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Abstract. In this paper we take a geometric approach to understanding the
action of the modular group on the upper half plane, and use this approach

to study quotients of the upper half plane by its congruence subgroups. In

particular we show that these quotient spaces are Hausdorff and discuss their
structure as Riemann surfaces. More so than on the existence of these Riemann

surfaces, this paper focuses on leveraging the algebra of the modular group’s

action to expose some of the rich geometric and combinatorial details baked
into them. It concludes with a discussion of two concrete examples.
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1. Introduction

This paper seeks to address a practical question: How can someone new to the
theory of Riemann surfaces gain access to concrete, non-trivial examples without
much machinery?

As far as background knowledge, we assume the reader has taken a course in basic
group theory and basic complex analysis. Familiarity with hyperbolic geometry is
also helpful, but not crucial. We notably do not assume any formal background
knowledge of Riemann surfaces (or even manifolds).

For context, Riemann surfaces are objects that can arise in several qualitatively
different ways, with links that are highly non-obvious. Historically, people were
driven to develop the theory of Riemann surfaces out of observations related to
analytic continuation, which suggested that the plane is not always the most natural
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domain for some holomorphic maps [1]. Meanwhile, algebraically, Riemann surfaces
arise as the zero sets of complex polynomials in several variables; that all Riemann
surfaces (up to isomorphism) can be built this way is a highly deep result that
stands as an important pillar of the theory [10]. For this paper, though, we stick
more to the complex-analytic side of things and take inspiration from yet another
deep result of the theory, the uniformization theorem, which states that the only
simply connected Riemann surfaces are the Riemann sphere, the complex plane,
and the unit disk (which is isomorphic to the upper half plane) [11]. A corollary
of this is that every Riemann surface has one of these three as its universal cover,
which points to considering quotients of them as a way to potentially construct
more complicated Riemann surfaces.

As far as which surface to start with, one can show using the Riemann-Hurwitz
formula that all quotients of the Riemann sphere are topologically 2-spheres (i.e.
of genus 0) [1]—hence isomorphic to the Riemann sphere by uniformization—so
nothing new there. As regards quotients of the complex plane, there is a rich
and important theory of elliptic curves, which arise from quotients of C by dis-
crete translation subgroups, and are topologically all tori (i.e. of genus 1) [6].
However, the focus of this paper will be on studying quotients of the upper half
plane—which historically came into focus as a way of parametrizing the space of
elliptic curves—with the hope of potentially constructing a surface of genus higher
than 1.

First, as background information, we will start with the formal definition of a
Riemann surface (Section 2), as well as an introduction to the automorphism groups
of the Riemann sphere and upper half plane when viewed as projective actions
(Section 3). This will eventually lead us toward studying the group PSL2(Z) (i.e.
the modular group quotiented by ±I).

We then take an in-depth look at the geometric and algebraic properties of
the modular group’s action on the upper half plane, and how this translates to
properties of the associated quotient space (Section 4, Section 5, Section 6). This
is where the majority of this paper’s theorems lie. For example, one theorem we
will prove is that the quotient space we construct from the modular group’s action
(or from the action of any of its congruence subgroups) is Hausdorff, which is an
important underlying topological property of any Riemann surface.

Despite grounding itself in the topic of Riemann surfaces, one limitation of this
paper is that it does not include a rigorous proof of the existence of a complex
atlas on the quotient space, and hence does not officially show that the quotient
carries the necessary complex structure to make it a Riemann surface. Considering
this, one may reasonably ask what the approach of this paper serves to contribute,
given that there are sources such as [2] which give a concise proof of Hausdorffness
and proceed through a rigorous construction of a complex atlas all within roughly
the same page count. It comes down to the practical goals of the exposition.
What this paper seeks to offer has less to do with concise generality and more to
do with a certain kind of clarity in the mind of the reader: a clarity that comes
from understanding some of the geometric and combinatorial aspects at play in the
construction of this type of quotient space. As such, in the end we focus less on
confirming the existence of a given Riemann surface, and more on the question of
what it looks like.
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To this end, what the paper does offer next is a way of motivating how each piece
of the atlas construction from [2] is carried out (Section 7), setting up intuition and
giving a sense for the main considerations involved. (Here we also touch on the
compactification process.) Furthermore, the last section of the paper (Section 8)
draws on theory and discussion built up over the previous sections to introduce
two concrete examples of Riemann surfaces that can be built from quotients of the
upper half plane. The second example is a Riemann surface of genus 3, making it
beyond what a quotient of the complex plane or the Riemann sphere could yield.

2. Formal definition of a Riemann surface

Riemann surfaces are manifolds with added structure, so we begin with the
definition of a manifold. (This section follows definitions from [3] and [1].)

Definition 2.1.
(1) Let X be a topological space. We say that X is locally Euclidean if for any

point p ∈ X, there is an open neighborhood U of p and a map h : U → Rn,
for some n ∈ N , such that h : U → h(U) is a homeomorphism. Such a map
h is called a chart of X, and U its chart domain.

(2) A manifold is a locally Euclidean topological space that is also Hausdorff
as well as second-countable (meaning its topology has a countable base).

Remark 2.2. In Definition 2.1, n is called the dimension of X. One can check
that n must be consistent across charts [3], so this dimension is well-defined.

2-dimensional manifolds are called surfaces, and Riemann surfaces all have di-
mension 2 because we want them to locally look like C, which is homeomorphic to
R2. But C has more structure than R2, and to be able to do complex analysis on a
Riemann surface (e.g. to be able to recognize when a map is holomorphic), we need
a consistency across charts that respects this additional structure. In particular,
what we end up needing is a way to transition between charts holomorphically.

Definition 2.3. Given a manifold X and any two of its charts (U, h), (V, k), we
define the transition map w between them to be the map

w := k ◦ h−1|h(U∩V ) : h(U ∩ V ) → k(U ∩ V ).

Note that w is also a homeomorphism, being the composition of two of them [3].

Definition 2.4.
(1) Let X be a 2-dimensional manifold. A complex atlas A for X is a collection

of charts that cover X with the property that the transition map between
any pair of charts in A is holomorphic (thus conformal).

(2) Two complex atlases are considered equivalent if their union is also a com-
plex atlas, and in this way a complex atlas generates a maximal complex
atlas as the union of all complex atlases that are equivalent to it. A maximal
complex atlas is said to give a complex structure to X.

Definition 2.5. ARiemann surface is a connected 2-dimensional manifold equipped
with a complex structure. (This makes it a 1-dimensional complex manifold.)

Definition 2.6.
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(1) A map between Riemann surfaces is holomorphic if it is holomorphic in
charts. More precisely, if M and N are Riemann surfaces, then f : M → N
is holomorphic at p ∈ M if there is a chart h : U1 → V1 of M with
p ∈ U1 and a chart k : U2 → V2 of N with f(U1) ⊆ U2 for which the map
k ◦ f ◦ h−1 : V1 → V2 is holomorphic. (One can check that this property is
independent of choice of chart because of the holomorphic transition maps.)

(2) Two Riemann surfaces are isomorphic (sometimes called biholomorphic) if
they are related by a holomorphic bijection.

Remark 2.7. Since conformal maps are orientation-preserving, Riemann surfaces
have an orientation as manifolds (see [7] for a discussion of this). Also, it turns out
that among orientable connected 2-dimensional manifolds, the compact ones can
be completely characterized by their genus [12], which is essentially the number
of mug-handles they have (a.k.a. how many doughnut-holes—so for example a 2-
sphere has genus 0 and a torus has genus 1). So if a Riemann surface is compact,
finding its genus determines its underlying topology.

We end this section with some examples of familiar Riemann surfaces. (By the
uniformization theorem, the list below accounts for all the simply connected ones.)

Example 2.8.
(1) C itself is a Riemann surface with the identity map as one big chart.
(2) Open connected subsets of C are Riemann surfaces, again with the identity

for charts. Of these subsets, the simply connected ones—except for C
itself—are all isomorphic to the unit disk by the Riemann mapping theorem;
however, they are not isomorphic to C (even though homeomorphic to it),
as evidenced by Liouville’s theorem from complex analysis [4].

(3) The Riemann sphere from complex analysis is a Riemann surface. Topolog-
ically it is the 2-sphere, so it is compact (of genus 0) and simply connected.
There are several ways of characterizing the Riemann sphere, but for now
let us view it as the 1-point compactification of C, meaning C plus an extra
point called ∞, where an open neighborhood of ∞ is any subset containing
∞ whose complement is compact in C [13].

With this characterization, the identity on C is automatically a chart
for all points of the Riemann sphere except ∞, so we only need one more
chart, which we can define on C ∪ {∞} \ {0} as z 7→ 1

z with ∞ 7→ 0. Note
that this second chart overlaps with the identity chart on C \ {0}, with the
transition map given by z 7→ 1

z , which is indeed holomorphic there.
Often it is also convenient to view the Riemann sphere as a literal geomet-

ric sphere, and with this perspective, the above two charts can be obtained
through stereographic projection from the north and south pole [1].

