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Abstract

We will outline some of the most important ideas used in K. Appel
and W. Haken’s proof [2] of the Four Color Theorem. The goal of this
paper is to consolidate the work on the Four Color Theorem in one paper
that is easy to follow and does not require the reader to translate between
articles with different definitions and notations.
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1 Introduction

Suppose we are given a map of Africa and we want to color it. The water is
already colored blue, so we do not need to worry about it. Ideally, we want to
color the map so that countries that border each other do not have the same
color. How many colors do we need to do this? This is the question answered
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(a) drawing vertices and edges (b) a plane graph

Figure 1: Two drawings of a planar graph representing the map of Africa. The
map used in both images is made by Eric Gaba [5].

by the Four Color Theorem, which was left unverified for nearly a century after
the conjecture was first formally proposed in 1852.

The path to a proof of the Four Color Theorem was not the smoothest.
Multiple incorrect proofs have been proposed that were left unchallenged for over
a decade. In 1879, Alfred Kempe published a paper [6] in which he believed
he proved the Four Color Theorem. It stood until 1890 when P.J. Heawood
discovered its flaw. In 1880, Peter Guthrie Tait claimed that he had proved the
Four Color theorem with his eponymous conjecture [7]. This time, it took until
1946 for W.T. Tutte to refute Tait’s conjecture by providing a counterexample
[8]. The first correct proof of the Four Color Theorem did not come until 1977
when Kenneth Appel and Wolfgang Haken used a computer to verify it [2],
which was controversial given that it was the first computer-assisted proof of a
theorem.

We will outline one of the incorrect proofs of the theorem and then show
how some of its ideas are useful in the Appel-Haken proof. We will also outline
the most important ideas used in the Appel-Haken proof. Before that, we have
to lay the groundwork for these ideas.

In order to frame the problem of map coloring more mathematically, we come
up with a natural identification between maps and graphs. Consider the map of
Africa. First, we can assign each country a vertex that lies inside its boundary.
Then, if two countries border each other, we can draw an edge between their
corresponding vertices. After that, we are left with the graph in Figure 1a.

If we are careful so that the edges only cross through the two countries they
connect, none of the edges will intersect with each other except where they
meet at a vertex. For example, we can redraw the edge connecting Somalia and
Kenya so that we get such a drawing, as shown in Figure 1b. We call graphs
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Figure 2: A graph with a loop at v2 and parallel edges connecting v1 and v4.
The graph is connected, but not simple.

that can be drawn in this way planar graphs.

Definition 1.1. A graph G is planar if it can be drawn in the plane such that
no two edges intersect each other unless at a common vertex.

It is important that we distinguish between the graph and its drawing. Al-
though only the drawing in Figure 1b does not have edges that intersect, both
drawings represent the same graph. We have a name for the drawings we care
about.

Definition 1.2. A plane graph is a drawing of a planar graph such that no two
edges intersect each other unless at a common vertex.

Remark. A plane graph and a planar graph are not the same. A plane graph
is not really a graph; it is a drawing. On the other hand, a planar graph is a
graph.

Since it doesn’t make sense for a country to border itself, every edge in the
graph connects two different vertices. We call such graphs loopless.

Definition 1.3. A loop is an edge with identical vertices. (See Figure 2.)

We should also explicitly define a proper coloring and what it means to be
colorable.

Definition 1.4. A proper k-coloring of a graph is an assignment of one of k
colors to each of its vertices such that no two adjacent vertices have the same
color.

Definition 1.5. A graph is k-colorable if there is a proper k-coloring of it.

Now, we are ready for a precise statement of the Four Color Theorem.

Theorem 1.6 (Four Color Theorem). Every loopless planar graph is 4-colorable.

Although the Appel-Haken proof of the Four Color Theorem is too long for
us to completely reconstruct without a computer, we can outline some of the
most important ideas from the proof. Before we do that, we will tackle a much
more manageable problem: showing every map can be colored with 5 colors.
First, we will need a few more definitions and some notation.
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Figure 3: A plane graph with 8 faces, labeled f1, . . . , f8. In this example, f8 is
the outer face. It is the exterior of the triangle v1v2v3.

Definition 1.7. A face of a plane graph is a path-connected open set whose
boundary consists of vertices and edges.

Definition 1.8. The outer face of a plane graph is its unbounded face.

For a plane graph G̃, we denote the set of vertices by V = V (G̃), the set of
edges by E = E(G̃), and the set of faces by F = F (G̃). The sizes of each of these
sets are denoted by n = v(G̃), m = e(G̃), and f(G̃), respectively. Likewise, for
a planar graph G, we use V , E, m, and n for the same notation. However, we
cannot talk about the faces of a planar graph in general, since they are unique
to plane graphs.

In a planar graph, each vertex v has a degree, d(v), which is the number of
edges incident to it. We use δ to denote the smallest degree of any vertex in a
graph. Likewise, in a plane graph, each face f has a degree, d(f), which is the
number of edges in its boundary. Now, we can define a few more terms we will
need to talk about graphs.

Definition 1.9. A graph is connected if there exists a sequence of edges connect-
ing any two vertices in the graph. A graph that is not connected is disconnected.

Definition 1.10. Two or more edges are parallel if they share the same vertices.
(See Figure 2.)

Definition 1.11. A graph is simple if it contains no loops and no parallel edges.

Definition 1.12. The union of two simple graphs G and H is the graph G∪H
with V (G ∪H) = V (G) ∪ V (H) and E(G ∪H) = E(G) ∪ E(H).

