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Abstract. This paper examines finite Markov chains and their behavior in

terms of both states and times. We first introduce Markov chains through

a discussion of stochastic processes and the Markov property. We then con-
sider large-time Markov chains and provide a proof of the Perron-Frobenius

theorem, which is necessary to justify the cases when a unique invariant prob-

ability distribution exists for Markov chains. We then introduce reducibility
and periodicity, two important classifications for Markov chains. We use these

classifications to prove properties about return times to states and matrix rep-

resentations about transient states. Throughout our discussion, we introduce
two common applications of Markov chains: random walk and the Gambler’s

ruin problem.
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1. Introductory Definitions

We begin our discussion of Markov chains by defining some basic properties
about stochastic processes.

Definition 1.1. Let Xt be a random variable at time t. A stochastic process is
a collection of such random variables {Xt1 , Xt2 , . . .} = {Xtj}j∈Z.

Definition 1.2. Supppose {Xtj}j∈Z is a stochastic process. A stochastic process
is of discrete time if tj ∈ {0, 1, 2, 3, . . .} for any Xtj .

Definition 1.3. A state is a value that a random variable Xt takes on in a sto-
chastic process. The state space S of a stochastic process is the set of all possible
values that Xt can take on.

Conventionally, we let the state space S = {0, 1, . . . , N} such that each element
in S represents a different possible outcome. Our choice of integers is arbitrary and
is typically done by convenience, as future examples will illustrate.

To find the joint probability of a stochastic process, we first allow (i0, . . . , in)
to be a finite sequence of states from S. Consider P{X0 = i0, . . . , Xn = in} for
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every possible sequence (i0, . . . , in). Furthermore, suppose the initial probability
distribution for a stochastic process is given by ϕ0(i) = P{X0 = i}, and a transition
probability for a stochastic process is given by qn(in | in−1, . . . , i0) = P{Xn = in |
Xn−1 = in−1, . . . , X0 = i0}. Then:

P{X0 = i0, . . . , Xn = in}
= P{X0 = i0} · P{X1 = i1 | X0 = i0} · . . . · P{Xn = in | Xn−1 = in−1, . . . , X0 = i0}
= ϕ0(i0)q1(i1 | i0) · . . . · qn(in | in−1, . . . , i0) for i0 = 0, 1, . . . , N .

We are now ready to introduce the Markov property for stochastic processes,
which simplifies this expression further.

Definition 1.4. Suppose {X0, X1, . . .} is a stochastic process. TheMarkov prop-
erty states that the probability of a future state is dependent only on the present
state. More generally, P{Xn = in | Xn−1 = in−1, . . . , X0 = i0} = P{Xn = in |
Xn−1 = in−1}. A discrete-time stochastic process with the Markov property is
known as a discrete-time Markov chain.

Definition 1.5. Suppose {X0, X1, . . .} is a discrete-time Markov chain. {X0, X1, . . .}
is time-homogeneous if P{Xn = in | Xn−1 = in−1} = p(in−1, in) for a function
p : [S × S] → (0, 1). We can generalize this expression to evaluate probabilities for
states k time periods (“steps”) from the present as P{Xn = in | Xn−k = in−k} =
pk(in−k, in) for 0 ≤ k ≤ n in discrete time.

For k = 1, or a single time period (step) in the future, we typically drop the
subscript and write p1(in−k, in) as p(in−k, in).

There is an important implication of time-homogeneity. Definition 1.5 indicates
that only the difference in time periods between the present and future, and the
states in the present and the future, are relevant when computing a transition
probability. The specific time periods in which the present and future states occur
do not affect the probability. That is:

P{Xn = in | Xn−k = in−k} = P{Xn+c = in | Xn−k+c = in−k}

for c ≥ k − n in discrete time. We will frequently use X0 to represent the present,
so we often allow c = k − n such that

P{Xn = in | Xn−k = in−k} = P{Xk = in | X0 = in−k}.

However, we can index the random variables however we would like depending on
their context in larger expressions.

Furthermore, for single step transition probabilities in Markov chains, we have
that qn(in | in−1, . . . , i0) = p(in−1, in). Thus, the joint probability for a Markov
chain becomes

P{X0 = i0, . . . , Xn = in} = ϕ0(i0) · p(i0, i1) · p(i1, i2) . . . · p(in−1, in).

We now consider a more convenient way of expressing all possible transition
probabilities for a Markov chain given a number of steps between present and
future and a state space S.

Definition 1.6. Suppose S = {0, 1, . . . , N}. The transition matrix P for a
single step of a Markov chain is given by:
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P =


p(0, 0) p(0, 1) · · · p(0, N)
p(1, 0) p(1, 1) · · · p(1, N)

...
...

. . .
...

p(N, 0) p(N, 1) · · · p(N,N)


where the entries Pij are subject to two conditions:

(1) 0 ≤ Pij ≤ 1 for 0 ≤ i, j ≤ N

(2)
∑N

j=0 Pij = 1 for 0 ≤ i ≤ N

Note that we are “zero-indexing” such that the first row and first column of P
are denoted by i = 0 and j = 0 respectively. The first property follows directly from
the fact that the probability of a random variable must be a value between 0 and
1. The second property follows from the fact that:∑

Xn∈S

P{Xn | Xn−1 = i} = 1

as the sum of all possible conditional probabilities from the sample space (state
space) S for a fixed value of Xn−1 must equal 1.