3. Automorphisms of P 1
C and H as projective actions

Recall from complex analysis that the automorphism group of the Riemann
sphere consists of all maps of the form

z 7→ az + b

cz + d

(where a, b, c, d ∈ C with ad − bc ̸= 0), and that these automorphisms are called
Möbius transformations [1].
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It will be helpful for this paper to introduce another way of describing the group
of Möbius transformations, through what is called the projective general linear
group. We will see that this group acts on the following space:

Definition 3.1. Given a field F , the projective line over F , denoted P 1
F , is the

space of lines through the origin in F 2. More precisely, it is a quotient of F 2 \ {0}
by the equivalence relation ∼ defined as

v1 ∼ v2 ⇐⇒ v1 = λv2 for someλ ∈ F \ {0},
which identifies vectors with the same span.

Example 3.2. Taking F = C, P 1
C is topologically the 1-point compactification of

C, just like the Riemann sphere (see Example 2.8), and indeed one can show that
P 1
C has the structure of a Riemann surface that makes it isomorphic to the Riemann

sphere [1]. One chart is given by [z1 : z2] 7→ z1
z2
, defined on all points of P 1

C except

for [λ : 0], and another chart is given by [z1 : z2] 7→ z2
z1
, defined everywhere but at

[0 : λ]. Just like in Example 2.8, the transition map is z 7→ 1
z . To give an explicit

isomorphism φ from P 1
C to the Riemann sphere, we can just extend the pairing

from the first chart (where [z1 : z2] 7→ z1
z2
) by filling in [λ : 0] 7→ ∞.

We first observe that the general linear group GL2(F ) acts on P 1
F by matrix

multiplication. That is, one can check directly that if

A =

[
a b
c d

]
∈ GL2(F )

then the map µ̂A : P 1
F → P 1

F defined by

µ̂A

([
z1
z2

])
= A

[
z1
z2

]
=

[
az1 + bz2
cz1 + dz2

]
∈ P 1

F

is well-defined (i.e. unaffected by scaling z1 and z2 by the same scalar), and yields
the group homomorphism

µ̂F : GL2(F ) → Aut(P 1
F )

A 7→ µ̂A

whereby GL2(F ) acts on P 1
F . However, this action µ̂F is not faithful (i.e. not

injective). It comes close, but intuitively speaking it has inherited a blindness to
overall scalar multiple from the way we built P 1

F , and indeed one can check that
ker(µ̂F ) = {λI | λ ∈ F \ {0}}. This brings us to the projective general linear group.

Definition 3.3. The quotient space GL2(F )/{λI | λ ∈ F\{0}} is called PGL2(F )
(where P is for projective).

Shifting our domain to PGL2(F) gives a now-injective-by-design homomorphism

µF : PGL2(F ) → Aut(P 1
F )

A 7→ µA

that is well-defined due to the kernel of µ̂F , whereby PGL2(F ) acts faithfully on
P 1
F .
Now consider the case where F = C again. With P 1

C being isomorphic to the
Riemann sphere, we know AutP 1

C must be isomorphic to the group of Möbius
transformations. Specifically this isomorphism can be obtained by conjugating by
φ from Example 3.2. For example, one can verify directly that given A ∈ PGL2(C),
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taking µA ∈ AutP 1
C and sending it to φµAφ

−1 recovers an ordinary Möbius trans-
formation whose coefficients come straight from the entries of A. Noting that any
Möbius transformation has coefficients from some element of PGL2(C), one can
then show that µC is not only injective but also surjective (exercise), hence is a
group isomorphism.

In addition, PGL2(C) is isomorphic to the group PSL2(C) := SL2(C)/{±I},
due to C being algebraically closed [14]. (The same is not true of PGL2(R) versus
PSL2(R); in this case the latter is isomorphic to an index-2 subgroup of PGL2(R)
due to all squares being non-negative, which prevents the ability to swap the sign
of the determinant by scaling.) But at least when F = C, combining the above two
isomorphisms yields a group isomorphism µ : PSL2(C) → Aut(P 1

C), and in this
way PSL2(C) acts faithfully on P 1

C.
We now turn our attention to the upper half plane H ⊆ C (consisting of all

points strictly above the real axis), which is a model for hyperbolic space. It is often
convenient to view H as being embedded in P 1

C as a hemisphere, with boundary
P 1
R (which embeds as a great circle). Recall that the automorphisms of H are also

Möbius transformations, so when H is viewed in P 1
C,

µ−1(Aut(H)) ≤ µ−1(Aut(P 1
C)) = PSL2(C).

From the observation that automorphisms of H preserve its boundary P 1
R, a reason-

able (though incorrect) first guess is that Aut(H) might turn out to be isomorphic
to PGL2(R); however, using the further observation that its automorphisms must
not flip H to the lower half plane (which translates to a restriction on the sign of
the determinant), one can show that in fact

µ−1(Aut(H)) = PSL2(R).
Since µ is a group isomorphism, so is

µ
∣∣
PSL2(R)

: PSL2(R) → Aut(H),

and thus PSL2(R) acts faithfully on H (and on its boundary P 1
R).

Observation 3.4. In hyperbolic space, lines are in bijection with pairs of distinct
ideal points (a.k.a. points at infinity), and also automorphisms preserve lines. We
can directly observe this in the upper half plane model: Ideal points are points on
the boundary P 1

R, and hyperbolic lines are circles in P 1
C which intersect the circle

P 1
R at right angles. Equivalently they are circles centered on P 1

R, thus specifiable by
their two points of intersection with P 1

R. Furthermore, Möbius transformations are
conformal and take circles in P 1

C to circles in P 1
C, and hence those which fix P 1

R—in
particular all automorphisms of H—preserve the set of hyperbolic lines.

Notation 3.5. We will denote the set of hyperbolic lines in H by L.
Sometimes we care about the orientation of a hyperbolic line, sometimes not. In

either situation, it is notationally convenient to specify an edge by its endpoints
in P 1

R as an ordered pair (which is safe to do in light of Observation 3.4). So to
help disambiguate when order matters with this notation, we will also distinguish
between L and the related set L→, where members of L→ are viewed with definite
orientation.

One consequence of Observation 3.4 is that µ induces an action of PSL2(R) on
L→. Also, like any group, PSL2(R) also acts on itself, by (let’s say left) multiplica-
tion. In the next lemma we introduce a map from PSL2(R) to L→, and so a natural
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question is whether it is coordinated with the respective actions of PSL2(R) on its
domain and codomain.

Lemma 3.6. The map

θ̂ : PSL2(R) → L→[
a b
c d

]
7→
([

a
c

]
,

[
b
d

])
(where [a : c] and [b : d] are viewed in P 1

R) is a PSL2(R)-equivariant map. That is,
for all A,B ∈ PSL2(R),

(3.7) A · θ̂(B) = θ̂(AB).

Proof. We leave this as an exercise to the reader. [Hint: Consider howObservation 3.4
might allow for viewing θ as factoring through the space (P 1

R)
2 with the diagonal

excluded. How does PSL2(R) act on this intermediate space?] □

4. The modular group acts on farey edges

Eventually, we would like to build a new space by quotienting H by a group
action, which essentially means passing to the space of orbits of the action. What
happens if we quotient by the full automorphism group of H, from the action of
PSL2(R)? Well this action can send any point to any other point (exercise), so
only has one orbit; thus we get a single point, and that’s boring. So then we can
ask about subgroups, and in search of something more discrete, hopefully it seems
non-ridiculous to at least consider the subgroup PSL2(Z).

Convention 4.1. Technically the modular group refers to SL2(Z), which acts on
H just like PSL2(Z) does—though not quite faithfully—by pre-composing µ with
the natural projection that quotients out by ±I. In practice, which group you
prefer to have in mind as acting is typically not of major importance, since the
image of both actions is the same. For the purposes of this paper we really mean
the action of PSL2(Z) even when referring to the modular group action.

We saw last section that PSL2(R) acts on L, so to try to understand its subgroup
PSL2(Z) better, a natural question to ask is whether PSL2(Z) preserves anything
more specific than PSL2(R) does, such as a subset of L. In fact this is the case.

Notation 4.2. We will write Q∗ to denote Q ∪ {∞} as a subset of the Riemann
sphere (or sometimes to mean the corresponding subset of P 1

C, depending on con-
text).

Observation 4.3. Each element of Q∗ has two lowest-terms representations, re-
lated by n

d = −n
−d . (For ∞, it will be convenient to consider ±1

0 as lowest terms.)

Definition 4.4.
(1) We say that a hyperbolic line (r1, r2) ∈ L is a farey edge if its endpoints

r1, r2 are in Q∗ with the property that, when written in lowest terms as
r1 = a

c and r2 = b
d (with either sign option from Observation 4.3), they

satisfy ad− bc = ±1.
(2) In the case where ad− bc = ±2, we say that (r1, r2) defines a trident edge.