The union of two graphs depends on the labeling of the vertices. If a vertex
in G is labeled the same as a vertex in H, there exists a vertex in G ∪ H
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Figure 4: A cycle, a star, and a wheel. The union of the cycle and the star,
with vertices labeled the same, is the wheel.

corresponding to these vertices that is incident to edges in G and edges in H.
Alternatively, if none of the vertices of G are labeled the same as some vertex
of H, then G ∪ H is a disconnected graph such that each of its connected
components belongs entirely to G or H.

We will also sometimes subtract a vertex v from a graph G to get the graph
G − v. This graph will be the graph of G with v and the edges incident to v
removed.

Finally, we define a few special types of graphs. First, we define a trian-
gulation, since we will use them frequently in our discussion of the Four Color
Theorem.

Definition 1.13. A plane graph is a triangulation if it is simple, connected,
and the degree of every face is 3.

Example 1.13.1. The plane graph in Figure 3 is a triangulation.

We will also frequently encounter n-cycles, denoted by Cn, and wheels with n
spokes, denoted by Wn. We show examples of a 7-cycle and a 7-wheel in Figure
4a and Figure 4c respectively.

2 The Five Color Theorem

Before we consider the Four Color Theorem, it may be helpful for us to tackle
an easier problem, namely how to color a loopless planar graph with 5 colors.
We will first state a simple, but important, theorem.

Theorem 2.1 (Euler’s Formula). For a connected plane graph G̃,

v(G̃)− e(G̃) + f(G̃) = 2.

We leave the proof of Euler’s Formula to Appendix A. Essentially, we proceed
by induction on the number of faces, noting that the result is immediate in the
case when the plane graph is a tree. Euler’s Formula will not only be a part of
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Figure 5: A Kempe chain, outlined in orange.

our proof of the Five Color Theorem, but it will also be essential to our approach
to the Four Color Theorem. In addition, we will frequently use the corollaries
that we derive from it. Some of them are left to Appendix A.

Corollary 2.2. Let G be a simple planar graph on at least 3 vertices. Let m
denote the number of edges in G and n the number of vertices. Then m ≤ 3n−6.
Furthermore, m = 3n − 6 if and only if every plane graph representing G is a
triangulation.

Corollary 2.3. Every simple planar graph has a vertex of degree at most 5.

We will need two more important ideas before we prove the Five Color
Theorem. The first is the idea of Kempe interchange.

Definition 2.4. A Kempe chain is a subgraph H in a graph with vertices
colored either c1 or c2, none of which are adjacent to a vertex colored c1 or c2
not in H. The act of swapping the colors of each vertex in H is called Kempe
interchange. (See Figure 5.)

Kempe interchange does not affect whether or not a graph is a proper col-
oring. We encapsulate this idea in a lemma, whose short proof we leave in
Appendix B.

Lemma 2.5. Let f : V (G)→ C be a proper coloring of some graph G with a set
of colors C. Let g : V (G) → C be the coloring we get after Kempe interchange
on some Kempe chain H that comes from f . Then, g is a proper coloring of G.

The second idea we need for the Five Color Theorem comes from topology,
and we will not prove it here.

Theorem 2.6 (Jordan Curve Theorem). Any simple closed curve C in the
plane partitions the rest of the plane into two disjoint path-connected open sets.

In some of our later proofs, we may implicitly use the Jordan Curve Theorem
without mention of it. However, for this proof we will explicitly state when we
use it. Now, we are ready to prove the Five Color Theorem.

Theorem 2.7 (Five Color Theorem). Every loopless planar graph is 5-colorable.
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Figure 6: Kempe chains in the proof of the Five Color Theorem. We only
consider the case when v1 and v3 are connected by a Kempe chain, H1, since
otherwise we can use Kempe interchange to color v1 yellow and v red. Likewise,
we assume there is a Kempe Chain, H2, connecting v2 and v4. Then, by the
Jordan Curve Theorem, H1 and H2 must intersect someplace. However, this
contradicts the planarity of the graph. So, H1 and H2 cannot both exist, mean-
ing we can use Kempe interchange to color the graph.

Proof. We proceed by induction on the number of vertices. Clearly, when a
graph has one vertex, it is 5-colorable. Now, consider a graph G with n vertices,
and assume that all graphs with n − 1 vertices are 5-colorable. By Corollary
2.3 there is some vertex v in G with at most 5 neighbors. By the inductive
hypothesis, G− v has some 5-coloring. If v has degree less than 5, then we are
done, since we can color v with one of the 5 colors not used by its neighbors in
the coloring of G− v to get a 5-coloring of G. By the same reasoning, if v has
degree 5, and two of its neighbors share the same color, then G is 5-colorable.
Therefore, we only need to consider when v has 5 neighbors each with a different
color.

Let v1, v2, v3, v4, and v5 be the vertices adjacent to v, labeled in cyclical
order, and let them be colored red, green, yellow, blue, and orange, respectively,
as in Figure 6. If v1 is not adjacent to a yellow vertex, then we can color it
yellow and color v red, completing the proof. So, we only have to consider when
v1 is adjacent to a yellow vertex—in other words, when there is some yellow-red
Kempe chain H of at least 2 vertices containing v1. If v3 is not in H, we use
Kempe interchange to color v1 yellow. Since this does not affect the color of
v3, we can color v red, completing the proof. Therefore, we only consider when
v1 and v3 lie in the same red-yellow Kempe chain. Likewise, we only consider
when v2 and v4 lie in the same green-blue Kempe chain.

