept of a Borel measure would satisfy this need, and so the next step is to
develop a method to ensure that some outer measure has the property that it can
be restricted to such a measure. It turns out that there is a simple criterion that
allows outer measures on metric spaces to satisfy this property.

Definition 1.13. Let A,B be subsets of a metric space (X, d). The separation
between subsets A and B is defined as

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}

Disjoint subsets A and B are said to be positively separated if d(A,B) > 0.

Definition 1.14. A metric outer measure µ∗ on a metric space X is an outer
measure such that

µ∗(A ∪B) = µ∗(A) + µ∗(B)

for all positively separated subsets A and B.

Theorem 1.15. A metric outer measure µ∗ on a metric space X is a Borel measure
µ on X when restricted to B.

Again, the proof of this theorem is more involved but can be found in [7] and
other similar texts. It is clear that it suffices to show that closed sets are measurable
with respect to a metric outer measure, and that is exactly what most proofs of the
theorem do.

2. Hausdorff Measure and Dimension

How many more intervals of length 1
4 are needed to cover the unit interval [0, 1]

compared to intervals of length 1
2? Very obviously, our instincts say 2 = 21 times

as many. Why? Because length is “1-dimensional.”
How many more squares of side length 1

4 are needed to cover the unit square

[0, 1]2 compared to intervals of side length 1
2? Very obviously, our instincts say

4 = 22 times as many. Why? Because area is “2-dimensional.”
This idea of dimension comes up often in mathematics. For instance, topological

dimension and fractal dimension are distinct ways of assigning dimension to sets of
points. However, topological dimension is coarse, being restricted to integer values.
Fractal dimension not only takes on positive real values but also is a more natural
realization of the behavior observed with the motivating questions posed above.
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2.1. The “Right” Measure. Fractal dimension, as originally developed by Haus-
dorff and Besicovitch on subsets of Rn, can naturally be extended to arbitrary met-
ric spaces. This more generalized theory is what we will work with throughout this
paper.

We begin, rather surprisingly, with measure theory. To understand this necessity,
if we take the rudimentary understanding of dimension outline by the motivating
questions, the unit square [0, 1]2 has measure ∞ for a “1-dimensional” measure
and measure 0 for a “3-dimensional” measure. In other words, it is much larger
than [0, 1] but negligible compared to [0, 1]3. Only with a “2-dimensional” measure
should we expect a positive finite measure for the unit square.

Definition 2.1. Let (X, d) be a metric space. Suppose δ > 0 and F ⊆ X. A
δ-cover of F is a collection U of subsets of X such that diam(U) ≤ δ for all U ∈ U
and U covers F .

Throughout this paper, I will denote diam(U) = sup{d(a, b) : a, b ∈ U} by |U |
for any subset U of a metric space X.

Definition 2.2. Fix s > 0 and F ⊆ X. For all δ > 0, define

Hs
δ(F ) = inf

{ ∞∑
i=1

|Ui|s : U1, U2, ... is a countable δ-cover of F

}
Then, define the s-dimensional Hausdorff outer measure by

Hs
∗(F ) = lim

δ→0+
Hs

δ(F )

Note that for ε > δ, there are fewer δ-covers than there are ε-covers. So, by the
monotone convergence theorem, the limit in the definition of Hs

∗(F ) exists and can
freely be replaced by a supremum over all δ > 0.

Many alternative definitions of Hausdorff outer measure are equivalent: we can
restrict ourselves to countable δ-covers of only closed sets at each stage, etc.

Proposition 2.3. For all s > 0, Hs
∗ is a metric outer measure on X.

Proof. Hs
∗(∅) = 0 is obvious, by definition.

Let E ⊆ F . Any δ-cover of F is a δ-cover of E. So, there are more countable
δ-covers of E than there are of F . Thus, Hs

δ(E) ≤ Hs
δ(F ) as the former is an

infimum over more covers. This is montonicity on E and F if we let δ → 0+.
Let E1, E2, ... be subsets of X, with E their union. If Uk is an arbitrary countable

δ-cover of Ek for all natural numbers k, then

U =

∞⋃
k=1

Uk

is a countable δ-cover of E. So, letting Vk = Uk − U1 − U2 − ... − Uk−1 for any k,
we have

Hs
δ(E) ≤

∑
U∈U

|U |s =
∑

U1∈V1

|U1|s +
∑

U2∈V2

|U2|s + ...

≤
∑

U1∈U1

|U1|s +
∑

U2∈U2

|U2|s + ...

Taking the infimum over all covers of Ek for each k, we have

Hs
δ(E) ≤ Hs

δ(E1) +Hs
δ(E2) + ...
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which is countable subadditivity on E1, E2, ... if we let δ → 0+.
For the metric condition, let A,B ⊆ X be any pair of positively separated sets.

Suppose that d(A,B) = δ for some δ > 0. Fix ϵ < δ. If any ε-cover U of A∪B has
a set UB which intersects B, then there is a point p which exists in UB ∩B. So, if
u ∈ UB and a ∈ A are arbitrary, we have

d(u, p) ≤ |UB | ≤ ε < δ = d(A,B) ≤ d(a, p)

However, this means that no point of UB is in A. The same is obviously symmet-
rically true for UA and B if UA was some set in U that intersected A. So, from U ,
we may find disjoint ε-covers UA of A and UB of B so that∑

U∈U
|U |s ≥

∑
UA∈UA

|UA|s +
∑

UB∈UB

|UB |s ≥ Hs
ε(A) +Hs

ε(B)

Taking the infimum over all covers of A∪B, we have Hs
ε(A∪B) ≥ Hs

ε(A)+Hs
ε(B),

which is additivity on A and B if we let ε → 0+. □

Corollary 2.4. Let Hs be Hs
∗ restricted to the Borel sets B of X. Then, Hs is a

Borel measure.