A very common application of basic Markov chains is random walk. Consider a
collection of points such that each point is connected to at least one other point by
an edge. A person is at one of these points, and they randomly take a step onto
an adjacent point by traveling along its edge. This process is a Markov chain and
a simplified model of random walk. For example, consider a basic graph equally
incremented from 0 to N. Suppose with every step, the walker moves to the right
with probability p. If the walker is not on either of the extreme points at 0 and N,
then p(i, i+ 1) = p and p(i, i− 1) = 1− p for 0 < i < N . If the walker is on either
extreme point at 0 and N, then we can consider a reflecting boundary such that the
walker steps in the direction of the middle of the interval with probability 1. That
is, p(0, 1) = p(N,N − 1) = 1. We can create a transition matrix for single steps by
the walker:

P =


p(0, 0) p(0, 1) p(0, 2) · · · p(0, N)
p(1, 0) p(1, 1) p(1, 2) · · · p(1, N)
p(2, 0) p(2, 1) p(2, 2) · · · p(2, N)

...
...

...
. . .

...
p(N, 0) p(N, 1) p(N, 2) · · · p(N,N)

 =


0 1 0 · · · 0

1− p 0 p · · · 0
0 1− p 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


More complicated cases of random walk include a stock price model, where a

ticker can move 1 unit up or 1 unit down with given probability and a constant
time interval. Additionally, finitely connected random walk models may instead use
absorbing boundaries at the endpoints such that if the chain reaches the state 0 or
N, the process forever stays in that state. In a sense, the walker becomes trapped
(or absorbed) at these points.

Because we have also defined transition probabilities for states occurring k > 1
steps apart from one another, we need to likewise describe a matrix that consolidates
all possible transition probabilities for a state space S given a time interval (or
number of steps).
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Proposition 1.7. Suppose P is a transition matrix for a Markov chain with state
space S = {0, 1, . . . , N}. The k-step transition matrix is given by:

Pk =


p(0, 0) p(0, 1) · · · p(0, N)
p(1, 0) p(1, 1) · · · p(1, N)

...
...

. . .
...

p(N, 0) p(N, 1) · · · p(N,N)


k

=


pk(0, 0) pk(0, 1) · · · pk(0, N)
pk(1, 0) pk(1, 1) · · · pk(1, N)

...
...

. . .
...

pk(N, 0) pk(N, 1) · · · pk(N,N)


More generally, every entry in Pk is given by (Pk)ij = pk(i, j)

Proof. We use induction. Suppose k = 1. Then:

(Pk)ij = Pij = p1(i, j) = p(i, j),

where we use Definition 1.6 for a single-step transition matrix. Now suppose that
(Pm)ij = pm(i, j) for k = m. Then:

(Pm+1)ij = (PmP)ij =
∑
c∈S

[
(Pm)ic ·Pcj

]
=

∑
c∈S

[
pm(i, c) · p(c, j)

]
=

∑
c∈S

[
P{Xm = c|X0 = i} · P{X1 = j|X0 = c}

]
.

By time homogeneity, P{X1 = j | X0 = c} = P{Xm+1 = j | Xm = c}. Now:∑
c∈S

[
P{Xm = c | X0 = i} · P{X1 = j | X0 = c}

]
=

∑
c∈S

[
P{Xm = c | X0 = i} · P{Xm+1 = j | Xm = c}

]
= P{Xm+1 = j | X0 = i} = pm+1(i, j)

which proves the induction hypothesis. □

We have only mentioned transition probabilities and the initial probability dis-
tribution for X0. We may also be interested in finding the unconditional probability
P{Xk = i} for a random variable k steps from the present. We can use transition
matrices to compute such probabilities.

Proposition 1.8. Suppose ϕk(i) = P{Xk = i} and ϕk = (ϕk(0), ϕk(1), . . . , ϕk(N))
for a state space S. If P is a transition matrix, then ϕk = ϕ0P

k.

Proof. We verify ϕk = ϕ0P
k by direct computation:

(ϕ0P
k)ij =

∑
c∈S

[
(ϕ0)ic · (P

k)cj
]
=

∑
c∈S

[
(P{X0 = c} · pk(c, j)

]
=

∑
c∈S

[
(P{X0 = c} · P{Xk = j | X0 = c}

]
= P{Xk = j}

for i = 0 and j = 0, 1, . . . , N . Then ϕ0P
k = (P{Xk = 0}, . . . , P{Xk = N}) = ϕk.

□
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2. Large-Time Behavior and Invariant Probability

The analysis of the long-term behavior of Markov chains is essential for predicting
steady states in various systems, from queueing models to genetic populations.
This section delves into the underlying mathematical instances of the convergence
of Markov chains and the conditions under which certain probability distributions
become invariant.

Definition 2.1. Invariant Probability Distribution: A probability vector π is
invariant for a transition matrix P if it satisfies:

π = πP

π represents the average ratio of time that the state stays in each state for suffi-
ciently large n in Pn.