We will show that it is actually impossible for there to be two Kempe chains
connecting v1 and v3 as well as v2 and v4. Let C1 be the closed curve that
comes from v, v1, v3 and the vertices of the Kempe chain connecting v1 and
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v3. In addition, let C2 be the closed curve that comes from v, v2, v4 and the
the vertices of the Kempe chain connecting v2 and v4. Since v1, v2, v3, and
v4 occur in cyclical order, either v2 lies in the interior of C1 and v4 lies in the
exterior of C1 or vice versa. In either case, since C1 is a closed curve, and C2

connects v2 to v4, C1 and C2 must intersect someplace besides v by the Jordan
Curve Theorem. Since C1 and C2 do not share any vertices with the same color,
besides v, their edges must intersect each other. However, this contradicts the
planarity of G. Therefore, both Kempe chains cannot exist.

3 Kempe’s (Incorrect) Proof of the Four Color
Theorem

While the proof of the Five Color Theorem cleverly uses Kempe interchange
to show that every loopless planar graph is 5-colorable, Kempe did not exactly
discover the proof himself. Instead, he constructed an erroneous proof for the
Four Color Theorem, and the ideas from it were reconstructed by Heawood to
prove the Five Color Theorem after he recognized Kempe’s mistake. We will
reconstruct the erroneous proof and then show why it is flawed.

First, we will lay the groundwork for some of Kempe’s ideas. We say that
a graph G is smaller than H if v(G) + e(G) < v(H) + e(H). In addition, we
say that a graph is minimal given some constraints if there are not any other
graphs smaller than it that satisfy those constraints. A key strategy to Kempe’s
proof is to assume for contradiction that there exists a minimal counterexample
to the Four Color Theorem. Then, by using properties that a minimal coun-
terexample must have, we come closer to a contradiction. Although Kempe’s
proof was incorrect, it is still helpful to consider the properties of a minimal
counterexample, since this same technique was used by Appel and Haken in
their correct proof of the Four Color Theorem. We will prove a few properties
a minimal counterexample should have for now, and leave a couple for later.
First, we need one definition.

Definition 3.1. To identify non-adjacent vertices vi and vj is to replace them
by a single vertex incident to all edges which were incident to vi and vj . (See
Figure 7.)

If we get parallel edges after vertex identification, we will remove one of them
since it does not affect the graph for our purposes. Now, we can proceed.

Proposition 3.2. If G̃ is a minimal counterexample to the Four Color Theorem,
then both the following two statements must be true:

• G̃ is a triangulation.

• G̃ has no vertex of degree less than 5.

We leave the proof of Proposition 3.2 to Appendix C. Combining Proposition
3.2 and Corollary 2.3, we immediately get a nice corollary.
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Figure 7: Identifying vertices. One of the parallel edges between v0 and v5 is
removed, since it does not affect the graph in any meaningful way.
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Figure 8: Kempe chains in Kempe’s erroneous proof of the Four Color Theorem

Corollary 3.3. If G̃ is a minimal counterexample to the Four Color Theorem,
then G̃ contains the wheel W5.

Now, we can outline Kempe’s erroneous proof. Assume for contradiction
that G̃ is a minimal counterexample to the Four Color Theorem. Let v be
the inner vertex of W5 in G̃. Since G̃ is a minimal counterexample, G̃ − v is
4-colorable. We want to find a 4-coloring of G̃ using the 4-coloring on G̃− v.

As before, if v is not adjacent to vertices with 4 different colors, then we can
color v with one of the 4 colors not used. Therefore, we essentially only have to
consider the cases when the cycle v1v2v3v4v5 that v is in has coloring rgybg or
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Figure 9: A graph showing the mistake in Kempe’s proof [4]

rgyby12. We will only consider when the cycle has the first coloring, so that we
get the picture in Figure 8, since the argument is the same in both cases.

Suppose there is not a red-yellow Kempe chain connecting vertices v1 and
v3. Then, if v3 is not adjacent to a red vertex, we can color v3 red and v yellow.
Otherwise, if v3 is adjacent to a red vertex, we can swap the colors on the red-
yellow Kempe chain containing v3 to get rgrbg as a coloring for the cycle. This
leaves yellow as a color for v, which implies that G̃ is 4-colorable, a contradiction.
Therefore, we only have to consider the case when there is a red-yellow Kempe
chain connecting v1 and v3. Likewise, we only have to consider the case when
there is a red-blue Kempe chain connecting v1 and v4.

Now, if there is a green-yellow Kempe chain containing v5, swapping its
colors must not affect any other vertices, since this would require the chain
to cross the red-blue Kempe chain connecting v1 and v4, which is impossible.
Therefore, we can swap the colors along the green-yellow Kempe chain so that v5
is yellow. Similarly, we can swap the colors along the green-blue Kempe chain,
if there is one, containing v2 so that v2 is blue. Then, we are left with rbyby
as a coloring for the cycle. This leaves green for v. Therefore, G̃ is 4-colorable,
which is a contradiction. So, there does not exist a minimal counterexample to
the Four Color Theorem.

At first glance, this proof seems completely acceptable. However, the mistake
comes in the last part of the proof. Specifically, it is not true that swapping

1We use r, g, y, and b to denote red, green, yellow, and blue, respectively. We may
concatenate these abbreviations to indicate a coloring of a cycle. For example, rgbr is a
coloring of a 4-cycle.

2We say we “essentially” only have to consider rgybg or rgyby because while there are
plenty of other valid colorings given the constraints, we can simply swap the names of colors
or cyclically permute colors in these colorings to get either rgybg or rgyby.
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Figure 10: A 6-cycle (in black) with 4 bridges (in pink, orange, green, and
purple). Although the vertices of attachment are not colored, they are a part
of the bridges. For example, v2, v4, and v8 are part of the pink bridge.

the colors in the Kempe-chains containing v2 and v5 does not affect the other
vertices. Take the graph in Figure 9, for example. If we swap the colors in
the green-blue Kempe-chain containing v2 and the colors in the green-yellow
Kempe chain containing v5, we get two adjacent green vertices. This is because
the red-yellow and red-blue Kempe chains containing v1 and v3 and v1 and
v4, respectively, have a common vertex at v1. This leaves room for the Kempe
chain containing v5 to connect to the Kempe chain containing v2. Therefore, we
cannot swap the colors in these Kempe chains without affecting other vertices.

