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Abstract. Adapting the axiomatic approach of Grothendieck, we introduce

and study the Chern classes of a smooth complex vector bundle. We conclude

by showing that the Chern classes are the only cohomological invariant of com-
plex vector bundles in a precise sense. By working in the de Rham cohomology

and restricting to vector bundles over manifolds of finite type, we are able to

make our exposition entirely elementary.
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1. Introduction

Characteristic classes are global invariants of topological spaces which unify al-
gebraic topology, differential geometry, and algebraic geometry. In this paper, we
introduce and study the Chern classes of a complex vector bundle. In a rough sense,
these measure the extent to which a bundle is twisted, i.e. how far it deviates from
the trivial bundle. Our main source will be Raoul Bott and Loring Tu’s Differential
Forms in Algebraic Topology [2]. In contrast to the approach employed herein, a
purely geometric approach using connections and curvature is possible (and takes
historical precedence). See John Milnor and Jim Stasheff’s Characteristic Classes
[6, Appendix C] for details.

We briefly describe the general approach: we explicitly construct the first Euler
class of a line bundle L → M using the data of a partition of unity on M and the
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transition functions on L. This allows us to define the Chern class of an arbitrary
bundle using the Leray-Hirsch theorem. We then introduce a useful computational
tool: the splitting principle, which tool allows us to compute the cohomology ring of
the complex Grassmannian in terms of the Chern classes of one of its subbundles.
Then, using the fact that the Grassmannian is the classifying space for complex
vector bundles, we use the computation of the cohomology ring of the Grassmannian
to show that the Chern classes are the only cohomological invariants of a smooth
complex vector bundle in a precise sense.

The main prerequisite for this paper is a familiarity with the general theory of
fiber and vector bundles, though anything more than the basic definitions can be
taken on faith by the reader without loss to their understanding of the general
picture. We recommend Dale Husemoller’s Fibre Bundles [5] and, for a concise
treatment of the necessities, Michael Atiyah’s K-theory [1]. In addition, familiarity
with differential topology and the basics of de Rham cohomology at the level of
Warner [8] will be essential.

2. Preliminaries

In this section, we fix some notation, recall the basics of vector bundles (including
the Leray-Hirsch theorem), and define the first Euler class of an oriented rank 2
real bundle.

Following the excellent textbook Differential Forms in Algebraic Topology by
Raoul Bott and Loring Tu [2], we make the following simplifying assumption: we
work in the category of C∞ manifolds of finite type, i.e. smooth n-manifolds
equipped with a finite open cover {Un}Nn=1 such that all non-empty intersection
Ui1 ∩· · ·∩Uik are diffeomorphic to Rn. Thus, in the absence of qualification, a map
is a C∞ map of manifolds and H∗(M) denotes the De-Rham cohomology, most
often viewed as a graded algebra. Nearly every result herein is true in much greater
generality than we state it, often with the same proof. With a few exceptions, we
will not comment on this to keep the exposition mercifully brief.

To fix notation, we begin by briefly recalling the basics of vector bundles. The
familiar reader should skip ahead to Section 2.1 and refer back as needed.

Definition 2.1. Let G be a Lie group which acts faithfully on a vector space V on
the left, and let π : E →M be a surjective map between manifolds E and M such
that each fiber Ex := π−1(x) is isomorphic to V . We will call π a C∞ real (resp.
complex) vector bundle of rank n with structure group G if V ∼= Rn (resp. V ∼= Cn)
and if there exists an open cover {Uα} of M and fiber-preserving diffeomorphisms

φα : E |Uα
= π−1(Uα)

∼−→ Uα × V

such that the transition functions are smooth maps with values in G:

gαβ(x) = φα ◦ φ−1
β |{x}×V ∈ G.

Note that the transition functions satisfy the cocycle condition

gαβ ◦ gβγ = gαγ on Uα ∩ Uβ ∩ Uγ .

Unless otherwise stated, the structure group of a real vector bundle of rank n should
be assumed to be GLn(R), and for complex bundles GLn(C).

We will have occasion to use the more general notion of fiber bundle, where the
vector space V is replaced by a smooth manifold F and the fibers are required to
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be diffeomorphic to F . There are many other constructions in the general theory
of fiber bundles which we will use and which do not appear in this collection of pre-
liminary results. Notable among them include the definition of a pullback bundle,
operations on bundles, orientations of bundles, reduction of structure group, and
the existence of a metric on a bundle. For a complete treatments of these and more
see [5].

We also recall the basic language of sections.

Definition 2.2. Let U be an open subset of M . A map s : U → E is a section of
the vector bundle E over U if π ◦ s is the identity on U . When U =M , we call s a
global section. A collection of sections s1, . . . , sn over an open set U form a frame
on U if for every x ∈ U , {s1(x), . . . , sn(x)} is a basis for the vector space Ex.

We will make extensive use of the following basic invariant.

Definition 2.3. For a smooth manifold M , we define its Poincaré series to be the
polynomial

Pt(M) :=

∞∑
k=0

dimHk(M)tk.

We will need two standard theorems describing the cohomology of fiber bundles
which we state without proof. The following version of the Leray-Hirsch theorem
will suffice for our purposes. For a concise proof of a slightly more general version,
see [5, Ch. 16, Theorem 1.1, pp. 231].

Theorem 2.4 (Leray-Hirsch). Let E be a fiber bundle over M with fiber F , where
M is a smooth manifold of finite type. If there exist global cohomology classes
e1, . . . , er on E which, when restricted to each fiber, freely generate the cohomol-
ogy of the fiber, then H∗(E) is a free module over H∗(M) with basis given by
{e1, . . . , er}. That is

H∗(E) ∼= H∗(M)⊗ R{e1, . . . , er} ∼= H∗(M)⊗H∗(F )

The second is the Gysin sequence, which first requires the definition of the Euler
class.