Proof. This follows immediately from Theorem 1.15 and Proposition 2.3. □

Throughout this paper, Hs will denote the s-dimensional Hausdorff outer mea-
sure, its subscript simply being dropped. It will be obvious when the properties of
measure are being used on appropriate sets.

We now want to demonstrate that this theory of various Hausdorff measures has
the desirable property of dimension outlined at the start of this subsection. That
is, for any set F ⊆ X, there is some s > 0 such that Hs is the “right” measure for
F in that Ht(F ) is certainly trivial (either zero or infinity) for t > s and t < s.

Proposition 2.5. Let F ⊆ X. Suppose Hs(F ) < ∞ for some s > 0. Then,
Ht(F ) = 0 for all t > s.

Proof. Fix t > s. Let U be an arbitrary countable δ-cover of F . Then, we have∑
U∈U

|U |t =
∑
U∈U

|U |t−s|U |s ≤
∑
U∈U

δt−s|U |s = δt−s
∑
U∈U

|U |s

Taking the infimum over all covers U of F , we have Ht
δ(F ) ≤ δt−sHs

δ(F ).
If we let δ → 0+, we have Ht(F ) ≤ 0 since δt−s approaches 0 while Hs

δ(F )
approaches a definite finite value. □

Proposition 2.6. Let F ⊆ X. Suppose Hs(F ) > 0 for some s > 0. Then,
Ht(F ) = ∞ for all t < s.

Proof. Fix t < s. Let U be an arbitrary countable δ-cover of F . Then, we have∑
U∈U

|U |s =
∑
U∈U

|U |s−t|U |t ≤
∑
U∈U

δs−t|U |t = δs−t
∑
U∈U

|U |t

Taking the infimum over all covers U of F , we have Hs
δ(F ) ≤ δs−tHt

δ(F ) or, equiv-
alently, Ht

δ(F ) ≥ δt−sHs
δ(F ).

If we let δ → 0+, we have Ht(F ) ≥ ∞ since Hs(F ) approaches a non-zero value
while δt−s approaches ∞. □
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With this property in mind, calling Hs the s-dimensional Hausdorff measure
makes sense. We can thus use this theory to rigorously understand the notion of
the “right” measure for a set: there is indeed only one such measure for a given
set, and that idea is encapsulated by the following definition.

Definition 2.7. The Hausdorff dimension of a set F ⊆ X is

dimH(F ) = inf{s > 0 : Hs(F ) = 0} = sup{s > 0 : Hs(F ) = ∞}

2.2. Examples of Fractals. It may be helpful to review some examples of sets
with interesting Hausdorff dimension. In particular, Hausdorff dimension is used
to quantify the relative size of fractals.

Example 2.8. The middle-thirds Cantor set C ⊂ [0, 1] has Hausdorff dimension
less than s = log3(2). To see this, let Ck be the kth stage in the natural construction
of C. Since Ck is composed of 2k disjoint intervals each of length 3−k, we see

Hs(C) ≤ Hs(Ck) ≤ 2k(3−k)s = 2k(3s)−k = 2k(2−k) = 1

so that H∞(C) < ∞ and thus s ≥ dimH(C).

In general, it is more complex to give a lower bound on dimension (or on some
Hausdorff measure) than it is to find an upper bound. I omit that part of the proof
in the dimension of the Cantor set above though the upper bound is a nice result in
and of itself (i.e., there exist uncountable sets of points on the real line of dimension
strictly less than 1).

There are several “classical” methods used to find lower bounds on the dimen-
sion of a set, such as through the use of the mass distribution principle or the
potential theoretic method. These methods are discussed and demonstrated in [2]
and [3], with interesting results. However, these are not the focus of this paper as
algorithmic methods are.

If we want to do some basic discovery, we can avoid such rigor for now and focus
on a heuristic method to determine the dimension of so-called self-similar fractals.

Property 2.9. If S : Rn → Rn is a similarity transformation with a scale factor
λ > 0 (i.e., S(x) = λx+ c, where c depends on the center of dilation), then we have
Hs(S(F )) = λsHs(F ) for any s > 0.

Example 2.10. The Cantor set C has Hausdorff dimension s = log3(2). Assuming
that 0 < Hs(C) < ∞, we note that the Cantor set is self-similar: that is, it is
two copies of itself scaled by one-third. So, if S1 scales F to the first copy with
S1(F ) ⊂ [0, 1/3] and S2 scales F to the second copy with S2(F ) ⊂ [2/3, 1], then

Hs(C) = Hs(S1(C)) +Hs(S2(C)) = (1/3)sHs(C) + (1/3)sHs(C)
= 2(1/3)sHs(C) =⇒ 1/2 = (1/3)s =⇒ s = log3(2)

Example 2.11. The Sierpinski triangle T has Hausdorff dimension s = log2(3).
Assuming that 0 < Hs(T ) < ∞, we notice that T is self-similar: that is, it is three
copies of itself scaled by one-half. So, if Si scales F to the ith copy (contained in
any of the three triangular regions), then

Hs(T ) = Hs(S1(T )) +Hs(S2(T )) +Hs(S3(T ))

= (1/2)sHs(T ) + (1/2)sHs(T ) + (1/2)sHs(T )

= 3(1/2)sHs(T ) =⇒ 1/3 = (1/2)s =⇒ s = log2(3)
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2.3. Gauge Families. A common generalization of Hausdorff dimension exists
when we look beyond the specific idea of dimension we may know and love. In
some respect, our development of an s-dimensional measure through understanding
the “right” measure is arbitrary. What if there was another class of functions, one
for each dimension, that generalize the scaling property in our original motivating
questions?