This implies that π is a left eigenvector of P corresponding to the eigenvalue 1.

Theorem 2.2. Perron-Frobenius Theorem: Suppose A is an n× n matrix. If
every entry Aij > 0, then:

(1) A has a unique maximum eigenvalue λmax.
(2) The eigenvector corresponding to λmax can be written to have all positive

entries.

Proof. Suppose v⃗ = (v1, . . . , vn)
T is a column vector with vj ≥ 0 for j = 1, . . . , n

and at least one entry vj > 0. Since Aij > 0, we have (Av⃗)ij =
∑n

j=1 Aijvj ≥ 0

for i = 1, . . . , n with at least one entry (Av⃗)ij > 0. We express this fact as Av⃗ > 0.
Now suppose λ is an eigenvalue of A with corresponding eigenvector v⃗. Let

g(v⃗) := max{λ | Av⃗ ≥ λv⃗}. We can see that Av⃗ must be bounded below by
min

∑n
j=1 Aijvj . Additionally, we can find λ small enough such that min

∑n
j=1 Aijvj ≥

λvmax for vmax = max vj > 0. Then g(v⃗) > 0 for all v ≥ 0. Furthermore, for all
c > 0, we have that:

g(cv⃗) := max{λ | A(cv⃗) ≥ λ(cv⃗)} = max{λ | c(Av⃗) ≥ c(λv⃗)}
= max{λ | Av⃗ ≥ λv⃗}

which implies that g(cv⃗) = g(v⃗).
We now consider the supremum of g(v⃗):

α = sup
v⃗≥0,v⃗ ̸=0⃗

g(v⃗)

to find the maximum eigenvalue for matrix A under given conditions.
If g(v⃗) = α, and Av⃗ ≥ αv⃗, assume for contradiction that Av⃗ ̸= αv⃗. Let w⃗ =

Av⃗ − αv⃗, then w⃗ ≥ 0⃗ and w⃗ ̸= 0⃗. Thus Aw⃗ = A2v⃗ − αAv⃗ ≥ αw⃗, which implies
w⃗ is an eigenvalue vector corresponding to α, contradicting the uniqueness unless
w⃗ = 0⃗. Therefore, Av⃗ = αv⃗.

If Av⃗ = αv⃗, then v⃗ = ( 1
α )Av⃗. Since Av⃗ > 0 and α = g(v⃗) > 0, it follows that

v⃗ > 0. Now consider α = sup
∥v⃗∥=1

g(v⃗). Suppose for contradiction there exist vectors

v⃗1 and v⃗2 such that v⃗1 ̸= cv⃗2 for c ∈ R and

g(v⃗1) = g(v⃗2) = α and

n∑
i=1

vi1 =

n∑
i=1

vi2 = 1
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By our previous result, vectors v⃗1, v⃗2 > 0. Then for c ∈ R, the following holds:

Av⃗1 = αv⃗1 and Av⃗2 = αv⃗2 ⇒ c(Av⃗2) = c(αv⃗2) ⇒ A(cv⃗2) = α(cv⃗2)

We add these equations:

Av⃗1 +A(cv⃗2) = αv⃗1 + α(cv⃗2) ⇒ A(v⃗1 + cv⃗2) = α(v⃗1 + cv⃗2)

If v⃗1 = (v11 , v
2
1 , . . . , v

j
1, . . . , v

n
1 )

T and v⃗2 = (v12 , v
2
2 , . . . , v

j
2, . . . , v

n
2 )

T , then there exists

some c = −vj1/v
j
2 such that v⃗1+cv⃗2 has a 0 entry and v⃗1+cv⃗2 ≥ 0, but v⃗1+cv⃗2 ̸= 0.

However, we also see that

Av⃗ > 0 ⇒ A(v⃗1 + cv⃗2) = α(v⃗1 + cv⃗2) > 0.

Because α > 0, the RHS holds only if v⃗1 + cv⃗2 > 0. This is a contradiction, since
we’ve shown that we can always find c ∈ R such that v⃗1 + cv⃗2 has a 0 entry and
v⃗1 + cv⃗2 ̸> 0. So, the eigenvector v⃗ is unique.

Now suppose that λ is any other eigenvalue of A such that λ ̸= α. If u⃗ is the
eigenvector corresponding to λ, then Au⃗ = λu⃗. If |A| and |u| are given by taking
the absolute value of every entry of A and u⃗, respectively, then

|A||u| ≥ |Au| = |λu| = |λ||u|.
Since A > 0, we have |A| = A. This fact implies that |A||u| = A|u| ≥ |λ||u|.
Furthermore, |u| ≥ 0. Then λ is an element of the set defined by the function g,
which implies that |λ| ≤ sup g = α. However, since |λ| ̸= |α| = α, equality cannot
hold, so |λ| < α. □

Proposition 2.3. If A is a stochastic matrix then its maximal eigenvalue is 1

Proof. We first show that 1 is an eigenvalue of A
Consider the vector v = [1, 1, . . . , 1]T , a column vector with all entries equal to

1. Now, multiply A by v:

Av = A


1
1
...
1

 =


∑n

j=1 A1j∑n
j=1 A2j

...∑n
j=1 Anj


Since each row of A sums to 1 by the definition of a stochastic matrix, we have:

Av =


1
1
...
1

 = v

This shows that:

Av = 1 · v
Thus, 1 is an eigenvalue of A.
We then show that 1 is the maximal eigenvalue.
We apply the Perron-Frobenius theorem, which states the following for any square

matrix with positive entries:

(1) There exists a real eigenvalue λmax such that |λmax| is greater than or equal
to the absolute value of any other eigenvalue.
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Because eigenvalues correspond to scaling factors of the eigenvectors, and the
sum of all rows of A equals to 1, there cannot be an eigenvalue with a magnitude
greater than 1. Therefore, because the Perron-Frobenius theorem guarantees a
unique maximal eigenvalue, and we know that 1 is indeed an eigenvalue of A, we
conclude that:

λmax = 1

□

Theorem 2.4. For any Markov chain with a finite state space and positive sto-
chastic matrix, there exists a unique invariant probability distribution.

Proof. From Proposition 4.3 above, we know for stochastic matrix A

λmax = 1

and from Theorem 4.2 (2), we know that the left eigenvector corresponding to the
maximal eigenvalue can be written to have all positive entries, which gives us our
invariant probability distribution π.

□

Consider the stochastic matrix

P =

[
0.9 0.1
0.5 0.5

]
.

We need to find a probability vector π = [π1, π2] that satisfies the invariant distri-
bution condition:

π = πP.

This translates into the system of equations:

π1 = 0.9π1 + 0.5π2, π2 = 0.1π1 + 0.5π2.

Additionally, the probability vector must satisfy the normalization condition:

π1 + π2 = 1.

First, rearrange the first equation to solve for π1:

π1 − 0.9π1 = 0.5π2 =⇒ 0.1π1 = 0.5π2 =⇒ π2 = 0.2π1.

Substituting π2 into the normalization condition gives:

π1 + 0.2π1 = 1 =⇒ 1.2π1 = 1 =⇒ π1 =
5

6
.

Then,

π2 = 0.2× 5

6
=

1

6
.

Thus, the invariant probability vector is

π =

[
5

6
,
1

6

]
.

This vector π satisfies both the equation π = πP and the normalization condition,
confirming that it is the invariant distribution for the given stochastic matrix.

To validate, substituting π back into the equation π = πP:[
5

6
,
1

6

] [
0.9 0.1
0.5 0.5

]
=

[
0.9× 5

6
+ 0.5× 1

6
, 0.1× 5

6
+ 0.5× 1

6

]
=

[
5

6
,
1

6

]
.
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The results confirm that π is indeed invariant under P.

3. Reducible and Periodic Classifications

Definition 3.1. Communication Classes: Two states i and j of a Markov chain
communicate with each other, written i ↔ j, if there exist m,n ≥ 0 such that
pm(i, j) > 0 and pn(j, i) > 0.

This relation is an equivalence relation on the state space, i.e., it is:

• Reflexive: i ↔ i (since p0(i, i) = 1 > 0).
• Symmetric: i ↔ j implies j ↔ i.
• Transitive: i ↔ j and j ↔ k imply i ↔ k.

Definition 3.2. Irreducibility: A Markov chain is irreducible if there is only one
communication class, i.e., if for all i, j there exists an n such that pn(i, j) > 0.

Consider the transition matrix P for a Markov chain with states {1, 2, 3, 4}:

P =


0.5 0.5 0 0
0.5 0.5 0 0
0 0 0.5 0.5
0 0 0.5 0.5


In this Markov chain, states {1, 2} communicate with each other and form one

communication class, while states {3, 4} communicate with each other and form an-
other communication class. However, there is no communication between states in
the set {1, 2} and states in the set {3, 4}. Therefore, the Markov chain is reducible,
with two distinct communication classes: {1, 2} and {3, 4}.

Definition 3.3. Periodicity: The period of a state i, denoted d(i), is defined as
the greatest common divisor of the set:

Ji := {n ≥ 0 : pn(i, i) > 0}.

Proposition 3.4. If P is irreducible, then all states have the same period d. If
d = 1, the chain is aperiodic.

Proof. Let P be the transition matrix of an irreducible Markov chain. Recall that
the period of a state i is defined as:

di = gcd{n ≥ 1 : Pn(i, i) > 0}

where Pn(i, i) is the probability of returning to state i in exactly n steps. The
period d of the Markov chain is the greatest common divisor of all the steps needed
to return to any state i.

Since P is irreducible, for any two states i and j, there exists an integer m such
that Pm(i, j) > 0. This means it is possible to get from state i to state j in m
steps.

Consider two states i and j. Let di be the period of state i and dj be the period
of state j. Since P is irreducible, there exist positive integers m and n such that:

Pm(i, j) > 0

Pn(j, i) > 0
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This implies that it is possible to go from state i to state j in m steps and from
state j to state i in n steps. Hence, it is possible to return to state i from itself in
m+ n steps by visiting state j in between. Therefore,

Pm+n(i, i) > 0

The existence of such paths implies that m+ n is a multiple of both di and dj .
Consequently, di and dj must share a common divisor.