2.1. The first Euler class. We now construct the Euler class of an oriented rank
2 real vector bundle, following the explicit geometric approach of [2]. For a succinct
algebraic construction via the Thom Isomorphism theorem, see [6, Section 9, pp.
98].

Let E be a rank 2 real vector bundle over M , E0 the complement of the zero
section in E, and {Uα} be an open cover of M . Endow E with a Riemannian
structure so we have a radius function r on E and angular coordinates θα on
each E |Uα and so that we can choose an orthonormal frame on each Uα. This
defines polar coordinates rα, θα on E0 |Uα in the following sense: if x1, . . . , xn are
coordinates on Uα, then π

∗x1, . . . , π
∗xn, rα, θα are coordinates on E0 |Uα

. On the
overlaps Uα ∩Uβ , we see that rα and rβ agree, whereas the angular coordinates θα
and θβ agree up to a rotation. Since E is oriented with fiber R2, we may speak of the
counterclockwise direction in each fiber, which allows us to unambiguously define
the functions φαβ : Uα ∩ Uβ → R up to a multiple of 2π as the angle of rotation
in the counterclockwise direction from the α-coordinate system to the β-coordinate
system:

π∗φαβ := θβ − θα.
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Though the functions {φαβ} fail to satisfy the cocycle condition φαβ +φβγ = φαγ ,
by definition we have

(2.1.1) φαβ + φβγ − φαγ ∈ 2πZ
The following lemma shows that the 1-forms {dφαβ} in fact do satisfy this condition.

Lemma 2.2. There exists one forms ξα on Uα for each α such that

(2.1.3)
1

2π
dφαβ = ξβ − ξα.

Proof. Let {ρα} be a partition of unity subordinate to the cover {Uα}. Now let

ξα :=
1

2π

∑
γ

ργdφγα.

Then by (2.1.1) and the symmetry φαβ = −φβα, we have

ξβ − ξα =
1

2π

∑
γ

ργd(φγβ − φγα)

=
1

2π

∑
γ

ργd(−φβα)

=
1

2π

∑
γ

ργdφαβ

=
1

2π
dφαβ

as required. □

Taking the exterior derivative of both sides of (2.1.3) shows that we have an
equality of 2-forms ξα = ξβ on the overlaps Uα ∩ Uβ . Hence, taking a partition
of unity {ψα} subordinate to {Uα} allows us to glue these 2-forms together to
obtain a global 2-form e :=

∑
α ψαdξα on M . e is closed, but not necessarily exact

since exactness would require the 1-forms ξα to agree on overlaps, which does not
necessarily (or usually) occur. One easily verifies that e is independent of the choice
of ξα, so the following definition is justified.

Definition 2.4. The Euler class of a rank 2 oriented real vector bundle over a
manifold M is the cohomology class of e ∈ H2(M). We may sometimes write e(E)
instead of e.

We will need two properties of the Euler class. The first is naturality.

Proposition 2.5. The Euler class is functorial, i.e. if f : N → M is a C∞ map
of manifolds and E is a rank 2 oriented real vector bundle over M , then

e(f−1E) = f∗e(E).

Proof. We derive an explicit formula for e(E) on each Uα in terms of the transition
functions. Let gαβ : Uα ∩ Uβ → SO(2) be the transition functions of E (we may
take the structure group to be SO(2) by the standard reduction argument as in [5]).
Using the identification SO(2) ≃ S1 by

(
cos θ − sin θ
cos θ sin θ

)
7→ eiθ, gαβ may be though

of as complex valued functions and thus the angle betwee the β-coordinate system
and the α-coordinate system is −i log gαβ . Thus

θα − θβ = π∗(−i log gαβ)
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and

π∗φαβ = −π∗(−i log gαβ).

Since π is a surjection and thus of maximal rank, π∗ is injective and thus

φαβ = i log gαβ .

Now, let {ργ} be a partition of unity subordinate to {Uγ}. Then

1

2π
dφαβ = ξβ − ξα

where

ξα :=
1

2π

∑
γ

ργdφγα =
i

2π

∑
γ

ργd log gαβ .

Therefore

(2.1.6) e(E) =
i

2π

∑
γ

d(ργd log gαβ) on Uα.

Functoriality of the Euler class then follows immediately from (2.1.6). □

As a consequence of functoriality, we obtain the following useful fact.

Corollary 2.7. If E is a trivial bundle over M , then e(E) = 0.

Proof. Let X be a one-point space and let f :M → X be the unique map. Since the
cohomology of X in nonzero dimensions is zero and E coincides with the pullback
bundle f−1E, the naturality of the first Euler class implies that

e(E) = e(f−1E) = f∗(e(E)) = 0

as required. □

The following lemma is also very useful, especially in tandem with Corollary 2.7.

Lemma 2.8. If a complex line bundle L has a nowhere vanishing section, then L
is trivial

Proof. If s is a nowhere vanishing section of L, then the map (x, λ) 7→ λs(x) from
M × C → L is a trivialization. □

As promised, we end the section by stating a standard result of algebraic topol-
ogy: the Gysin sequence. We state a far less general form than this theorem is
available. For a proof of a more general statement see Milnor-Stasheff [6, Theorem
12.2, pp. 143].

Theorem 2.9. Let π : E → M be an oriented fibre bundle with fibre S1. Then
there is a long exact sequence

· · · → Hk(E)
π∗−→ Hk−1(M)

∧e−−→ Hk+1(M)
π∗

−→ Hk+1(E) → . . .

where the maps π∗,∧e, and π∗ are integration along the fiber, multiplication by the
Euler class of E, and the pullback by π, respectively.
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3. Construction and first properties of the Chern classes

Adapting the axiomatic approach of Grothendieck [3], we show that to define the
Chern classes of an arbitrary finite rank complex vector bundle, it suffices to define
the first Chern class of a complex line bundle. In particular, we will define the
first Chern class of a complex line bundle as the Euler class of the underlying real
bundle. Then, using the Leray-Hirsch Theorem 2.4, we compute the cohomology
ring of the projectivization P (E) of an arbitrary complex vector bundle E and
define the Chern classes of E in terms of the ring structure of H∗(P (E)).