Definition 2.12. A gauge function φ0 : R≥0 → R≥0 is a continuous, non-decreasing
function with φ0(δ) → 0 only as δ → 0 (i.e., φ0 vanishes only at 0).

A gauge family φ = {φs : s > 0} is a one-parameter family of gauge functions
with

lim
δ→0+

φt(δ)

φs(δ)
= 0

if s < t.

There are many useful families, which can be used to study dimension that
does conform to traditional understandings of “scaling” as ungauged Hausdorff
dimension might. The theory of Brownian motion, for example, can be formalized
in another way using gauge families.

However, there is a particular limitation to gauge families that we remedy with
the following concept.

Definition 2.13. A precision sequence α0 : N → R>0 for a gauge function φ0 is a
function with α0(r) → 0 only as r → ∞ and φ0(α0(r)) ≤ O(φ0(α0(r+1)) for large
enough r.

A precision family α = {αs : s > 0} is a one-parameter family of precision
sequences for a gauge family φ with

∞∑
r=1

φt(αs(r))

φs(αs(r))
< ∞

if s < t.

A precision family generalizes the concept of being able to look at countably
many points leading up to a limit, which we often tend to do with ungauged Haus-
dorff measure and dimension. The next proposition encapsulates this concept.

Proposition 2.14. Let θ = {θs : s > 0} be family of functions given by θs(δ) = δs,
and let α = {αs : s > 0} be the family of functions given by αs(r) = 2−sr. Then, θ
is a gauge family, and α is a precision family for θ.

Definition 2.15. Let φ be a gauge family (not necessarily equipped with a preci-
sion family). Fix s > 0 and F ⊆ X. For all δ > 0, define

Hφs

δ (F ) = inf

{ ∞∑
i=1

φs(|Ui|) : U1, U2, ... is a countable δ-cover of F

}
Then, define the φ-gauged s-dimensional Hausdorff outer measure by

Hφs
∗ (F ) = lim

δ→0+
Hφs

δ (F )

Similar results to Propositions 2.3, 2.5, and 2.6 can be proven to yield a cohesive
definition of gauged Hausdorff dimension, which is the rigorous generalization we
wanted.
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Definition 2.16. Let φ be a gauge family. The φ-gauged Hausdorff dimension of
a set F ⊆ X is

dimφ
H(F ) = inf{s > 0 : Hφs(F ) = 0} = sup{s > 0 : Hφs(F ) = ∞}

3. More Definitions of Dimension

3.1. Minkowski Dimension. Hausdorff dimension is not the only viable defini-
tion of dimension of subsets of a metric space X. Counting boxes offers a way to
understand dimension without measure theory.

Definition 3.1. The upper and lower Minkowski dimensions of a set F ⊆ X are
respectively

dimB(F ) = lim sup
n→∞

Nδ(F )

log(1/δ)

dimB(F ) = lim inf
n→∞

Nδ(F )

log(1/δ)

where Nδ(F ) is the smallest number of sets of diameter at most δ needed to cover
F . If these quantities agree, we denote the common value by dimB(F ) and call it
the Minkowski dimension of F .

The exact definition of Nδ(F ) can vary depending on what we need to use: see
Chapter 3 of [2] for examples. However, all definitions lead to equivalent values
of the Minkowski dimensions. We use one of these alternative definitions in the
gauged versions of Minkowski dimension.

Definition 3.2. Let φ be a gauge family. The φ-gauged upper and lower Minkowski
dimensions of a set F ⊆ X are respectively

dim
φ

B(F ) = inf{s > 0 : lim inf
δ→0+

Nδ(F )φs(δ) = 0}

dimφ
B(F ) = inf{s > 0 : lim sup

δ→0+
Nδ(F )φs(δ) = 0}

where Nδ(F ) is the smallest number of balls of radius δ with centers in F needed
to cover F . If these quantities agree, we denote the common value by dimφ

B(F ) and
call it the φ-gauged Minkowski dimension of F .

Taking θ to be the canonical gauge family (with its standard precision family)
in Proposition 2.14, we can formulate the coherence of such a generalization with
the following.

Proposition 3.3. dim
θ

B(F ) = dimB(F ) and dimθ
B(F ) = dimB(F ) for all F ⊆ X.

3.2. Packing Dimension. If we return to measure theory, developing a dual to
coverings may be helpful to formulate another definition of dimension. Naturally,
the dual of coverings could be considered packings, which are initially tricky to
define correctly due to the requirements that we would like for a measure.

Definition 3.4. Let (X, d) be a metric space. Suppose δ > 0 and F ⊆ X. A
δ-packing of F is a pairwise disjoint collection U of open balls with centers in F
such that diam(B) ≤ δ for all B ∈ U .
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Definition 3.5. Let φ be a gauge family. Fix s > 0 and F ⊆ X. For all δ > 0,
define

Pφs

δ (F ) = sup

{ ∞∑
i=1

φs(|Ui|) : U1, U2, ... is a countable δ-packing of F

}

Then, define the s-dimensional packing premeasure by

Pφs

0 (F ) = lim
δ→0+

Pφs

δ (F )

Note that for ε > δ, there are fewer δ-packings than there are ε-covers. So, by
the monotone convergence theorem, the limit in the definition of Ps

0(F ) exists and
can be freely replaced by an infimum over all δ > 0.