Notation 4.5. The set of farey edges is denoted E (or E→ if oriented), and the
set of trident edges is denoted E∗ (or E∗

→ if oriented).
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Lemma 4.6. The restriction of the map θ̂ from Lemma 3.6 to

θ : PSL2(Z) → E→

is invertible.

Proof. To show that the codomain of θ is well-defined, let

A =

[
a b
c d

]
∈ PSL2(Z).

Then ad − bc = 1, and one can check that this requires the columns of A to be
coprime so that a

c and b
d are already lowest-terms representations of the endpoints

of θ(A). Therefore these endpoints define a farey edge, so θ(A) ∈ E→, and we
conclude that θ(PSL2(Z)) ⊆ E→.

To show that θ is surjective, let e = (r1, r2) ∈ E→. First write r1 in lowest terms
as a

c , say choosing sign such that c ≥ 0. (If r1 = ∞, write r1 = 1
0 .) Next write r2

in lowest terms as b
d , choosing sign such that ad− bc > 0. (This is always possible

since the determinant of a matrix switches sign under negating both entries of one
column.) Then ad− bc = 1 because e ∈ E→, so the matrix

A =

[
a b
c d

]
defines an element of PSL2(Z) satisfying θ(A) = e.

To see that θ is also injective, suppose

A1 =

[
a1 b1
c1 d1

]
, A2 =

[
a2 b2
c2 d2

]
∈ PSL2(Z)

are such that θ(A1) = θ(A2) = (r1, r2). As mentioned above, the columns of
A1, A2 must be coprime due to their determinant of 1, so a1

c1
= a2

c2
are both lowest

terms representations of r1, and likewise for b1
d1

= b2
d2

representing r2. In light of
Observation 4.3, it follows that corresponding columns of A1 and A2 are related by
an overall scalar multiple of ±1. But if one column pair is equal and the other is
related by negation, then det(A1) = −det(A2), contradicting that both matrices
have determinant 1. Therefore the entries of A1 and A2 are either all the same or
all negated, and either way A1 = A2 in PSL2(Z).

Therefore θ is a well-defined bijection.
□

Example 4.7. An important reference-point edge that will come up in the proofs
to follow is the farey edge

e0 := θ(I) = (∞, 0) ∈ E→.

Before stating the next result, it will be useful call attention to a certain nice
property that group actions can have called simple transitivity, which we now define.

Definition 4.8. Given an action of a group G on a set S, the action is transitive
if for all (x, y) ∈ S × S, there exists γ ∈ G for which γ · x = y. If in addition this γ
is unique to each (x, y) ∈ S × S, then we say that G acts simply transitively on S.

Theorem 4.9. The action of PSL2(Z) takes farey edges to farey edges. Further-
more, PSL2(Z) acts simply transitively on E→.
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Proof. For the first statement, let e ∈ E→ and A ∈ PSL2(Z), and consider A · e.
By Lemma 4.6, θ−1(e) ∈ PSL2(Z), so

θ−1(A · e) = A ◦ θ−1(e) ∈ PSL2(Z)

due to Lemma 3.6. Hence A · e ∈ E→ (by Lemma 4.6 again).
For the second statement, we first show that there exists a unique element in

PSL2(Z) taking e0 (as defined in Example 4.7) to e. Since e0 = θ(I), Lemma 3.6
gives

(4.10) A · e0 = A · θ(I) = θ(A)

for all A ∈ PSL2(Z). Thus the condition A · e0 = e is equivalent to θ(A) = e, so
A = θ−1(e) gives the unique solution in PSL2(Z).

So to show transitivity, suppose e1, e2 ∈ E→, and set A1 = θ−1(e1), A2 = θ−1(e2)
so that A1 · e0 = e1 and A2 · e0 = e2. Then A2 ◦A−1

1 takes e1 to e2.
To show that the transitivity is simple, suppose B,C ∈ PSL2(Z) both take e1

to e2. Then since A1 · e0 = e1, we have

BA1 · e0 = e2 = CA1 · e0.
From here, the uniqueness shown above implies that BA1 = CA1, which in turn
implies B = C. This completes the proof.

□

Proposition 4.11.
(1) Each farey edge e ∈ E has a natural dual trident edge e∗ ∈ E∗ (and vice

versa).
(2) If a hyperbolic line ℓ shares one endpoint with a farey edge e and one end-

point with its dual e∗, then ℓ is a farey edge.

Proof. To show the first statement, we will prove that the operation of putting a
pair of rationals in lowest terms and then applying the correspondence(

a

c
,
b

d

)
7→
(
a+ b

c+ d
,
a− b

c− d

)
induces an involution ∗ : E ∪ E∗ → E ∪ E∗ that takes farey edges to trident edges
and vice versa.

Note that to be well-defined, this correspondence does rely on putting the frac-
tions in lowest terms first, but one can verify that it is unaffected by the sign
ambiguity noted in Observation 4.3.

Suppose e ∈ E, and let (ac ,
b
d ) be a lowest terms representation of e, so ad− bc =

±1. One can check directly that, in general,

(4.12) (a− b)(c+ d)− (a+ b)(c− d) = 2(ad− bc),

so in this case (a+ b)(c− d)− (a− b)(c+ d) = ±2. Therefore to show that the edge
e∗ is a trident edge it suffices to show that

(4.13) e∗ =

(
a+ b

c+ d
,
a− b

c− d

)
is already a lowest-terms representation of it. Note that the greatest common factor
of either numerator-denominator pair involved in (4.13) divides the left-hand side
of (4.12), so is at most 2 (in absolute value). Furthermore, if it is 2, then a and b
must have the same parity, and likewise for c and d, which would force ad − bc to
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be even (exercise), thereby contradicting our choice of e ∈ E. Therefore, a+b
c+d and

a−b
c−d are both already as reduced as they can be, verifying that e∗ ∈ E∗.

Let’s see what happens when we apply this same operation to e∗. Since we just
saw that (4.13) is still in lowest terms, we know its dual is given by

(4.14) (e∗)∗ =

(
(a+ b) + (a− b)

(c+ d) + (c− d)
,
(a+ b)− (a− b)

(c+ d)− (c− d)

)
=

(
2a

2b
,
2c

2d

)
= e.

One may yet worry that there are trident edges which do not arise as the dual
to any farey edge. So now switch perspectives and suppose that t = (ac ,

b
d ) ∈ E∗

is a lowest-terms representation of a trident edge, so ad− bc = ±2. Since a
c and b

d
are in lowest terms, one can check that this can only happen if a and b have the
same parity and c and d also have the same parity (exercise). [Hint: Break this
into cases.] Thus a+ b, a− b, c+ d, c− d are all even, and by (4.12), we have

(a+ b)(c− d)− (a− b)(c+ d) = ±4,

so
a+ b

2
· c− d

2
− a− b

2
· c+ d

2
= ±1.

Hence

t∗ =

(
a+ b

c+ d
,
a− b

c− d

)
=

(
a+b
2

c+d
2

,
a−b
2

c−d
2

)
∈ E

is a farey edge, and a computation similar to (4.14) confirms that (t∗)∗ = t in this
case as well.

From here the second statement follows directly from the identity

ad−bc = a(c+d)−(a+b)c = (a+b)d−b(c+d) = (a−b)c−a(c−d) = b(c−d)−(a−b)d,

which shows that if (ac ,
b
d ) is a farey edge then(

a

c
,
a+ b

c+ d

)
,

(
b

d
,
a+ b

c+ d

)
,

(
a

c
,
a− b

c− d

)
,

(
b

d
,
a− b

c− d

)
are all farey edges too.

□

Example 4.15. The reader is encouraged to verify that the dual of e0 ∈ E is

e∗0 = (1,−1) ∈ E∗.

Lemma 4.16. The action of PSL2(Z) preserves dual pairings. That is, for all
A ∈ PSL2(Z) and for all e ∈ E ∪ E∗,

A · e∗ = (A · e)∗.

Proof. Let

A =

[
a b
c d

]
∈ PSL2(Z).

We first show that A · e∗0 = (A · e0)∗. In light of (4.10),

(A · e0)∗ = (θ(A))∗ =

(
a

c
,
b

d

)∗

=

(
a+ b

c+ d
,
a− b

c− d

)
.

Also, observe that

θ

([
1 −1
1 1

])
= (1,−1) = e∗0.
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Thus using Lemma 3.6 we obtain

A · e∗0 = A · θ
([

1 −1
1 1

])
= θ

([
a b
c d

] [
1 −1
1 1

])
= θ

([
a+ b −a+ b
c+ d −c+ d

])
=

(
a+ b

c+ d
,
a− b

c− d

)
= (A · e0)∗.

So now let e ∈ E be any farey edge, and set B = θ−1(e) so that B · e0 = e (see
Theorem 4.9). Applying the above argument to the action of B, we have

A · e∗ = A(B · e0)∗ = AB · e∗0,

and applying it to the action of AB then gives

AB · e∗0 = (AB · e0)∗ = (A · e)∗.