4 A Different Strategy

While Kempe’s proof was incorrect, we can still take some ideas from it to get
closer to a correct proof. Specifically, we will use Kempe’s strategy of assuming
a minimal counterexample to the Four Color Theorem exists and then arriving
at a contradiction. First, we need some more definitions.

Definition 4.1. A bridge of a cycle C is a connected graph such that

• one or more of its vertices, known as vertices of attachment, are in V (C)

• it remains connected after removing its vertices of attachment (assuming
there are vertices left)

• besides the vertices of attachment, none of its vertices are adjacent to
vertices not in the bridge
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Figure 11: A configuration. The vertices v1, . . . , v5 form a cycle, and the sub-
graph outlined in green is an inner bridge.

If a bridge lies in the interior of a cycle, we say it is an inner bridge. Oth-
erwise, we say it is an outer bridge. It is possible for bridges to not have any
vertices besides the vertices of attachment. For example, in Figure 10, the sub-
graphs outlined in green and purple, including the vertices of attachment, are
bridges.

Definition 4.2. A configuration is a graph that can be represented as B ∪ C
for some cycle C and an inner bridge B whose vertices of attachment are in C.

Configurations are essential to the proof of the Four Color Theorem, since
they are the building blocks of any potential minimal counterexample to the
Four Color Theorem. As we will see, reducibility is an important property of
configurations.

Definition 4.3. A configuration is reducible if it cannot be a subgraph of a
minimal counterexample to the Four Color Theorem.

Example 4.3.1. The configuration W3 is reducible by Proposition 3.2 because
if a graph contained W3 then it would have a vertex of degree less than 5.

The proof of the Four Color Theorem involves finding an unavoidable set
of configurations. To define unavoidability, we need a few more definitions and
some more properties of a minimal counterexample to the Four Color Theorem.

Definition 4.4. A graph is k-connected if it has more than k vertices and
remains connected after any combination of fewer than k vertices are removed.
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Example 4.4.1. The configuration in Figure 11 is 5-connected. It is not 6-
connected since removing u1, . . . , u6 leaves u6 disconnected from the rest of the
graph.

Definition 4.5. A cycle C of a graph G is separating if G − V (C) is discon-
nected.

Definition 4.6. A graph is essentially k-connected if it is (k − 1)-connected
and every separating (k − 1)-cycle comes from neighbors of a vertex of degree
k − 1.

Example 4.6.1. The configuration in Figure 11 is essentially 6-connected.

Proposition 4.7. If G̃ is a minimal counterexample to the Four Color Theorem,
then G̃ contains no separating 4-cycle

Corollary 4.8. If G̃ is a minimal counterexample to the Four Color Theorem,
then G̃ is essentially 6-connected.

We prove Proposition 4.7 and Corollary 4.8 in Appendix C. Now, we can
define what it means for a set to be unavoidable.

Definition 4.9. A set U of configurations is unavoidable if every essentially
6-connected triangulation necessarily contains at least one member of U .

Example 4.9.1. The set {W5} is unavoidable since δ (the smallest degree of
any vertex in a graph) is 5 for any essentially 6-connected triangulation

In his incorrect proof, Kempe attempted to show that W5 is reducible. If
we assume there exists a minimal counterexample to the Four Color Theorem
and W5 is reducible, then we quickly arrive at a contradiction. Since {W5} is an
unavoidable set, W5 must be in the minimal counterexample. However, since we
assume it is reducible, W5 cannot be in the minimal counterexample—a contra-
diction. Unfortunately, we do not have that W5 is reducible as Kempe believed
he proved. However, his incorrect proof gives us a strategy for how to construct
a correct one. Namely, if we can find an unavoidable set of configurations such
that each of them is reducible, we will have shown that a minimal counterex-
ample to the Four Color Theorem cannot exist. In the next section, we will
outline how to show that a configuration is reducible, and in the section after
that we will briefly give an idea of how Appel and Haken went about finding an
unavoidable set of configurations.

5 Reducibility

How do we check if a configuration is reducible? We will step through a couple
of algorithms that do so. All of them require the use of a reducer at some step.
We will define a few terms needed to understand reducers.
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Definition 5.1. A cycle C is the outer cycle of a configuration G if C is the
boundary of the outer face of G.

Definition 5.2. To split a vertex v is to replace it by two new vertices v′ and
v′′ and to replace each edge incident to it by an edge incident to either v′ or v′′.

Example 5.2.1. If we split the vertex v0 in Figure 7b, we can get a graph that
looks like Figure 7a. So, splitting is essentially the reverse of vertex identifica-
tion. Since we will not have parallel edges in the graphs we consider, we will
often implicitly add one before splitting.

Definition 5.3. A graph H is a reducer of a configuration G̃ if it is smaller
than G̃ and the outer cycles of H and G̃ have the same length, possibly after
splitting one of its vertices.

Example 5.3.1. The graphs in both Figure 7b and Figure 7a (without parallel
edges) are reducers for the configuration in Figure 11.

Definition 5.4. A proper coloring f : V (G)→ C of some graphG, given a set of
colors C, is extensible toH if there exists some proper coloring g : V (G∪H)→ C
of G ∪H such that g = f on G.

Now, we can step through an algorithm [1] to check if a configuration V ∪
Cn is reducible. In the rest of this section, we will use V and U to denote
the subgraphs that lie in the interior and exterior, respectively, of a cycle of
a configuration. In addition, we will use V − and U− to denote V and U ,
respectively, with edges and/or vertices removed.