Since this argument holds for any pair of states i and j, all states in the irreducible
Markov chain must share the same period. Denote this common period by d.

Now, if d = 1, the chain is aperiodic. This means that the greatest common
divisor of the lengths of the cycles that return to any state is 1. In other words, it
is possible to return to any state at arbitrary times, indicating that the chain does
not have a fixed cycle length, which is the definition of aperiodicity.

Therefore, we have shown that if P is irreducible, all states have the same period
d, and if d = 1, the chain is aperiodic.

□

Theorem 3.5. (Irreducible, Aperiodic Chains) If P is the transition matrix for an
irreducible, aperiodic Markov chain, then there exists a unique invariant probability
vector π satisfying:

πP = π.

If ϕ is any initial probability vector,

lim
n→∞

ϕPn = π.

Moreover, π(i) > 0 for each i.

Consider an example transition matrix P

P =


0 1 0 0 0
1
2 0 1

2 0 0
0 1

2 0 1
2 0

0 0 1
2 0 1

2
0 0 0 0 1

 ,

we can use computing technologies to calculate that the invariant probability
vector π is

(
1
8 ,

1
4 ,

1
4 ,

1
4 ,

1
8

)
.

This section highlights the crucial role of state classification in understanding
the dynamics and long term behavior of Markov chains. The classification not only
aids in theoretical analysis but also impacts the practical implementation of these
models in various fields such as economics, genetics, and computer science.

4. Return Times

Our discussion of communication classes, reducible Markov chains, and period-
icity readily lends itself to a closer examination of chains that begin and “return”
to a specified state.

Definition 4.1. Suppose {X0, X1, . . .} is an irreducible Markov chain with state
space S. The return time Tk of a chain starting in state k is the time period when
the chain first revisits state k and is given by Tk = min{n ≥ 1 | Xn = k}.
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Because we assume the Markov chain is irreducible, there is only one commu-
nication class that contains all states within the state space S. We suspect that if
P{Tk < ∞} = 1, or the return time for any state k ∈ S is finite, then state k is
recurrent. To more rigorously develop this idea, we need to introduce the idea of
stopping time.

Definition 4.2. Suppose {X0, X1, . . .} is Markov chain with state space S. A stop-
ping time is a random variable τ : Ω → {0, 1, 2, . . .} ∪ {∞} if the event {τ = n}
depends only on the states of the chain {X0, X1, . . . , Xn}.

Definition 4.2 reveals an important property of return times. The event that the
first return time to state k is n steps can be expressed as

{Tk = n} = {X1 ̸= k,X2 ̸= k, . . . ,Xn−1 ̸= k,Xn = k}

which satisfies the criterion for a stopping time. Furthermore, we may consider the
j th return time as the j th revisit to state k. Given the first return time T 1

k , the j th

return time T j
k to state k is defined recursively as

T j+1
k = min{n > T j

k | Xn = k}

which must also be a stopping time.
Stopping times also provide a further extension of the Markov property.

Proposition 4.3. Strong Markov Property: Suppose τ is a stopping time of
the Markov chain {X0, X1, . . .} with state space S. Given τ < ∞ and Xτ = i, the
state of Xτ+n for n ≥ 0 is independent of the states of X0, . . . , Xτ−1.

Proof. Suppose B is an event determined by X0, . . . , Xτ−1. Then B ∩ {τ = m} is
determined by X0, . . . , Xm, and

P{(Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn), B, (τ = m), (Xτ = i)}(4.4)

= P{(Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn), B | τ = m,Xτ = i}(4.5)

· P{τ = m,Xτ = i}

However, we can also express (4.4) slightly differently:

P{(Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn), B, (τ = m), (Xτ = i)}
= P{Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn | B, τ = m,Xτ = i}

· P{B, τ = m,Xτ = i}
= P{X0 = j0, X1 = j1, . . . , Xn = jn | B, τ = m,X0 = i}

· P{B, τ = m,Xτ = i}
= P{X0 = j0, X1 = j1, . . . , Xn = jn | B, τ = m,X0 = i}(4.6)

· P{B | τ = m,Xτ = i} · P{τ = m,Xτ = i}
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where we used the Markov property to “shift” the chain from beginning at time τ
to time 0. We now have two equivalent expressions (4.5) and (4.6). Then:

P{(Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn), B | τ = m,Xτ = i}
· P{τ = m,Xτ = i}

= P{X0 = j0, X1 = j1, . . . , Xn = jn | B, τ = m,X0 = i}
· P{B | τ = m,Xτ = i} · P{τ = m,Xτ = i}

⇒ P{(Xτ = j0, Xτ+1 = j1, . . . , Xτ+n = jn), B | τ = m,Xτ = i}
= P{X0 = j0, X1 = j1, . . . , Xn = jn | B, τ = m,X0 = i}

· P{B | τ = m,Xτ = i}

□

We can likewise relate transition probabilities to the strong Markov property.
Proposition 4.3 implies that

P{Xτ+n −Xτ = j | Xτ = i} = P{Xn = i+ j | X0 = i}(4.7)

if i + j ∈ S. In other words, the Markov chain starting at time τ has the same
transition probabilities as the original Markov chain starting at time 0.