Therefore, A · e∗ = (A · e)∗ as desired.
□

Corollary 4.17. The action of PSL2(Z) takes trident edges to trident edges and
is simply transitive on E∗

→.

Proof. This is more or less immediate from the combination of Theorem 4.9 and
Lemma 4.16. The details are left as an exercise. □

5. The Dedekind tessellation built from scratch

The results of the last section suggest that the action of PSL2(Z) somehow
knows about farey and trident edges at a fundamental level. So what does this
pattern of edges actually look like in H? To answer this, we begin by studying how
these edges intersect each other.

Observation 5.1. In general, if two hyperbolic lines (a1, a2), (b1, b2) ∈ L intersect
in H, then all four of a1, a2, b1, b2 ∈ P 1

R must be distinct, and their cyclic order in
P 1
R must be alternating. That is, up to cyclic reordering it must be (a1, b1, a2, b2)

rather than (a1, a2, b1, b2). In Proposition 5.2 below, this observation will help us
impose betweenness conditions on finite endpoints when we view them affinely (i.e.
back in R ⊆ C rather than in P 1

R ⊆ P 1
C).

Proposition 5.2. The intersection properties of farey and trident edges in H (so
excluding at ideal points) are as follows:

(1) No farey edge intersects any other farey edge.
(2) Each farey edge intersects exactly one trident edge, which is its dual; these

meet at right angles.
(3) Each trident edge intersects a total of 4 other trident edges, a pair at each

of two points; the angles of intersection at these points are multiples of π/3.

Proof. First we show that statements 1 and 2 apply to e0.
Suppose (r1, r2) ∈ E ∪ E∗ is a farey or trident edge that crosses e0 = (∞, 0)

somewhere in H. Then in light of Observation 5.1, r1, r2 are finite and nonzero,
and of opposite signs, so without loss of generality assume r1 > 0 > r2. Write r1, r2
in lowest terms as r1 = a

c , r2 = b
d , such that c, d ≥ 0. Then multiplying through by

cd we have

(5.3) ad > 0 > bc.
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Since ad, bc ∈ Z, this implies that ad − bc ≥ 2. Hence (r1, r2) is not a farey edge.
If it is a trident edge, then ad − bc = 2, so (5.3) implies ad = 1 and bc = −1. It
follows that |r1| = |r2| = 1 and r2 = −r1. Thus (r1, r2) = (1,−1) = e∗0.

Therefore e0 intersects no farey or trident edges except possibly e∗0. Using basic
Euclidean geometry in the affine version of H, we see immediately that e0 and e∗0
indeed intersect at i ∈ C with perpendicular tangent lines (exercise).

Next we show that statement 3 applies to e∗0.
Suppose (r1, r2) ∈ E∗ is a trident edge that intersects e∗0 = (1,−1) in H. Write

r1, r2 in lowest terms as r1 = a
c , r2 = b

d such that c, d ≥ 0 (where ∞ is expressed as
1
0 ), so that

(5.4) ad− bc = ±2.

We consider two cases, based on whether or not an endpoint is infinite.
Case 1: Suppose r1, r2 ̸= ∞. Then c, d > 0. To get an intersection, one of r1, r2

must be between the endpoints of e0 and the other not between them (in the affine
sense), so without loss of generality suppose that

(5.5) |r1| > 1 > |r2|.

Multiplying through by cd > 0 gives

|a|d > cd > |b|c,

so (5.4) implies (|a| − c)d = 1 and (d− |b|)c = 1. Thus

|c| = |d| =
∣∣|a| − c

∣∣ = ∣∣d− |b|
∣∣ = 1,

so a, b ∈ {−2, 0, 2}, and from here (5.5) further implies that |a| = 2 and b = 0.
Hence in this case (r1, r2) = (±2, 0).

Case 2: Without loss of generality, suppose r1 = ∞, so a = 1 and c = 0.
Therefore (5.4) gives

1 · d− 0 · b = ±2,

so |d| = 2. With r1 being infinite, to get an intersection we need r2 between the
endpoints of e0 (in the affine sense), so |r2| < 1. Since |d| = 2, the only way this
can happen is if |b| < 2, and if b = 0 then b

d is not in lowest terms, so |b| = 1. Thus

in this case (r1, r2) = (∞,± 1
2 ).

Therefore, the set of trident edges that intersect e∗ is some subset of

T =

{
(0, 2), (0,−2),

(
∞,

1

2

)
,

(
∞,

−1

2

)}
⊆ E∗.

Once again using Euclidean geometry, the reader is encouraged to verify that
e∗0 does intersect all four members of T , and furthermore that these intersections
occur in two triplets at eiπ/3 and ei2π/3 with tangent lines meeting at angles of π/3.

Now to complete the proof, let e ∈ E and e∗ ∈ E∗ be an arbitrary dual edge
pair, and set A = θ−1(e) so that A · e0 = e and A · e∗0 = e∗ (see Theorem 4.9 and
Lemma 4.16).

Note that PSL2(R) acts on H by conformal bijections, preserving incidence and
angles of incidence. So in particular, for all ℓ1, ℓ2 ∈ L, A · ℓ1 intersects A · ℓ2 at a
given angle if and only if ℓ1 intersects ℓ2 at that angle. Also, A preserves the sets E
and E∗. Hence ℓ is a farey or trident edge that intersects e if and only if A−1 · ℓ is
a farey or trident edge that intersects A−1 · e = e0. As we have seen, this is true if
and only if A−1 · ℓ = e∗0, which by choice of A is equivalent to the condition ℓ = e∗.
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The same argument can be used to show that ℓ is a trident edge that intersects
e∗0 if and only if ℓ = A · t for some t ∈ T .

As mentioned, the remaining details about angle follow straight from conformal-
ity, and this completes the proof.

□

Definition 5.6. A point in H where a farey and trident edge meet is called a dual
point, and where three trident edges meet is a trident point.

We will soon use Proposition 5.2 to deduce exactly how the farey and trident
edges cut up the upper half plane. First, though, it will be helpful to consider how
the farey edges break things up on their own, and in particular to verify that there
are enough of them to essentially triangulate all of H.

Lemma 5.7. The edge set E yields a tessellation (called the Farey tessellation)
that covers H by hyperbolic ideal triangles. That is, every point in H is either part
of a farey edge or enclosed by 3 farey edges that meet pairwise at ideal points.

Proof. Let p = x + iy ∈ H. So y > 0. If x ∈ Z, then p is on the edge (∞, x) =
( 10 ,

x
1 ), which is a farey edge, in which case we are done. Otherwise, if x /∈ Z, let

m = ⌊x⌋, n = ⌈x⌉, so that m < x < n and n−m = 1. Then (n,m) = (n1 ,
m
1 ) is also

a farey edge, so we are done if p lies on (n,m). Moreover, we are also done if p lies
outside the semi-disk enclosed between (n,m) and R, since in that case p is in the
ideal triangle with vertices n,m,∞. Thus to cover all remaining cases, it is safe to
assume p lies inside the semi-disk under (n,m).

More generally, suppose p lies in the semi-disk under any farey edge (r1, r2) ∈ E
that satisfies r1, r2 ̸= ∞. (If an endpoint were infinite the edge would be a Euclidean
ray rather than a Euclidean semi-circle.) Consider the trident edge t ∈ E∗ that is
dual to (r1, r2). Since t intersects (r1, r2) inside H by Proposition 5.2, it must have
an endpoint r3 ∈ Q∗ that satisfies r1 < r3 < r2 (see Observation 5.1). Furthermore,
by Proposition 4.11, (r1, r3) and (r3, r2) are both farey edges.

In general for a farey edge with finite endpoints a
c and b

d , being a Euclidean
semi-circle, its diameter is the distance between its endpoints:∣∣∣a

c
− b

d

∣∣∣ = ∣∣∣ad− bc

cd

∣∣∣ = ∣∣∣ 1
cd

∣∣∣.
In particular, every farey edge with finite endpoints has diameter 1

n for some n ∈
N. So find k ∈ N such that |r1 − r2| = 1

k . Then since r1 < r3 < r2, we have
|r1− r3| < |r1− r2| and similarly |r3− r2| < |r1− r2|, so both new farey edges must
have diameter at most 1

k+1 .

We now ask: Does p lie in either of the two semicircles defined by (r1, r3) and
(r3, r2)? If not, then p is either on a farey edge or enclosed in the ideal triangle
with endpoints r1, r2, r3, in which case we are done. Otherwise, repeat the same
process as above, with (r1, r2) replaced by the new edge that p is enclosed under,
to obtain a new pair of semi-circles with radius at most 1

k+2 ; then
1

k+3 , and so on.
At the end of each stage, ask the same question to see if it is necessary to continue.