Ps
0 is not a (outer) measure because it violates countable (sub)additivity. We

need one more step to complete this to a useful tool.

Definition 3.6. Let φ be a gauge family. Fix s > 0 and F ⊆ X. Define the
φ-gauged s-dimensional packing outer measure by

Pφs
∗ (F ) = inf

{ ∞∑
i=1

Pφs

0 (Ui) : U1, U2, ... is any countable cover of F

}
Similar results to Propositions 2.3, 2.5, and 2.6 can be proven to yield a cohesive

definition of gauged packing dimension.

Definition 3.7. Let φ be a gauge family. The φ-gauged packing dimension of a
set F ⊆ X is

dimφ
P(F ) = inf{s > 0 : Pφs(F ) = 0} = sup{s > 0 : Pφs(F ) = ∞}

This extra step of a premeasure in developing the theory of packing dimension
often proves to be annoying to deal with in practice. In this sense, while cover-
ings and packings are dual to each other, Hausdorff and packing dimension don’t
necessarily appear to be precisely dual to one another.

The fact that they are duals of one another, however, is easily demonstrated
by non-classical methods of understanding dimension. The algorithmic methods
provide a unique perspective on dimension that captures this duality amongst many
other useful characterizations of dimension.

4. Kolmogorov Complexity

We now turn to a different method by which to compute the dimension of sets.
The algorithmic method employed in this paper has its roots with a prototypical
version discussed by Downey and Hirschfeldt in [1]. This paper, however, focuses
on specific algorithmic methods first employed by Lutz and co-authors in [5] and
[6].

Kolmogorov complexity is the first step in understanding this fascinating con-
nection. It is a purely computability-theoretic concept on its own, so this section
will make no rigorous attempt to unite it with the classical mathematics of fractal
dimension discussed prior.
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4.1. Preliminaries. We begin with an overview theory of computation. Most of
what is necessary for applying algorithmic complexity to geometric measure theory
is articulated in this section, but more information can be found in introductory
texts like Sipser’s Introduction to the Theory of Computation or the like.

Definition 4.1. A string x is a finite sequence of 0s and 1s, which are called the
bits of the string. The length of a string x is the number of bits in the string,
denoted by |x|.

For any natural number n, the set of all strings of length n is denoted {0, 1}n.
The set of all strings of any length is then

{0, 1}∗ =

∞⋃
k=0

{0, 1}k

with the empty string λ being the unique element of {0, 1}0.

Definition 4.2. A Turing machine is a two-way infinite tape of cells (each of which
contains a 0, a 1, or a special blank symbol #) and a head that points to one of
the cells. It operates under a finite and non-empty set of states Q and a finite
instruction set that is encoded by δ : Q× {0, 1,#} → Q× {0, 1} × {L, S,R}.

At any given step of the computation, the machine is in some state with its head
pointing to a symbol in a cell. Depending on this state and this symbol in the
current cell, the machine can enter a new state; write a new symbol to the current
symbol; and have the head move left, stay stationary, or move right (L, S, or R).
This process is clearly encoded in the domain and the codomain of δ.

One of the states in Q is called the halting state. The machine terminates
computation after entering the halting state: it stops using δ after that point and
is considered to have halted. A Turing machine M is equipped with an input string
w, where the head points to the first symbol in w and blank symbols are padded
on either end of w: if the machine halts, its output M(w) is said to be the string
of non-blank symbols written on the tape while in the halting state.

The concatenation of strings x and y is denoted xy (with xn representing x
concatenated with itself n times). However, concatenating 0 and 11 is not distinct
from concatenating 01 and 1, which leads to a question about the abilities of the
Turing machine. What if we want two distinct strings as input to a machine? The
ability to delimit strings solves this issue.

Definition 4.3. Let ⟨·, ·⟩ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a joining function given
by

0|[x]|1[x]xy

where [x] is taken to be the binary form of the natural number |x|.

Strings also appear limited as inputs. What if we want a number to be factored
or the configuration of a boolean circuit to be evaluated? These are tasks we
should expect a model of computation to be able to perform: thankfully, the Turing
machine can.

Example 4.4. Countable sets can be enumerated in a suitable order and thus
encoded in binary form. Examples of such sets include:

• The natural numbers N (each of which can be expressed as a binary number)
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• The set of all graphs (with an n-vertex graph represented by a n-by-n
adjacency matrix)

• The enumeration of all Turing machines (as the number of valid transition
functions based on n states is finite)

We often denote the binary form of any of the above (or any other suitable
encoding of an item) with the ⟨·⟩ function (e.g., a graph G that can be used as
input to a Turing machine is denoted ⟨G⟩).

Finally, oracles enrich the Turing machine model in a highly theoretical fashion.
Oracles modify the capability of Turing machines as a model of computation beyond
what we would normally observe by real practical computers.

Definition 4.5. An oracle Turing machine M is a Turing machine that is given
access to a subset A of {0, 1}∗ called an oracle. At any point in its computation,
the machine may enter a query state in which it is immediately able determine
whether the string that is currently written on the tape belongs to the oracle.

We denote MA to be such a machine equipped specifically with oracle A and
MA(w) to be its output if w is its input.

4.2. Definitions. We may then use the theory of computation to understand the
complexity of strings x. In general, we ask what is the length of the shortest
program p such M(p) = x for some fixed Turing machine M?