We return to our discussion of the j th return time for j > 1. We are often in-
terested in the time interval between two consecutive return times, which describes
the number of steps to revisit state k after the (j − 1)th return. Suppose we define
this value as

Sj
k =

{
T j
k − T j−1

k if T j−1
k < ∞

0 otherwise

Lemma 4.8. If the (j-1)th return time T j−1
k < ∞ for all j = 2, 3, . . ., then:

(1) Sj
k is independent of the event {Xm = t | m ≤ T j−1

k }
(2) P{Sj

k = n | T j−1
k < ∞} = P{Tk = n}

Proof. We will prove (1) first. Since the the (j-1)th return to state k given by T j−1
k

is a stopping time, suppose τ = T j−1
k . By the definition of a return time, Xτ = k.

Then by the Strong Markov Property, the event {Xτ+n = k | τ < ∞, Xτ = k}
for n ≥ 0 is independent of X0, X1, . . . , Xτ−1, and likewise Sj

k is independent of
X0, X1, . . . , Xτ−1.

To prove (2), we realize that Sj
k = min{n ≥ 1 | Xτ+n = k}. By (1) and (6.7),

the event that {T j
k − T j−1

k = n | T j−1
k < ∞} has the same distribution as the first

return time to state k, or the event {Tk = n | X0 = k}. Then P{T j
k − T j−1

k = n |
T j−1
k < ∞} = P{Sj

k = n | T j−1
k < ∞} = P{Tk = n}. □

We are almost ready to prove that if the return time for a state is finite, then
the state is recurrent. Suppose we define a variable Vk as the number of visits to
state k in a Markov chain:

Vk =

∞∑
n=1

I{Xn = k}
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where I is a random “indicator” variable such that I = 1 if Xn = k and I = 0 if
Xn ̸= k for k ∈ S. Then:

E[Vk] = E

[ ∞∑
n=1

I{Xn = k}

]
=

∞∑
n=1

E[I{Xn = k}]

=

∞∑
n=1

pn(k, k) =

∞∑
n=1

P{Xn = k | X0 = k}

Lemma 4.9. Suppose for a Markov chain, fk = P{Tk < ∞}. Then (fk)
r =

P{Vk > r} for r = 0, 1, 2, . . ..

Proof. We proceed by induction. For the base case r = 0, it follows by definition
that P{Vk > 0} = 1 = (fk)

0. Now suppose that(fk)
m = P{Vk > m} for r = m.

Also, note that if X0 = k, then the event {Vk > m} occurs if and only if the mth
return time is finite, or {Tm

k < ∞}. By the inductive step:

P{Vk > m+ 1} = P{Tm+1
k < ∞} = P{Tm+1

k < ∞, Sm+1
k < ∞}

= P{Sm+1
k < ∞ | Tm

k < ∞} · P{Tm
k < ∞}

By Lemma 4.8, P{Sm+1
k < ∞ | Tm

k < ∞} = P{Tk < ∞}. Then:

P{Sm+1
k < ∞ | Tm

k < ∞} · P{Tm
k < ∞} = P{Tk < ∞} · P{Tm

k < ∞}
= fk · (fk)m = (fk)

m+1

□

We are finally ready to classify whether a state is recurrent or transient based
on return times.

Theorem 4.10. Suppose {X0, X1, . . .} is a Markov chain with state space S and
return time Tk for k ∈ S.

(1) If fk = P{Tk < ∞} < 1, then state k is transient and
∑∞

n=0 pn(k, k) < ∞
(2) If fk = P{Tk < ∞} = 1, then state k is recurrent and

∑∞
n=0 pn(k, k) = ∞

Proof. For (1), we have that
∑∞

n=0 pn(k, k) = E[Vk] =
∑∞

r=0 P{Vk > r}. By
Lemma 4.9,

∞∑
r=0

P{Vk > r} =

∞∑
r=0

(fk)
r =

1

1− fk
< ∞

since 0 ≤ fk < 1. Then because the chain visits state k only finitely often––and
eventually leaves the transition class containing k––state k must be transient.

For (2), we again apply Lemma 4.9. If P{Tk < ∞} = fk = 1, then (fk)
r = 1 =

P{Vk > r} for r = 0, 1, 2, . . .. Then:

lim
r→∞

P{Vk > r} = P{Vk = ∞} = 1

In other words, the probability that there is an infinite number of visits in the
Markov chain to state k is 1, and therefore state k must be recurrent. When a
chain enters a recurrent class, it never leaves the recurrent class. Then we also have
that

∑∞
n=0 pn(k, k) = ∞. □
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Recall the invariant probability vector π = (π(0), . . . , π(N)) obtained from a row
of Π = limn→∞ Pn for a stochastic matrix satisfying the relevant properties. Any
entry π(k) for 0 ≤ k ≤ N represents the probability that the chain eventually ends
in state k. Likewise, π(k) also represents the fraction of time that the chain stays
at state k for sufficiently large n.

