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Abstract. We first present some of the foundational results in the regularity

theory of elliptic PDE: namely, the Schauder & Calderón-Zygmund estimates.
We then explore the classical theory surrounding the obstacle problem includ-

ing optimal regularity, the classification of blowups, and the regularity of the

free boundary. We assume the reader has familiarity with the contents of
Chapters 2/5/8 of [1] or alternatively, Chapter 1 of [2].
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1. Introduction

An important class of second-order partial differential equations (PDEs) is the
family of elliptic equations. Morally, these equations resemble the Dirichlet problem

(1.1)

{
∆u = f in Ω

u = g on ∂Ω

for some domain Ω. Elliptic equations frequently arise in physics and are often
associated with the conservation of certain quantities, such as energy.

We are primarily interested in a related class of nonlinear PDEs known as free
boundary problems. In these equations, the domain itself is not predetermined but
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is instead part of the solution to the PDE. A canonical example of a free boundary
problem is known as the Stefan problem and has a clear physical interpretation
(see [4] for the explicit formulation). Consider a tank containing a mixture of ice
and water. Intuitively, we know that the ice will eventually melt entirely, leaving
only water. We can model how exactly this melting process occurs with a PDE.
Specifically, in the interior of the region of water (i.e., positive temperature), the
temperature distribution will obey the usual heat equation. Meanwhile, on the
interior of the region of ice (i.e., zero temperature), the temperature remains con-
stant. In particular, the PDE governing the system is defined piecewise. In this
context, the surface along which the water and ice meet is the free boundary which
also evolves over time. Therefore, studying the free boundary would allow us to
answer interesting questions such as whether the process of ice melting in water (or
a snowflake melting in air) produces fractal surfaces.

However, we will primarily focus on another elliptic free boundary problem called
the obstacle problem, which also has a physical origin. This problem involves min-
imizing the elastic potential energy of a thin membrane constrained above an ob-
stacle. We can therefore formulate the problem as minimizing the functional

I[u] =
1

2

∫
Ω

|∇u|2.

over a bounded domain Ω ⊂ Rd and functions u above the obstacle φ (i.e., u ≥ φ)
with some fixed boundary data u

∣∣
∂Ω

= f . In particular, the solution can be thought
of as an elastic membrane attached to some boundary wire that we let fall subject
to gravity and constrain above some fixed surface (the obstacle). Then, the free
boundary Γ = ∂{u > φ} ∩Ω is the set where the membrane touches the constraint
which makes sense to study. We will study this minimization problem in more
depth in Section 3 and derive many interesting properties of minimizers and the
free boundary Γ. A plot of a solution (see Example 3.18) in two dimensions is
below.

Figure 1. Plot of Radial Solution to Obstacle Problem in 2D

One can also interpret the obstacle problem as the linearization of the minimal
surface (area-minimizing) problem. In particular, one can see that minimizing the
functional

J [u] =

∫
Ω

√
1 + |∇u|2
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is approximately the same as minimizing I[·] whenever the fluctuations in u (i.e,
|∇u|) are small via Taylor expansion.

One final consideration relates to Newton’s shell theorem which states that a
spherical shell exerts no gravitational force in its interior. Then, a natural question
to ask is whether there are other shapes for which the shell theorem holds. It
turns out that answering this question is closely related to the global obstacle
problem. In particular, the shell theorem holds for a geometry if and only if it is
the free boundary of a solution to the global obstacle problem (see [8] for a complete
characterization). Of course, in this context, understanding the behavior of the free
boundary Γ is crucial.

For now, the important fact about the obstacle problem is that it is elliptic.
Given this, it seems reasonable to first build some of the regularity theory of elliptic
equations so that we can eventually apply it to the obstacle problem. As alluded
to earlier, the simplest elliptic operator is the Laplacian ∆. Naturally, we begin by
considering the PDE

(1.2) ∆u = f in B1

where u ∈ H1(B1) is a bounded weak solution. We are interested in the behavior of
u on the interior of the domain B1, so we do not impose any boundary conditions.
In that vein, one might ask how the regularity of f affects the regularity of the
solution u. Schauder theory and the Calderón-Zygmund estimates give us insight
into the regularity of u in the cases where f ∈ Cα(B1) or just f ∈ L∞(B1).

2. Elliptic Regularity

2.1. Overview.
We begin by stating the two previously mentioned elliptic regularity results.

Theorem 2.1. (Schauder for ∆)
Suppose u ∈ H1(B1) is a bounded weak solution to

(2.2) ∆u = f ∈ Cα(B1) in B1

for some 0 < α < 1. Then,

(2.3) ∥u∥C2,α(B1/2) ≤ C
(
∥f∥Cα(B1)

+ ∥u∥L∞(B1)

)
for some absolute constant C = C(α, d) > 0. In particular, we see that u ∈
C2,α

(
B1/2

)
.

Remark 2.4. The above theorem is stated specifically for the Laplace equation.
It should be noted that such an estimate holds for more general elliptic equations
(see Theorem 1.9 of [5]).

Theorem 2.5. (Calderón-Zygmund)
Suppose u ∈ H1(B1) is a bounded weak solution to

(2.6) ∆u = f ∈ L∞(B1) in B1.

Then, for each 0 < ε < 1, there exists a constant Cε > 0 so that

(2.7) ∥u∥C1,1−ε(B1/2) ≤ Cε

(
∥f∥L∞(B1)

+ ∥u∥L∞(B1)

)
.

This means that u ∈ C1,1−ε
(
B1/2

)
for each 0 < ε < 1.
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Remark 2.8. The above theorem is more often stated in the form that f ∈ Lp

implies u ∈ W 2,p. This implies our version of Calderón-Zygmund via Morrey’s
inequality (see Section 5.6.2 of [1]). We prove the p = 2 case of this more general
version in Proposition 2.29. Also, note the theme in both theorems 2.1 and 2.5 that
given a regularity constraint on f , the solution u gains two more derivatives.

A curious reader may wonder whether these estimates are the best we can do.
In general, the answer is yes – the estimates do not hold at the endpoints α, ε = 0.
To see this, consider the functions u1(x, y) = (x2 − y2) log(x2 + y2) and u2(x, y) =
(x2 − y2) log | log(x2 + y2)| defined on B1. Then, one may compute

∆u1 =
8
(
x2 − y2

)
x2 + y2

= 8 cos (2θ) ∈ L∞(B1)

and

∆u2 =
4
(
x2 − y2

)(
2 log

(
x2 + y2

)
− 1
)

(x2 + y2) log2 (x2 + y2)
=

4 cos (2θ)(4 log r − 1)

4 log2 r
∈ C(B1)

where both expressions are written in polar coordinates. For both u1 and u2, the
second partials are unbounded, so we have u1 /∈ C1,1(B1) and u2 /∈ C2(B1) thus
providing counterexamples for both theorems at the endpoints. However, in the
case of the obstacle problem, we will exploit the particular structure of the right-
hand side of the equation to improve the regularity to C1,1.

For our purposes, we only prove the Calderon-Zygmund estimates. The proof
of Schauder is similar in nature and can be found in [5] or Simon Seignourel’s
paper. We take a more modern approach (due to Caffarelli) than found in [3]
without relying on as many hard analysis estimates. The general method is often
referred to as an improvement of flatness. To proceed, we first establish some
helpful properties of Hölder functions.

2.2. Properties of Hölder Functions.
We first show a form of an interpolation inequality for C1,α functions. In particular,
one only needs to control the L∞ norm of the function and the Hölder seminorm of
the derivative to place a function in C1,α. A similar statement holds for higher-order
spaces.

Lemma 2.9. (Interpolation Inequality for C1,α functions) Let u ∈ C1,α(B1). Then,
we have that

∥∇u∥∞ ≤ C(∥u∥∞ + [∇u]α).

Proof. We may choose an x0 ∈ B1/2 so that |∇u(x0)| ≥ 1
2∥∇u∥L∞(B1/2) by conti-

nuity. Taking ν = ∇u(x0)
|∇u(x0)| , we may write

|∇u(x0)| = ∇u(x0) · ν = (∇u(x0)−∇u(x0 + sν)) · ν +∇u(x0 + sν) · ν

for 0 < s < 1
2 . Then, we may write the above as the average integral over s ∈

[
0, 1

4

]
:

|∇u(x0)| = 4

∫ 1
4

0

(∇u(x0)−∇u(x0 + sν)) · ν ds+ 4

∫ 1
4

0

∇u(x0 + sν) · ν

≤ [∇u]α4
1−α + 8∥u∥∞
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recognizing that the integrand in the second integral is a total derivative. As for
dealing with the B1 \B 1

2
case, use the previous analysis:

|∇u(y)| ≤ |∇u(y)−∇u(x0)|+ |∇u(x0)|

where the first term is controlled by the Holder seminorm and the second by the
estimate on B 1

2
. □

Remark 2.10. The utility in this statement is that it gives us an equivalent norm
on C1,α. That is, we can take

(2.11) ∥f∥C1,α = ∥f∥∞ + [∇f ]α

without loss of generality.

We finally establish the key characterization of Hölder continuous functions.
In particular, we show that the rate of convergence of the Taylor polynomial of a
Hölder continuous function converges at a faster rate than for ordinary differentiable
functions. We prove the result for C1,α functions, but one should be able to convince
oneself that similar results hold for higher-order spaces.