Algorithm 1 Simple but slow

Generate a reducer V − ∪ Cn

Store all of the possible 4-colorings of Cn extensible to V −

for all such colorings do
if the coloring is extensible to V , possibly after Kempe interchange3 then

Continue
else

V ∪ Cn is not reducible with the reducer V − ∪ Cn

end if
end for
V ∪ Cn is reducible

3Let v be a vertex in Cn, and let H be a Kempe chain in the exterior of Cn containing
v. If we have a coloring for Cn, we can check if Kempe interchange on H will affect the
other vertices in Cn. If not, we have a valid recoloring of Cn, and we can check if it is
extensible to V . While it may seem computationally expensive to check all possible Kempe
interchanges, the number of interchanges we could have is reasonably bounded. Since we can
only guarantee that Kempe interchange on H will leave the other vertices in Cn unaffected
when there is a Kempe chain in the two complementary colors connecting the neighbors of
v in Cn, we only have finitely many Kempe interchanges to consider (corresponding to the
finitely many number of such colorings on Cn).
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Figure 12: The Birkhoff Diamond

Let G̃ be an essentially 6-connected triangulation. We want to show that for
any G̃, we have

G̃ contains V − ∪ Cn and is 4-colorable =⇒ (G̃− V −) ∪ V is 4-colorable. (1)

Once we establish this, the contrapositive gives us that V ∪Cn is reducible.
This is the strategy of Algorithm 1. Let S be the set of all 4-colorings of Cn

extensible to V −. Then, every coloring in S is extensible to V only if we have
(1). So, for a given reducer, Algorithm 1 will check (1). We will step through a
few examples of how the algorithm works for different configurations.

Example 5.5.1. Consider the configuration in Figure 11. We will show that
it is reducible using Algorithm 1. Choose W5 as a reducer. Since every vertex
of C5 is adjacent to the inner vertex in W5, the cycle C5 must be colored with
3 colors. In addition, since the cycle has 5 vertices, the only 4-colorings of C5

extensible to W5 are essentially

yrgrg, gyrgr, rgyrg, grgyr, and rgrgy.

With the first coloring of the ring, we can choose byrby as a coloring for
the cycle u1u2u3u4u5. This leaves green for u6, completing the 4-coloring of
V . Since V ∪ Cn is rotationally symmetric, the other four colorings of C5 are
extensible to V as well. Therefore, V ∪ Cn is reducible.

Example 5.5.2 (Birkhoff Diamond). Now, consider the slightly more complex
configuration in Figure 12. It is also relatively straightforward to show that it
is reducible using Algorithm 1. First, we choose the reducer in Figure 13a. It
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Figure 13: Reducer of the Birkhoff Diamond

is a reducer since v0 can be split to create the graph in Figure 13b. It gives rise
to 4-colorings on C6 such that v4 and v6 have the same color, and v4 and v6 are
adjacent to v2. The only such valid colorings are essentially

gybrgr, ygyrgr, ygbrgr, ybgrgr, and gygrgr.

The first four colorings can be easily extended to V without Kempe inter-
change. Given the first coloring, we can color u1 yellow, u2 red, u3 green, and
u4 blue. Given the second coloring, we can color the cycle u1u2u3u4 with grby.
Likewise, we can extend the third and fourth colorings of C6 with gryb.

So, the only coloring left to consider is gygrgr ryrygy. Unfortunately, this
coloring is not directly extensible to V , so we must look for alternative colorings
that arise from Kempe interchange. First, if v3 and v5 are not connected by a
green-blue Kempe chain, then green and blue can be swapped in the green-blue
Kempe chain containing v3 to produce a new coloring gybrgr, which has already
been handled. So we will only consider the case in which v3 and v5 are connected
by a green-blue Kempe chain. This Kempe chain must lie in the exterior of C6

since V is not yet colorable.
Now, consider if there was a red-yellow Kempe chain lying in the exterior of

C6 connecting v2 and v4. Then, it would have to intersect the green-blue Kempe
chain, which is impossible. Therefore, by Kempe interchange we can swap red
and yellow in the Kempe chain containing v2 to get the coloring gygygr. Then,
u1u2u3u4 can be colored ybrb. Therefore, every coloring of the reducer leads to
a coloring of the configuration, which implies that the configuration is reducible.

Although this algorithm works fine, it is more computationally expensive
than we would like. This leads us to a second algorithm [1].

16



Algorithm 2 Faster

Store all possible 4-colorings of Cn in Jn and all possible 4-colorings of V
K0 ← all 4-colorings of Cn extensible to V
S ← {rrrrr}
i← 0
while Ki ̸= Jn and S ̸= ∅ do

S ← ∅
for all Kempe interchanges4 do

Add the coloring of Cn after interchange to S
end for
i← i+ 1
Ki ← Ki−1 ∪ S

end while
if Ki = Jn then

Stop. V ∪ Cn is reducible
else

search for a reducer V − ∪ Cn such that the set of all 4-colorings of Cn

extensible to V − is a subset of Ki

if such a reducer exists then
V ∪ Cn is reducible

else
V ∪ Cn is not reducible by the algorithm

end if
end if

Example 5.6.1. Consider the same configuration in Figure 11. We will show
that it is reducible using Algorithm 2. First we find all possible 4-colorings of
C5 and store them in J5. There are 4 · 33 · 2 = 216 different 4-colorings of C5.
We will not list them all for now. In addition, there are 4 · 3 · 23 · 1 = 144
different 4-colorings of V . Let this set of colorings be I. Now, we want to
determine which colorings from J5 are extensible to V . Although there are 216
different colorings in J5, there are essentially only 2 that we need to consider,
and those are the ones in which v1v2v3v4v5 is colored rgryb or rgrgy. Every
coloring in J5 has two vertices that are the same color and that share a common
neighbor. Then, either the other three vertices must be the 3 colors not used,
or the common neighbor must be colored the same as one of the other vertices
so that 3 total colors are used. Since the configuration V ∪ C5 is rotationally
symmetric, the exact positions of these colors are not important.