Intuitively, each π(k) must be related to the 1st, 2nd, ..., nth return of the chain
to state k as n → ∞. Suppose S1

k, S
2
k, . . . , S

n
k represents the time elapsed between

the consecutive (n-1)th and nth returns to state k. The total time elapsed during

the chain for n returns to state k is given by R =
∑n

j=1 S
j
k. Then:

R

π(k) ·R
=

S1
k + . . .+ Sn

k

n
≈ E[Tk] ⇒ E[Tk] ≈

1

π(k)

where we approximate the expectation by the Law of Large Numbers as n → ∞.
We now rigorously prove this fact.

Theorem 4.11. Suppose {X0, X1, . . .} is an irreducible Markov chain with state
space S = {0, . . . , N}, transition matrix P, and invariant probability vector π =
(π(0), . . . , π(N)). Let the return time of a chain starting in state k be given by
Tk = min{n ≥ 1 | Xn = k}. Then E[Tk] =

1
π(k) .

Proof. Recall the indicator variable I. For fixed state k and each state j ∈ S,
consider the time a chain spends in state j before returning to state k :

γk
j = E

[
Tk−1∑
n=0

I{Xn = j}

]

Now suppose we have the row vector γ⃗k = (γk
0 , . . . , γ

k
m). We want to show that γ⃗k

is an invariant probability vector such that γ⃗kP = γ⃗k. Note that P{X0 = k} =
P{XTk

= k} = 1 by the definition of return time. Then we can change the indices
of summation and use some properties of conditional probabilities:

γk
j = E

[
Tk∑
n=1

I{Xn = j}

]
= E

[ ∞∑
n=1

I{Xn = j, Tk ≥ n}

]

=

∞∑
n=1

P{Xn = j, Tk ≥ n | X0 = k}

=
∑
i∈S

∞∑
n=1

P{Xn = j,Xn−1 = i, Tk ≥ n | X0 = k}

The probability that the chain returns to state k by at least time n is equivalent
to the probability that the chain does not return to state k up to time n− 1. The
probability of this event depends on the states of X0, X1, . . . , Xn−1, which enables
us to use the Markov property. Then:

P{Xn = j,Xn−1 = i, Tk ≥ n | X0 = k}
= P{Xn−1 = i, Tk ≥ n | X0 = k} · P{Xn = j | Xn−1 = i}.
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Applying this result, we have the following:

γk
j =

∑
i∈S

∞∑
n=1

P{Xn = j,Xn−1 = i, Tk ≥ n | X0 = k}

=
∑
i∈S

P{Xn = j | Xn−1 = i} · E

[ ∞∑
p=1

I{Xp = i, Tk − 1 ≥ p}

]

=
∑
i∈S

p(i, j) · E

[
Tk−1∑
p=0

I{Xp = i}

]
=

∑
i∈S

Pij · γk
i =

∑
i∈S

γk
i ·Pij

which written in matrix notation is γ⃗k = γ⃗kP.
Lastly, we need to show that γk

j is positive and finite for all j ∈ S. When j = k,
we can see that

γk
k = E

[
Tk−1∑
n=0

I{Xn = k}

]
= E[I{X0 = k}] = E[1] = 1

because the chain begins in state k itself and will not return to state k until time
Tk, which is not included in the terms we sum over. Since we assume the Markov
chain is irreducible, there exist s, t ≥ 0 such that for all states j ∈ S, ps(j, k) > 0
and pt(k, j) > 0. Since both probabilities have an upper bound of 1 by definition,
then γk

i ≥ γk
k · pt(k, j) = pt(k, j) > 0. Recall that the irreducibility of the Markov

chain also implies that the return time is finite, or P{Tk < ∞} = 1. Then E[Tk]
must be finite, so γk

j must be finite. Then 0 < γk
j < ∞ for all j ∈ S.

We are finally ready to relate γk
j to π. By Theorem 2.4, the invariant probability

vector π must be unique. Then γ⃗k = cπ for c > 0, and γk
j = cπ(j). When j = k:

γk
k = 1 = cπ(k) ⇒ c =

1

π(k)

so γk
j = cπ(j) = π(j)

π(k) , and
∑

j∈S γk
j = 1

π(k)

∑
j∈S π(j).

Notice that∑
j∈S

γk
j =

∑
j∈S

E

[
Tk−1∑
n=0

I{Xn = j}

]
= E

[∑
j∈S

Tk−1∑
n=0

I{Xn = j}

]

= E

[
Tk−1∑
n=0

∑
j∈S

I{Xn = j}

]
At each time n, the chain can only be at one state. Then

∑
j∈S I{Xn = j} = 1 for

each n. Applying this result:∑
j∈S

γk
j = E

[
Tk−1∑
n=0

∑
j∈S

I{Xn = j}

]
= E

[
Tk−1∑
n=0

1

]
= E[Tk]

Furthermore,
∑

j∈S π(j) = 1 because we are taking the sum over the sample (state)
space. Then: ∑

j∈S

γk
j =

1

π(k)

∑
j∈S

π(j) ⇒ E[Tk] =
1

π(k)
.

□
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We now illustrate an example of computing the return times for states by using
this relationship.