Definition 4.6. Fix an oracle Turing machine M , an oracle A, and strings x, y.
Then, the Kolmogorov complexity of x given y relative to A with respect to M is

CA
M (x | y) = min{|p| : MA halts on ⟨y, p⟩ and MA(y, p) = x}

where the minimum is considered ∞ if no such p exists.

Definition 4.7. Fix an oracle Turing machine M , an oracle A, and a string x.
Then, the plain Kolmogorov complexity of x relative to A with respect to M is
CA

M (x) = CA
M (x |λ).

We may also de-relativize these definitions by taking the oracle A to be the
empty set ∅. A Turing machine by default already knows whether a string is in the
empty set (in that it never is), so an oracle Turing machine with such an oracle
is a Turing machine. When referring to de-relativized Kolmogorov complexity, we
write CM (x | y) or CM (x).

A property that we would like Kolmogorov complexity to have is universality.
Certainly, for each string x, we can always find a Turing machine Mx such that
Mx(λ) = x so that CMx

(x) = 0. However, this isn’t very useful for a universal
notion of string complexity: we would like to fix some reasonable Turing machine
U so that we can let CA

U (x | y) simply be Kolmogorov complexity.
Another property that we would like Kolmogorov complexity to have is optimal-

ity. For the universal notion of string complexity, we’d like to have a constant so
that CA

U (x | y) ≤ CA
M (x | y) +O(1) for any strings x and y and Turing machine M .

It turns out that there is such a notion which mostly fulfills these properties.

Theorem 4.8. There exists a universal optimal oracle Turing machine U such that
for all Turing machines M , there exists a constant cM > 0 such that for all strings
x and y, CA

U (x | y) ≤ CA
M (x | y) + cM .
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Proof. Let U be the oracle Turing machine that, on input ⟨⟨M⟩, w⟩ where M is an
oracle Turing machine and w is a string, simulates MA on ⟨y, w⟩ and halts with
the output MA(⟨y, w⟩) if M halts on w.

Let p be the program testifying to CA
M (x | y): that is, p is the shortest program for

whichMA(⟨y, p⟩) = x. So, by the properties of the joining function in Definition 4.3,
we have

CA
U (x | y) ≤ |⟨⟨M⟩, w⟩| = 2 log |⟨M⟩|+ 1 + |⟨M⟩|+ |w| = cM + CA

M (x | y)
if we let cM = 2 log |⟨M⟩|+ 1 + |⟨M⟩|. □

We fix such a universal optimal oracle Turing machine U for the rest of the paper.
We drop the subscript of U when referring to Kolmogorov complexity relative to A
on its own: we write CA(x | y) or CA(x).

I stated that this is a notion which mostly fulfills these properties that we want.
That is, this is the best possible solution: we cannot get an additive constant in
the upper bound that is independent of the choice of Turing machine M , as we will
see with the following theorem.

Theorem 4.9. For all Turing machines N and constants c > 0, there exist a
Turning machine M and a string x such that CN (x) > CM (x) + c.

Proof. Let x be a string for which CN (x) ≥ c+ 1. Such a string exists as there are
only 20 + 21 + ... + 2c = 2c+1 − 1 programs of length at most c. So, there must
be some string x whose shortest program p for which U(p) = x has length at least
c+ 1.

Let M be a Turing machine for which M(x) = λ. A Turing machine is based on
a finite instruction set, and so one can obviously be hardcoded to output the string
x on an empty input. Then, we have CN (x) ≥ c+ 1 > c = CM (x) + c. □

4.3. Properties. With this definition of Kolmogorov complexity, we have very
many interesting properties that can be discerned.

Proposition 4.10. There exists a constant c > 0 such that for all strings x and
y, we have C(x) ≤ |x|+ c and C(x | y) ≤ C(x) + c.

Proof. Let T be the identity Turing machine, which immediately halts on any input
and leaves the tape written with the input. Then, T (x) = x for any string x. So,
we have

C(x) ≤ CT (x) + c ≤ |x|+ c

for some c > 0 dependent only on T .
Let V be the Turing machine, which ignores its first input and simulates U on

the second input for the joined input ⟨y, w⟩. Then, V (⟨y, p⟩) = x for any strings x
and y and some program p for which U(p) = x. So, if p testifies to C(x), we have

C(x | y) ≤ CV (x | y) ≤ |p|+ c = C(x) + c

for some c > 0 dependent only on V . □

We often write C(x, y) for C(⟨x, y⟩). This notation becomes rather convenient
when we deal with binary expansions of Euclidean points in Rn for n > 1.

Proposition 4.11. For all strings x and y, let C = min{C(x), C(y)}. Then, we
have C(x, y) ≤ C(x) +C(y) +O(logC), where the implicit constant is independent
of x and y.
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This result is obvious when considering programs that separate compute x and
y. More astounding is the following theorem, called the symmetry of information,
which strengthens the above result by also asserting equality.

Theorem 4.12. For all strings x and y, we have

C(x, y) = C(x) + C(y |x) +O(logC(x, y))

where the implicit constant is independent of x andd y.

More properties follow from techniques similar to the proofs of Theorem 4.8 and
Proposition 4.10. A comprehensive overview can be found in Chapter 2 of [4].

5. From String to Points

5.1. Algorithmic Complexity. We want to extend the notion of the complexity
of strings to the complexity of points in a possibly uncountable metric space. It
is pertinent that the space have a metric equipped since we eventually want to
connect these ideas to Hausdorff dimension.

However, we need another requirement. Turing machines operate on a countable
domain space (strings). It is not possible to extend the notion of complexity to any
arbitrary metric space: for instance, spaces endowed with the discrete metric cannot
be described using Turing machines. The condition of separability in the metric
space allows us to have a connection to countable subsets that can be sufficient for
describing a space.