Proposition 2.12. Let f ∈ C(Ω). Assume there exists a constant C > 0 such that
for any ball Br(x) ⊂ Ω, there exists a linear function ℓ(x) = a · x+ b for which

(2.13) sup
Br(x)

|f(y)− ℓ(y)| ≤ Cr1+α.

Then f ∈ C1,α(Ω). Moreover, there exists a constant C0 > 0 so that

1

C0
[∇f ]α ≤ C ≤ C0[∇f ]α.

Proof. We may first show that f is Lipschitz:

|f(x)− f(y)| ≤ |f(x)− ℓ(x)|+ |f(y)− ℓ(y)|+ |ℓ(y)− ℓ(x)| ≤ C|x− y|

setting r = |x− y| and using the fact that Ω is bounded. Therefore, by Taylor’s
theorem, we have that

ℓ = ℓx(y) = f(x) +∇f(x) · (y − x)

since the remainder term vanishes linearly. Now, set |y − x| = |y − z| = r. Then,
expand f at z about x, at x about y, and at y about x. Manipulating, we find that

(2.14) [∇f(x)−∇f(y)] · (z − y) = o
(
r1+α

)
or

(2.15) ∇f(x) = ∇f(y) + o(rα).

This implies ∇f ∈ Cα, so f ∈ C1,α by Lemma 2.9. Then, Taylor expanding and
applying the mean value theorem, we see that the best possible constant in (2.13)
is comparable to [∇f ]α. □

Remark 2.16. In fact, the condition of Lemma 2.12 is equivalent to f ∈ C1,α as
can be seen by Taylor expansion. This result will be pivotal in establishing the
Calderón-Zygmund estimates.
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2.3. Calderón-Zygmund Estimates.
As previously stated, we will only prove the Calderón-Zygmund estimates as in
Theorem 2.5. As such, we fix notation in this subsection and assume u ∈ H1(B1) is
a bounded weak solution to (2.6). We first recall a useful bound on weak solutions
to the Dirichlet problem.

Proposition 2.17. Let v ∈ H1(B1) be a weak solution of

(2.18)

{
∆v = f in B1,

v = g on ∂B1.

Then, we have that

(2.19) ∥v∥L∞(B1) ≤ C(∥f∥L∞(B1) + ∥g∥L∞(∂B1))

where C is an absolute constant.

Proof. See Lemma 1.14 of [2]. □

Remark 2.20. A similar result will hold on other bounded domains Ω, but the
constant C will depend on diam(Ω).

Keeping in mind Proposition 2.12, our goal should be to show that there exists
some linear function ℓ(x) = a · x+ b so that

sup
Br(x)

|u(y)− ℓ(y)| ≤ Cr2−ε

for any ball Br(x) ⊂ B1/2. We also note that since f is uniformly bounded, one

can zoom in by defining ur(x) = u(rx) so that |∆ur| = r2|f(rx)| ≤ Cr2 meaning
that ur looks more and more like a harmonic function as r ↓ 0.

Moreover, without loss of generality, we may assume that ∥u∥∞ ≤ 1
2 and ∥f∥∞ ≤

δ for any fixed δ > 0 by replacing u with itself divided by a factor ∥u∥∞ +
∥f∥∞

δ .

We choose the bound of 1
2 so that oscB1

u ≤ 1. We also define the harmonic
replacement w of u by the solution to

(2.21)

{
∆w = 0 in B1,

w = u on ∂B1

and write u = v + w so that v solves

(2.22)

{
∆v = f in B1,

v = 0 on ∂B1.

Now, we state the main claim used in the proof of Theorem 2.5. Our approach here
follows [5] closely.

Proposition 2.23. Let 0 < ε < 1. Then, there exists a δ > 0 and r0 ∈ (0, 1) so
that if oscB1

u ≤ 1 and ∥f∥L∞(B1)
< δ, there is some b ∈ Rd such that

(2.24) oscBr0
[u− b · x] ≤ r2−ε

0 .

Proof. We first recall that the harmonic replacement w of u is harmonic and there-
fore C∞. In particular, w ∈ C2. Thus, we may apply Taylor’s theorem to estimate
the remainder

|w(x)− w(0)− x · ∇w(0)| ≤ Cr2
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when x ∈ Br and C depends on ∥D2w∥∞. Moreover, we should check that this
C is in fact absolute. That is, ∥D2w∥∞ should depend on only oscB1

u. Defining
ũ = u − infB1 u, one sees that D2w̃ = D2w and that by derivative estimates for
harmonic functions, that

(2.25) ∥D2w∥L∞(B1/2) ≤ C∥w̃∥L∞(B1)
= C∥ũ∥L∞(B1)

= CoscB1u,

using the maximum principle. Now, use the fact that u = v + w to write

|u(x)− v(x)− w(0)− x · ∇w(0)| ≤ Cr2.

Therefore, by the triangle inequality, and using the fact that w(0) is some constant,
we see that

(2.26) oscBr
(u(x)− x · ∇w(0)) ≤ 2

[
Cr2 + oscBr

v
]
.

Hence, it suffices to choose some r0 so that the right-hand side of (2.26) is bounded
above by r2−ε

0 .
Using Proposition 2.17 with g ≡ 0, we note that

oscBr
v ≤ C ′∥f∥L∞(B1)

≤ C ′δ.

Hence,

2
[
Cr2 + oscBrv

]
≤ C ′′(r2 + δ

)
.

Then, we may choose δ = r20 and r = r0 ∈ (0, 1) so that rε0 ≤ 1
2C′′ and thus,

C ′′(r20 + δ
)
= 2C ′′r20 ≤ r2−ε

0 .

Hence, we can conclude the claim with b = ∇w(0). □

Now, we are finally ready to prove Theorem 2.5.

Proof. (Calderón-Zygmund)
By Proposition 2.3, we have some b1 ∈ Rd so that

oscBr0
[u− b1 · x] ≤ r2−ε

0 .

Now, if we let u1(x) = r
−(2−ε)
0 [u(r0x)− b1 · x], we see |∆u1| = rε0|f | ≤ |f | and

that oscB1
u1 ≤ 1. Thus, we may iterate and reapply Proposition 2.3. Inductively,

we may define uk(x) = r
−k(2−ε)
0

[
u
(
rk0x
)
− bk · rkx

]
. Unraveling definitions, we see

that having oscBr0

[
uk − b′k+1 · x

]
≤ r2−ε

0 means that

oscBr0

[
u
(
rk0x
)
− bk · rk0x− b′k+1 · r

k(2−ε)
0 x

]
≤ r

(k+1)(2−ε)
0 .

Therefore, after rescaling, we see that

oscB
r
k+1
0

[
u(x)−

(
bk + r

k(1−ε)
0 b′k+1

)
· x
]
≤ r

(k+1)(2−ε)
0 ,

so we take the term in parentheses to be bk+1. Hence, we have vectors bk ∈ Rd

such that

(2.27) oscB
rk0

|u(x)− bk · x| ≤ r
k(2−ε)
0

for each k ∈ N. Thus, for any r ∈ (0, 1) not a power of r0, we can choose a k so

that rk+1
0 ≤ r < rk0 so that

(2.28) oscBr
|u(x)− bk · x| ≤ oscB

rk0

|u(x)− bk · x| ≤ r
k(2−ε)
0 ≤ Cr2−ε
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with C depending on r0 and ε by (2.27). Therefore, by Proposition 2.12, we have
that u ∈ C1,1−ε at the origin. Then, a standard covering argument propagates
u ∈ C1,1−ε to all of B 1

2
. □

We also give a short proof of the alternate formulation of Calderón-Zygmund in
the p = 2 case for completeness sake.

Proposition 2.29. (Calderón-Zygmund for p = 2)
Suppose u ∈ H1(B1) solves

(2.30) ∆u = f ∈ L2 in B1

in the weak sense. Then, u ∈ H2
(
B1/2

)
with

∥u∥H2(B1/2) ≤ C
(
∥u∥L2(B1)

+ ∥f∥L2(B1)

)
.

Proof. First, suppose that u ∈ C∞
c (B1). Then, integrating by parts, we find that

∥D2u∥L2(B1)
= ∥f∥L2(B1)

. Now, instead suppose that f ∈ L2(B1) and mollify so

that ∆uε = fε ∈ C∞(B1). Then, since u ∈ H1, we see that uε → u in H1 (see
Thm. 6 of Appendix C.4 in [1]).

Let η ∈ C∞
c (B1) be a fixed cutoff function with η ≥ 0, η ≡ 1 in B1/2 and η ≡ 0

in B1 \B3/4. Then, for v
ε = uεη ∈ C∞

c (B1), we have

∆vε = fεη + 2∇uε · ∇η + uε∆η.