3.1. The first Chern class of a line bundle. By discarding the complex struc-
ture on the fiber, any complex vector bundle E of rank n has an underlying real
vector bundle ER of rank 2n. It’s of note that, in the case of complex line bun-
dles, there is actually a bijection between complex line bundles and oriented rank
2 real vector bundles: this follows from a reduction of structure group argument
hinging on the isomorphism U(1) ∼= SO(2). See [2, pp. 267] for details. With this
identification, we may make the following crucial definition.

Definition 3.1. For a complex line bundle L over a manifold M , we define the
first Chern class to be the Euler class of the underlying real vector bundle LR:
c1(L) := e(LR) ∈ H2(M).

We can see immediately that the first Chern class satisfies two nice properties. If
L and L′ are complex line bundles with transition functions {gαβ} and {g′αβ}, then
their tensor product L ⊗ L′ is the complex line bundle with transition functions
{gαβ · g′αβ}. Thus the explicit formula (2.1.6) for the Euler class in terms of the
transition functions gives us

(3.1.2) c1(L⊗ L′) = c1(L) + c1(L
′).

This identity shows that

(3.1.3) c1(L
∗) = −c1(L)

since L⊗L∗ ∼= End(L) has a nowhere vanishing section given by the identity map
and thus by Lemma 2.8 and Corollary 2.7 has a trivial first Chern class. Therefore
by (3.1.2) we have

0 = c1(L⊗ L∗) = c1(L
∗) + c1(L)

and thus (3.1.3) follows.

Definition 3.4. Let V be a complex vector space and P (V ) its projectivization:

P (V ) := {1− dimensional subspaces of V }.

P (V ) is readily seen to be a smooth manifold of finite type (in fact P (V ) is com-
pact). On P (V ) there are three God-given bundles we will consider: the product

bundle V̂ := P (V )× V , the universal subbundle S defined by

S := {(ℓ, v) ∈ P (V )× V | v ∈ ℓ},

and the universal quotient bundle Q defined by the exact sequence

0 → S → V̂ → Q→ 0.

We will sometimes refer to the dual S∗ as the hyperplane bundle.
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Using the Gysin sequence Theorem 2.9, we can compute the cohomology ring
of the projectivization of an n-dimensional complex vector space: by definition
ξ := e(S) is equal to the Euler class of S. Equip V with a Hermitian metric and let

E := {(ℓ, v) ∈ P (V )× S2n−1 | v ∈ ℓ}
be the unit sphere bundle of S. Since the projection onto the second coordinate is
a diffeomorphism E ∼= S2n−1, the Gysin sequence for E reduces to

0 = Hk+1(E) → Hk(P (V ))
∧ξ−−→ Hk+2(P (V )) → Hk+2(E) = 0

for 0 ≤ k ≤ 2n− 2. Thus the odd-dimensional groups vanish and

H0(P (V )) ∼= H2(P (V )) ∼= . . . ∼= H2n(P (V )).

Since P (V ) is connected we have H0(P (V )) ∼= R and thus H2k(P (V )) ∼= R and
generated by ξk for all 1 ≤ k ≤ n. This shows that

(3.1.5) H∗(P (V )) ∼= R[ξ]/(ξn).

From (3.1.5) we see that the Poincaré polynomial of P (V ) is

Pt(P (V )) = 1 + t2 + t4 + . . . t2(n−1) =
1− t2n

1− t2
.

This description of the ring structure of H∗(P (V )) lets us define Chern classes
in the general case.

3.2. Construction of the Chern classes. Henceforth, all vector bundles are
complex and of arbitrary rank n. We are now equipped to define the Chern classes
of such a bundle. We first need a few definitions.

Let ρ : E → M be a complex vector bundle of rank n with transition functions
gαβ : Uα ∩ Uβ → GLn(C)

Definition 3.1. The projectivization of E, π : P (E) → M , is the vector bundle
whose fiber at p ∈M is the projective space P (Ep) and whose transition functions
gαβ : Uα ∩ Uβ → PGLn(C) are induced by gαβ (via the quotient PGLn(C) :=
GLn(C)/{scalar matrices}).

Example 3.2. We consider three tautological bundles on P (E): the pullback bun-
dle π−1E, the universal subbundle S, and the universal quotient bundle Q.

0 S π−1E Q 0

P (E) E

M

π ρ

The pullback bundle π−1E, which is the vector bundle over E whose fiber at ℓ ∈
P (Ep) ⊂ P (E) is Ep. When restricted to the fiber π−1(p) it becomes the trivial
bundle P (E)p × Ep since ρ : Ep → {p} is trivial.

The universal subbundle S over P (E) is given by

S := {(ℓ, v) ∈ π−1E | v ∈ ℓ}
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and the universal quotient bundle Q is the bundle determined by the exact sequence

0 → S → π−1E → Q→ 0.

To avoid confusion we may sometimes write SE and QE to indicate the depen-
dence on E.