Remark 5.1. Let X be a separable metric space. Letting Y ⊆ X be the count-
able dense set, we fix a one-to-one and onto function f : {0, 1}∗ → Y to be the
enumeration of elements in Y .

This idea relates to Example 4.4, where I claimed that countable sets can be
used as inputs to Turing machines based on such enumerations. For instance, there
exist an obvious enumeration of the rational-numbered points Qn of Rn based on
increasing precision in the binary expansions of the numbers.

Usually, I will say that we can “describe” members of such countable sets like
rational-numbered points using a Turing machine, just as we can “describe” strings.
This terminology is useful, and the formal use of the enumeration f is often dropped
in common practice.

From this point on, all metric spaces X are assumed to be separable. With this,
we define the complexity of points based on precision.

Definition 5.2. Let A be an oracle, x ∈ X, and δ > 0. Then, the Kolmogorov
complexity of x relative to A at precision δ is

CA
δ (x) = min{CA(q) : q = f(w) for some string w and d(q, x) < δ}

We require the following important lemma to assert that many of the useful
properties of Kolmogorov complexity of strings can be suitably translated into
useful properties of Kolmogorov complexity of points (in Euclidean space, at least).

Lemma 5.3. Fix r ∈ N and x = (x1, ..., xn) ∈ Rn. Let x:r = ⟨x:r
1 , ..., x

:r
n ⟩ be the

string such that x:r
i is the binary expansion of xi up to r bits past the decimal point.

Then, for any oracle A, we have

CA
2−r (x) = CA(x:r) +O(log r)

where the implicit constant depends only on n and ||x||.
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Proof. Let dx be the dyadic rational-numbered point in Rn at the corner of the
2−r−1-mesh cube which contains x.

It is obvious that CA(x:r) = CA(dx) + O(1): we can describe the coordinates
of x up to r bits after the decimal point using dx, and vice versa, assuming the
suitable enumeration of the rational numbers mentioned prior. So, it suffices to
show CA

2−r (x) = CA(dx) +O(log r).

For one direction, we know that d(dx, x) ≤ 2−r−1
√
2 < 2−r. So, by definition,

we have CA
2−r (x) ≤ CA(dx).

For the other direction, let q be the rational-numbered point in Rn testifying to
CA

2−r (x). Then, q is contained in one of at most 5n total 2−r−1-mesh cubes that
may intersect B(x, 2−r). Thus, if a Turing machine is allowed to use n along with
||x|| to account for bits before each coordinate’s decimal point, we can describe dx
using q using r: that is, CA(dx | q) = O(log r). So, we have

CA(dx) ≤ CA(dx | q) + CA(q) + 2 log(CA(dx | q)) +O(1)

= O(log r) + CA
δ (x) + 2 log(O(log r)) = CA

δ (x) +O(log r)

as desired. □

Aside from being able to use this to show analog properties of the complexity
of points, it also helps prove the following lemma, stating that growth rate of the
complexity of a point in Rn is dependent on the ambient dimension n of the space.

Lemma 5.4. Fix an oracle A, two natural number r and s with r ≥ s, and a point
x ∈ Rn. Then, we have

CA
2−r (x) ≤ CA

2−s(x) + n(r − s) +O(log r)

where the implicit constant depends only on n and ||x|.

Proof. We apply Lemma 5.3 as intended so that it suffices to show

CA(x:r) ≤ CA(x:s) + n(r − s) +O(log r)

Let M be the oracle Turing machine which, when given a natural number m and
a string y:s, uses m to pad y:s into y:r. With this construction, m can be at most
2n(r−s) to account for all possibilities of each coordinate’s (s + 1)th, ... rth digits
of the binary expansion past the decimal point.

Let p testify to CA(x:s). So, we have

CA(x:r) ≤ CA
M (x:r) +O(1) = |⟨⟨m⟩, p⟩|+O(1)

≤ |p|+ |⟨m⟩|+O(log |⟨m⟩|)
≤ CA(x:s) + logm+O(log logm)

≤ CA(x:s) + n(r − s) +O(log r)

as desired. □

5.2. Algorithmic Dimension. The complexity of points at various precisions on
their own is not particularly useful. It is worth analyzing the limiting behavior of
the complexity of points at arbitrarily high precisions.
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Definition 5.5. Let A be an oracle and let x ∈ X. Then, the algorithmic dimension
of x relative to A is

dimA(x) = lim inf
δ→0+

CA
δ (x)

log(1/δ)

Moreover, the strong algorithmic dimension of x relative to A is

DimA(x) = lim sup
δ→0+

CA
δ (x)

log(1/δ)

We have the following result for points in Euclidean space that follows from a
previous lemma. Though basic, it is important in establishing algorthimic dimen-
sion as a viable understanding of some kind of dimension due to the fact that it is
bounded in a meaningful space by the ambient dimension of the space.

Theorem 5.6. Let x ∈ Rn. Then, 0 ≤ dimA(x) ≤ DimA(x) ≤ n.

Proof. The first inequality is obvious since Kolmogorov complexity is non-negative
and log(1/δ) is non-negative too for sufficiently small δ. The second inequality is
also obvious by the definition of limit inferior and limit superior.