Thus,

∥D2uε∥L2(B1/2) ≤ ∥D2vε∥L2(B1)
≤ C

(
∥fε∥L2(B1)

+ ∥uε∥H1(B1)

)
using the fact that vε ∈ C∞

c (B1). Thus, interpolating the gradient and using the
facts fε → f in L2 and uε → u in H1, it suffices to bound ∥D2u∥L2(B1/2) in

terms of ∥D2uε∥L2(B1/2). Remarking that ∥D2uε∥L2(B1/2) is uniformly bounded

in ε and using Banach-Alaoglu, we may extract a weakly convergent subsequence
D2uε ⇀ w converging weakly in L2. Then, one may integrate by parts to identify
w with D2u and use the weak lower semicontinuity of the norm to conclude the
entire estimate. □

3. The Obstacle Problem

3.1. Properties of the Minimizer.
We now move on to a particularly important free boundary problem known as the
obstacle problem. As in the introduction, the variational formulation involves
minimizing the functional

(3.1) I[v] =
1

2

∫
Ω

|∇v|2

over the set of functions v ≥ φ with some fixed boundary condition v = g on ∂Ω
where φ is some smooth function and Ω ⊂ Rd is a bounded Lipschitz domain.
The Lagrangian here is the same as for the Laplace equation, except our set of
admissible functions is restricted by φ. This key difference introduces a singular
element and means the usual tools of the calculus of variations may not fully apply.

As for the name, φ is called the obstacle and I[·] can be thought of as the
Dirichlet energy. As discussed in Section 1, a common physical interpretation of
the problem is to minimize the elastic potential of a thin membrane that lies above
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some obstacle. For our purposes, we generally consider a shifted version of the
obstacle problem known as the zero-obstacle problem by defining u = v−φ so that

I[u+ φ] =
1

2

∫
Ω

|∇u|2+ |∇φ|2+2∇u ·∇φ =
1

2

∫
Ω

|∇u|2+ |∇φ|2−2u∆φ+

∫
∂Ω

gφν .

Thus, ignoring the constant terms involving g and φ, we seek to minimize

(3.2) J [u] =

∫
Ω

1

2
|∇u|2 + fu

with f = −∆φ among all functions u ≥ 0 with the boundary condition u = g−φ on
∂Ω. We will assume that f ≥ 0 throughout and follow parts of [2] closely. In fact,
we can reframe this constrained minimization problem as a minimization problem
with a nonsmooth term.

Proposition 3.3. Let Ω ⊂ Rd be a bounded Lipschitz domain. Suppose g : ∂Ω → R
is a suitable boundary condition so that the set of admissible functions

A = {u ∈ H1(Ω), u ≥ 0 in Ω, u = g on ∂Ω}
is nonempty. Then, minimizing the functional in (3.2) is equivalent to minimizing

(3.4) E[u] :=

∫
Ω

1

2
|∇u|2 + fu+

where u+ := max {u, 0}.

Proof. We only need to consider the case where u ≤ 0 since otherwise u+ = u and

the functionals are the same. We use the identity |∇u|2 = |∇u+|2 + |∇u−|2 and
the fact that u± ∈ H1 (i.e., u+ ∈ A) to argue that∫

Ω

1

2
|∇u+|2 + fu+ ≤

∫
Ω

1

2
|∇u|2 + fu+.

If u ̸= u+ on a set of positive measure, then the inequality is strict and so, u would
not be a minimizer of E as E[u+] < E[u]. Therefore, we must have u ≥ 0, and so
both formulations are equivalent. □

We can derive the corresponding Euler-Lagrange equations by perturbing by test
functions.

Proposition 3.5. (Euler Lagrange Equations)
Let Ω ⊂ Rd be a bounded Lipschitz domain, f ∈ C∞(Ω), and u ∈ H1(Ω) be a

minimizer as in (3.4) with boundary condition u
∣∣
∂Ω

= g. Then, u solves

(3.6) ∆u = fχ{u>0}

in the weak sense.

Proof. Let η ∈ H1
0 (Ω) be a test function and ε > 0. Since u is a minimizer, we have

E[u] ≤ E[u+ εη].

Then, looking at the derivative at ε = 0 from above, we observe that

0 ≤ lim
ε→0+

E[u+ εη]− E[u]

ε
=

∫
Ω

∇u · ∇η + lim
ε→0+

∫
Ω

(u+ εη)
+ − u+

ε
f

=

∫
Ω

∇u · ∇η + f
(
ηχ{u>0} + η+χ{u=0}

)
.
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If η ≥ 0 (that is, η = η+), we have that∫
Ω

∇u · ∇η + fη ≥ 0

for each η ∈ H1
0 (Ω). In other words, ∆u ≤ f in the weak sense. If instead η ≤ 0,

we have that ∫
Ω

∇u · ∇η + fηχ{u>0} ≥ 0

so that ∆u ≥ fχ{u>0} in the weak sense. Remarking that f is smooth, we have
that f ∈ L∞

loc. Applying Calderón-Zygmund estimates (Theorem 2.5), we find that

u ∈ C1,1−ε
loc for each 0 < ε < 1. Moreover, since f ∈ L∞

loc ⊂ L2
loc, we may use the

alternate formulation of Calderón-Zygmund (Proposition 2.29) to conclude that
u ∈ H2

loc. Thus, we know that ∆u = 0 almost everywhere in the set {u = 0} (see
chapter 1 of [2]). Hence, we have that ∆u = fχ{u>0}. □

Definition 3.7. The free boundary is the set Γ = ∂{u > 0}∩Ω. This is precisely
where the solution touches the obstacle for the first time on the interior of the
contact set.

Remark 3.8. Note that we showed u ∈ C1
loc, so we have that the gradient vanishes

continuously at Γ along with u itself.

We have deduced some properties of the minimizer to (3.4), but we have not yet
shown such a minimizer exists. Fortunately for us, existence and uniqueness follow
from standard techniques of the calculus of variations.

Proposition 3.9. (Existence and Uniqueness of Minimizer)
Let Ω ⊂ Rd be a bounded Lipschitz domain. Suppose g : ∂Ω → R is a suitable

boundary condition so that the set of admissible functions

A = {u ∈ H1(Ω), u ≥ 0 in Ω, u = g on ∂Ω}

is nonempty. Then, for a given f ∈ L2(Ω), there exists a unique minimizer u ∈ A
of (3.2).

Proof. See Proposition 5.1 in [2]. □

3.2. Optimal Regularity via Convexity.
We now establish the optimal regularity of u near the free boundary. We previously
showed that u ∈ C1,1−ε for each 0 < ε < 1. Now, we show that in fact, u ∈ C1,1.
Our approach relies on convexity, but there are numerous ways to prove this result.
For instance, see Theorem 7.6 of [5] or Theorems 5.5 and 5.13 of [2]. We first show
a key lemma.

Lemma 3.10. Let u : B1 → R be a smooth superharmonic function, i.e., ∆u ≤ 0.
Assume there exists N > 0 such that for all x ∈ B1, there exists b ∈ Rd such that

u(y) ≥ u(x) + b · (y − x)−N |y − x|2 for all y ∈ B1.

Then, u ∈ C1,1 with ∥D2u∥∞ ≤ 2(d+ 1)N .

Proof. We begin by showing that u(·) +N |·|2 is convex. Fix x, y ∈ B1 so that

u(y) +N |y − x|2 ≥ u(x) + b · (y − x)
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by the given inequality. Expanding the quadratic on the left-hand side and re-
grouping, we have

u(y) +N |y|2 ≥ u(x) +N |x|2 + (b+ 2Nx) · (y − x),

so v(·) = u(·) + N |·|2 is convex. Thus, u is semiconvex. We note that ∆v =
∆u+ 2dN ≤ 2dN , so we have that v is convex and has bounded Laplacian. Then,
since u is smooth, we have that D2v is positive semidefinite. In particular, the
eigenvalues (all of which are nonnegative) of D2v sum to a nonnegative constant
∆v ≤ 2dN , so each eigenvalue itself is bounded 0 ≤ λi ≤ 2dN . Hence, the matrix
entries can be bounded:

|∂ijv| = |ej ·D2vei| ≤ 2dN

using Cauchy-Schwarz and the bound on the eigenvalues. Thus, we have D2v ∈ L∞

and therefore v ∈ C1,1. Furthermore, we have that |y|2 ∈ C1,1 since it has bounded

second derivative. Therefore, u = v − N |·|2 ∈ C1,1 as well. Moreover, ∥D2u∥∞ ≤
∥D2v∥∞ + 2N ≤ 2(d+ 1)N . □

Remark 3.11. The notion of semiconvexity is closely related to the uniform el-
lipticity of the Laplacian. Suppose u is superharmonic and semiconvex. Then,
semiconvexity gives a lower bound on the eigenvalues of the Hessian while super-
harmonicity gives an upper bound on their sum. Thus, the eigenvalues of D2u are
bounded. Note that the superharmonicity condition could be modified for a more
general uniformly elliptic operator for which the conclusion would still hold.

Throughout the rest of this subsection, we will consider the following formulation
of the obstacle problem

(3.12)


∆u ≤ 0 on B1

u ≥ φ on B1

∆u = 0 when u > φ

u = g > φ on ∂B1.

where φ ∈ C1,1 and g is assumed to be smooth. Note that in this formulation, since
g > φ on ∂B1, the fixed boundary and the free boundary do not touch, so u is
smooth near ∂B1. Away from the boundary (in particular the obstacle), we have
that ∥u∥C1,1(B1\B1−2δ) < ∞ for some δ > 0 since u is smooth in this region. We
now turn to a useful characterization of a solution to the obstacle problem known
as the least supersolution principle.