Now we may define the Chern classes of E. Set x := c1(S
∗) ∈ H2(P (E)). The

universal subbundle S̃ of P (Ep) coincides with the restriction of S to the fiber

P (Ep), so c1(S̃) is the restriction of x to P (Ep) by the naturality of the first Chern
class. Hence, by (3.1.5), {1, x, . . . , xn−1} is a set of global cohomology classes
on P (E) whose restriction to each fiber freely generates the cohomology of the
fiber. Thus, by the Leray Hirsch theorem H∗(P (E)) is a free module over H∗(M)
with basis {1, x, . . . , xn−1}. In particular, the element −xn of H∗(P (E)) may be
expressed uniquely as a linear combination of {1, x, . . . , xn−1} with coefficients in
H∗(M). These coefficients are our Chern classes:

Definition 3.3. We define the Chern classes of the complex vector bundle E to
be the unique cohomology classes ci(E) ∈ H2i(E) such that

(3.2.4) xn + c1(E)xn−1 + · · ·+ cn(E) = 0.

In this equation, by ci(E) we really mean π∗ci(E).1 We call ci(E) the ith Chern
class of E and the sum

c(E) = 1 + c1(E) + · · ·+ cn(E) ∈ H∗(M)

the total Chern class of E. We define ci(E) := 0 for all i > n.

We thus obtain the following:

Proposition 3.1. The ring structure of the cohomology of P (E) is given by

(3.2.5) H∗(P (E)) = H∗(M)[x]/(xn + c1(E)xn−1 + · · ·+ cn(E))

where x := c1(S
∗). The Poincaré polynomial of E is

(3.2.6) Pt(P (E)) = Pt(M)
1− t2n

1− t2
.

The first fact is immediate from the Leray Hirsch theorem, and the second is a
consequence of the Künneth formula. For the statement and proof of the Künneth
formula, see [2, pp. 47]

We leave it to the reader to verify that the two definitions of the first Chern class
of a line bundle coincide.

The following proposition summarizes some basic properties of the Chern classes

Proposition 3.7. Let E and E′ be complex vector bundles of rank n and m over
a common base space M , let L be a complex line bundle, and let f : N → M be a
map of manifolds.

i) (Naturality) c(f−1E) = f∗c(E).
ii) (Normalization) c(L) = 1 + e(LR).
iii) (Whitney Product formula) c(E ⊕ E′) = c(E)c(E′).
iv) If E has a nonvanishing section, then the top Chern class cn(E) vanishes.

1We will have occasion to make this abuse of notation again, and we will make it clear when
we do so.
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It is a fact, which we will not prove, that properties i)-iii) uniquely characterize
the Chern class (see Hirzebruch [4, pp. 58-61]). We have already seen property
ii), property i) follows readily from the functoriality of each of the constructions
involved in the definition of the Chern class, and property iii) will be a consequence
of the techniques developed in Section 4, so we will supply an independent proof of
the last property which introduces a useful technique. With the Whitney Product
formula in hand, iv) is immediate.

Proof of iv). Let s be a nowhere vanishing section of E. s induces a section s̃ of
P (E) whose value at a point p ∈ X is the unique line through s(p) and the origin
in Ep. Then s̃−1S is a line bundle with a nowhere vanishing section and thus by
Lemma 2.8 is the trivial line bundle. Thus by the naturality of the Chern class
s̃−1c1(SE) = 0 so that s̃∗x = 0. Pulling back the equation

xn + c1(E)xn−1 + · · ·+ cn(E) = 0

along s̃ shows that s̃∗cn(E) = 0. By our abuse of notation this means that
s̃∗π∗cn(E) = 0, so indeed cn(E) = 0 as desired. □

For several properties of the Chern classes not relevant to our purposes see [4].

4. The Splitting Principle and the Whitney product formula

In this section we prove the Whitney product formula and compute the coho-
mology ring of a flag manifold. The main tool will be the splitting principle.

4.1. The Splitting Principle. Given a vector bundle π : E → M , we want to
construct a manifold F (E), which we will call a split manifold of E, and a map
σ : F (E) →M with the following two properties:

i) the pullback of E to F (E) splits as a direct sum of line bundles
ii) σ∗ is an epimorphism and thus embeds H∗(M) in H∗(F (E)).

We construct split manifolds in the rank 2 and 3 cases in order to illustrate the
general construction. If E has rank 1, then F (E) = E and σ = π suffice. If E has
rank 2, then we take F (E) = P (E) and σ : P (E) → M to be the projection. On
P (E) we have the short exact sequence

0 → SE → σ−1E → QE → 0

and since an exact sequence of C∞ complex vector bundles splits, the pullback
π−1E = SE ⊕QE splits as a direct sum of line bundles.

When E has rank 3, σ−1E splits as a direct sum of the line bundle SE and the
quotient bundle QE . QE has rank 2 over P (E), so the pullback to P (QE) splits as
a direct sum of line bundles:

β−1SE ⊕ SQE
⊕QQE

SQ ⊕QE P (QE)

E P (E)

M

β

α
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Thus we may take F (E) := P (QE) and σ := α ◦ β.
Hopefully the general pattern is now clear: we split off one subbundle at a time

by pulling back to the projectivization of a quotient bundle. For a vector bundle
E with rank n, F (E) will be obtained by a sequence of n− 1 projectivizations:
(4.1.1)

S1 ⊕ · · · ⊕ Sn−1 ⊕Qn−1

S1 ⊕ S2 ⊕Q2 P (Qn−2) =: F (E)

S1 ⊕Q1 P (Q1)

E P (E)

M

Thus for a vector bundle E of arbitrary finite rank, the split manifold F (E) exists
and is given by (4.1.1). We will obtain a more convenient algebraic description
of F (E) in Section 5.1, where it will also be made clear that F (E) is indeed a
manifold.

Remark 4.2. The cohomology ring H∗(F (E)) is a free H∗(M)-module with the
basis given by

(4.1.3) {xα1
1 xα2

2 . . . x
αn−1

n−1 | αi ∈ N, αi ≤ n− i}.
This description of the vector space structure of H∗(F (E)) is refined by the more
precise description of the ring structure proven independently of this fact in Propo-
sition 5.5 , so we leave this as a remark without proof.