When C5 is colored rgryb, we can extend the coloring to V by coloring
u1u2u3u4u5 with bybyg and u6 with red. When C5 is colored rgrgy, we can
extend the coloring to V by coloring the inner cycle with ybygb and u6 with red.
Therefore,

K0 = {rgryb, bybyg} = S.

4We will search for Kempe interchanges in the same way we did in Algorithm 1.
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So, V ∪ C5 is reducible.

Although Algorithm 2 seems to require more work than Algorithm 1, it is
less computationally expensive. Luckily for us, in Example 5.5.1 we started
with a reducer that worked for our purposes. However, we will not always be
so lucky, and in cases we are not, we will need much more computation. That
is why Algorithm 2 checks for reducers at the very end. (In fact, in Example
5.6.1, we did not even use a reducer.) Since this last step is difficult to handle
efficiently, it requires us to pay attention to details that we will not discuss here.

As it turns out, every configuration with an outer cycle of length 5 and more
than 1 vertex in its interior is reducible. This was proved by Birkhoff in 1913
[3]. We use this in our proof of Corollary 4.8. For brevity, we will show a similar
result, which we use in our proof of Proposition 3.2.

Proposition 5.7. Every configuration with an outer cycle of length 4 is re-
ducible.

The proof is left to Appendix D. The techniques used in it are the same as
those used to prove that every configuration with an outer cycle of length 5 and
more than 1 vertex in its interior is reducible.

6 Discharging

How do we find unavoidable sets? Trivially, the set of all possible configurations
is an unavoidable set. However, this is not useful for us because the set is infinite.
We have to somehow use the properties of essentially 6-connected triangulations
to find other smaller unavoidable sets. By Corollary 2.2,

G̃ is a triangulation ⇐⇒ m = 3n− 6.

Perhaps, we can use this property to discover unavoidable sets. First, we rewrite
the equation in a way that suggests we use a specific technique.

6n− 2m = 12 ⇐⇒
∑
v∈V

(6− d(v)) = 12.

Let q(v) = 6− d(v). We will call q(v) the charge of v. Then, the sum of all
of the charges of each of the vertices, or the total charge of G̃ must be 12. So,

G̃ is a triangulation ⇐⇒ the total charge of G̃ = 12.

If we take the contrapositive, we get that the total charge of a plane graph
is not 12 if and only if the plane graph is not a triangulation. So, we can say
that a set U is unavoidable if any essentially 6-connected triangulation that
does not include some configuration in U does not have charge 12. If we assume
that a 6-connected triangulation does not contain any configuration in U , we
get a contradiction, since every essentially 6-connected triangulation must have
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charge 12. So, every 6-connected triangulation must contain a configuration in
U .

Sometimes, it may be difficult to determine the total charge of a graph.
We may have too many charges to add, or we may not know the number of
vertices in the graph. In this case, we can simply redistribute the charges of
the vertices such that the total charge is maintained. If we pick a clever way
to redistribute these charges, we may be able to get a reasonable estimate on
the total charge—one which we did not have before. For example, if we can
redistribute the charge of a graph such that every vertex has charge 0 or less,
we know that graph has total charge less than 0, which implies it cannot be a
triangulation. This method of redistributing charge is called discharging, and
the algorithm we use to redistribute charge is called the discharging algorithm.
If we can redistribute the charge of a graph such that each of its vertices has
charge 0 or less, we say the graph is dischargable.

How does discharging help us find unavoidable sets? Well, if we find a
set of configurations U such that every essentially 6-connected triangulation
that does not contain a configuration in U is dischargable, we know that set
is unavoidable. Alternatively, if we find a set of configurations that occur in
every non-dischargable graph, we know that set is unavoidable. We will follow
an example discharging algorithm from Bondy and Murty [4] to show how to
find an unavoidable set. Define the algorithm as follows:

Algorithm 3 Simple discharging

for all vertices v ∈ V do
if d(v) = 5 then

Give each of v’s neighbors charge 1
5 , leaving no charge on v

end if
end for

This algorithm preserves the total charge of any graph. Now, for any vertex
v in G̃ the maximum charge it can have after the algorithm is

qmax(v) = 6− d(v) +
1

5
d(v).

This happens when each of its neighbors has degree 5. Therefore, if G̃ contains
a vertex v of degree 8 or more, that vertex will be discharged by the algorithm
since

qmax(v) = 6− 8 +
8

5
= −2

5
< 0.

Also, if G̃ contains a vertex v of degree 7 with at most 5 neighbors of degree
5 then

qmax(v) = 6− 7 +
5

5
= 0.

So, it is dischargable. Likewise, vertices of degree 5 and 6 without any
neighbors of degree 5 are dischargable. Therefore, if G̃ is not dischargable, it
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Figure 14: An unavoidable set of configurations

must either contain a vertex of degree 5 or 6 with a neighbor of degree 5, or
it must contain a vertex of degree 7 with 6 or 7 neighbors of degree 5. In the
second case, we must have two vertices of degree 5 connected by an edge. So, G̃
must either contain two vertices of degree 5 connected by an edge, or a vertex
of degree 5 and a vertex of degree 6 connected by an edge. In fact, since G̃ is a
triangulation, these vertices must exist in the configurations in Figure 14a and
Figure 14b. Therefore, the set of configurations containing the configuration in
Figure 14a and the configuration in Figure 14b is unavoidable.