Lemma 3.13. (Least Supersolution Principle)
Suppose u solves (3.12). Then,

u = inf{v : ∆v ≤ 0, v ≥ φ on B1, v ≥ g on ∂B1.}
That is, the solution to the obstacle problem is the least supersolution above the
obstacle and boundary data.

Proof. Suppose w also satisfies (3.12). Then, u−w is superharmonic on the set B1∩
{u > φ} and thus obeys a minimum principle. Since w−u ≥ 0 on ∂{B1 ∩ {u > φ}}
(as u = φ there), we have w ≥ u on the entire set. □

Now, take N > max{∥u∥C1,1(B1\B1−2δ), ∥φ∥C1,1(B1)}. We establish the following
proposition in the hope of obtaining the hypothesis of Lemma 3.10.
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Proposition 3.14. For |h| < δ, set

vh(x) :=
u(x+ h) + u(x− h)

2
+N |h|2.

Then, vh ≥ φ in B1−δ and vh ≥ u on ∂B1−δ. Thus, vh is superharmonic and so,
vh ≥ u on B1−δ. Therefore, we have that ∂eeu ≥ −2N in B1−δ for any unit vector
e (i.e., u is locally semi-convex).

Proof. To establish the first two estimates, we Taylor expand at x. On B1−δ, we
have

φ(x± h) ≥ φ(x)±∇φ(x) · h− ∥φ∥C1,1(B1)
|h|2

after Taylor expanding the φ terms and estimating the remainder. Thus, we may
conclude

vh(x) ≥
φ(x+ h) + φ(x− h)

2
+ ∥φ∥C1,1(B1)

|h|2 ≥ φ(x)

on B1−δ. Similarly, on ∂B1−δ, one can show that vh ≥ u via Taylor expansion. To
show that vh is superharmonic, we compute the Laplacian as

∆vh(x) =
∆u(x+ h) + ∆u(x− h)

2
≤ 0

on B1−δ. Applying the least supersolution principle (Lemma 3.13), we obtain that
vh ≥ u on B1−δ. Finally, we have that by definition,

∂eeu(x) = lim
h→0

u(x+ he) + u(x− he)− 2u(x)

|h|2
.

Using the fact that vh ≥ u on B1−δ, we see that

u(x+ h) + u(x− h) ≥ 2u(x)− 2N |h|2

so

∂eeu(x) ≥ lim
h→0

−2N |h|2

|h|2
= −2N,

which is the claim. □

Now, we can finally show the optimal regularity result.

Theorem 3.15. (Optimal Regularity)
Suppose u satisfies (3.12). Then, u ∈ C1,1(B1) with

∥u∥C1,1(B1/2) ≲ ∥u∥L∞(B1)
+ ∥φ∥C1,1(B1)

.

Proof. Taylor expanding and using the local semiconvexity shown in Proposition
3.14, we have that

u(y) ≤ u(x) +∇u(x) · (y − x)−N |y − x|2

for x, y ∈ B1−δ. Thus, by Lemma 3.10, we have that u ∈ C1,1(B1−δ). Moreover,
we already know that u ∈ C1,1(B1 \B1−2δ), so combining these two results gives
the claim u ∈ C1,1(B1). The estimate on ∥u∥C1,1(B1/2) also follows from Lemma

3.10. □

Remark 3.16. We know that u /∈ C2 since ∆u is discontinuous across the free
boundary, so u ∈ C1,1 is the optimal regularity result.
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Remark 3.17. In the zero-obstacle case (as in (3.6)), we obtain a similar estimate
to Theorem 3.15. According to Theorem 5.13 of [2], we can write

∥u∥C1,1(B1/2) ≲ ∥u∥L∞(B1)

when f ≡ 1.

We now give an example of a concrete solution to the obstacle problem in 2
dimensions.

Example 3.18. We are interested in computing the solution u to a radial obstacle
problem with obstacle φ(r) = 1− r2 on B1 ⊂ R2. We fix boundary data u

∣∣
∂B1

= c

for some constant 0 ≤ c < 1. By symmetry, the solution must be radial. In
particular, the solution u must agree with φ for 0 ≤ r ≤ r0 up to a critical value.
This critical value is characterized by the conditions u(r0) = φ(r0) and ∇u(r0) =
∇φ(r0). Moreover, we have the condition ∆u(r) = 0 for r > r0 and u(1) = c.

Therefore, by examining the harmonicity condition, we find that urr + ur

r =
1
r∂r(r∂ru) = 0 for r > r0. This implies that

u(r) = A ln r +B

for r > r0. In particular, checking the boundary condition, we have

u(r) = A ln r + c

for r > r0. Then, checking continuity tells us that

u(r0) = 1− r20 = A ln r0 + c

while checking the continuity of the gradient tells us that

A

r0
= −2r0.

Thus, we find that

1− r20 = −2r20 ln r0 + c.

One can numerically solve for the critical radius r0 in terms of c. Hence, we obtain
a solution of the form{

u(r) = φ(r) = 1− r2 for 0 ≤ r ≤ r0

u(r) = −2r20 ln r + c for r0 ≤ r < 1.

See Figure 1 for a plot (from Mathematica) of the solution in the case c = 1
2 .

3.3. Nondegeneracy.
We now investigate how the solution behaves near the free boundary Γ. The goal
of this subsection is to establish the nondegeneracy of the solution and its gradient
near Γ. In this context, we mean that the solution grows quadratically away from Γ
and ∇u grows linearly near Γ. In contrast with the previous subsection, we reduce
to the case of the zero obstacle problem (i.e., as in (3.6)). We begin with a variant
of the Harnack inequality.

Lemma 3.19. Let u : B1 → R be a nonnegative solution to ∆u = f ∈ L∞(B1).
Assume u is continuous on ∂B1, so that we can uniquely decompose u = v + w
where {

∆v = 0 in B1,

v = u on ∂B1
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and {
∆w = f in B1,

w = 0 on ∂B1

.

Then, maxB1 |w| ≤
∥f∥∞
2d

. Also, if f ≤ 0, then 0 ≤ v, w ≤ u.

Proof. Consider the auxiliary function

w̃ = w +
|x|2

2d
∥f∥∞

so that ∆w̃ ≥ 0. Then, w̃ achieves its maximum on the boundary. Therefore, we
have the estimate

max
B1

|w| ≤
∥f∥∞
2d

since w = 0 on ∂B1. Now, suppose f ≤ 0. Since v is harmonic, it achieves its
minimum on the boundary, so v ≥ 0 since u ≥ 0. Therefore, we find that w ≤ u.
Finally, we use the fact that w is superharmonic to conclude that w ≥ 0 (by the
minimum principle) so that v ≤ u. In sum, we have 0 ≤ v, w ≤ u. □

Proposition 3.20. (Harnack with right-hand side)
Let u : Br → R be a nonnegative function satisfying ∆u = f in B4r. Then,

sup
Br

u ≤ C

(
inf
Br

u+ r2∥f∥∞
)

for some C = C(d).

Proof. We use the decomposition u = v + w prescribed in Lemma 3.19. Since v is
harmonic, it obeys the ordinary Harnack inequality (Sec. 2.2 Thm. 11 in [1]):

sup
Br

v ≤ C inf
Br

v.

Then, we have

sup
Br

u ≤ sup
Br

v + sup
Br

w ≤ C inf
Br

v +
∥f∥r2

2d
= C ′

(
inf
Br

u+ r2∥f∥∞

)
using the minimum principle for the final equality and a scaled version of the bound
on w from Lemma 3.19. □

We are now ready to establish the nondegeneracy of u.

Proposition 3.21. (Nondegeneracy)
Let u be a solution to {

∆u = fχ{u>0} in B1,

u ≥ 0 in B1.

Suppose f is bounded away from zero. That is, f ≥ c > 0. Then, for free boundary
points x0 ∈ ∂{u > 0} ∩B 1

2
, we have

0 < cr2 ≤ sup
Br(x0)

u < Cr2

for each r ∈
(
0, 1

2

)
.
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Proof. The upper bound is immediate from Proposition 3.20 since

sup
Br(x0)

u ≤ C

(
inf

Br(x0)
u+ r2∥fχ{u>0}∥∞

)
= C ′r2

as u(x0) = 0 implies the first term vanishes. As for the lower bound, let x1 ∈
{u > 0}. Then, consider the auxiliary function

v(x) = u(x)− c

2d
|x− x1|2

so that ∆v ≤ 0 in {u > 0} ∩Br(x1). Note that this set is open since we previously
showed u is continuous in Proposition 3.5. Also, recognize that v(x1) > 0. We
may apply the maximum principle to conclude that v attains a positive maximum
on ∂{{u > 0} ∩Br(x1)}. However, on the free boundary ∂{u > 0}, we have that
u = 0, so v < 0. Thus, we have

0 < sup
∂Br(x1)

v = sup
∂Br(x1)

u(x)− c

2d
r2

or

c′r2 < sup
∂Br(x1)

u.

Letting x1 → x0, we obtain the lower bound and thus conclude the proof. □

We may now show the nondegeneracy of the gradient using Proposition 3.21.

Lemma 3.22. (Nondegeneracy of Gradient)
Let u solve {

∆u = χ{u>0} in B1,

u ≥ 0 in B1.