With the existence of split manifolds established, we may formulate the powerful
Splitting Principle: to prove a polynomial identity in the Chern class of a bundle
E, it suffices to do so under the assumption that E is a direct sum of line bundles.

4.2. Proof of the Whitney product formula. Recall the Whitney product
formula of Proposition 3.7:

Theorem 4.1. If E and E′ are complex vector bundles, then c(E⊕E′) = c(E)c(E′).

We first need a standard technical lemma. For a proof, see Warner [8, Lemmas
1.9 and 1.10, pp. 9-10].

Lemma 4.2. Suppose M is a manifold with a finite open cover {Ui}i∈I . Then
there exists an open cover {Vi}i∈I of M such that Vi ⊂ Ui and there exist functions
ρi :M → [0, 1] which are identically 1 on Vi and which vanish outside of Ui.

Of course, we first consider the case of a direct sum of line bundles.

Proposition 4.3. If E = L1 ⊕ · · · ⊕ Ln is a sum of line bundles, then

c(E) =

n∏
i=1

c(Li).
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Proof. By abuse of notation we will write π−1E = L1 ⊕ · · · ⊕ Ln for the pullback
of E to the projectivization P (E). Let S be the universal subbundle of π−1E. The
following claim is the crux of the proof: there exists an open cover {Vi}ni=1 of P (E)
such that c1(S

∗⊗Li) may be represented by a global form on P (E) which vanishes
on Vi. We will prove this claim after seeing how it proves the proposition. Since the
Vi cover P (E), we have

∏
i c1(S

∗ ⊗ Li) = 0. By (3.1.2) c1(S
∗ ⊗ Li) = x + c1(Li),

where x := c1(S
∗). Thus

0 =

n∏
i=1

(x+ c1(Li)) = xn + s1x
n−1 + . . . sn = 0

where si is the ith elementary symmetric polynomial in c1(L1), . . . , c1(Ln). This
is precisely the defining equation (3.2.4) for the Chern classes, so we must have
si = ci(E) for each i by uniqueness and thus

c(E) =
∏
i

(1 + c1(Li)) =
∏
i

c(Li)

so the Whitney product formula holds modulo the claim which we will now prove.
Let σi be the projection of S onto Li. Then σi is a section of hom(S,Li) ∼= S∗⊗Li

(recall the bundle of linear maps hom(E,F ) → M is the fiber bundle with fiber
hom(E,F )x := hom(Ex, Fx)). The projections σ1, . . . , σn cannot simultaneously
vanish at a point y ∈ P (E) since the fiber Sy is a 1-dimensional subspace of
(π−1E)y, so the sets

Ui := {y ∈ P (E) | σi(y) ̸= 0}
form an open cover of P (E). When restricted to each Ui, the line bundle S

∗⊗Li has
a nowhere-vanishing section given by σi, so by Lemma 2.8 (S∗ ⊗ Li) |Ui

is trivial.
Let ξi be a global 2-form on P (E) representing the cohomology class of c1(S

∗⊗Li).
Then ξi |Ui

= dωi for some 1-form ωi on Ui. We wish to extend ξi − dωi to a global
form on P (E). Using the refinement {Vi} and functions ρi furnished by Lemma 4.2,
we see that ρiωi is a global form which agrees with ωi on Vi, so ξi − d(ρiωi) is a
global form representing the cohomology class c1(S

∗ ⊗ Li) and vanishing on Vi.
This proves the claim and thus completes the proof of the proposition. □

Now, by applying the splitting principle, we may swiftly prove the Whitney
product formula.

Proof of Theorem 4.1. Let E and E′ be vector bundles of rank n andm respectively,
and let π : F (E) → M and π′ : F (π−1E′) → F (E) be the splitting construction.
Both bundles split completely when pulled back to F (π−1E′), as the diagram below
illustrates.

L1 ⊕ . . . Ln ⊕ L′
1 ⊕ · · · ⊕ L′

m

L1 ⊕ . . . Ln ⊕ π−1E′ F (π−1E′)

E ⊕ E′ F (E)

M

π′

π
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Set σ := π′ ◦ π. Then
σ∗c(E ⊕ E′) = c(σ−1(E ⊕ E′))

= c(L1 ⊕ . . . Ln ⊕ L′
1 ⊕ · · · ⊕ L′

m)

=

[
n∏

i=1

c(Li)

]
·

 m∏
j=1

c(L′
j)

 by Proposition 4.3

= σ∗c(E)σ∗c(E′)

= σ∗(c(E)c(E′)).

Since π∗ and π′∗ are injective, σ∗ is injective and thus c(E ⊕ E′) = c(E)c(E′) as
desired. □

The splitting principle also enables one to compute, using the theory of symmet-
ric functions, formulae for the Chern classes of tensor products, exterior products
and duals. For these computations and several more see [2, pp.278-282].

5. Flag bundles and the Grassmannian

In this section, we introduce the notion of a flag bundle Fl(E) associated with a
vector bundle E and show that this construction coincides with the split manifold
F (E) of the previous section. Flag bundles allow us to obtain a more precise
description of the ring structure of H∗(P (E)), and as a consequence we obtain
a succinct description of H∗(Fl(E)). We then apply these results to study the
cohomology ring of the complex Grassmannian.

5.1. The cohomology of a flag bundle.

Definition 5.1. Let V be a complex vector space of dimension n. A flag in V is a
sequence of subspaces A1 ⊂ A2 ⊂ · · · ⊂ An = V , dimCAi = i. We write Fl(V ) for
the collection of all flags in V . We call Fl(V ) the flag manifold of V , a label which
will be justified directly.