Since the sequence ( 1k )k∈N converges to zero, after some finite number of itera-
tions, y will exceed the radius of all new semi-circles obtained in this process, at
which point p must no longer lie under any of them. Thus the algorithm necessar-
ily ends in victory, and we conclude that p is either on a farey edge or in an ideal
triangle with farey edges for sides.
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□

Theorem 5.8. The edge set E ∪E∗ yields a tessellation of H by congruent hyper-
bolic ideal triangles that each have interior angles of π/2 (at a dual point) and π/3
(at a trident point), and an ideal vertex at a point in Q∗. This tessellation is called
the Dedekind tessellation (henceforth ”the tessellation”).

Proof. The reader is encouraged to prove this by drawing! Below we present guiding
steps for one possible strategy—but this is by no means the only one.

Preliminary note: To draw the hemisphere H ⊆ P 1
C, there are a couple of natural

options. One option is to work in the upper half plane model by stereographically
projecting from the north pole [1 : 0] ∈ P 1

C as usual. Another option that may be
helpful for seeing the overall symmetry is to draw H as a disk, by stereographically
projecting from the point [−i : 1] onto a copy of C placed so that it passes through
the great circle P 1

R ⊆ P 1
C. (Intuitively, one can imagine peering at the hemisphere

from the point on the sphere directly across from it.)
Guiding steps: Start by drawing e0 and its dual e∗0. What other farey edges

can be filled in? [Hint: See statement 2 of Proposition 4.11.] Well now those farey
edges need dual trident edges too. Can we deduce anything about the endpoints
of these trident edges? What about where the they intersect each other? [Hint:
Statement 2 of Proposition 5.2 should help, and also statement 3.] Okay once those
are in place, fill in more new farey edges (again from Proposition 4.11), and then
new trident edges (again from Proposition 5.2), and so on. Can you see how to
continue this process indefinitely? Will it account for all farey and trident edges in
the long run? (Spoiler: Yes it will.)

As a final note, Lemma 5.7 shows that the Dedekind tessellation fills all of H,
since it is just a refinement of the Farey tessellation.

□

Definition 5.9. The hyperbolic triangles from Theorem 5.8 are called faces of the
tessellation. Each face is considered to include its whole boundary in H (i.e. all
points on its sides and vertices except for its ideal vertex in Q∗), so is closed in H
by definition (where H has the standard subspace topology inherited from C).

Observation 5.10. Since every face of the tessellation has one one dual point, one
trident point, and one ideal point for vertices (see Theorem 5.8), they each have
a definite handedness based on the cyclic ordering of their vertices. It is a nice
exercise to verify that adjacent faces have opposite handedness. (Feel free to make
your own rule about which ordering is for which hand; Figure 1 and Figure 2 show
handedness with color.)

Theorem 5.11. The action of PSL2(Z) takes left-hand faces to left-hand faces
and right-hand faces to right-hand faces. Furthermore, it acts simply transitively
on each of these two sets.

Proof. As regards the first statement, we have already seen that PSL2(Z) acts on
E and on E∗, which together form the edge set of the tessellation. Therefore, if
A ∈ PSl2(Z), then A acts bijectively on the union of all edges in the tessellation,
hence also bijectively on their complement in H. This complement is the union
of all face interiors, each of which is its own connected component. Given that
A is a homeomorphism, preserving connectedness in both directions, it follows
that A must map each face interior surjectively onto another, while also taking
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Figure 1. The Dedekind tessellation, shown here in the upper half
plane model of the hyperbolic plane (achieved by stereographically
projecting H ⊆ P 1

C from the north pole) [22].

Figure 2. At left: farey edges [20]; at right: trident edges [21].
Here both are shown in the Poincaré disk model (achieved by stere-
ographically projecting from the point [−i : 1] ∈ P 1

C). They are
combined at center to construct the Dedekind tessellation (with
added clovers for good luck) [19].

their boundaries along (exercise). Hence, A takes faces to faces. It preserves their
handedness because all conformal maps are orientation-preserving (see [1]).

Showing simple transitivity we leave as an exercise to the reader. [Hint: Find a
nice bijective correspondence between E→ and the set of left-hand faces (or right-
hand, say whichever you write with). In particular, make sure your correspondence
is nice enough that the action of PSL2(Z) respects it—i.e, that each element of
PSL2(Z) sends associated pairs to other associated pairs. Then apply Theorem 4.9.
Related exercise: Can you find any other sets on which the action is also simply
transitive using a similar tactic?]

□

Remark 5.12. One can also show (along similar lines as for Theorem 5.11) that
PSL2(Z) acts transitively on the set of dual points and on the set of trident points.
However, the reader may have already noticed that the transitivity is in this case
not simple. (More on this later.)
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6. From orbits to the quotient space

Using the geometric understanding we built up in the previous section, we now
seek to understand how properties of the action of PSL2(Z) translate to properties
of the new quotient space we are about to build. But PSL2(Z) itself is by no means
the only group we can quotient by—many of its subgroups work as well!

Definition 6.1.
(1) For any n ∈ N (excluding 0), the principle congruence subgroup of level n

of the modular group is the kernel of the natural projection πn : SL2(Z) →
SL2(Z/nZ) that takes each entry of the given matrix to its residue mod n.
Hence it has the form

Γ(n) :=

{[
a b
c d

]
∈ SL2(Z)

∣∣∣∣ a, d ≡ 1 (modn) and b, c ≡ 0 (modn)

}
for n ≥ 2. (For n = 1, we take Γ(1) to be all of SL2(Z) [2].)

(2) Let πs denote the projection SL2(Z) → PSL2(Z) that identifies ±A for
all A ∈ SL2(Z). Then the principle congruence subgroup of level n of
PSL2(Z) is πs(Γ(n)) ≤ PSL2(Z) [8].

Definition 6.2. A congruence subgroup is any subgroup which contains a principle
congruence subgroup. (Its level is the minimal n for which it contains the principle
congruence subgroup of level n.)

Remark 6.3. The reader is encouraged to check using Definition 6.1 that principle
congruence subgroups are normal and of finite index. Definition 6.2 then implies
that all congruence subgroups are of finite index (though not necessarily normal
like the principle ones).

Definition 6.4. Given a congruence subgroup Γ of PSL2(Z), we form the topo-
logical space H/Γ as the set of Γ-orbits of H equipped with the quotient topology,
from the projection

π : H → H/Γ

h 7→ Γh.

(The quotient topology means that a subset U ⊆ H/Γ is defined to be open in H/Γ
if and only if π−1(U) is open in H.)

To get a sense for the quotient space in Definition 6.4, it is natural to look for
a subset of H that has one point from each orbit to serve as representatives. The
following result is helpful to have in mind when considering how to do this, and
will also be of immense use for several proofs later this section.

Proposition 6.5. Each face of the Dedekind tessellation contains at most one
point per Γ-orbit.

Proof. Let F be a face of the Dedekind tessellation, and suppose h1, h2 ∈ F are
in the same Γ-orbit. Then h2 = γ(h1) for some γ ∈ Γ, so h2 ∈ γF ∩ F . By
Theorem 5.11, γF is a face of the same handedness as F , distinct from F unless γ
is the identity. If γ is the identity then we are done because h2 = h1. Otherwise, F
and γF are not adjacent (see Observation 5.10). This implies they intersect at at
most one vertex in H, which means h2 ∈ γF ∩ F must be a dual or trident point,
and h1 the same kind of point (since Γ preserves both types). But F has only one
dual point and only one trident point, so we conclude that h1 = h2.

□
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Definition 6.6. A fundamental domain for a space with respect to a group action
is a subset that contains a point from every orbit such that its interior contains no
more than one point per orbit.

Example 6.7. The union of any pair of adjacent faces in the Dedekind tessel-
lation is a fundamental domain for the action of PSL2(Z) on H. The reader is
encouraged to verify this as an exercise. [Hint: Consider Observation 5.10 and how
Theorem 5.11 might apply; Proposition 6.5 may also come in handy.]

Note that uniqueness of the orbit representatives does break down on the bound-
ary, for any such choice of fundamental domain. The way in which it breaks down
informs the side identifications needed to glue the fundamental domain into the
right underlying topological space to represent the quotient.

For example, a conventional choice of fundamental domain for this action is the
hyperbolic triangle ∆F ⊆ H with vertices eiπ/3 and ei2π/3 and the ideal point ∞,
joined along the trident edges

(1,−1),

(
∞,

1

2

)
,

(
∞,

−1

2

)
(old friends from the proof of Proposition 5.2). To glue ∆F into a space homeo-
morphic to H/PSL2(Z), we need to identify points on its boundary that are in the
same orbit, and one can check that in this case this amounts to gluing together
points related by a reflection over the imaginary axis. (This effectively zips ∆0 into
a dumpling with a leak at ∞, and we get something homeomorphic to the 2-sphere
minus a point, or equivalently to the plane.)

As helpful as fundamental domains can be for visualizing quotient spaces, even
without directly finding one for a given congruence subgroup, we can still gain a
substantial amount of insight about the quotient space by studying certain prop-
erties of the action back in H. To this end, it will be helpful to first introduce the
following terminology:

Definition 6.8. Given a point h ∈ H, its face cluster ∆(h) is the union of all faces
containing h.