Example 4.12. Return Times for a 3-State Markov Chain. Consider a
Markov chain with state space S = {0, 1, 2} and transition matrix

P =

3/4 1/4 0
1/8 2/3 5/24
0 1/6 5/6


We compute the large-time stochastic matrix Π by

lim
n→∞

Pn ≈

0.182 0.364 0.455
0.182 0.364 0.455
0.182 0.364 0.455


The invariant probability vector is given by any of the identical rows of Π. That is,
π = (π(0), π(1), π(2)) = (0.182, 0.364, 0.455). We can compute the expected return
times for each state in S as follows:

E[T0] =
1

π(0)
≈ 5.495 E[T1] =

1

π(1)
≈ 2.747 E[T2] =

1

π(2)
≈ 2.198

5. Transient States

Definition 5.1. A state i ∈ S is called transient if, starting from state i, there is
a non-zero probability that the process will never return to i. Formally, state i is
transient if

P(Xn = i for some n > 0 | X0 = i) < 1.

Definition 5.2. State i is recurrent if

P(Xn = i for some n > 0 | X0 = i) = 1.

Let P be the transition matrix of a finite Markov chain. If the chain has transient
states, we can partition P into submatrices as follows:

P =

[
P̃ 0
S Q

]
,

where Q is the submatrix corresponding to the transient states. The n-step transi-
tion matrix can be written as:

Pn =

[
P̃

n
0

Sn Qn

]
.

Definition 5.3. Substochastic and Fundamental Matrix: The matrix Q is a sub-
stochastic matrix, meaning that it has non-negative entries and the row sums are
less than or equal to 1. Since the states represented by Q are transient, we have
Q → 0 as n → ∞.

The fundamental matrix M is defined as:

M = (I−Q)−1.

This matrix plays an important role in determining the expected number of visits
to transient states.
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Proposition 5.4. Let i be a transient state. The expected number of visits to state
i starting from a transient state j is given by the (j, i) entry of the matrix M.
Formally,

E(Yi | X0 = j) = Mji,

where Yi is the total number of visits to state i.

Proof. Consider the total number of visits to state i:

Yi =

∞∑
n=0

I{Xn=i}.

Taking the expectation, we get:

E(Yi | X0 = j) =

∞∑
n=0

P(Xn = i | X0 = j) =

∞∑
n=0

pn(j, i),

which corresponds to the (j, i) entry of the matrix series I + Q + Q2 + · · · =
(I −Q)−1. □

The expected number of steps until absorption, starting from state j, can be
computed using the fundamental matrix M . For a finite Markov chain with ab-
sorbing states, the transition matrix P can be written as:

P =

[
I 0
S Q

]
.

The expected number of steps to absorption is then given by:

t = Mv1,

where v1 is a column vector of ones.
The fundamental matrix M is a crucial tool in analyzing not only the behavior of

transient states, but also behavior regarding recurrent states. The expected number
of steps until the chain enters a recurrent class can also be determined using the
fundamental matrix M . For an irreducible Markov chain with transient states and
recurrent states, the transition matrix can be written as:

P =

[
I 0
S Q

]
.

Let Ti be the number of steps needed to reach state i. The expected number of
steps is given by:

E(Ti | X0 = j) =
∑
k ̸=i

Mjk.

To determine the probability that the Markov chain eventually reaches a partic-
ular recurrent class, let A be the matrix with entries α(ti, rj), where α(ti, rj) is the
probability that the chain starting at transient state ti ends up in recurrent state
rj . The matrix A can be computed as:

A = S +QA = (I −Q)−1S = MS.

Example 5.5. Consider the gambler’s ruin problem where a gambler starts with
i dollars and plays a game where at each step they win or lose one dollar with
equal probability until they either go broke (reach 0 dollars) or reach a target of
N dollars. The states {1, 2, . . . , N − 1} are transient, while states 0 and N are
absorbing.
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The transition matrix P for this Markov chain can be written as

P =



1 0 0 · · · 0 0
1
2 0 1

2 · · · 0 0
0 1

2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

2
0 0 0 · · · 0 1


.

The submatrix Q, representing the transitions among the transient states, is
given by

Q =


0 1

2 0 · · · 0
1
2 0 1

2 · · · 0
0 1

2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
2

 .

The matrix M is then

M = (I−Q)−1.

We are interested in the expected number of steps until absorption, or the process
where the chain enters a state from which it cannot leave, starting from state i.
Let t be the column vector whose i-th entry ti is the expected number of steps to
absorption starting from state i. Then t can be computed using

t = M1,

where 1 is a column vector of ones.
For the gambler’s ruin problem with N = 5, the submatrix Q and its inverse M

are:

Q =


0 1

2 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 1
2 0

 ,

M = (I−Q)−1 =


2 2 2 2
2 4 4 4
2 4 6 6
2 4 6 8

 .

The expected number of steps to absorption starting from each transient state
can be calculated as

t = M1 =


2 2 2 2
2 4 4 4
2 4 6 6
2 4 6 8



1
1
1
1

 =


8
14
18
20

 .

The Gambler’s Ruin problem illustrates the significance of the application of
transient state analysis in Markov chains. By constructing the transition matrix
and identifying transient and absorbing states, we can simplify the computation of
important quantities such as the expected number of steps until absorption and the
probabilities of reaching specific absorbing states. This example encapsulates the
broader applicability of Markov chain theory in modeling and solving real-world
stochastic processes.
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