Then, the gradient is nondegenerate. That is, for any point x0 ∈ Γ,

0 < c0r ≤ sup
Br(x0)

|∇u| ≤ c1r

where c0, c1 > 0 are absolute constants.

Proof. We establish the lower bound by appealing to the nondegeneracy of u
(Proposition 3.21). We have

cr2 ≤ sup
Br(x0)

u ≤ Cr2.

Choose some point ξ ∈ Br(x0) so that u(ξ) ≥ cr2. Note that since x0 ∈ Γ, we know
that u(x0) = 0. Then, by the mean value theorem, we have

cr ≤ |u(ξ)− u(x0)|
|ξ − x0|

≤ ∥∇u∥L∞(Br(x0))
.

The upper bound follows from the fact that∇u is Lipschitz and that ∇u vanishes
at x0 ∈ Γ. In more detail, for any z ∈ Br(x0), we have

|∇u(z)| = |∇u(z)−∇u(x0)| ≤ ∥∇u∥C0,1r.

Thus, the gradient is nondegenerate. □
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3.4. Rectifiability of the Free Boundary.

Convention 3.1. In this section, we use |·| to denote Lebesgue measure.

The goal of this subsection is to establish the Hn−1 rectifiability of the free
boundary Γ in the sense that Γ has finite Hn−1 measure. For the remainder of the
paper, we assume that u solves

(3.23)

{
∆u = χ{u>0} in B1

u ≥ 0 in B1.

disregarding boundary values. We are taking f ≡ 1 in (3.6) for simplicity’s sake.
We also continue to assume that 0 ∈ Γ.

We now introduce a useful definition and investigate how it relates to Γ.

Definition 3.24. A set E is said to be δ-porous for some δ ∈ (0, 1) if for every
x ∈ E and B = Br(x), there exists Bδr(y) ⊂ Br(x) \ E.

Proposition 3.25. (Porosity)
Any measurable δ-porous set in Rn has Hn-measure zero. Moreover, the free

boundary Γ is locally porous, i.e., for each compact subset 1 K ⊂⊂ B1, there exists
δ ∈ (0, 1) such that K ∩ Γ is δ-porous.

Proof. Let E ⊂ Rn be δ-porous. Then, we have that

(3.26) lim
r→0

|E ∩Br(x)|
|Br(x)|

≤ 1− δn < 1.

Since E is measurable, the Lebesgue density theorem tells us the density (the limit
in (3.26)) at points in E must be 1 almost everywhere. Therefore, E must have Hn

measure zero.
For the obstacle problem, we wish to show that Γ is locally porous. Let K ⊂⊂

B1 be compact. Fix an x0 ∈ K ∩ Γ and consider some ball Br(x0). Then, by
the nondegeneracy of the gradient, we can choose some point y ∈ Br/2(x0) with
|∇u(y)| = cr. Then, since the gradient is Lipschitz, we may choose some δ so that
for any z ∈ Bδr(y), we have that |∇u(z)| > 0 meaning z /∈ Γ since the gradient
vanishes there. Moreover, we choose δ < 1

2 so that Bδr(y) ⊂ Br(x0) implying that
K ∩ Γ is δ-porous. □

Remark 3.27. A useful consequence of Proposition 3.25 is that after taking a
countable union, we see that Γ also has Hn measure zero.

Proposition 3.28. Let u solve (3.23). Then, |∇u(x0)| ≤ Cu(x0)
1/2 for all x0 ∈

B1/2.

Proof. Let u(x0) = a > 0 (otherwise the inequality is trivially satisfied as both
sides vanish). Then, by nondegeneracy of u (Proposition 3.21), we have that a ≤
Cdist(x0,Γ)

2
, so we have some ball BM

√
a(x0) ⊂ {u > 0}. In particular, choose the

factor M appropriately so that B4M
√
a(x0) ⊂ {u > 0} as well. Then, consider the

auxiliary function

w = u+
M2a− |x− x0|2

2d
.

1We use the notation A ⊂⊂ B to mean that A is compactly embedded into B. This means
that the inclusion map is a compact operator (i.e., any bounded sequence in A has a convergent

subsequence in B).
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Then, we have that w ≥ 0 and ∆w = 0 (since ∆u = 1) on BM
√
a(x0). We may now

use derivative estimates (Sec. 2.2 Thm. 7 of [1]) to say that

|∇u(x0)| = |∇w(x0)| ≤
C

M
√
a

sup
BM

√
a(x0)

|w|

where the first equality comes from the fact that the gradient of the quadratic term
vanishes at x0. Since w ≥ 0 and w is harmonic, we know that w = |w| attains its
maximum on the boundary. In particular, it suffices to bound just u. We then see
that

sup
BM

√
a(x0)

|w| = sup
∂BM

√
a(x0)

|u| ≤ C
(
a+M2a

)
= C ′a

via Proposition 3.20.
Thus, we have

|∇u(x0)| ≤
C

M
√
a
C ′a = C ′′√a = C ′′u(x0)

1
2

concluding the proof. □

Now, we show two key lemmas and then proceed with the Hn−1 rectifiability
result.

Lemma 3.29. Set ue = ∂eu for some direction e ∈ Sn−1. Then∫
Br∩{0≤ue≤h}

|∇ue|2 ≤ Chrn−1.

Proof. We first remark that it suffices to prove the r = 1 case as the rescaling

ur(x) =
u(rx)
r2 also solves the obstacle problem. Now, to prove the r = 1 case, fix a

direction e ∈ Sn−1 and set ũe = min{(ue− ε)+, h}, a shifted truncation of ue above
at h and below at ε > 0. Then, by Green’s identity,∫

B1

∇ũe · ∇ue + ũe∆ue =

∫
∂B1

ũe∂νue.

We note that ∆ue = 0 where ue > ε because the gradient of u vanishes at the
free boundary and, in the region {u > 0}, the Laplacian of u is constant. Then,
by the definition of ũe, we have that ũe = 0 when ue ≤ ε. Thus, the second term
disappears entirely. Therefore, we have∫

B1

∇ũe · ∇ue =

∫
∂B1

ũe∂νue ≤ Ch

where the constant depends on ∥u∥C1,1 . Now, taking the limit ε → 0 yields:∫
B1∩{0≤ue≤h}

|∇ue|2 ≤ Ch.

Note that the interchange of the limit and integral is justified by the dominated
convergence theorem since u ∈ C1,1. This proves the lemma. □

We now use Lemma 3.29 to prove another lemma.

Lemma 3.30. Let Sh = {0 < u < h2}. Then

|Sh ∩Br| ≤ Chrn−1.
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Proof. We may similarly remark that it suffices to prove the r = 1 case. Noting

that ur(x) :=
u(rx)
r2 solves the obstacle problem, we have

|Sh ∩Br| = rn|{x ∈ B1 : 0 < ur(x) < (h/r)
2}| ≤ Chrn−1

assuming the r = 1 case, so it suffices to show just that. Moreover, we also note
that

Sh ⊂ {|∇u| < ch} ⊂
⋂

{u±en < ch}
for some absolute c > 0 using Proposition 3.28 for the first inclusion and the
definition of ∇u for the second. Now, we estimate |Sh ∩B1| noting that ∆u = 1
there as

|Sh ∩B1| =
∫
Sh∩B1

∆u ≤ c

∫
Sh∩B1

|D2u| ≤ c|Sh ∩B1|1/2
[∫

Sh∩B1

|D2u|2
]1/2

using Cauchy-Schwarz. Dividing over the |Sh ∩B1|1/2 term and squaring both
sides, it suffices to bound the term in the brackets. We have∫

Sh∩B1

|D2u|2 ≤
∫
B1∩

⋂
{u±en<ch}

|D2u|2 ≤
∑
e=ek

∫
B1∩

⋂
{u±en<ch}

|∇∂eu|2 ≤ Ch

using the r = 1 case of Lemma 3.29. □

Remark 3.31. From the proof of porosity (Proposition 3.25), we have that there
exists a δ so that Bδr(y) ⊂ Br(x0) \ Γ for some y ∈ Ω = {u > 0}. Thus,

|Br(x0) ∩ Ω| ≥ δn|Br| = c|Br|.

for small enough r > 0 and each x0 ∈ Γ.

We are now ready to prove the final Hn−1 rectifiability result. We use a Besi-
covitch covering theorem argument.

Theorem 3.32. (Hn−1 Rectifiability of Γ)
For every compact K ⊂⊂ B1,

Hn−1(Γ ∩K) < ∞.

Proof. For our purposes, we may as well just assume Γ ⊂⊂ B1 and disregard K.
This can be done when u > 0 and is continuous on the boundary.

Begin by setting Eε := {|∇u| ≤ ε}. We have that Eε ⊂ SMε with M depending
on ∥u∥C1,1 . Thus, by Lemma 3.30, we see that

|B1/2 ∩ Eε| ≤ |B1/2 ∩ SMε| ≤ CεM.

Then, if B is a ball of radius ε with center in Γ ∩ B1/2, we see that B ∩ Ω ⊂ EMε

by nondegeneracy of the gradient (Lemma 3.22) with M depending on ∥u∥C1,1 .
Moreover, we note that Remark 3.31 implies

|B| ≤ 1

µ
|B ∩ Ω|.