Thinking of the geometric picture, it’s clear that GLn(C) acts transitively on
Fl(V ). Moreover, it not difficult to see that the stabilizer at a flag is the closed
subgroup T of invertible upper-triangular matrices. Thus, as sets we have Fl(V ) ∼=
GLn(C)/T , and since the quotient of a Lie group by a closed subgroup can be made
into a Lie group ([8, Theorem 3.58, pp. 120]) Fl(V ) can be made into a manifold.

Similar to the projectivization of a bundle E → M , we now describe a way to
associate a fiber bundle Fl(E) to E where each fiber is a flag manifold.

Definition 5.2. Given a vector bundle E → M , its associated flag bundle Fl(E)

is obtained from E by taking Fl(E)p := Fl(Ep). The local trivializations E |Uα

∼−→
Uα × Cn induce trivializations Fl(E) |Uα

∼−→ Uα × Fl(Cn).

We now prove the promised equivalence.

Proposition 5.3. The flag bundle Fl(E) associated to a vector bundle E is the
split manifold F (E) constructed in Section 4.1.

Proof. The split manifold F (E) is obtained by a sequence of n−1 projectivizations
as illustrated in (4.1.1). Recall that a point of P (E) is a pair (p, ℓ) with p ∈ M
and ℓ ∈ Ep. By introducing a Hermitian metric on E, we may regard the quotient
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bundles Q1, . . . , Qn−1 in (4.1.1) as subbundles of E, where Q1 is the orthogonal
complement of S1, Q2 is the orthogonal complement of S1 ⊕ S2, and so on. Thus
a point of P (Q1) over (p, ℓ1) ∈ P (E) is a triple (p, ℓ1, ℓ2) where ℓ2 is a line in the
orthogonal complement of ℓ1 in Ep. Similarly, a point of P (Q2) over (p, ℓ1, ℓ2) ∈
P (Q1) is a 4-tuple (p, ℓ1, ℓ2, ℓ3) where ℓ3 is a line in the orthogonal complement of
ℓ1 and ℓ2 in Ep. In general, a point in the split manifold F (E) = P (Qn−1) may be
identified with the flag

(p, ℓ1 ⊂ {ℓ1, ℓ2} ⊂ {ℓ1, ℓ2, ℓ3} ⊂ · · · ⊂ Ep).

This shows that the split manifold F (E) constructed in Section 4.1 coincides with
the flag bundle Fl(E) as desired. □

Henceforth, we will use the notation Fl(E). A further remark on notation: if A
is a graded ring and a, b, f ∈ A, then (a, b) denotes the ideal generated by A, while
(f = 0) denotes the ideal generated by the homogeneous components of f .

To compute the ring structure of H∗(Fl(E)), first recall the formula (3.2.5) for
the cohomology ring of P (E):

H∗(P (E)) = H∗(M)[x]/(xn + c1(E)xn−1 + · · ·+ cn(E))

where x := c1(S
∗). We may recast this in a useful form. We writeH∗(M)[c(S), c(Q)]

for H∗(M)[c1(SP (E)), c1(QP (E)), . . . , cn−1(QP (E))].

Lemma 5.4.

H∗(P (E)) =
H∗(M)[c(S), c(Q)]

(c(S)c(Q) = π∗c(E))
.

The proof is a purely formal exercise in generators and relations, so we omit the
proof. With this lemma, we may compute H∗(Fl(E)).

Proposition 5.5. Let E be a complex vector bundle of rank n and put xi = c1(Si)
for i = 1, . . . , n − 1 and xn = c(Qn−1), where Si and Qi are as in (4.1.1). Then
the cohomology ring of Fl(E) is

(5.1.6) H∗(Fl(E)) = H∗(M)[x1, . . . , xn]

/(
n∏

i=1

(1 + xi) = c(E)

)
and it has Poincaré polynomial

Pt(Fl(E)) = Pt(M)
(1− t2)(1− t4) . . . (1− t2n)

(1− t2)(1− t2) . . . (1− t2)
.

Proof. We obtain Fl(E) by a sequence of n−1 projectivizations P (Q1), . . . , P (Qn−1)
as in (4.1.1). Applying Lemma 5.4 twice obtains

H∗(P (Q1)) = H∗(P (E))[c(S2), c(Q2)]/(c(S2)c(Q2) = c(Q1))

= H∗(M)[c(S1), c(S2), c(Q1), c(Q2)]/(c(S2)c(Q2) = c(Q1), c(S1)c(Q1) = c(E))

= H∗(M)[c(S1), c(S2), c(Q2)]/(c(S1)c(S2)c(Q2) = c(E)).

By induction we obtain the formula

H∗(P (Qn−1)) = H∗(M)[c(S1), . . . , c(Sn−1), c(Qn−1)]/(c(S1)c(Sn−1)c(Qn−1 = c(E)).

Thus using the notation xi = c1(Si) for i = 1, . . . , n−1 and xn = c(Qn−1), we have

H∗(Fl(E)) = H∗(M)[x1, . . . , xn]

/(
n∏

i=1

(1 + xi) = c(E)

)
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as required. As for the Poincaré polynomial, (3.2.6) can be read as saying that
each time we projectivize a rank k vector bundle, the Poincaré polynomial gains a
(1− t2k)/(1− t2) factor. Thus

Pt(Fl(E)) = H∗(M)
(1− t2n)

1− t2
· (1− t(2n−2))

1− t2
. . .

1− t2

1− t2

□

The following useful corollary follows immediately by considering a vector space
as the trivial bundle over a point.

Corollary 5.7. If V is an n-dimensional complex vector space, we have

(5.1.8) H∗(Fl(V )) = R[x1, . . . , xn]
/(

n∏
i=1

(1 + xi) = 1

)
and

(5.1.9) Pt(Fl(V )) =
(1− t2)(1− t4) . . . (1− t2n)

(1− t2)(1− t2) . . . (1− t2)
.