Observation 6.9. The reader may have noticed that if h ∈ H, then ∆(h) includes

• only 1 face if h is not on an edge
• 1 face of each handedness if h is on an edge but not a vertex
• 2 of each handedness if h is a dual point
• 3 of each handedness if h is a trident point.

Lemma 6.10. For all h ∈ H, ∆(h) is a neighborhood of h.

Proof. This is true for points in ∆F from Example 6.7 more or less by inspection,
and we leave the details to the reader. [Hint: Break this into cases based on
Observation 6.9.]

One may yet worry about points which are close to the boundary of H, but we
can dispel remaining doubt by moving them over to ∆F and back again, as follows:

Let h ∈ H. Example 6.7 tells us that we can find B ∈ PSL2(Z) such that
B · h ∈ ∆F , so that, as noted, ∆(B · h) is a neighborhood of B · h.

Note that for all A ∈ PSL2(Z),

(6.11) A ·∆(h) = ∆(A · h).
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This is because the action of PSL2(Z) preserves faces (see Theorem 5.11); in par-
ticular, a face F of the tessellation contains h if and only if A ·F is a face containing
A · h.

Hence, B ·∆(h) = ∆(B ·h) is a neighborhood of B ·h, meaning there is an open
set U ⊆ B ·∆(h) that contains B · h. Since PSL2(Z) acts by homeomorphisms, it
follows that B−1 · U ⊆ ∆(h) is an open set containing h, and we are done.

□

We now use face clusters to prove a group-action-related property that will set
us up for proving that the quotient space is Hausdorff.

Proposition 6.12. Let Γ denote any congruence subgroup of PSL2(Z). If h1, h2 ∈
H such that Γh1 ̸= Γh2, then there exist neighborhoods U1 of h1 and U2 of h2 such
that ΓU1 ∩ ΓU2 = ∅.

Proof. Suppose h1, h2 ∈ H such that Γh1 ̸= Γh2. Consider the set

S := ∆(h1) ∩ Γh2.

Each face included in ∆(h1) contains at most one point of Γh2 by Proposition 6.5,
so S is finite given Observation 6.9. Also, h1 /∈ Γh2 ⊇ S because that would mean
Γh1 = Γh2, contradicting our choice of h1, h2. Therefore, so long as S is non-empty,
we can set

r1 :=
1

2
min
x∈S

d(h1, x) > 0

so that Br1(h1) is a neighborhood of h1. So now if S is empty, set N1 = ∆(h1),
and otherwise, set N1 = ∆(h1) ∩ Br1(h1). Then either way, N1 is a neighborhood
of h1 due to Lemma 6.10, and N1 ∩ S is empty by choice of r1. Also, since ∆(h)

is closed in H (being a finite union of closed faces), we have N1 ⊆ ∆(h1) = ∆(h1).
Therefore,

N1 ∩ Γh2 =
(
N1 ∩∆(h1)

)
∩ Γh2 = N1 ∩

(
∆(h1) ∩ Γh2

)
= N ∩ S = ∅.

We now show that Γh2 is disjoint from all of ΓN1. Suppose for contradiction that
p ∈ ΓN1 ∩Γh2. Then p ∈ γ(N1)∩Γh2 for some γ ∈ Γ, meaning γ−1(p) ∈ N1 ∩Γh2,
but this is empty. So ΓN1 ∩ Γh2 = ∅ as hoped.

Since Γ acts by homeomorphisms, we have ΓN1 = ΓN1 (exercise). This implies
in particular that h2 itself is not in the closure of ΓN1, so has positive distance
from ΓN1. Letting r2 > 0 be half this distance, then, we obtain a neighborhood
N2 := Br2(h2) of h2 that is disjoint form Γ(N1).

We now finish the proof by showing that ΓN1 is in fact disjoint from all of ΓN2.
Similar to earlier, suppose p ∈ ΓN1 ∩ ΓN2. Then there is some γ ∈ Γ for which
p ∈ ΓN1∩γ(N2), so γ−1(p) ∈ ΓN1∩N2 = ∅, a contradiction. Thus ΓN1∩ΓN2 = ∅,
and we are done.

□

To translate Proposition 6.12 into Hausdorffness, we just need one more lemma
first.

Lemma 6.13. Given any congruence subgroup Γ of PSL2(Z), the projection π
from Definition 6.4 is an open map.
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Proof. Recall that π(h) = Γh for all h ∈ H (by definition), so given p ∈ H, one can
check that π(h) = π(p) if and only if h ∈ Γp (exercise). Thus π−1(π(p)) = Γp for
all p ∈ H, from which it follows that π−1(π(S)) = ΓS for all S ⊆ H.

In particular, if U ⊆ H is open, then π−1(π(U)) = ΓU is a union of open sets
(since Γ acts by homeomorphisms), and hence is open. Therefore π(U) is open in
H/Γ with the quotient topology, which verifies that π is an open map.

□

Theorem 6.14. Let Γ be any congruence subgroup of PSL2(Z). Then H/Γ is
Hausdorff.

Proof. Let p1, p2 ∈ H/Γ with p1 ̸= p2. Since π is surjective, find h1 ∈ π−1(p1) and
h2 ∈ π−1(p2). Then π−1(p1) = π−1(π(h1)) = Γh1 (see the proof of Lemma 6.13),
and similarly π−1(p2) = π−1(π(h2)) = Γh2. Note that, being distinct, p1 and p2
have different pre-images; hence Γh1 ̸= Γh2. Therefore by Proposition 6.12, there
exist neighborhoods N1 and h1 and N2 of h2 such that ΓN1 ∩ ΓN2 = ∅. Since
π−1(π(N1)) = ΓN1 and π−1(π(N2)) = ΓN2, it follows that

π−1 (π(N1) ∩ π(N2)) = π−1(π(N1)) ∩ π−1(π(N2)) = ∅,
so π(N1) ∩ π(N2) = ∅ by the surjectivity of π. Finally, by Lemma 6.13, π(N1) and
π(N2) are open and hence neighborhoods of p1 and p2, respectively, and the proof
is complete.

□

It is not hard to show that H/Γ also inherits second-countability straight from H
[2], so given Theorem 6.14 we now know that H/Γ at least has hope of turning out
to be a manifold—and hopefully even a Riemann surface—if we can find suitable
charts for it. Excellent.

To start down this road of charts, then, we once again look for a group-action-
related property that can translate to a topological property—in this case to the
existence of a local homeomorphism.

Proposition 6.15. Let Γ be a congruence subgroup of PSL2(Z). Given any h ∈ H,
there exists a neighborhood N of h such that for all γ ∈ Γ, γ(N) ∩N ̸= 0 only if γ
stabilizes h (i.e. only if γ(h) = h). In particular, int(∆(h)) is such a neighborhood.

Proof. Let h ∈ H, and γ ∈ Γ. Set N = int(∆(h))—a neighborhood of h due to
Lemma 6.10—and suppose that γ(N) ∩ N ̸= ∅. Then since γ(N) ∩ N is open in
H, it is not a subset of the union of edges of the tessellation, so it must contain a
point p in the interior of some face F in the tessellation. Note that

γ(N) ∩N ⊆ γ(∆(h)) ∩∆(h) = ∆(γ(h)) ∩∆(h)

by (6.11), so p is in the face cluster of both γ(h) and h. Furthermore, p is not
in any other face besides F , since distinct faces overlap at most along boundaries.
Hence, with face clusters being unions of faces, we deduce that F ⊆ ∆(γ(h)) ∩
∆(h). Therefore F must contain both γ(h) and h, which share an orbit. So by
Proposition 6.5, γ(h) = h.

□

Theorem 6.16. Let Γ be any congruence subgroup of PSL2(Z). If h ∈ H is such
that Γ is free on h (i.e. if h has trivial stabilizer in Γ), then the projection map π
from Definition 6.4 is a local homeomorphism at h.
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Proof. Suppose h ∈ H is such that Γ is free on h. By Proposition 6.15, there is a
neighborhood N of h with the property that γ(N)∩N is empty unless γ stabilizes
h. But only the identity stabilizes h because Γ is free on h. So if p ∈ N , then
γ(p) ∈ N implies γ is the identity. Thus Γp ∩N = {p} for all p ∈ N , meaning N
includes at most one point from every Γ-orbit. Therefore, π is 1-to-1 on N , so

π|N : N → π(N)

is invertible. Furthermore, π|N is continuous (by definition of the quotient topol-
ogy), and since π is open by Lemma 6.13, it follows that π|−1

N is also continuous.
Hence π|N is homeomorphic onto its image (which is a neighborhood of π(h)), and
we conclude that π is a local homeomorphism at h.

□

Remark 6.17. We won’t go into the theory of covering maps here (see [5] for a
definition), but for the reader familiar with them, it is nice to note that if S is the
set of points on which Γ acts freely, then π|S is in fact a covering map of its image
π(S). (This can be shown using the proof of Theorem 6.16.)