Now, let {Bi} be any disjoint covering of Γ consisting of balls of radius ε centered
on Γ ∩B1/2. We also impose the condition that at most N balls overlap. Then,∑

|Bi| ≤
1

µ

∑
|Bi ∩ Ω| ≤ 1

µ
|Bi ∩ EMε| ≤

N

µ
|B 1

2
∩ EMε| ≲ ε



FREE BOUNDARY REGULARITY FOR THE CLASSICAL OBSTACLE PROBLEM 19

combining our observations from the previous paragraph. Then, for a general cov-
ering of Γ, we can reduce to the above case by the Besicovitch Covering Theorem.
Hence, after taking ε → 0, we have the Hn−1 rectifiability of Γ.

□

3.5. Classification of Blowups.
As we have already established some geometric properties of Γ and the optimal

regularity of the solution u, we now turn our attention to the regularity of the free
boundary. The most famous such result (due to Caffarelli as in [6]) states that Γ
is C∞ near regular points.

In general, we split Γ into singular points and regular points. By singular, we
mean points where the set {u = 0} has zero density in the Lebesgue sense. In
fact, it can be shown that the set of singular points lies in a (d− 1)-dimensional C1

manifold. The classic ”dumbbell” picture (taken from [2]) illustrating the difference
between regular and singular points is included below.

Figure 2. Dumbbell Diagram of Regular and Singular Points of
Γ ([2])

Along the thin line, we see that u > 0 to both the left and right of the singular
point. Then, zooming in, by nondegeneracy and quadratic growth, one might expect
the formula for the blow-up given in Theorem 3.42. Similarly, at regular points
along the handles, we see that u grows quadratically on one side while u ≡ 0 on the
other. This too resembles the formula in condition (i.) of the blow-up in Theorem
3.42.

To examine the free boundary in more detail, we zoom in using blow-ups. For a
solution u to

(3.33)


u ∈ C1,1(B1),

u ≥ 0 in B1,

∆u = 1 in {u > 0}, 0 ∈ Γ,

and a free boundary point x0 ∈ Γ, we look at ur(x) =
u(x0+rx)

r2 which has L∞ norm
of the order 1 by nondegeneracy. Taking a sequence rk → 0 of these rescalings
allows us to extract a subsequence converging in the C1

loc norm. This is because urk

is bounded in the L∞(B1) norm by quadratic growth coupled with the fact that
∥D2ur∥L∞(B1/2r)

= ∥D2u∥L∞(B1/2)
≤ C by C1,1 regularity. Thus, the existence of

such a sequence urk → u0 converging in the C1
loc norm is guaranteed by the compact

embedding C1,1 ⊂⊂ C1. It is worth noting that a priori, blow-ups are not unique.
In particular, the domain of the urk ’s expands to Rn as rk → 0. Therefore,

the blow-ups are actually global solutions to the obstacle problem. Moreover, the
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nondegeneracy of u (Proposition 3.21) tells us that free boundary points remain
free boundary points after blowing up. In more detail, any neighborhood of a
free boundary point will still contain points z with u0(z) > 0 after blowing up by
nondegeneracy and uniform convergence.

To establish regularity results for Γ, the first key step is to classify blow-ups
at both regular and singular points. This classification affords us insight into the
behavior of Γ near regular points which we will use to deduce that the free boundary
is Lipschitz. This fulfills the key hypothesis of Boundary-Harnack (see Appendix
A) which gives us C1,α more or less immediately. One may then use a higher-order
version of Boundary-Harnack allowing us to bootstrap to Caffarelli’s celebrated
result: Γ is C∞ near regular points.

Example 3.34. We classify blowups in 1 dimension by hand to give some intuition
for the formulas in Theorem 3.42. Let u solve (3.33) and u0(x) be a blowup of u at
zero along some subsequence rk. Since 0 ∈ Γ, there must exist a sequence of points
xk → 0 with u0(xk) > 0. After possibly taking a subsequence, suppose the xk’s
approach from the right. Note that the equation for u is also satisfied by u0. Then,
using the fact that u′′

0(xk) = 1 and the continuity of u0, u
′
0, we see that u0(x) =

1
2x

2

for x > 0. Similarly, if such a sequence exists from the left, we have u0(x) =
1
2x

2

for x < 0. Hence, if sequences exist from both sides, then, u0(x) = 1
2x

2 for all
x ∈ R while if a sequence only exists from one side, we have u0 ≡ 0 on the other
side by continuity. Note that if sequences exist from both the left and right, then
0 is a singular point and a regular point otherwise. Observe that in Figure 3, the
density of the contact set at the origin behaves as expected. Namely, in Figure 3a,
the contact set has density 1

2 while in Figure 3b, the contact set has zero density.

(a) Origin is a regular point: u0(x) =
1
2
x2
+ (b) Origin is a singular point: u0(x) =

1
2
x2

Figure 3. 1-D Classification of Blow-Ups

We begin by deducing some important properties of blow-ups in hopes of clas-
sifying them. First, we show the homogeneity of blow-ups. To do so, we state a
monotonicity formula (a common theme across free boundary problems).

Proposition 3.35. (Weiss’ Monotonicity Formula)
Let u solve (3.33) Then, the quantity

(3.36) Wu(r) := r−(n+2)

∫
Br

1

2
|∇u|2 + u− r−(n+3)

∫
∂Br

u2

is monotone increasing in r. In other words,

(3.37)
dWu(r)

dr
= r−(n+4)

∫
∂Br

(x · ∇u− 2u)
2 ≥ 0

for r ∈ (0, 1).
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Proof. The proof is by direct computation. First, note that Wu(r) = Wur
(1).

Then, one may integrate by parts, use the equation, and note the identity d
drur =

1
r (x · ∇ur − 2ur) to conclude the result. For the details of the computation, refer
to Theorem 5.18 of [2]. □

Lemma 3.38. (Homogeneity of Blowups)
If u solves (3.33), then any blow-up of u at zero is homogeneous of degree 2.

That is, u0(λx) = λ2u0(x).

Proof. This proof highlights the utility of the monotonicity formula (Proposition
3.35). One can verify that x ·∇u0 ≡ 2u0 implies 2-homogeneity of u, so it suffices to

show that Wu0
(r) is constant in r. Define the rescaling ur(x) =

u(rx)
r2 and consider

a blow-up urk → u0 converging in the C1
loc norm along some sequence rk ↓ 0. Noting

the identity Wurk
(r) = Wu(rkr), we may write

Wu0
(r) = lim

rk→0
Wurk

(r) = lim
rk→0

Wu(rkr) = Wu

(
0+
)
.

We remark that the limit must exist by monotonicity of Wu and using the fact that
Wu is bounded below. Thus, we have that u0 is 2-homogeneous.

□

We now show the convexity of global solutions. In particular, at free boundary
points, u is touching down at zero, so we should expect it to be more and more
convex after zooming in.

Proposition 3.39. (Convexity of Global Solutions)
Let u be a global solution of ∆u = χ{u>0}, u ≥ 0. Then, u is convex.

Proof. Suppose m = inf{u>0} ∂eeu < 0. Without loss of generality, suppose e = en.

We may now extract a subsequence xj attaining the infimum, and set uj =
u(djx+xj)

d2
j

where dj = dist(xj , ∂{u > 0}). Then, we observe that

D2uj = D2u(djx+ xj),

but we know u ∈ C1,1, so we have that D2u(djx+ xj) is bounded. Hence, uj is
bounded in C1,1(BR) for each R > 0. By the compact embedding C1,1 ⊂⊂ C1,α,

we may extract a C1,α
loc subsequence converging to some u0. By the definition of uj

and dj , we know that uj > 0 on B1. We may assume convergence in C2
loc(B1) of

uj → u0 because we have ∆uj = 1 since uj > 0 and thus uj ∈ C2,α ⊂⊂ C2 by the
Schauder estimates. Hence, we may assume convergence of a subsequence in this
norm as well.

Next, the C2
loc(B1) convergence coupled with the fact that ∆uj = 1 for each j

tells us that ∆u0 = 1 as well. We also have that

∂nnuj = ∂nnu(djx+ xj) ≥ m

since m is the infimum and taking limits, we obtain the same for u0. Similarly,

∂nnu0(0) = lim
j

∂nnuj(0) = lim
j

∂nnu(xj) = m.

Therefore, we use the fact that ∂nnu is harmonic and the maximum principle to
conclude that ∂nnu ≡ m.

Let x = (x′, xn). Starting at (x′, 0) ∈ B1, move in the direction en until the path
crosses the free boundary at, say, ξ(x′) = xn. Integrating in the nth coordinate, we
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find that ∂nu0(x) = g(x′) + mxn where g is some arbitrary function of the other
coordinates (i.e., the constant of integration). At the free boundary, the gradient
vanishes, so we have that

0 = ∂nu0(x) = g(x′) +mxn = g(x′) +mξ(x′)

so that ξ(x′) =
−g(x′)

m . Thus, we have

∂nu0(x) = m(xn − ξ(x′))

or after integrating with respect to xn, we have

u0(x) =
m

2
(xn − ξ(x′))2.