5.2. The cohomology of a complex Grassmannian. We now introduce, the
complex Grassmannian, a generalization of the projectivization of a vector space
which is closely related to flag manifolds.

Let V be a complex vector space of dimension n. The complex Grassmannian
Gk(V ) is the set of all subspaces of V of complex codimension k. Note that
Gn−1(V ) = P (V ). Equipping V with a Hermitian metric, we see that U(n) acts
transitively on the set of all (n−k)-dimensional subspaces of V . Moreover, a unitary
matrix stabilizing an (n− k)-dimensional subspace must also fix its k-dimensional
orthogonal complement, so the stabilizer of a point in Gk(V ) is U(n − k) × U(k)
and thus we have the identification

Gk(V ) ∼=
U(n)

U(n− k)× U(k)

Since U(n− k)× U(k) is a closed subgroup of the Lie group U(n), this shows that
Gk(V ) is a smooth manifold.

Just as on projective space, there are a few tautological bundles over Gk(V ):
the universal subbundle S, whose fiber at Λ ∈ Gk(V ) is Λ itself, the product bundle

V̂ = Gk(V )×V , and the universal quotient bundle Q defined by the exact sequence

0 → S → V̂ → Q→ 0.

We observe that, over Gk(V ), the universal subbundle S has rank n − k and the
universal quotient bundle Q has rank k.

The following theorem will be crucial for the final section. We state it in multiple
parts.

Theorem 5.1. Let V be a complex vector space of dimension n.

(a) The Poincaré polynomial of the complex Grassmannian Gk(V ) is given by

(5.2.2) Pt(Gk(V )) =
(1− t2) . . . (1− t2n)

(1− t2) . . . (1− t2k)(1− t2) . . . (1− t2(n−k))
;
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(b) We have the following ring isomorphism:

(5.2.3) H∗(Gk(V )) ∼=
R[c1(Q), . . . , ck(Q)]

(c(S)c(Q) = 1)
;

(c) When k and i are fixed, there are no polynomial relations of degree i among
the generators c1(Q), . . . , ck(Q) when n, the dimension of V , is sufficiently
large.

We will need to following lemma. The proof is not trivial but, being as it is not
terribly difficult and completely algebraic, we omit the proof and refer the reader
to [2, pp. 294-297]. The Poincaré series of a graded algebra A =

⊕∞
i=1Ai over a

field k is by definition Pt(A) =
∑∞

i=1(dimk Ai)t
i.

Lemma 5.4. If A := R[x1, . . . , xn−k, y1, . . . , yk] and I is the ideal generated by the
homogeneous terms of

(1 + x1 + · · ·+ xn−k)(1 + y1 + · · ·+ yk)− 1

where deg xi = deg yi = 2i, then the Poincaré series of A/I is

Pt(A/I) =
(1− t2) . . . (1− t2n)

(1− t2) . . . (1− t2(n−k))(1− t2) . . . (1− t2k)
.

We now prove our theorem by making the similarities between flag manifolds
and Grassmannians precise.

Proof. The flag manifold Fl(V ) can be obtained from the Grassmannian Gk(V )

by two flag constructions as follows: let Q̂ be the pullback of Q to the flag bundle
Fl(S). We claim that Fl(Q̂) is the flag manifold Fl(V ), both considered over
Gk(V ).

Q̂

S ⊕Q Fl(Q̂)

Fl(S)

Gk(V )

A point of Fl(S) is a pair (Λ, A1 ⊂ · · · ⊂ An−k−1 ⊂ Λ) consisting of an element

Λ ∈ Gk(V ) and a flag in Λ. Thus a point of Fl(Q̂) is a point in Fl(S), i.e. a pair
(Λ, A1 ⊂ · · · ⊂ Λ), together with a flag in V/Λ. In other words, we may write a point

in Fl(Q̂) as a pair of the form (Λ, A1 ⊂ . . . An−k−1 ⊂ Λ ⊂ An−k+1 ⊂ · · · ⊂ V ),
which is exactly the form of an element of Fl(V ) as claimed. Hence, applying
Proposition 5.5 twice obtains the relation

Pt(Fl(V )) = Pt(Fl(Q̂)) = Pt(Fl(S))
(1− t2) . . . (1− t2(n−k))

(1− t2) . . . (1− t2)

= Pt(Gk(V ))
(1− t2) . . . (1− t2(n−k))(1− t2) . . . (1− t2k)

(1− t2) . . . (1− t2)(1− t2) . . . (1− t2)
.
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On the other hand, (5.1.9) gives a formula for Pt(Fl(V )) independent of Pt(Gk(V )),
so by dividing through by that formula we obtain

Pt(Gk(V )) =
(1− t2) . . . (1− t2n)

(1− t2) . . . (1− t2k)(1− t2) . . . (1− t2(n−k))

which verifies (5.2.2).
To establish (5.2.3), we obtain an injection and argue that it must be an isomor-

phism for reasons of dimension. By (5.1.6) the cohomology ring of the flag manifold
over Gk(V ) is

H∗(Fl(V )) =
H∗(Gk(V ))[x1, . . . , xn−k, y1, . . . , yk]

(
∏

i(1 + xi) = c(S),
∏

i(1 + yi) = c(Q))
.

On the other hand, by (5.1.8), the cohomology of Fl(V ) is also given by

(5.2.5) H∗(Fl(V )) =
R[x1, . . . , xn−k, y1, . . . , yk](∏

i(1 + xi)
∏

j(1 + yj) = 1
) .