Unfortunately, both of these configurations cannot be shown to be reducible.
In the original proof of the Four Color Theorem [2], the discharging algorithm
was much more complex and ended up discovering a much larger unavoidable
set of more than 1400 configurations.

Now, we have seen the most significant ideas in the original proof of the Four
Color Theorem. We summarize these ideas in an implication diagram. Let U
be a set of configurations. Then,

every non-dischargable
graph contains some

G ∈ U
⇓

U is unavoidable &
every G ∈ U
is reducible

=⇒ a minimal
counterexample does

not exist.

A Euler’s Formula and Its Corollaries

Throughout this section, we introduce theorems, corollaries, and proofs taken
from Bondy and Murty [4]. Before we prove Euler’s Formula, we must define
the dual of a graph.

Definition A.1. A planar graph G∗ is the dual of a plane graph G̃ if every
vertex of G∗ corresponds to a face of G̃, every edge of G∗ corresponds to an
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Figure 15: The plane graph in Figure 3 (in gray) and its dual (in red)
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edge of G̃, and two vertices of G∗ are joined by an edge in G∗ if and only if
their corresponding faces in G̃ are joined by the corresponding edge in G̃. (See
Figure 15.)

With this definition, we can prove Euler’s Formula.

Lemma A.2. Let G̃ be a plane graph and m be its number of edges. Then,∑
f∈F

d(f) = 2m.

Proof. Consider the dual G∗. The degree of some vertex in G∗ is the same as
the degree of the corresponding face in G̃. Therefore, we must show∑

v∈V (G∗)

d(v) = 2m.

If we sum each of the columns for a given row in the incidence matrix of G∗, we
get the degree of the vertex in that row. Then summing over each of the rows
we get

∑
v∈V d(v). Alternatively if we sum each of the rows for a given column,

we get 2 since each edge has two vertices. Then, summing over each column we
get 2m.

Theorem 2.1 (Euler’s Formula). For a connected plane graph G̃,

v(G̃)− e(G̃) + f(G̃) = 2.

Proof. We perform induction on the number of faces. In the case when f(G̃) = 1,
we have a tree, so v(G̃) = e(G̃) + 1, and

v(G̃)− e(G̃) + f(G̃) = 2.

Now, consider a plane graph G̃ with a different number of faces and assume
that all plane graphs with one less face satisfy the formula. Then, there exists
some edge e such that removing it from G̃ forms a graph with f(G̃) − 1 faces.
Therefore,

v(G̃)− e(G̃) + f(G̃) = v(G̃)− (e(G̃)− 1) + (f(G̃)− 1)

= v(G̃ \ e)− e(G̃ \ e) + f(G̃ \ e)
= 2.

Now, we are ready for the corollaries [4]. We use these in the proof of the
Five Color Theorem and our discussion of the Four Color Theorem.

Corollary 2.2. Let G be a simple planar graph on at least 3 vertices. Let m
denote the number of edges in G and n the number of vertices. Then m ≤ 3n−6.
Furthermore, m = 3n − 6 if and only if every plane graph representing G is a
triangulation.
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Proof. Let G̃ be a plane graph representing G. In a simple connected graph, it
takes at least 3 edges to form the boundary for a face, so d(f) ≥ 3 for all f ∈ F .
Then, by Lemma A.2 and Euler’s formula,

2m =
∑

f∈F (G̃)

d(f) ≥ 3f(G̃) = 3(m− n+ 2).

Rearranging gives us the desired result.

Corollary 2.3. Every simple planar graph has a vertex of degree at most 5.

Proof. Since δ is less than or equal to the degree of each vertex, we have

δn ≤
∑
v∈V

d(v) = 2m ≤ 6n− 12.

This leaves

δ ≤ 6− 12

n
=⇒ δ ≤ 5.

B Proof of Lemma 2.5

Lemma 2.5. Let f : V (G)→ C be a proper coloring of some graph G with a set
of colors C. Let g : V (G) → C be the coloring we get after Kempe interchange
on some Kempe chain H that comes from f . Then, g is a proper coloring of G.

Proof. Assume for contradiction that g is not a proper coloring of G. Then,
some vertex v in H is adjacent to a vertex v′ of the same color with the coloring
from g. This vertex v′ must lie outside H. However, v′ is colored with one of
the two colors of H and adjacent to v in H with the coloring from f . This is a
contradiction. So, g must be a proper coloring of G.

C Properties of a Minimal Counterexample

Some of the proofs in this section come from Bondy and Murty [4].

Proposition 3.2. If G̃ is a minimal counterexample to the Four Color Theorem,
then both the following two statements must be true:

• G̃ is a triangulation.

• G̃ has no vertex of degree less than 5.

Proof. First, we will show that G̃ is a triangulation. Assume for contradiction
that G̃ contains a face bounded by an n-cycle Cn for some n ≥ 4. Since G̃ is
planar, two of the vertices of Cn are not adjacent. If we identify these vertices
we get a new graph H̃ that is smaller than G̃. Then, if G̃ is not 4-colorable,
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neither is H̃ since the vertex in H̃ left after identification has the same neighbors
as the two vertices in G̃ before identification. This is a contradiction, since G̃
is a minimal counterexample. Therefore, G̃ is a triangulation.

Now, we will show δ ≥ 5. We first show that it cannot be that δ ≤ 3. Let v be
a vertex of degree δ. Since G̃ is a minimal counterexample, G̃− v is 4-colorable.
Since v has no more than 3 neighbors, we can color it with one of the colors
not used by its neighbors to get a 4-coloring of G̃. This is a contradiction, so
δ ≥ 4. To show that δ ̸= 4, we rely upon a proof we will show later, namely one
that shows that every configuration with an outer cycle of length 4 is reducible
(Proposition 5.7).