The third inequality makes use of Lemma 5.4. Suppose δ is sufficiently small,
and let r be the natural number for which 2−r ≤ δ < 2−r+1. Since a ball of radius
δ is less precise than one of radius 2−r, we have CA

δ (x) ≤ CA
2−r (x). Thus, we see

CA
δ (x) ≤ CA

2−r (x) ≤ CA
1 (x) + nr +O(log r)

≤ CA
1 (x) + n(log(1/δ) + 1) +O(log log(1/δ))

= n log(1/δ) + n+ CA
1 (x) + o(log(1/δ))

Dividing by log(1/δ) and taking the limit superior, we have DimA(x) ≤ n as
desired. □

Moreover, we can extend the notion of algorithmic dimension to gauged algo-
rithmic dimension. This will then offer a more direct look into how these concepts
relate to the classical study of fractal dimension.

Definition 5.7. Let A be an oracle, φ be a gauge family, and x ∈ X. Then, the
φ-gauged algorithmic dimension of x relative to A is

dimφ,A(x) = inf
{
s > 0 : lim inf

δ→0+
2C

A
δ (x)φs(x) = 0

}
Moreover, the strong φ-gauged algorithmic dimension of x relative to A is

Dimφ,A(x) = inf
{
s > 0 : lim sup

δ→0+
2C

A
δ (x)φs(x) = 0

}
Similar results to Propositions 2.5 and 2.6 can be proven to yield a cohesive

definition of gauged algorithmic dimension.
Taking θ to be the canonical gauge family (with its standard precision family)

in Proposition 2.14, we can demonstrate the coherence of this generalization.

Proposition 5.8. dimθ,A(x) = dimA(x) and Dimθ,A(x) = DimA(x) for all x ∈ X.

Two important results are that there cannot be too many points of low dimension
and, for Euclidean space, even that most points have high dimension.
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Theorem 5.9. Let A be an oracle, φ be a gauge family with a precision family α,
and n be a natural number. Define the set

dimφ,A
≤s = {x ∈ X : dimφ,A(x) ≤ s}

Then, dimH(dim
φ,A
≤s ) ≤ s.

Proof. Let u > t > s. Let Ct be the constant such that φt(αt(r)) ≤ Ctφt(αt(r+1))
for sufficiently large r.

Then, for each natural number r, define the collection of balls

Ur =

{
B(f(w), αt(r)) : C

A(w) ≤ log
Ct

φt(αt(r))

}

Notice that Ur is a finite collection since there are only finitely many strings w
that can be described by a program CA(w) shorter than the value of the expression
on the right. In particular, we have

|Ur| ≤ 2log
Ct

φt(αt(r))
+1 − 1 ≤ 2Ct

φt(αt(r))

With that, for each natural number r, define the countable collection of balls

Wr =

∞⋃
k=r

Uk

Fix x ∈ dimφ,A
≤s . As dimφ,A(x) < t, there exists a sequence {δk}∞k=1 with δk → 0

as k → ∞ such that for sufficiently large k

2C
A
δk

(x)φt(δk) ≤ 1

Then, since αt vanishes, there corresponds to each δk a natural number rk such
that for all r > rk, αt(r) < δk ≤ αt(rk).

Since a ball of radius αt(rk) is less precise than one of radius δk, we have
CA

αt(rk)
(x) ≤ CA

δk
(x). Moreover, since αt is a precision sequence, we have

φt(αt(rk)) ≤ Ctφ(αt(rk + 1)) ≤ Ctφt(δk)

Thus, there exists a sequence {rk}∞k=1 with rk → ∞ as k → ∞ such that for
sufficiently large k

2C
A
αt(rk)(x)φt(αt(rk)) ≤ Ct ⇔ CA

αt(rk)
(x) ≤ log

Ct

φt(αt(rk))

That is, there are infinitely many k for which x ∈ B ∈ Urk . In other words,
x ∈ B ∈ Wr for all r.

Fixing r, let r0 ≥ r be a natural number for which αt(r
′) ≤ α(r) whenever

r′ ≥ r0. So, Wr0 is a countable αt(r)-cover of the set dimφ,A
≤s . We note that,

though the radius of each ball in Wr0 is αt(r), we could easily divide each ball into
a fixed and finite number of sets of diameter αt(r).
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Then, based on the radii on the balls, we have

Hφu

αt(r)
(dimφ,A

≤s ) ≤
∑

U∈Wr0

φu(
|U |
2

) =

∞∑
k=r0

∑
U∈Uk

φu(
|U |
2

)

≤
∞∑

k=r0

∑
U∈Uk

φu(αt(k)) ≤
∞∑

k=r0

2Ct

φt(αt(r))
· φu(αt(k))

= 2Ct

∞∑
k=r0

φu(αt(k))

φt(αt(r))
≤ 2Ct

∞∑
k=1

φu(αt(k))

φt(αt(r))

Taking r → ∞, we use that α is a precision family to see

Hφu(dimφ,A
≤s ) ≤ 2Ct

∞∑
k=1

φu(αt(k))

φt(αt(r))
< ∞

So, dimφ
H(dim

φ,A
≤s ) ≤ u. As u was arbitrary, this completes the proof. □

Corollary 5.10. Almost all points in Rn have algorithmic dimension n.

Proof. Defining dimφ,A
<n = {x ∈ X : dimφ,A(x) < n} and dimφ,A

≤s for all s ≥ 0 as
above, we note that

dimφ,A
<n =

∞⋃
k=1

dimφ,A
≤(n−1/k)

By Theorem 5.9, we have that Hn(dimφ,A
≤(n−1/k)) = 0. So, Hn(dimφ,A

<n ) = 0, by

countable additivity. The desired result follows by recognizing that Hn is also the
n-dimensional Lebesgue measure. □

6. The Point-to-Set Principle

The final step in connecting Hausdorff’s theory of fractal dimension to Kol-
mogorov’s algorithmic complexity theory is to see if we can describe entire sets
using the algorithmic information of points. It turns out that there is a rather
concise statement that captures this.