Thus, in H∗(Gk(V )), the Chern classes of S and Q can satisfy no relations aside
from c(S)c(Q) = 1, for any relation would appear as a relation among the xi’s and
yi’s in (5.2.5). Thus we have an injection

(5.2.6)
R[c(S), c(Q)]

(c(S)c(Q) = 1)
↪→ H∗(Gk(V ))

By Lemma 5.4, the Poincaré series of R[x1, . . . , xn−k, y1, . . . , yk]/(c(S)c(Q) = 1) is

Pt

(
R[c(S), c(Q)]

(c(S)c(Q) = 1)

)
=

(1− t2) . . . (1− t2n)

(1− t2) . . . (1− t2(n−k))(1− t2) . . . (1− t2k)
.

By (5.2.2) this is exactly the Poincaré polynomial of Gk(V ). Therefore the injection
(5.2.6) is in fact an isomorphism. With the relation c(S)c(Q) = 1, we may write
c(S) = 1/c(Q), which allows us to eliminate the generators c1(S), . . . , cn−k(S) and
thus obtain (5.2.3).

The equation c(S) = 1/c(Q) actually gives us a bit more. Looking at the homo-
geneous components provides polynomial relations of degrees 2(n − k + 1), . . . , 2n
among the Chern classes c1(Q), . . . , ck(Q). Thus when i is fixed, there are no poly-
nomial relations of degree i among the Chern classes of Q if n is so large that
2(n− k + 1) > i. This establishes (c) and thus completes the proof. □

6. Chern classes are the only cohomological invariant

In this section, we prove that the Chern classes are the only cohomological
invariant of a smooth complex vector bundle in a precise sense. First we describe
the classification of complex vector bundles.

We need the following basic lemma.

Lemma 6.1. If E → M is a rank k vector bundle over a manifold of finite type,
then there exist finitely many smooth global sections on E which span the fiber at
every point of M .

Proof. Let {Ui}i∈I be a finite good cover for M . Since Ui is contractible, E |Ui is
trivial, so we may find k sections si,1, . . . , si,k which form a basis for the fiber at
every point of Ui. Using Lemma 4.2, we may refine {Ui} and find cutoff functions
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ρi such that {ρisi,1, . . . , ρisi,k}i∈I is a family of global sections of E which span the
fiber at every point of M . This completes the proof. □

This theorem shows that the complex Grassmannian Gk(Cn) is universal in a
sense which we will not make precise here. See [7] or [5] for the details and a far
more elegant statement.

Theorem 6.2. Suppose E is a rank k complex vector bundle over a manifold M
of finite type. Suppose E is equipped with n global sections which span the fiber at
every point. Then there is a map f from M into some Grassmannian Gk(V ) with
dimC V = n such that E is the pullback under f of the universal quotient bundle Q.

Proof. Let s1, . . . , sn be the n spanning sections of E and let V be the complex
vector space they span. For each p ∈ M , the evaluation map evp : V → Ep given
by v 7→

∑
i visi(p) is surjective since the si are spanning sections. Thus ker evp is

a codimension k subspace of V and the fiber of the universal quotient bundle Q
of Gk(V ) at ker evp is V/ker evp = Ep. Thus, the map f : M → Gk(V ) given by
p 7→ ker evp is as desired: E = f−1Q. □

The map f :M → Gk(V ) is called the classifying map for the bundle E. It can
be shown that the homotopy class of f is uniquely determined by E and that the
set of isomorphism classes of rank k complex vector bundles are in bijection with
homotopy classes of classifying maps (again see [7] or [5]).

We arrive at the most incredible result in this paper: the Chern classes are
the only cohomological invariant of complex vector bundles. We need to fix some
language and notation. Let Vectk(M) denote the set of isomorphisms classes of rank
k complex vector bundles overM . Vectk(·) andH∗(·) are functors from the category
of C∞ manifolds to the category of sets. Recall that a natural transformation
between the functors Vectk(·) and H∗(·) is a family of maps TM : Vectk(M) →
H∗(M) such that the naturality diagrams

M Vectk(M) H∗(M)

N Vectk(N) H∗(N)

f

TM

f−1

TN

f∗

commute for every smooth manifold N . The Chern classes are examples of such
natural transformations by Proposition 3.7.

Theorem 6.3. Every natural transformation from the isomorphism classes of com-
plex vector bundles Vectk(·) over a manifold of finite type to the de Rham cohomol-
ogy ring H∗(·) can be given as a polynomial in the Chern classes.

Proof. Let T be such a natural transformation. If E is any rank k complex vector
bundle overM and f :M → Gk(V ) is a classifying map for E, then by Theorem 6.2
and the naturality of T we have

T (E) = T (f−1Q) = f∗T (Q)

where Q is the universal quotient bundle of Gk(V ). By Theorem 5.1, the cohomol-
ogy of Gk(V ) is generated by the Chern classes of Q, so there exists a polynomial
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P , depending on T , such that

T (Q) = P (c1(Q), . . . , ck(Q)).

Combining our two equations obtains the result:

T (E) = f∗P (c1(Q), . . . , ck(Q)) = P (f∗c1(Q), . . . , f∗ck(Q)) = P (c1(E), . . . , ck(E)).

□

We end by briefly discussing how these results extend to the case of an arbitrary
smooth manifold. In order to remain elementary, we have restricted ourselves to
smooth complex vector bundles over manifolds of finite type, but the finite type
restriction can be shed in a somewhat straightforward manner. The classifying
space is the infinite Grassmannian Gk(C∞) defined by taking the direct limit, and
the universal quotient bundle Q is defined similarly. There is a countable analogue
of Lemma 6.1 and this allows one to prove the analogue of Theorem 6.2 in much the
same way as above. Based on Theorem 5.1, one may conjecture that the cohomology
ring of the infinite Grassmannian Gk(C∞) is the free polynomial algebra

R[c1(Q), . . . , ck(Q)].

This is indeed the case, though the proof is quite different than in the finite type
case. See [6, Theorem 14.5, pp. 161] or [5, Chapter 20, Theorem 3.2, pp. 297]. The
proof of Theorem 6.3 goes through as above with no alteration.
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