For the points where Γ acts freely, Theorem 6.16 gives us a direct way of build-
ing charts: namely, by taking local inverses of π. This is almost great; the only
problem is that we still need to figure out when and where the action is free (if
anywhere)—not to mention what to do in cases where it’s not.

Proposition 6.18. With respect to the action of PSL2(Z), the size of the stabilizer
subgroup of a point h ∈ H is equal to

• 3 if h is a trident point
• 2 if h is a dual point
• 1 in all other cases.

Proof. Let h ∈ h, and consider any face F ⊆ ∆(h). Let n be the number of faces
with the same handedness as F which are included in ∆(h). Theorem 5.11 tells
us that there is a unique element of PSL2(Z) sending F to each one of these n
faces, so exactly n total elements which send F to a subset of ∆(h). Also, from
Observation 6.9 we know that n is 3 for trident points, 2 for dual points, and 1 for
all other points. Therefore, to prove the result, all that remains to show is that
A ∈ PSL2(Z) stabilizes h if and only if A ·F ⊆ ∆(h). In fact, this remaining piece
holds for any congruence subgroup, as we now show.

Let Γ be a congruence subgroup of PSL2(Z). Note that h ∈ F because we chose
F ⊆ ∆(h), so γ(h) ∈ γF (which is a face by Theorem 5.11) for all γ ∈ Γ.

Hence if γ stabilizes h, then γF contains h = γ(h), so γF ⊆ ∆(h).
Conversely, if γ ∈ Γ is such that γF ⊆ ∆(h), then γF contains not only γ(h)

but also h, implying that γ(h) = h by Proposition 6.5. This completes the proof.
□

Remark 6.19. With at most 3 elements, the stabilizer subgroup in PSL2(Z) of
any h ∈ H is small enough that it must be cyclic, and so we often describe stabilizer
subgroups by just their order. (This bound on size applies to congruence subgroups
of PSL2(Z) as well, since the stabilizer with respect to the action of a subgroup is
a subgroup of the original stabilizer.)

Definition 6.20. Given a congruence subgroup Γ of PSL2(Z),
(1) The period of a point h ∈ H is the size of its stabilizer subgroup in Γ.
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(2) Points with period higher than 1 are called elliptic points for Γ. (That
leaves the non-elliptic points as the ones that Γ acts freely on.)

Remark 6.21. One can directly check that if H ≤ Γ is the stabilizer of h ∈ H, then
the stabilizer of γ(h) is γHγ−1, which has the same order. Thus period is consistent
across all points of a given orbit, so is well-defined on points of the quotient space.

Observation 6.22. From Proposition 6.18, we see that the elliptic points for the
action of PSL2(Z) are precisely the dual and trident points. (Together these make
up two orbits given Remark 5.12, and hence account for two points in H/PSL2(Z).)
Additionally, this implies that dual and trident points are the only points in H that
can ever be elliptic—regardless of the congruence subgroup—since, as noted earlier,
passing to a subgroup keeps the stabilizer of a point at least as small.

Elliptic points complicate the chart-building process. (More on this in the next
section.) But before stressing out too much, it is comforting to note that for many
congruence subgroups they never show up in the first place! We include the next
result to demonstrate this.

Proposition 6.23. Γ(n) is free on H for all n ≥ 2

Proof. Let n ≥ 2, and suppose γ ∈ Γ(n) is such that γ(h) = h for some h ∈ H.
If h is not a dual or trident point, then we know automatically that γ is the

identity because h is non-elliptic (see Observation 6.22).
So now assume that h is a dual or trident point. Then it shares an orbit with

either the dual point i or the trident points eiπ/3 and ei2π/3, meaning there exists
α ∈ Γ such that

α(h) ∈ {i, eiπ/3, ei2π/3}.
Note that

αγα−1(α(h)) = α(γ(h)) = α(h),

i.e. αγα−1 stabilizes α(h). Also, αγα−1 is in Γ(n) because Γ(n) is normal in
PSL2(Z) (being the kernel of a group homomorphism).

We will now explicitly narrow down what αγα−1 could be. From Proposition 6.18
we know that exactly 2 elements of PSL2(Z) stabilize i and exactly 3 stabilize each
of eiπ/3 and ei2π/3. One can check that, in P 1

C,[
0 −1
1 0

] [
i
1

]
≡
[
i
1

]
and [

1 −1
1 0

] [
eiπ/3

1

]
≡
[
eiπ/3

1

]
≡
[
0 1
−1 1

] [
eiπ/3

1

]
and [

1 1
−1 0

] [
ei2π/3

1

]
≡
[
ei2π/3

1

]
≡
[
0 −1
1 1

] [
eiπ/3

1

]
,

which therefore means that the identity matrix plus the above five matrices are the
only elements of PSL2(Z) that can possibly stabilize α(h). Therefore, αγα−1 is
one of them. On the other hand, none of these matrices besides I is in Γ(n), since
±1 is not congruent to 0 mod n for any n ≥ 2. Therefore, αγα−1 must be the
identity, implying that γ = α−1(αγα−1)α is the identity as well. This proves Γ(n)
is free on H.

□
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7. Overview of building charts to form a Riemann surface

For a congruence subgroup Γ, in order to turn H/Γ into a Riemann surface
it remains to find charts for its points and show that their transition maps are
conformal. As noted in the previous section, Theorem 6.16 has already given us a
way to construct charts for non-elliptic points, by taking local inverses of π. Note
that due to Proposition 6.23, this means H/Γ(n) is locally Euclidean for all n ≥ 2
because every point is non-elliptic so already has a chart. Thus if Γ is a principle
congruence subgroup other than PSL2(Z) itself (which is Γ(1)), then we at least
know the quotient is a manifold. However, when elliptic points are present, building
charts for them takes more care, and for this paper we will only give a brief overview
of the process; we refer the reader to [2] for a much more in-depth exposition.

The starting point for handling elliptic points is essentially to find a holomor-
phic map that mimics how π locally glues points together. We already know that
the stabilizer group of an elliptic point p ∈ H is cyclic, and its elements are called
hyperbolic rotations since they are automorphisms of H that fix a non-ideal point.
Hyperbolic rotations behave like Euclidean rotations locally, and if they were actu-
ally Euclidean rotations, then the points that π identifies near p would be precisely
those points with equal distance from p that are spaced out evenly around p, i.e.,
at angles of 2π/n and its multiples, where n is the period of p. This would be great,
since then we could simply use the holomorphic map (z − p)n to identify them!

Okay but the rotations are not Euclidean. Except. In the disk model, a hyper-
bolic rotation about the origin really is a Euclidean rotation, so mapping the upper
half plane to the unit disk and then moving our elliptic point to the origin—both
of which can be accomplished with Möbius transformations—solves the issue. We
can think of this initial adjustment as the ”straightening map”, and then compos-
ing with zn achieves the ”wrapping action” that completes the identification to
simulate π.

Indeed π is locally n − to − 1 about p, so to get a chart for the point π(p)
in the quotient, we can restrict π to a suitably small neighborhood N of p and
then define a chart on π(N) (which is a neighborhood of π(p) by Lemma 6.13) as
follows: For any point a ∈ π(N), first pull back to the n pre-images of a in N , and
then re-identify them with the straightening-wrapping combo map. All told, this
process gives a bijection from π(N) to a neighborhood of the origin in C, which
one can check is continuous in both directions, and thus has created a valid chart
for π(p) ∈ H/Γ.

This process of giving charts to the images of elliptic points is what finishes the
work of building an atlas for H/Γ, and it turns out that with suitably small chart
domains, the transition maps between its charts are indeed conformal, making it a
complex atlas. (The exposition in [2] includes a rigorous proof of this conformality,
which we will also not go into here.) In the end though, the punchline is that H/Γ
indeed carries a natural complex structure (generated from the atlas) that turns it
into a Riemann surface. To recognize this additional structure, we introduce the
following terminology and notation:

Notation 7.1. With the added structure of a Riemann surface, the space H/Γ is
called a modular curve and is often denoted Y (Γ).

Note that Y (Γ) is in general not compact, due to having punctures called cusps as
a relic of the ideal points of the tessellation. However, for any congruence subgroup
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Γ it turns out that there is always a natural way to compactify Y (Γ), and we again
refer the reader to [2] for a rigorous explanation of how to do this. The details take
work, but the general idea is as follows:

Since the set of ideal points of the tessellation is Q∗, to fill in the cusps it makes
sense to extend our scope from H to H∪Q∗ (called the extended upper half plane).
Since PSL2(Z) also acts on Q∗, the domain of π can easily be extended to H ∪Q∗

with the same rule a 7→ Γ(a).
Topologically some care is needed, because the subspace topology on H ∪ Q∗

gets problematic at the boundary when passing to the quotient. But by adjusting
what counts as a neighborhood for the points of Q∗, one can put a new topology
on H ∪Q∗ that is able to make the quotient compact while keeping it Hausdorff.