Corollary 3.3. If G̃ is a minimal counterexample to the Four Color Theorem,
then G̃ contains the wheel W5.

Proof. By Corollary 2.3, δ ≤ 5, and by Proposition 3.2, δ ≥ 5. So, δ = 5.
Therefore, G̃ must contain a vertex of degree 5, and since G̃ is a triangulation,
this implies that G̃ contains W5.

Proposition 4.7. If G̃ is a minimal counterexample to the Four Color Theorem,
then G̃ contains no separating 4-cycle

Proof. We use a result that we will prove later, namely that every configuration
with an outer cycle of length 4 is reducible (Proposition 5.7).

Corollary C.1. If G̃ is a minimal counterexample to the Four Color Theorem,
then G̃ is 5-connected.

Proof. Suppose that there exists some set S ⊂ V (G̃) of 4 vertices such that
G̃− S is disconnected. If we can show that S must be the vertices of a cycle in
G̃, we are done, since this implies S cannot exist by Proposition 4.7. Assume
for contradiction that the vertices of S are not in a cycle. Let V be a connected
component of G̃− S. Then, there exists a path (in the topological sense) in G̃
from a vertex vi of V to another vertex vj of some connected component U of

G̃−S. Therefore, vi and vj are part of the boundary of the same face. Since G̃
is a triangulation, this implies that an edge connects vi and vj . This contradicts

that G̃− S is disconnected. Therefore, S must be the vertices of a cycle. This
leads to another contradiction; so, G̃ is 5-connected.

Corollary 4.8. If G̃ is a minimal counterexample to the Four Color Theorem,
then G̃ is essentially 6-connected.

Proof. By Corollary C.1, G̃ is 5-connected. We use a result that we will discuss
later, namely that every configuration with an outer cycle of length 5 is reducible
if it has more than one vertex in its interior [3], to show that every separating
5-cycle is induced by neighbors of a vertex of degree 5. We will not prove this
result, but the proof uses the same technique as the proof of Proposition 5.7.
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Figure 16: Subgraphs in the proof of Proposition 5.7

D Proof of Proposition 5.7

Proposition 5.7. Every configuration with an outer cycle of length 4 is re-
ducible.

Proof. Since we are not given a configuration, it is impossible to determine
whether a coloring from a reducer is extensible to a configuration. So, we cannot
apply Algorithm 1. Likewise, we cannot use a straightforward application of
Algorithm 2 either. Instead, we must use a more clever technique. Let V ∪ C4

denote some configuration, and let U be the rest of the graph, in the exterior of
C4. Then, let K1 be the set of 4-colorings of C4 that come from some choices of
C4∪V −, and let K2 be the set of 4-colorings of C4 that come from some choices
of C4 ∪ U−5. Now, if we can show for any two colorings from K1 and K2, we
can use Kempe interchange to match them, we are done.

To see why, suppose that our assumption is true. Then, for any choice of V ,
if a 4-coloring exists for V ∪C4∪U−, the coloring for C4 is in K2. Likewise, if a
4-coloring exists for V − ∪C4 ∪U , the coloring for C4 is in K1. Furthermore, we
can use Kempe interchange to match these colorings. Therefore, if V ∪C4 ∪U−

and V −∪C4∪U are 4-colorable, so is V ∪C4∪U by superposition. If we take the
contrapositive, we get that if V ∪C4 ∪U is not 4-colorable, either V − ∪C4 ∪U
or V ∪C4∪U− is not either, which implies that V ∪C4 is reducible. So we want
to show that given any two colorings from K1 and K2 we can match them via
Kempe interchange.

First, we will build K2 by choosing U−. Let C4∪U− be the graph in Figure
16a, which comes from identifying v1 and v3 in C4. This leads to 4-colorings on
C4 in which the first and third vertices have the same color. So, we essentially
have

K2 = {rgrg, rgry}.
Now, we build K1. Our construction of K1 will depend on V . First, if V is

such that rgrg is not a valid 4-coloring of C4 in V ∪C4∪U−, we choose V −∪C4

as represented in Figure 16a. This gives us

K1 = {rgrg, rgry}.
5If H = C4 ∪ U−, then we will use C4 ∪ U− to denote H or the graph that comes from

identifying two vertices on C4 in H.
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If we pick U such that rgry is the only valid 4-coloring of C4 in C4 ∪ U we are
done, since rgry is the only valid 4-coloring in C2. Otherwise, we are left with

K1 = {rgrg, rgry},

and
K2 = {rgry}.

Now, if C4 has coloring rgrg in V − ∪ C4, it is impossible for a red-blue
Kempe chain to connect v1 and v3 and a green-yellow Kempe chain to connect
v2 and v4. Therefore, either the green-yellow Kempe chain containing v4 can
be swapped so that v4 becomes yellow, or the red-blue Kempe chain containing
v3 can be swapped so that v3 becomes blue. In the first case, we can keep K2

as is so that both colorings match. In the second case, we can build a new K2

from the graph C4 ∪ U− in Figure 16b so that both colorings match.
Alternatively, if rgrg is a valid 4-coloring of C4 in V ∪ C4 ∪ U−, then we

can either choose V − ∪ C4 as shown in Figure 16a or as shown in Figure 16b
V − ∪C4 to build K1. We can use the same technique as before to choose which
K1 to build and to match each of the colorings in K1 to rgrg. Therefore, since
any coloring of K1 can be matched with any coloring of K2, every configuration
with an outer cycle of length 4 is reducible.
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