Note that the boundary condition at Γ assures us that the constant of integration
vanishes. However, since m < 0, we see that u0 ≤ 0 implying u ≡ 0, a clear
contradiction. This implies the claim. □

Remark 3.40. Since blow-ups are global solutions, we have that blow-ups are also
convex.

It is now possible to fully classify blow-ups leveraging convexity, homogeneity,
and (3.33). We first establish a lemma used in the classification.

Lemma 3.41. Let u ∈ C1(Rn) and suppose every derivative ∂eu has a sign. Then
there exists a monotone function φ ∈ C1(R) and a direction e ∈ Sn−1 such that
u(x) = φ(x · e).

Proof. We may assume that u is not constant. Then, there exists a point z ∈ Rn

so that ∇u(z) ̸= 0. Now, define e0 = ∇u(z)
|∇u(z)| ∈ Sn−1. We note that e · e0 > 0

is equivalent to ∂eu(z) > 0 by definition and similarly, e · e0 < 0 is equivalent to
∂eu(z) < 0. Since each derivative maintains a sign, we have that e · e0 implies
∂eu ≡ 0. Thus, u(x) only depends on the projection of x onto the line spanned
by e0 (i.e., on x · e0), so we can write u(x) = φ(x · e0) with φ monotone since
derivatives maintain sign.

□

We are now ready to classify blow-ups. We divide the proof into two cases
depending on the type of free boundary point we are looking at. In particular, the
case for regular points uses Boundary-Harnack which was mentioned previously.

Theorem 3.42. (Classification of Blow-ups)
Suppose u solves (3.33) and u0 is a blowup of u at the origin. Then, there are

exactly two possibilities:

(i.) u0(x) =
1
2 (x · e)2+ for some e ∈ Sn−1

(ii.) u0(x) =
1
2x·Ax for some matrix A ≥ 0 (in the sense of symmetric matrices)

with unit trace.

These two cases correspond to when Λ = {u0 = 0} has nonempty and empty inte-
rior, respectively.

Proof. We split the proof into two cases based on whether Λ has nonempty interior.
We primarily focus on the nonempty interior case because we are more interested
in regular points.

Suppose that Λ has nonempty interior. We then remark that Λ is a closed cone
by continuity and homogeneity of u0. Moreover, it is convex since Λ = {u0 = 0} =
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{u0 ≥ 0} and u0 is convex (Proposition 3.39). Now, pick a direction −e ∈ Λo.
Then, for any x ∈ Rn, we eventually have x + se ∈ Λo for s ≪ 0. Note that
∂eu0(x+ se) = 0 for such s and of course, this is increasing in s by convexity, so
∂eu0 ≥ 0 on all of Rn.

Now, set S = {v : ∂vu0 = 0}. Notice we don’t require v to be a unit vector
so that S is a linear subspace of Rn. We claim that S has codimension 1. Indeed,
suppose e1, e2 ∈ S⊥, and set wi = ∂eiu0.

We would like to eventually apply Boundary Harnack. First, we investigate
some properties of wi as to show the hypotheses of Boundary Harnack. We have
that ∆wi = ∂ei∆u0 = 0 on {u0 > 0}, so wi is harmonic on {u0 > 0}. Also, by
the 2-homogeneity of u0, we have that wi is 1-homogeneous. Finally, recall that
u0 ∈ C1,1

loc and that the gradient vanishes continuously at Γ. Thus, wi does too.

Moreover, since ei ∈ S⊥, wi is harmonic, we have that wi > 0 in {u > 0} by the
maximum principle. We then recognize that {u > 0} is a cone by homogeneity and
that its complement, Λ, is a closed, convex cone. This immediately implies that ∂Λ
is Lipschitz, fulfilling the final hypothesis of Boundary-Harnack.

Applying Boundary-Harnack (see Appendix A), we find that w1

w2
is bounded,

nonzero, and Cα. In particular, by the 1-homogeneity of the wi’s we see that the
quotient w1

w2
is constant along each ray emanating from the origin. The only way

for the quotient to be Cα and constant along each ray is if w1

w2
= λ (some fixed

value). Thus, we have that w1 = λw2 and so, S⊥ has dimension one. Therefore, S
has codimension one.

Now, we may use Lemma 3.41 to write u0(x) = φ(x · e) for some e ∈ Sn−1 and
φ ∈ C1,1 monotonic. Then, taking derivatives, we see that

φ′′(x · e) = ∆u0(x) = χ{u0>0} = χ{φ(x·e)>0}.

When x · e > 0, we have that φ(x · e) > 0, so φ′′(x · e) = 1 for x · e > 0. Similarly,
one can conclude that φ(x · e) = 0 for x · e ≤ 0. Therefore, we have that condition
(i.) holds:

u0(x) =
1

2
(x · e)2+.

If, instead, the set Λ has empty interior, we argue by convexity that Λ is con-
tained in a hyperplane. If this weren’t the case, we could change coordinates so
that Λ contains the origin and n basis vectors e1, · · · , en. Then, by convexity, Λ
contains the interior of the n-simplex contradicting the fact that it has empty in-
terior. Moreover, we can use Lemma 5.27 of [2] to conclude that ∆u0 = 1 in Rn.
Then, C1,1 regularity of u0 tells us that second derivatives of u are bounded and
harmonic and thus constant by Liouville’s theorem. Hence, we can conclude that
u0 is a quadratic polynomial and so, condition (ii.) holds. □

Remark 3.43. The behavior of blowups differs at regular and singular points
of Γ. In fact, condition (i.) of Theorem 3.42 corresponds to regular points, and
condition (ii.) corresponds to blowups at singular points. Roughly speaking, this is
a consequence of the fact that blowups are ”one-dimensional” near regular points
and (3.33).

Remark 3.44. The nonempty/empty interior cases for Λ = {u0 = 0} correspond
exactly to the nonempty/empty interior cases for the contact set Ω = {u = 0} (see
Lemma 5.29 of [2]).
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3.6. Regularity of the Free Boundary.
We now intend to leverage the classification of blowups established in Section 3.5 to
establish regularity results about Γ. In particular, our first step is to show that the
free boundary Γ is Lipschitz. We combine the approaches of [2] and [7]. We continue
to work with a solution u of (3.33) and will assume that 0 is a regular point with

corresponding blow-up u0 = 1
2 (x · e)2+ along some particular subsequence rk → 0.

Eventually, we would like to show that ur0 is monotone in a cone of directions for
some small r0 > 0 from which we will deduce that Γ is Lipschitz near the origin.
We begin with an improvement of minimum lemma.

Lemma 3.45. (Improvement of Minimum for Supersolutions)
Let v solve (3.33) on B1 and h be harmonic on B1 ∩{u > 0}. Suppose h ≥ 0 on

Γ ∩ B1 and h − v ≥ −ε0 on B1. Then, if we take ε0 small enough, h − v ≥ 0 on
B1/2.

Proof. Suppose not. Then, there exists some x0 ∈ B1/2 with h(x0) − v(x0) < 0.
Now, consider the auxiliary function

w := h− v +
|x− x0|2

2n
.

We see that w is harmonic in {u > 0}, w(x0) < 0, and w ≥ 0 on Γ ∩ B1/2(x0).
Thus, by the minimum principle, w achieves a negative minimum on ∂B1/2(x0). In
particular,

−ε0 ≤ inf
∂B1/2(x0)

(h− v) ≤ inf
∂B1/2(x0)

(
w − |x− x0|2

2n

)
≤ −1

8n
,

a contradiction after taking ε0 small enough. □

We now apply the lemma to prove the directional monotonicity result.

Proposition 3.46. (Directional Monotonicity)
There exists some small r0 > 0 so that ∂τur0 ≥ 0 in B1/2 for all directions

τ ∈ Sn−1 with τ · e ≥ 1
2 .

Proof. First, note that ∂τu0(x)−u0(x) = (x · e)+
(
τ · e− 1

2

)
≥ 0 in B1 when τ · e ≥

1
2 . Also, by the C1 convergence urk → u0, for any ε0 > 0, we can choose a small
r0 > 0 with ∂τur0 − ur0 ≥ −ε0 in B1. Thus, applying Lemma 3.45 with h := ∂τur0

and v := ur0 , we conclude that h = ∂τur0 ≥ 0 on B1/2 whenever τ · e ≥ 1
2 . □

We may finally conclude that Γ is Lipschitz.

Proposition 3.47. (Lipschitz Regularity of Γ)
There exists some r0 > 0 so that the free boundary ∂{ur0 > 0} is Lipschitz in

B1/2. Therefore, the free boundary ∂{u > 0} is Lipschitz in Br0/2.

Proof. In short, this follows from Proposition 3.46. This is because ur0 obeys a
cone condition equivalent to the free boundary being Lipschitz. In particular, let
x0 ∈ B1/2 ∩ ∂{ur0 > 0} be a free boundary point and set

Σ1 =

{
x ∈ B1/2 : x = x0 − tτ, t > 0, τ · e > 1

2

}
and

Σ2 =

{
x ∈ B1/2 : x = x0 + tτ, t > 0, τ · e > 1

2

}
.
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Then, we claim that {
ur0 = 0 in Σ1,

ur0 > 0 in Σ2.