Theorem 6.1 (Point-to-Set Principle). Let E ⊂ X be an arbitrary (not necessarily
Borel or analytic) set. Then, we have

dimH(E) = min
A⊆{0,1}∗

sup
x∈E

dimA(x)

dimP(E) = min
A⊆{0,1}∗

sup
x∈E

DimA(x)

This principle was first discovered by Lutz in [5], where it was used to prove the
Kakeya set conjecture in R2 using these algorithmic methods. Later, the principle
was generalized to gauged dimension.

Theorem 6.2 (Extended Point-to-Set Principle). Let φ be a gauge family. Let
E ⊂ X be an arbitrary (not necessarily Borel or analytic) set. Then, we have

dimφ
H(E) ≥ min

A⊆{0,1}∗
sup
x∈E

dimφ,A(x)

dimφ
P(E) ≥ min

A⊆{0,1}∗
sup
x∈E

Dimφ,A(x)
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Equality holds if there is a precision family for φ.

Proof. The proof of the first part of this theorem can be found in [6].
Assuming there is a precision family, we can demonstrate the second part of the

theorem for gauged Hausdorff dimension using Theorem 5.9. Fixing an oracle A

and letting s = supx∈E dimφ,A(x), it is clear E ⊆ dimφ,A
≤s . So, we have

dimφ
H(E) ≤ dimφ

H(dim
φ,A
≤s ) ≤ s = sup

x∈E
dimφ,A(x)

for any oracle A, as desired. □

6.1. Problems of the Field. There are several applications of the point-to-set
principle. For instance, it is often used to generalize theorems relating to geometric
measure theory since the principle (and the lemmas it depends on for its complete
proof) do not depend on the Borelness of the set.

However, for the rest of this paper, I will focus on an overview of its potential
application to the Kakeya set conjecture. This offers a fascinating look at how
algorithmic methods provide an alternative route to solving more pertinent and
classic open problems.

Definition 6.3. A Kakeya set K is a subset of Rn for which there exists a family
of lines L in Rn, consisting of a line in every direction, such that K ∩ l contains a
unit line segment for all l ∈ L.

Conjecture 6.4. Let K ⊆ Rn be Kakeya. Then, dimH(K) = n.

A characterization of the algorithmic dimension of points on lines seems necessary
to see if the algorithmic route to understanding the conjecture is viable. After all,
the definition of a Kakeya set directly involves lines with a specified dimension (i.e.,
a unit line segment clearly has dimension 1, wherever it exists).

Theorem 6.5. Let A be an oracle, and let x, a, b ∈ R.. Then

dimA(x, ax+ b) ≥ dimA,a,b(x) + min{dimA(a, b),dimA,a,b(x)}

Notice that this theorem has our first reference to the encoding of Euclidean
points as oracles: we join the points a and b as oracles themselves to the original
oracle A. This is an important concept to be able to apply, but the details of how
the encoding works are largely unimportant: essentially, an oracle Turing machine
M should have My(r) = y:r for any natural number r if y is to be treated as an
oracle (i.e., y is said to be computable relative to such an oracle).

A deeper discussion of Theorem 6.5 is found in [5], where it is used to prove the
Kakeya set conjecture in R2. The proof of the conjecture in R2 is relatively simple
using this theorem, which is much more difficult to prove. With such a relative
gap in proof difficulty, it is clear that the point-to-set principle helps in completely
reformulating the approach to geometric measure theory.

It is actually only required that the theorem only be true when dimA,a,b(x) = 1.
The following conjecture would generalize this notion to lines existing in higher-
dimensional Euclidean spaces.

Conjecture 6.6. Let A be an oracle. Let a ∈ Sn−1 be a point directing the slope
of a line in Rn and b ∈ Rn be a point on the line. Then, for any t ∈ R with
dimA,a,b(t) = 1, we have

dimA(at+ b) ≥ min{1 + dimA(a, b), n}
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Proof of Conjecture 6.4 using Conjecture 6.6. Let A be a Hausdorff oracle for K.
That is, A is the oracle for which dimH(K) = supx∈K dimA(x) since Theorem 6.1
states that it is a minimum and not simply an infimum.

Fix ε > 0. So, there is a family of lines L, consisting of a line in every direction,
such that K ∩ l contains a unit line segment for all l ∈ L. By any reasonable metric
on the space of all lines in Rn, this means

dimH(L) ≥ dimH(S
n−1) ≥ n− 1

With that, there exists a line l that we identify in such a metric with the ordered
pair (a, b) ∈ Sn−1 × Rn such that dimA(a, b) ≥ n− 1− ε.

Define the set S = {t ∈ R : (at+ b) ∈ K}. Thus, we have

dimH(K) = sup
x∈K

dimA(x) ≥ sup
x∈K∩l

dimA(x) = sup
t∈S

dimA(at+ b)

Since K ∩ l contains a unit line segment, clearly dimH(K ∩ l) = 1. As almost

all t ∈ R have dimA,a,b(t) = 1 by Corollary 5.10, there exists a t0 ∈ S with such a
property. With that, we have

dimA(at0 + b) ≥ min{1 + dimA(a, b), n}
≥ min{1 + (n− 1− ε), n} = n− ε

So, dimH(K) ≥ dimA(at0 + b) ≥ n− ε. As ε was arbitrary, dimH(K) ≥ n. The
other direction of inequality is obvious by the monotonicity of Hausdorff dimension.

□
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