Then for charts, the story has some parallels with the case of the elliptic points:
it boils down to a straightening action and a wrapping action that makes use of
periodicity. Compare: While elliptic points are fixed by hyperbolic rotations, which
can be straightened into Euclidean rotations by sending the fixed point to 0, ideal
points are fixed by transformations which can be made into Euclidean translations
by sending the fixed point to ∞ (these are parabolic transformations). Also, where
elliptic points have a period, cusps each have a similar kind of cyclic parameter
associated to them, known as their width. After being straightened, while zn does
the wrapping for elliptic points of period n ∈ N, the map ei2π/k is what does the
wrapping for cusps of width k ∈ N, by identifying points that are related via a
translation by any multiple of k.

Again, this is by no means the full story; we only hope it gives a general sense
of the considerations involved in the compactification process. We end this section
with the following standard notation:

Notation 7.2. The compactified version of a modular curve Y (Γ) is typically
denoted X(Γ). It is also called a modular curve.

8. Examples and further discussion

Example 8.1 (Γ(2) and the little Picard theorem.). Consider the action of Γ(2) on
H. From the first isomorphism theorem, we know the 6 cosets of Γ(2) in PSL2(Z)
form a group isomorphic to PSL2(Z/2Z), which is isomorphic to S3 [14]. Now
consider the Farey tessellation from Lemma 5.7. It is a nice exercise to go through
and color its endpoints according to the types odd

odd ,
odd
even , and

even
odd , from which it

emerges that the farey edges each have endpoints of two differing types from this
list, allowing them to be colored systematically by the leftover type that they miss
(see Figure 3). One can then show that the action of Γ(2) preserves this coloring
of the Farey tessellation and acts simply transitively on the set of unoriented farey
edges of any fixed color. [Hint: Consider where e0 can go by an element of Γ(2),
in the spirit of the proof of Theorem 4.9. Could e0 ever land there with the end-
points switched?] In fact, each coset of Γ(2) in PSL2(Z) induces its own unique
permutation of the three colors—a direct way of seeing the isomorphism with S3.

From here one can then show that the union of any two adjacent faces in the
Farey tessellation forms a fundamental domain for H/Γ(2), which we leave as an
exercise to the reader (c.f. Example 6.7). (Note that back in the Dedekind tessella-
tion, this fundamental domain includes 6 times as many faces as the fundamental
domain for H/PSL2(Z), one for each coset of Γ(2). No accident.) In terms of side-
identifications for these fundamental domains, they are already given to us by the
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Figure 3. A 3-coloring of the edges of the Farey tessellation [23],
based on the parity of the numerator and denominator of their end-
points. (Types of endpoints: odd

odd ,
odd
even ,

even
odd ; each edge connects

two different types and misses one.) The group Γ(2) preserves this
3-coloring, and is simply transitive on the set of unoriented edges
of any given color.

color pairings of the 4 boundary sides, and gluing these again gives a dumpling shape
but this time with 3 punctures. So when compactifying Y (Γ(2)) into X(Γ(2)) (by
filling in these punctures), topologically we still end up with the 2-sphere, and from
the uniformization theorem this means that even as a Riemann surface, X(Γ(2)) is
isomorphic to the Riemann sphere. Hence Y (Γ(2)) is isomorphic to the Riemann
sphere with 3 punctures, or equivalently to C with 2 punctures. In fact, there is a
well-known analytic map called the modular λ-function that goes from H to C with
image C \ {0, 1}—while being well-defined and injective on H/Γ(2)—that makes
this isomorphism explicit. ([15] has more details.)

This isomorphism is often used to prove the little Picard theorem, which states
that the image of any nonconstant holomorphic map C → C misses at most one
point. We won’t go into complete details of the proof since it relies on the theory
of covering spaces and the lifting criterion (which [5] has more details on), but for
the reader familiar with some topology, the basic idea is as follows:

With Remark 6.17 in mind we see that H is actually a cover for H/Γ(2), due to
Γ(2) being free on H (see Proposition 6.23). So by the above isomorphism H is also
a cover of the twice punctured complex plane. Consequently, if a holomorphic map
defined on all of C misses two distinct points z1, z2 ∈ C, then with C being simply
connected there is no obstruction to lifting this map C → C \ {z1, z2} to a map
C → H. From here, composing with an isomorphism from H to the unit disk (e.g.
the Möbius transformation z 7→ z−i

z+i ) gives us a map from C to the unit disk, which

must be constant by Liouville’s theorem [4]. It then follows that the map C → H
must have been constant, and in turn that the original map C → C \ {z1, z2} was
constant all along; that is, constant maps are the only holomorphic maps on C that
can miss more than one point of C in their image.

Remark 8.2. An important characteristic of a compact Riemann surface is its
genus, which as mentioned in Remark 2.7 characterizes it topologically (even though
it by no means determines it completely if the genus is nonzero). Suppose we have
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found an explicit fundamental domain (and directions for side-identifications) for
a modular curve, as in the case of Example 8.1. Then the triangulation from the
tessellation allows us to compute its Euler characteristic

χ = V − E + F

(the alternating sum of its vertex, edge, and face counts) by simply gluing sides,
filling in cusps, and tallying components directly. Then we can apply the relation

χ = 2− 2g

to find the genus g of the surface (see [16]).
For a general congruence subgroup, though, it can be daunting to try to figure

out a fundamental domain by hand. Still, there is a relation called the Riemann-
Hurwitz formula that can be used to compute the genus of X(Γ) by studying
the projection X(Γ) → X(PSL2(Z)) that maps Γh → PSL2(Z)h and ends up
giving what is called a branched cover of the sphere; we refer the reader to [1] for
an introduction to branched covers and Riemann-Hurwitz, and to [2] for further
details on applying this to congruence subgroups.

It turns out that for the first 5 levels of congruence subgroups, every compactified
modular curve stubbornly remains of genus 0, so is isomorphic to the Riemann
sphere by the uniformization theorem, and even at level 6 we still only achieve
genus 1, the same as what a quotient of C could yield. However, at level 7 things
start to get exciting (see Figure 4 and Example 8.3 below). For more examples and
data on genus, [8] lists an extensive collection of congruence subgroups organized
by the genus of their associated modular curves.

Example 8.3 (Γ(7) and Klein’s quartic). In 1879 Klein published a paper on the
Riemann surface that is now known as Klein’s quartic, which he described both
analytically and algebraically, connecting the two representations [9].

Figure 4. The Riemann surface of Klein’s quartic can be built
from quotienting H by Γ(7) and compactifying. At left: the funda-
mental domain, where pairs of sides with the same letter are glued;
at right: an embedding of the surface into R3 [24].
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The algebraic description of Klein’s quartic is where the term ”quartic” comes
from, since it arises as the space of solutions to the equation

x3y + y3z + z3x = 0

viewed as a subset of P 2
C (meaning that x, y, z are allowed to range over C and

ordered triples are considered the same if they differ only by overall scalar multiple).
Analytically, Klein also showed that his quartic curve can be built through quo-

tienting, and is in fact X(Γ(7)). He even found and drew an explicit fundamental
domain for the space (along with its side identifications), and Figure 4 shows a
similar rendering, where Klein’s original 14-sided polygon built of 24 heptagons has
been subdivided further into 336 = 2 · |PSL2(Z/7Z)| faces. Here the side identifi-
cations are given by the letter pairs shown along the boundary, and the faces have
also been colored to call out the 56 triangles that are dual to the 24 heptagons.

One note is that this cuspless depiction of the fundamental domain applies specif-
ically to the already-compactified space X(Γ(7)). By contrast, so far in this pa-
per we have built fundamental domains slightly differently, starting from the non-
compact space and considering faces straight from the Dedekind tessellation. It is
also possible to take this approach for Y (Γ(7)), though it ends up requiring some
more side-identifications to the 24 cusps involved, and can be a bit more unwieldy
to draw and parse; hence the compactified version is more commonly depicted.

Either way, though, having an explicit fundamental domain to work with allows
us to directly compute genus, as noted in Remark 8.2, and it is a nice combinatorial
exercise to use the left panel of Figure 4 to verify that in this case the genus is indeed
3 [18], as the right panel suggests.

Riemann surfaces of genus higher than 1 are called hyperelliptic curves, and
unlike the Riemann sphere (of genus 0) and elliptic curves (of genus 1), hyperelliptic
curves turn out to have only finite automorphism groups, bounded above by the
Hurwitz bound of 84(g− 1), where g denotes genus [17]. In fact Klein’s quartic has
automorphism group isomorphic to PSL2(Z/7Z), with 168 = 84(3 − 1) elements,
making it the first example of what is known as a Hurwitz surface, a Riemann
surface whose automorphism group actually attains the Hurwitz bound [18].

There is much more to say about Klein’s quartic, and needless to say, a full
account of its properties would be well beyond the scope of this paper. However,
there are many other sources covering this topic in greater detail, and in particular,
the interested reader may wish to have a look at [9], which offers an accessible,
lively tour of several more properties and visualizations of the surface.

This concludes our discussion of examples.
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