First, we note that for τ · e > 1
2 , we have ∂−τur0 = −∂τur0 ≤ 0. Then, for any

x ∈ Σ1, we have that ur0(x) = 0 since ur0(x0) = 0. If instead x ∈ Σ2 with
ur0(x) = 0, we may look at the backwards cone emanating from x which contains
x0. In this cone, we would also have ur0 ≡ 0 meaning that x0 is not a free boundary
point, a contradiction. □

Therefore, we can set e = en without loss of generality and write x = (x′, xn).
Then, the free boundary is the graph of a Lipschitz function: B1/2 ∩ ∂{ur0 > 0} =
{xn = f(x′)}∩B1/2. We have now fulfilled the key hypothesis of Boundary-Harnack

(see Appendix A) and may proceed by showing that Γ is C1,α for some small α > 0.

Theorem 3.48. (C1,α Regularity of Γ)
The free boundary ∂{ur0 > 0} is C1,α in B 1

4
. Moreover, the free boundary of u,

∂{u > 0}, is C1,α in B r0
4
.

Proof. Define w1 := ∂eiur0 + ∂enur0 and w2 := ∂enur0 . Denote Ωr0 = {ur0 > 0} so
that w1, w2 are positive and harmonic on Ωr0 ∩ B1/2 and vanish on the boundary
∂Ωr0 ∩ B1/2. The domain is Lipschitz, so we may apply Boundary-Harnack (Ap-
pendix A) to argue that ∥w1

w2
∥
Cα(B1/4∩Ωr0)

is finite. Therefore, by the formulas for

w1 and w2, we have that ∥ ∂ei
ur0

∂enur0
∥
Cα(B1/4∩Ωr0)

is also finite.

To show that the free boundary is C1,α, it suffices to show that the normal vector
is a Cα function. Writing down the expression for the normal vector to the level set
{ur0 = t} where ur0(x) = t > 0, we have that the i’th component is

νi(x) =
∂eiur0(x)

|∇ur0(x)|
=

∂eiur0(x)/∂enur0(x)√
1 +

∑n−1
k=1(∂ekur0(x)/∂enur0(x))

2

.

This is a Cα function since the map x 7→ x√
1+x2

is Lipschitz continuous and the

composition of Lipschitz and α-Hölder continuous functions is Cα. Thus, taking
t → 0+, we see that ν is Cα at the free boundary. Hence, Γ is C1,α.

□

Remark 3.49. One can now use a higher-order Boundary-Harnack result to lever-
age C1,α regularity of Γ into C∞ regularity. See Theorem 5.38 of [2].

Appendix A. Boundary-Harnack

We would now like to outline a proof of Boundary-Harnack. Morally, this the-
orem tells us that positive harmonic functions which vanish at the boundary of a
Lipschitz domain do so at the same rate. We precisely state the theorem as follows.
We specialize in the case with Lipschitz constant 1 for simplicity (see [2] for further
references).

Theorem A.1. (Boundary-Harnack)
Suppose Ω is a Lipschitz domain with Lipschitz constant 1 and u is a positive

harmonic function on ∂Ω∩B1. Normalize so that u(en/2) = 1. Then, we have that

sup
Ω∩B1

u ≤ C1(Ω)
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for some C1 > 0. Moreover, if v is a function satisfying the same conditions, then
there exist constants C2(Ω), C3(Ω) > 0 such that

1

C2
≤ u

v
≤ C2

and
∥u/v∥Cα(B1/2∩Ω̄) ≤ C3

for some small α > 0.

The first step in the proof is establishing a result known as the weak Harnack
inequality for subsolutions.

Proposition A.2. (Weak Harnack)
Suppose u ≤ 1 is a subsolution (i.e., ∆u ≥ 0) and there is some µ > 0 with

|{u ≤ 0} ∩B1| > µ|B1|. Then, there exists some θ = θ(µ, n) such that u ≤ 1 − θ
on B1/2.

Proof. See Simon Seignourel’s paper or Appendix B of [2]. □

Remark A.3. This result says that subsolutions enjoy an improvement of maxi-
mum of the interior. In simpler terms, since u ≤ 0 on a significant portion of the
ball, it cannot shoot up to 1 on the half-ball.

We now state an immediate corollary of Weak Harnack. We will use a scaled
version of the following later in the proof.

Corollary A.4. Suppose u is a subsolution and there is some point x0 ∈ B1/2

where u(x0) ≥ 1. Also assume that |{u ≤ 0} ∩B1| > µ|B1| for some µ > 0. Then,
there exists some θ = θ(µ, n) such that maxB1/2

u > 1 + θ.

Proof. Apply Proposition A.2 to v := u
maxB1/2

u . □

There are two more steps to prove the result. The first is called the Carleson
estimate which gives a uniform L∞ estimate up to the boundary in terms of the
value at a single point and uses the weak Harnack inequality (Proposition A.2).
We will then state a positivity lemma which is best interpreted through the lens of
Brownian motion.

Lemma A.5. (Carleson Estimate)
Let u and Ω be as in the setting of Theorem A.1. Then, there is some absolute

constant C such that supΩ∩B1/2
u ≤ Cu(en/2).

Proof. We begin by extending u by zero on Ω∁ so that u is subharmonic since it
touches down to zero at ∂Ω. Now apply a scaled version of weak Harnack (Propo-
sition A.2) so that maxBr/2∩Ω u ≤ (1− θ)maxBr∩Ω u for any ball Br centered on
∂Ω. Note that the hypothesis of weak Harnack is fulfilled since Ω is 1-Lipschitz.

Now, define Ωδ := {x ∈ B1 ∩ Ω: d
(
x,Ω∁

)
> δ} so that u ≤ C on Ωδ by the

ordinary Harnack inequality. Moreover, we know that the cone Σ = {xn > |x′|} ⊂ Ω
since Ω is 1-Lipschitz where x = (x′, xn). We would like to ascertain a bound on u
for each line through the origin in Σ and then recenter to extend to B1/2 ∩ ∂Ω.

Then, let y = (0, ε). We wish to connect y to points on Ωδ using a Harnack
chain of balls. First note that d(y, ∂Σ) = ε√

2
by the Pythagorean theorem so that

d(y,Ω) ≳ ε. Similarly, z =
(
0, δ

√
2
)
∈ Ωδ since d(z, ∂Σ) = δ. Begin by applying



FREE BOUNDARY REGULARITY FOR THE CLASSICAL OBSTACLE PROBLEM 27

Harnack on Bδ/2(z) and then Bδ/4

(
z − δ

4en
)
and so on until δ2−k < ε ≤ δ2−k−1.

This tells us that u(y) ≲ d(y, ∂Ω)
−q

for q > 0 depending on dimension.

Next, we set A = u(x0) = maxB1/2
u ≥ 1 and r = 2d

(
x0,Ω

∁
)
. Using that Ω is

1-Lipschitz, we apply weak Harnack (Corollary A.4) to choose some x1 ∈ B2r(x0)
with u(x1) ≥ (1 + θ)A and |x1 − x0| ≤ 2r. We then iterate to inductively choose a

point xk with u(xk) ≥ (1 + θ)
k
A with |xk − xk−1| ≤ 4d

(
xk−1,Ω

∁
)
. Then, applying

our previous power-bound, we have that

|xk+1 − xk| ≲ d
(
xk,Ω

∁
)
≲ (1 + θ)

−k/q
A−1/q.

Taking A large enough by rescaling u (recall we normalized u(en/2) = 1), we can
ensure the convergence of the xk’s occurs in B2/3. However, this implies that

u(xk) → ∞ in B2/3 since u(xk) ≥ (1 + θ)
k
A with θ > 0 absolute. This contradicts

the fact that any smooth superharmonic function is bounded on a bounded domain.
□

We now turn to the positivity lemma which characterizes the comparability of
positive harmonic functions vanishing at the boundary. We do not prove it but
instead, give some insight into why we expect it to be true through the Brownian
motion interpretation and discuss its consequences.

Lemma A.6. There exist constants ε, δ so that the following holds. Suppose that
u is harmonic in B1 ∩Ω, u ≥ 1 in Ωδ, and that u ≥ −ε in B1 ∩Ω. Then, u ≥ 0 in
B1/2.

Proof. See Appendix B of [2]. □

Remark A.7. For a harmonic function u with boundary data u
∣∣
∂Ω

= f , we can

write u(x) = E[f(Bx
τ )] where Bx

τ is the first place that a Brownian motion hits the
boundary and τ is the hitting time. In the context of the lemma, we can think of
the domain as containing a long thin strip oriented horizontally where u ≥ 1 above,
u = 0 below, and u ≥ −ε on each of the sides as in Figure 4.

Figure 4. Brownian Motion Interpretation Diagram

Thus, for x ∈ B1/2, we have that

u(x) ≥ P(Bx
τ hits top first)− εP(Bx

τ hits either side first) > 0

since the strip is very thin (i.e., it is much more likely to hit the top than the sides).
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Moreover, this lemma implies that the quotient u/v will remain bounded up to
the boundary. This is because v is bounded on B1/2 by Lemma A.5. Then, for

ε0 > 0 small enough, u − ε0v ≥ −ε in Ω and u − ε0v ≥ 1
2 in Ωδ. Thus, we would

have u− ε0v ≥ 0 in B1/2 by the lemma.

We also omit the proof of Hölder continuity of the quotient as in the statement
of the theorem. See Appendix B of [2] for this proof.
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